11th meeting on hot subdwarfs and related objects, Armagh (UK), 11-15 September 2023

Feige 48: a modern view

Valerie Van Grootel(1)

S. Charpinet⁽²⁾, M. Latour⁽³⁾, P. Brassard⁽⁴⁾, E.M. Green⁽⁵⁾, U. Heber⁽⁶⁾

- (1) STAR Institute, Université de Liège, Belgium
- (2) IRAP Toulouse, France
- (3) University of Göttingen, Germany
- (4) Université de Montréal, Canada
- (5) University of Arizona, Tucson, USA
- (6) FAU Erlangen-Nürnberg, Germany

July 2007, sdOB3, Bamberg…

- What we know (and thought to know)...
- New observations:
	- Radial Velocities
	- Mt Bigelow/Mont4K photometric campaign
	- TESS data
- **SED** fitting
- New seismic analysis
- About the rotation of the sdB star
- What now...

A bona-fide sdB star, reference atmospheric parameters (Latour et al. 2014b): T_{eff} =29,850 \pm 300 K, log g=5.46 \pm 0.05, log N(He)/N(H)=-2.88 \pm 0.02

Revealed to be a pulsator by Koen et al. (1998), 340-380s (p-modes)

Member of a close binary system, O'Toole et al. 2004

Orbital period of 0.376 ± 0.003 d (\Leftrightarrow 9.024 \pm 0.072h) The unseen companion is a white dwarf with ≥ 0.46 M_s Orbital inclination *i* ≤ 11.4°

A bona-fide sdB star, reference spectroscopic parameters (Latour et al. 2014b): T_{eff} =29,850 \pm 500 K, log g=5.46 \pm 0.05, log N(He)/N(H)=-2.88 \pm 0.02

Revealed to be a pulsator by Koen et al. (1998), 340-380s (p-modes)

Member of a close binary system, O'Toole et al. 2004

CFHT photometric campaign in 1998 (6 nights), Charpinet et al. 2005

9 pulsation periods, 343-382s, in 4 groups (mean spacing: $\langle \Delta v \rangle \sim 28.2$ µHz, resolution of 2.2 µHz)

Asteroseismology: splitting $\Delta v \sim 1/P_{\rm rot}$, close here if we assume $P_{\rm rot} = P_{\rm orb}$

=> seismic modeling including rotational splittings, Van Grootel et al. 2008

Van Grootel et al. 2008: Feige 48 is synchronized, aka $P_{rot} = P_{orb} = 9.024h$, at least down to 0.22 R_{*}

CFHT photometric campaign in 1998 (6 nights), Charpinet et al. 2005

9 pulsation periods, 343-382s, in 4 groups (mean spacing: $\langle \Delta v \rangle \sim 28.2$ µHz, resolution of 2.2 µHz)

Asteroseismology: splitting $\Delta v \sim 1/P_{\rm rot}$, close here if we assume $P_{\rm rot} = P_{\rm orb}$

=> seismic modeling including rotational splittings, Van Grootel et al. 2008

Van Grootel et al. 2008: Feige 48 is synchronized, aka $P_{rot} = P_{orb} = 9.024h$, at least down to 0.22 R_{*}

Radial Velocities

70 MMT and Bok spectra gathered by B. Green

Analysis by M. Latour: $P_{orb} = 0.3436091 \pm 2.e-7 d$ (8.2466h)

(partial analysis based on 18 spectra presented in Latour et al. 2014a, sdOB6 proceedings)

Mt Bigelow/Mont4K photometric campaign January 1 – May 17, 2009

399.1h of data over 136 days, 12.2% duty cycle 0.085 µHz resolution, median noise level 70 ppm

Mt Bigelow/Mont4K photometric campaign

29 p-modes around ~2900 µHz + 11 g-modes ~300 µHz => Feige 48 is a hybrid pulsator

Mt Bigelow/Mont4K photometric campaign

+ very small peak at 33.67 μ Hz (SNR=4.1), which is equal to P_{orb} => Feige 48 is a reflection effect binary (hence not a WD, rather a dM companion)

Mt Bigelow/Mont4K photometric campaign A zoom on p-modes

Mt Bigelow/Mont4K photometric campaign

We have close multiplets, often asymmetric

Mt Bigelow/Mont4K photometric campaign

We have close multiplets, often asymmetric

So…slow rotator ? But why asymmetric multiplets ???

TESS: sectors 14, 15, 21, 41 and 48 2-min cadence + 20s cadence for S41 and S48

S14+S15

TESS: sectors 14, 15, 21, 41 and 48

Zoom (7 days in S14)

Reflection effect prominent (2.3%) \Rightarrow Schaffenroth et al. 2023: M^{*} and R^{*} of the dM star, i^o of the system

TESS: sectors 14, 15, 21, 41 and 48 Pulsation frequency extraction

8 g-modes + 9 p-modes, all in direct correspondence with Mt Bigelow peaks

What about CFHT data and ~28 µHz splittings ?

Hard to believe anymore on triplets with $\Delta v \sim 28 \mu$ Hz

BUT

- F2-F5-F3 (350.7-347.382-344.083s): Δν ~27.7 μHz
- Among Bigelow close multiplets:
- 378s group: 2 close modes Δv ~4.5 µHz
- 347s group: same 3 close modes, asymmetric, w/o F5: Δv ~4.4 µHz
- 344s group: 2 close modes, Δv ~2.7 µHz (if F3 not taken)
- Small *and* large splittings (non-solid body rotation) ? PS: no obvious splitting among g-modes

Feige 48: SED fitting

Done by Uli, march 2020

No IR excess observed, reasonable fit

Feige 48: SED fitting

Done by Uli, march $2020 \Rightarrow$ Gaia DR2

PS: Gaia DR3: parallax=1.2641 \pm 0.0288 mas SED fitting by Schaffenroth et al. (2022), DR3: M_{sdB}=0.470^{+0.064}_{-0.059} M_{sun} $R_{sdB} = 0.213 \pm 0.007 R_{sun}$

Feige 48: new seismic analysis

Search the stellar model(s) whose theoretical periods best fit the observed ones, in order to minimize

$$
S^{2}(a_{1}, a_{2}, ..., a_{N}) = \sum_{i=1}^{N_{\text{obs}}} (P_{\text{obs}}^{(i)} - P_{\text{th}}^{(i)})^{2}
$$

> Optimization procedure: Efficient optimization codes (based on *Genetic* Algorithms) to thoroughly explore the parameter space and find the minima of S²

Under *external* constraints from spectroscopy with **static** models:

- $0.3 \le M_* \le 0.7 M_{sun}$ (Han et al. 2002, 2003)
- $-3.0 \leq$ **lg** env ≤ -1.5
- $-0.40 \leq$ **lg** core ≤ -0.10
- $0 \leq He_{core} \leq 1$
- $0 \leq \mathbf{O}_{\text{core}} \leq 1$
- **Henv,diff**: 20-100% + location of the transition **lq_diff**
- Steep to smooth profiles (pro_fac parameters: **pf_diff**, **pf_env**, and **pf_core**)
- $+$ T_{eff}, log g @ 1 σ spectroscopy

Complete static equilibrium models, *independent of stellar evolution*

sdB stars

Envelope with double transition:

Pure H envelope

H/He envelope (+Fe) (**Henv,diff**)

Hecore, Ocore (Hecore+Ocore+Ccore=1)

+ chemical transition profiles (smooth to steep): **pf_diff**, **pf_env**, **pf_core** + total mass of the star **M***

= 4th generation (4G) models of sdB stars

Feige 48: new seismic analysis

Hypothesis 1: slow rotation 12 p-modes (ell ≤ 4) and 7 g-modes (ell ≤ 2)

- 1. Observations of trapped g-modes (Østensen et al. 2014, Uzundag et al. 2017)
- 2. Observations of g-modes up to l=12 ! (Telting et al. 2014, Kern et al. 2018, Silvotti et al. 2019)

- 1. Observations of trapped g-modes (Østensen et al. 2014, Uzundag et al. 2017)
- 2. Observations of g-modes up to l=12 ! (Telting et al. 2014, Kern et al. 2018, Silvotti et al. 2019)
- 3. Single sdB stars are (almost) all slow rotators (Charpinet et al. 2018), in direct line with core rotation of Red Clump stars (Mosser et al. 2012) => indication of similar evolution (post-RGB stars)

Asteroseismology of sdB pulsators: Marking results

Fontaine et al., Charpinet et al., Van Grootel et al.,…: 18 sdB stars modeled by asteroseismology (mass, radius, H-rich env. thickness, core composition,…)

Two tests of seismic results thanks to GAIA:

- 1. Possibility to cross-check with **distance** derived based on seismic stellar parameters
- 2. Combined to spectroscopy, possibility to to cross-check with **mass** derived from asteroseismology

Test 1: Method for deriving asteroseismic distances

Results of test 1: seismic vs GAIA distances

All distances agree within 1sigma

Test 2: Method for deriving "spectroscopic" masses

Results of test 2: seismic vs spectroscopic masses

ΔM/M seismology ~ 10% ΔM/M spectroscopy ~ 25%

Hotter stars ($T_{\text{eff}} \sim 40,000 - 80,000$ K), wide range of log g (4.0-6.2). Some are (would be) post-EHB, some direct post-RGB, some mergers, some post-AGB

D. Kurtz/S. Jeffery

Valerie Van Grootel - 11th meeting on hot subdwarf stars – Armagh September 2023 35

Hotter stars ($T_{\text{eff}} \sim 40,000 - 80,000$ K), wide range of log g (4.0-6.2). Some are (would be) post-EHB, some direct post-RGB, some mergers, some post-AGB

> **Pulsating sdOs in the field:** 3 known (incl. PB 8783) despite extensive search (Rodriguez-Lopez et al. 2007, Johnson et al. 2014)

> A couple of sdOVs identified in **globular clusters** (Omega Cen - Randall et al. 2011, NGC 2808 - Brown et al. 2014)

Very short periods (1-2 minutes), consistent with p-modes (Fontaine et al. 2008)

Seismic modeling of sdOVs only tentative (PB8783; Van Grootel et al. 2019)

 $>$ **V366 Aqr pulsators:** 3 g-modes pulsators (periods of \sim 30 min) in stars with T_{eff} \sim 40,000 K, all intermediate He-rich and extremely enriched in some metal elements.

BLAPs

Blue, Large Amplitude Pulsators, discovered by Pietrukowicz in 2017

- Short-period (3-40 min), radially pulsating (0.2-0.4 mag) H-deficient stars
- Evolutionary path/origin unknown (pre-ELM H-shell burning WDs ? Byrne et al. 2020, 2021) – see Pietrukowicz and Bradshaw's talks

D. Kurtz/S. Jeffery

Extremely-low-mass (ELM) white dwarfs (He-core) DA = H-dominant atmospheres (V=variable)

~2-100 min pulsations (g-modes), an extension of the ZZ Ceti instability strip towards low masses (Van Grootel et al. 2013)

10th Meeting on Hot Subdwarfs and Related Objects

Short-period hot subdwarf pulsators in TESS Southern hemisphere – new and old friends

Valérie Van Grootel (STAR Institute, ULiège, FNRS)

A. Baran R.H. Østensen D. Kilkenny H. Worters

S. Charpinet, B. Barlow, & TASC WG8 members

The TESS space mission

4 wide-angle cameras (10cm lenses) 2:1 lunar synchronuous orbit

Primary mission (2018 - 2019) Cycles 1 (south) and 2 (north) 2-min cadence data (SC)

Extended mission (2020 - 2022) Cycles 3 (south) and 4 (north+ecliptic) 2-min and 20s (USC) cadence data

1 cycle = 13 sectors of \sim 27 days each (= 2 TESS orbits)

Currently in cycle 4

TASC WG8: Evolved compact stars with TESS ~1300 hot subdwarfs observed in primary mission, ~3500 at the end of Cycle 4

Searching for sdBVp in TESS data

- This work: southern hemisphere (Cycle 1+ Cycle 3 + south ecliptic of Cycle 4)
- Importance of 20s cadence data (USC) for p-modes !
- rearches • Two independent searches for sdBVp pulsators, by pre-withening technique:
- A. Baran (method: Baran & Koen 2021)
- V. Van Grootel/S. Charpinet with FELIX tool (Charpinet et al. 2010, Zong et al. 2016) 1/ automated search for variations >1500 muHz down to SNR=4.8 2/ individual check if consistent with p-modes pulsations (usually, it's not \circledcirc)

+ check with spectra we have well a hot subdwarf (R. Østensen, D. Kilkenny, H. Worters, P. Németh,…)

RESULTS:

40 p-mode pulsators, confirmed to be hot subdwarfs:

- 17 new detections (10 in SC and 7 in USC)
- 23 known sdBVp (1 in SC and 22 in USC)
- 7 new sdBVpg (hybrids):
	- TIC 10011123 (3 g-modes and 1 p-modes), 1-sector (S33)
- TIC T00TT123 (3 g-modes and T p-modes), T-3
• TIC 143699381 (3 g- and 2 p-), 1 sector (S13)
	- TIC 366656123 (1 g- and 1 p-), 1 sector (S44)
	- TIC 408147637 (1 g- and 3 p-), 1 sector (S38)
	- TIC 241771689 (6 g- and 35 p-) seismic modeling potential ! (S38)
	- TIC 273218137 (3 g- and 3 p-), 2 sectors (S10, S37)
	- TIC 169285097 (Sahoo et al. 2020), 37 g- and 6 p-modes, seismic modeling potential ! (S2, S29) (see sdOB9)
- 7 sdBV p-modes only, including 2 with seismic modeling potential (11 p-modes for TIC 295046932 (S39), 10 modes for TIC 409644971 (S13, S39)
- 1 new sdO with p-modes (TIC 387107334), S13. Adding to the three known in the field.
- 4 sdV, need better spectra to determine O/B types

Old friends

- Better data for 4:
	- HE 0230–4323 (Kilkenny et al. 2010), S3
	- EC 09582-1137 (Randall et al. 2009), S35
		- TIC 69298924 (Baran et al. 2011), S44,S45,S46
		- CS 1246 (Barlow et al. 2010, 2011), S38 TESS detects a g-mode pulsation, so this star is likely a hybrid one.
- No significant improvement for 17:
	- PB8783, sdOV (Van Grootel et al. 2014)
	- EC 03089-6421, sdOV (Kilkenny et al. 2017, 2019);
	- PG 1047+003, TIC 60257911, PG 1315-123, V1405 Ori (K2 data, Reed et al. 2018, 2019, 2020);
	- EPIC 211779126 (K2; Baran et al. 2017)
	- EC 01541-1409 (Randall et al. 2014);
	- EC 11583-2708 (Kilkenny et al. 2006)
	- EC 21281-5010 Kilkenny et al. 2019;
	- PG 1241-084 (Baran et al. 2018);
	- TIC 322009509 (Barlow et al. 2009),
	- EC 20117-4014 (Randall et al. 2006),
	- TIC 366399746 (Boudreaux et al. 2017),
	- 2M 0415+0154 (Oreiro et al. 2009)
	- EC 11275-2504 (Kilkenny et al. 2019)
	- V1835 Ori (Baran et al. 2011)
- TESS is useful and efficient at finding new short-period variables, including a new sdOV.
- Many of these new variables are hybrid pulsators
- Several of these new detections have asteroseismic modeling potential, including 2 hybrid.
- Concerning old friends, 4 have more detected frequencies (but doesn't make them seismic modeling "candidates"), and 17 have no significantly improved pulsation spectra.
- TESS is useful and efficient at finding new short-period variables, including a new sdOV.
- Many of these new variables are hybrid pulsators
- Several of these new detections have asteroseismic modeling potential, including 2 hybrid.
- Concerning old friends, 4 have more detected frequencies (but doesn't make them seismic modeling "candidates"), and 17 have no significantly improved pulsation spectra.

back at ground-based telescopes to obtain better data on new short-period variables discovered by TESS !!!