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Fluid models represent a valid alternative to kinetic approaches in simulating low-temperature discharges: a well-
designed strategy must be able to combine the ability to predict a smooth transition from the quasineutral bulk to the
sheath, where a space charge is built, and a reasonable computational cost. These approaches belong to two families:
multifluid models, where momenta of each species are modeled separately, and drift-diffusion models, where the dy-
namics of particles is dependent only on the gradient of particle concentration and on the electric force. It is shown
that an equivalence between the two models exists and that it corresponds to a threshold Knudsen number, in the order
of the square-root of the electron-to-ion mass ratio; for an argon isothermal discharge, this value is given by a neutral
background pressure Pn ≳ 1000Pa. This equivalence allows us to derive two analytical formulas for a priori estimation
of the sheath width: the first one does not need any additional hypothesis but relies only on the natural transition from
the quasi-neutral bulk to the sheath; the second approach improves the prediction by imposing a threshold value for
the charge separation. The new analytical expressions provide better estimations of the floating sheath dimension in
collisions-dominated regimes when tested against two models from the literature.

I. Introduction

The accurate simulation of low temperature plasmas (i.e. plas-
mas with the temperature of heavy species Th lower than the
one of electrons Te) is crucial to a wide range of aerospace
fields, including electronics applications (such as arcing of
components used in platforms newly brought to space1), hy-
personics (like electron transpiration cooling of innovative
heat shield for cruise vehicles2), electric propulsion3 and lab-
oratory plasmas4. These applications vary greatly in terms of
conditions (thermal non-equilibrium, gas pressure and so col-
lisionality degree) and in terms of the nature of the species in-
volved (electrons, neutral and ionized atoms and molecules).
Numerical solutions can be used to infer more information on
the physical phenomena and hence improve modeling strate-
gies; the choice of the most appropriate method may depend
on the pressure condition of the simulated gas, as shown in
Figure 1. Particle-In-Cell (PIC) methods are the most common
choice when simulating low-pressure plasmas; these provide
a high level of accuracy in the description of the physical phe-
nomena but come with a high computational cost (and a strong
direct dependency on the number of particles involved5–7).
Fluid methods represent an alternative to PIC: while describ-
ing the behavior of a gas using macroscopic quantities re-
duces the accuracy of the representation of the dynamics, their
computational cost is significantly lowered. However, cou-
pling the fluid dynamics to the Maxwell equations results in
a strongly multi-scaled problem8 that poses great challenges
in the numerical development of a fluid solver, with strict
constraints due to the inertia disparity between electrons and

heavy species and to the accurate resolution of the Debye
length in space-charged regions. Moreover, the description of
plasmas with fluid models is directly related to the gas pres-
sure or, in other words, to the collisionality of the plasma9.
Generally, charged particles in an unmagnetized plasma move
under the effect of inertia, thermal motion, electric field and
collisions. In low-pressure regimes, the effect of collisions is
negligible so the dynamics of the species is the result of the
three remaining terms. A multifluid8,10 approach is well suited
for this condition: each species has its dynamics that is the
result of a balance between the inertia, thermal pressure and
electrical forces. Elastic collisions can be introduced with fric-
tion terms11 and become more relevant when the gas pressure
is increased. In this regime, Drift-Diffusion models12,13 are
often used: the electric field (drift) drives most of the motion
of the charged particles and diffusion happens due to concen-
tration and temperature gradients. The kinetic derivation of
these two models is different. The multifluid approach can
be seen as part of the family of moments method14–16, with
the governing equations obtained with moments of the Boltz-
mann equation, truncated with different closure relations. An
alternative derivation was proposed by Benilov17 using the
Chapman-Enskog method, but this work was based on the
assumption that collision cross-sections between particles of
different species are significantly smaller than those for colli-
sions between particles of the same species. However, certain
interactions, such as charge exchange collisions between ions
and neutrals compared to neutral-neutral interactions, violate
this assumption, as noted in the paper’s conclusions. Drift-
diffusion models belong to the family of multicomponent ap-
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Figure 1: Qualitative scheme representing the range of applicability of different numerical methods for plasma physics. The gas
pressure, increasing from the rarefied to the continuum regime, defines three conditions: collisionless, intermediate and

fully-collisional. Red: particle-method, blue: fluid models.

proaches, whose derivation based on the Chapman-Enskog
method has been investigated extensively in the past18,19. In
this case, no assumption on the collision cross-sections has
to be made but the full governing equations can be obtained
using a scaling obtained from the dimensional analysis of the
Boltzmann equation. Besides the differences in the way the
models are derived, authors9,20 have shown that the momen-
tum equations of the multifluid approach degenerate into the
drift-diffusion equations if the dynamics of the particles is as-
sumed dominated by collisions. The minimum gas pressure
that results in the “collision-dominated” plasma condition is
usually given depending on the plasma considered and the ge-
ometrical shape of the domain. To the knowledge of the au-
thors, an indication based on the Knudsen number Kn = λ/L,
i. e. the ratio of the mean free path λ to a characteristic length
of the domain L, is missing.
Fluid models have been used extensively in the simulations of
the interaction of the plasma with solid surfaces. When a low-
temperature plasma comes in contact with a wall, a region in
the proximity of the solid surface, called sheath, develops: the
majority of electrons is depleted or repelled and this compen-
sates for the large mobility difference between electrons and
positive ions. A potential difference builds up and the wall
value adjusts itself, in the case of a floating potential, so no
DC current flows21. The transition from the quasineutral bulk
of the plasma to the space charge sheath has been of interest
since the first studies on conducting fluids22; Bohm23 derived
the criterion that today carries his name, stating that, to have
a stable sheath in a mixture of electrons and single-charged
ions, the latter must enter the boundary layer region with a
speed ui greater than a limit value uB = (kBTe/mi)

1/2, where
kB is the Boltzmann constant and mi is the ions mass. This
condition, valid for a restricted category of plasmas (binary
mixture with single-charged ions) and conditions (collision-
less), has been the object of several attempts of extension: the
interested reader can find an extensive overview of the topic
in Baalrud et al.24. To this day, modeling and understanding

the effect of elastic collisions on the dynamics of the sheath
remains an active challenge for the community. The position
where the ions meet the Bohm velocity uB, or a modified ver-
sion of it, is conventionally taken as the sheath edge, defin-
ing in this way its dimension; through the years the devel-
opment of simplified fluid models to describe the dynamics
of the charges allowed for obtaining a priori estimations of
the size of the sheath. Historically the most used model was
the Child-Langmuir law9, which evaluates the size of a large
voltage sheath; Chabert21 showed that this formula often un-
derestimates the true size, especially when considering elas-
tic collisions; the author considered isothermal conditions for
an argon plasma coupled with the Boltzmann relation for the
electrons, with a constant ion mean free path for the colli-
sional term. Benilov25 provided a summary of the theory of
collisionless and collision-dominated sheath. Having an esti-
mation of the dimension of the space-charge region is impor-
tant for certain applications, such as material processing20,21,
and for the design of quasi-neutral solvers to properly charac-
terize the extent of the domain.
As detailed in this introduction, the literature abounds with ex-
amples of applications of fluid models to applications where
elastic collisions have a relevant role in the dynamics of plas-
mas, but there is no clear indication on the range of applica-
bility of each approach: this work aims to provide a condition
on the Knudsen number of the gas that results in equivalence
between the isothermal version of the multifluid and the drift-
diffusion models. This value, which is inferred from numeri-
cal results, is confirmed by a non-dimensional analysis of the
equations. The analysis is performed based on a novel scal-
ing that considers the reduced velocity of charges entering the
sheath due to the increased collisionality. Once the equiva-
lence of the models is established, we use the analytical solu-
tions of the drift-diffusion equations to obtain two analytical
formulas to estimate the position of the sheath edge, that cor-
rectly predict the size of the sheath at the high pressures for
both drift-diffusion and multifluid simulations. We can, in this
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way, investigate the influence of elastic collisions on the po-
sition of the sheath edge by using a model, the drift-diffusion
one, suited for collisional regimes.
This document is divided as such: in Section II we de-
scribe the fluid models, multifluid and drift-diffusion; the non-
dimensional version of the equations is given in Section III,
followed by the derivation of the analytical solutions of the
drift-diffusion equations (Section IV). These expressions are
used to derive two formulas to estimate the position of the
sheath edge (Section V). Numerical strategies are described in
Section VI; results of the simulations are shown and discussed
in Section VII. Finally conclusions are drawn and future de-
velopments are discussed in Section VIII.

Sheath SheathBulk

ne

ni

ne ∼ ni

ni

ne

Figure 2: Schematic of the one-dimensional discharge.

II. Fluid Models

Fluid models describe the behavior of a gas by conservation
equations of macroscopic quantities derived as velocity mo-
ments of the k-th particle velocity distribution function (VDF)
fk (x,ck, t) (with ck the k-th particle velocity, x the space co-
ordinate and t the time). The evolution of this quantity is
accounted for using the Boltzmann equation18 from which
governing equations for the velocity moments can be derived
through kinetic derivation.
We introduce the governing equations of the two models of
interest in this work by first introducing the configuration of
the testcase we are going to study, as many hypotheses are
strongly connected to the physics we want to simulate. Fig-
ure 2 shows the one-dimensional symmetric domain that rep-
resents a DC discharge9, where a mixture of positive ions i,
electrons e and neutral atoms n is in contact with floating
walls (at x = ±L/2, L is the domain length): we consider a
weakly ionized plasma, hence only charges are simulated and
the neutrals particles act as a background gas. The plasma is
assumed isothermal, with the temperatures constant in time
and space but different between heavy species and electrons
(Th , Te). Although these hypotheses preclude the simulation
of the complete physics of many interesting phenomena, the
resulting governing laws are well-suited to describe the for-

mation of the sheath: the low-pressure conditions make the
energy exchange between the light electrons and heavy par-
ticles very inefficient (due to the low number of collisions)
and therefore it is impossible to reach the thermal equilib-
rium. Multifluid models (lately referred to as “MF”) repre-
sent species inside the plasma as single fluids, each one with
its dynamics: interactions between particles are accounted for
through source terms. From Alvarez Laguna et al.11, the di-
mensional multifluid equations are:

∂tne +∂x (neue) = neν
iz, (1a)

∂tni +∂x (niui) = neν
iz, (1b)

∂t (neue)+∂x

[
neu2

e +
pe

me

]
=−neqe

me
∂xφ

−ne (ue −un)νen,

(1c)

∂t (niui)+∂x

[
niu2

i +
pi

mi

]
=−niqi

mi
∂xφ

−ni (ui −un)νin,

(1d)

∂
2
xxφ =− (qene +qini)

ε0
, (1e)

where nk is the k − th species number density, uk the k − th
species velocity, mk its mass and qk its charge (here qe = −q
and qi = q, with q the elementary charge). The species partial
pressure follows the perfect gas law pk = nkkBTk, with Tk the
species temperature (Te for electrons and Th for ions). Equa-
tion (1e) is the Poisson equation with ε0 the vacuum permit-
tivity. The collision frequencies νen and νin account only for
elastic collisions between charges and neutrals (in accordance
with the hypothesis of a weakly ionized plasma):

νen =
16
3

nQ(1,1)
en

√
kBTe

2meπ
, νin =

8
3

nQ(1,1)
in

√
kBTh

miπ
, (2)

with Q(1,1)
en and Q(1,1)

in collision integrals26 obtained from the
thermodynamic library Mutation++27. Neutrals are assumed
at rest, hence the friction terms in eqs.(1c)-(1d) simplify to
nk (uk −un)νkn = nkukνkn.
Many authors have used Drift-Diffusion models (here re-
ferred to with “DD" ) for low temperature plasma physics
simulations13,28–30. The one dimensional discharge of fig.2
can be modeled as a purely diffusive problem; therefore we
have

∂tne +∂x (neVe) = neν
iz, (3a)

∂tni +∂x (niVi) = neν
iz, (3b)

∂
2
xxφ =− (qene +qini)

ε0
. (3c)

where Vk is the diffusion velocity of the k− th species.
Different approaches exist for the modeling of the diffusion
velocity; we restrict our analysis to a binary diffusion model:

Vk =

(
−Dk

nk
∂xnk −µk∂xφ

)
, (4)
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with species diffusion coefficient Dk and the species mobility
µk (adapted to include only charges-neutral collisions):

Dk =
kBTk

mkνkn
, µk =

qk

mkνkn
. (5)

This approach includes only binary interactions, losing its ac-
curacy when the mixture grows in complexity, i. e. when the
movement of the single particles is determined by the interac-
tion of multiple species at the same time.
The source term for eqs.(1a)-(1b) and eqs.(3a)-(3b) simulates
the effect of electron impact ionization; this value, for isother-
mal simulations, is an eigenvalue of the problem31 and re-
quires careful numerical treatment10.
The following section introduces the non-dimensional form of
the governing equations, with a novel value for the reference
velocity that includes the slowing down effects of the elastic
collisions.

III. Scaled equations

The Bohm velocity uB is often taken as the reference value
for the velocity of the charges entering the sheath10,24,32, al-
though, in case the collisionality increases, it overestimates
the actual speed, that is reduced to the slowing effect caused
by the interactions with the background gas9.
Therefore, we start by proposing a new reference velocity

u0 = αuB = α

√
kBTe

mi
(6)

and introduce additional reference quantities

n = n/n0, x = x/L0, φ = φ/φ0, (7)

where n0 = ne0 is the reference number density (and ne0 the
initial electron number density), L0 is a reference length and
the reference potential is defined as φ0 = kBTe/q (i.e. the elec-
tron temperature in eV). The parameter α , whose value will
be defined in Section VII B, acts as a scaling parameter on
u0: in the collisionless limit the reference value should tend to
the collisionless Bohm velocity u0 = uB, hence α = 1; as the
charges collision frequencies increase, α should decrease, re-
flecting the reduced speed of particles. The scaled elastic col-
lision frequencies of electrons and ions, from eqs.(2), depend
on the k-th charges-neutral Knudsen number Knkn = λkn/L0

(with λkn = (nnQ(1,1)
kn )−1 the mean free path that a charged

particle travels between each interaction with the neutral back-

ground gas):

νen = νent−1
0 =

16
3
√

2π
nnQ(1,1)

en L0︸         ︷︷         ︸
Kn−1

en

α−1
√

ε

[
u0

L0

]
︸  ︷︷  ︸

t−1
0

,

=
16

3
√

2π

t−1
0

α
√

εKnen
,

(8a)

νin = ν int−1
0 =

8
√

κ

3
√

π
nnQ(1,1)

in L0︸         ︷︷         ︸
Kn−1

in

α
−1
[

u0

L0

]
︸  ︷︷  ︸

t−1
0

,

=
8
√

κ

3
√

π

t−1
0

αKnin
,

(8b)

where we introduced the electron-to-ion mass ratio ε =
me/mi, the temperature ratio κ = Th/Te and a reference
timescale t0. We can now write the scaled version of eqs.(1):

∂tne +∂x [neue] = neν
iz, (9a)

∂tni +∂x [niui] = neν
iz, (9b)

∂x

[
ne

(
u2

e +
1

εα2

)]
=

ne

εα2 ∂xφ − 16
3
√

2π

neue

α
√

εKnen
, (9c)

∂x

[
ni

(
u2

i +
κ

α2

)]
=− ni

α2 ∂xφ − 8
3
√

π

niui
√

κ

αKnin
, (9d)

∂
2
xxφ = χ

−1 (ne −ni) , (9e)

and eqs.(3):

∂tne +
3
√

2π

16
Knen

α
√

ε
∂x
[
−∂xne +ne∂xφ

]
= neν

iz, (10a)

∂tni +
3
√

π

8
αKnin√

κ
∂x
[
−κ∂xni −ni∂xφ

]
= neν

iz, (10b)

∂
2
xxφ = χ

−1 (ne −ni) ,
(10c)

where χ = (λD/L0)
2 = (ε0kBTe)/(ne0q2

eL2
0) is the non-

dimensional (initial) Debye length squared. The notation (.)
for non-dimensional quantities will be abandoned in the rest
of the paper for the seek of clarity: when not otherwise speci-
fied all quantities will be considered non-dimensional.
We can now obtain analytical expressions for the drift-
diffusion equations.

IV. Analytical profiles

Starting from the steady state form of eq.(3):

1
ενen

∂x (−∂xne +ne∂xφ) = neν
iz, (11a)

1
ν in

∂x (−κ∂xni −ni∂xφ) = neν
iz, (11b)

∂
2
xxφ = χ

−1 (ne −ni) , (11c)
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where we kept the adimensional collision frequency as νkn
for clarity of the next passages. The bulk solution can be ob-
tained by assuming quasineutrality (χ = λD/L → 0), so the
Poisson equation (eq.(11c)) reduces to ne = ni = n. Subtract-
ing eq.(11b) from eq.(11a) and using the quasineutrality as-
sumption we obtain:

∂x (−∂xn+n∂xφ)− νenε

ν in
∂x (−κ∂xn−n∂xφ) = 0.

This can be rearranged into:

∂x (∂xn) = γ∂x (n∂xφ) , γ =
ν in + ενen

ν in − εκνen
, (12)

that can be easily integrated twice, with the proper boundary
conditions (∂xφ(x = 0) = 0,φ(x = 0) = 0), to obtain:

n(φ (x)) = nC exp(γφ) , (13)

which is a modified version of the electron Boltzmann
relation9, with nC being the value of plasma density at the
center of the domain (n(φ (x = 0)) = nC). One can easily ver-
ify that γ − 1 ∼ 10−3 for our simulation conditions (we will
nevertheless keep it in the following derivations to avoid sin-
gularities).
We can now substitute eq.(13) in eq.(11a) and rearrange:

1
ενen

∂x [−∂x (nC exp(γφ))+nC exp(γφ)∂xφ ]

= nC exp(γφ)ν
iz,

which simplifies to:

∂
2
xxφ + γ (∂xφ)2 =

ενenν iz

1− γ
,

∂xφ |x=0 = 0,
φ |x=0 = 0,

(14)

where we highlighted the boundary conditions. If we consider
the ionization frequency ν iz constant (a reasonable assump-
tion as all the quantities have reached steady state), eq.(14)
has an analytical solution:

φ (x) =
ln [cos(ξ x)]

γ
, ξ =

√
(νin + ενen)ν iz

κ +1
. (15)

One can see that eq.(13) then becomes:

n(x) = nC cos(ξ x) . (16)

Equation (16) reminds the model developed by Schottky33;
however, in our work, we do not impose plasma vanishing
density at the wall (the often called "Schottky condition") and
the results comes directly from the governing equations and
the quasi-neutrality assumption.
Figure 3 shows the electric potential obtained at different lev-
els of collisionality using eq.(15). The analytical profiles reach
an asymptote and they do not extend to the wall (positioned at
x = L/2 = 50λD). In the proximity of the sheath edge, where
the quasi-neutrality is lost, the solution loses its basis. This as-
pect, often seen as a limitation, is used in the following section
to find the position of the sheath edge, as the classical Bohm
criterion is not valid in collision-dominated regimes.

0 10 20 30 40 50
x/ D

5

4

3

2

1

0 1 Pa
10 Pa
100 Pa
1000 Pa

Figure 3: Analytical profile of the electric potential obtained
with eq.(14) at different background pressures (green:1 Pa,

red:10 Pa, cyan:100 Pa, black:1000 Pa).

V. Estimation of the sheath width

Two different methods are proposed here to define a unique
sheath edge for collisional plasma:

1. Finding the position of the vertical asymptote of
eq.(15). This approach is free of assumptions but pro-
vides less accurate results.

2. Computing ∂ 2
xxφ we can impose a charge density limit

value ρC (following the intuition of Beving et al.32) for
when the plasma loses its neutrality. This method al-
lows for more accurate results but is dependent on the
arbitrary choice of the threshold value ρC.

The computation of the vertical asymptote of eq.(15) is
straightforward:

xAs = lim
φ→−∞

cos−1 (exp [γφ ])

ξ
=

π

2ξ
, (17)

this value depends only on fluid quantities and is based only
on the quasineutral assumption. The procedure followed here
is similar to the one used by Riemann31,34 but rises naturally
from a different set of equations.
A second formula can be obtained by quantifying the devi-
ation from the quasineutrality by introducing a measure of
the charge density neρC = (ni −ne): a threshold value ρC is
obtained from collisionless (νen = νin = 0) multifluid solu-
tion on our setup, taking the charge density at the position
where ui = uB. Inserting eq.(15) in the scaled Poisson equa-
tion eq.(11c) we have:

−χ∂
2
xxφ = neρC = ni −ne =

ξ 2χ

cos2 (ξ x)
, (18)

that can be easily rearranged to obtain:

xρ =
1
ξ

cos−1
(

ξ

√
χ

neρC

)
. (19)
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We will test the quality of the predictions from eq.(17) and
eq.(19) with our numerical solutions in Section VII.

VI. Numerical Methods

We do not describe the details of the space discretization for
all the schemes proposed when their use is widely known and
not different from the applications in classical fluid dynamics;
on the other hand, this section focuses on the time integration
schemes used, as their choice is fundamental in the devel-
opment of the solvers. All simulations have been performed
on the same one dimensional domain, divided into 602 cells:
the grid is finer in the proximity of the wall (∆xmin = 0.1λD)
and becomes gradually coarser in the center of the domain
(∆xmax = 0.5λD).

Multifluid

The implementation of the multifluid equations has been ex-
tensively described and validated10,11. For the results in this
work we use Roe numerical flux35 with third-order recon-
struction of the solution36; the electric potential is obtained by
solving the Poisson equation at any timestep using centered fi-
nite differences. The electron plasma frequency imposes strict
constraints for explicit schemes but this does not impact heav-
ily the computational cost of the simulation, provided that the
stability constraint imposed by the Courant-Friedrichs-Lewy
(CFL) number is respected (CFL< 1). For our simulations we
set CFL = 0.9.

Drift-diffusion

A first-order backward Euler has been implemented to solve
for eq.(3a)-(3c). We focus here on the electron diffusion flux
(but the same reasoning can be applied to the other species),
rewriting it in non-conservative form, with indices {n+ 1, n,
n−1} indicating the timestep at which the considered quantity
is evaluated:

∂x
(
−∂xnn+1

e +nn+1
e ∂xφ̃

)
=−

(
∂

2
xxne

)n+1

+(∂xne)
n+1 (

∂xφ̃
)
+(ne)

n+1 (
∂

2
xxφ̃
)
, (20)

In this way the expression is linear with the number density
and so the system of equations:(

I
∆t

+An
)

Un+1 =
I

∆t
Un +Sn. (21)

is tridiagonal ( An is the matrix resulting from discretizing
eq.(20) using centered finite differences) and can be solved
using the fast Thomas algorithm. Uk = {ne,ni}T is the vari-
able vector evaluated at time tk; similarly the source vector
is Sk = {nk

eν iz,nk
eν iz}T, with ν iz assumed constant during the

timestep. In eq.(20) the derivatives of the potential φ are not
evaluated at tn+1 = tn +∆t (with ∆t the timestep), which will

48.6 48.8 49.0 49.2 49.4 49.6 49.8 50.0
x/ D

0.004

0.003

0.002

0.001

0.000

x(.
)

n

n + 1

Figure 4: Gradient of the electric potential φ evaluated at
timestep n (dashed), n+1 (full) and the predicted value

obtained with eq.(22) (dots). Values obtained at the first steps
of the simulation.

require solving the Poisson equation coupled to the system,
but instead a prediction of the value φ̃ is used; this allows
to obtain greater stability without increasing excessively the
computational cost. This value is obtained by solving:

−∂x

[(
χ −∆t ∑

j∈S

∣∣q j
∣∣ nn

j

ν jn

)
∂xφ̃

]
=

∑
j∈S

q j

(
2nn

j −nn−1
j

)
+∆t∂x

(∣∣q j
∣∣ nn

j

ν jn
∂xφ

n
)
,

(22)

where S is the species set. The steps to obtain the previous
equation are detailed in Hagelaar37 and have been adapted to
our governing laws; the discretized system is tridiagonal and
solved using the Thomas algorithm. Figure 4 shows the qual-
ity of this method: the procedure gives an accurate prediction,
improving the stability of the scheme. All the simulations have
been obtained with the same timestep used in the multifluid
approach.

Boundary conditions

The correct imposition of the boundary conditions is funda-
mental for an accurate description of the sheath formation.
It is standard10,11, for the multifluid modeling, to impose the
electron flux to be equal to the number of particles crossing
the plane with velocity directed to the wall

neue

(
x =±L

2
, t
)
=±1

4
ne

√
kBTe

me
=± ne√

2πε
uB. (23)

The prescribed value is imposed using the ghost cells
method11 and is obtained assuming a Maxwellian VDF. The
electron VDF is usually far from equilibrium in the proximity



7

of the wall, due to the reduced number of collisions and to
the particles lost at the absorbing surface, and this deviation
should be considered in the development of future boundary
conditions for fluid models to capture these kinetic effects.
Electron and ion density and the ion flux have a Neumann
boundary condition.
Setting the boundary conditions to the drift-diffusion model
presents substantial differences compared to the multifluid
counterpart. Due to the absence of an equation for the electron
momentum, we are going to impose a fixed out-going flux to
the diffusion velocity:

1
ενen

(
−∂xne

ne
+∂xφ

)
=

1√
2πε

, (24)

where we scaled with uB both sides. Approximating the num-
ber density gradient with a first-order finite difference formula
and the interface number density with the mean of the ghost
cell value nG

e and the last (inside) cell nL
e :

∂xne =
nG

e −nL
e

∆x
, ne =

nG
e +nL

e

2
, (25)

and, rearranging, we obtain:

nG
e = nL

e

1+ ∆x
2

(
∂xφ −νen

√
ε

2π

)
1− ∆x

2

(
∂xφ −νen

√
ε

2π

) . (26)

Equation (23) and eq.(26) can be extended easily using the
scaling in the previous section; we will see in the following
sections that our choice does not impact the results of the sim-
ulations. Ion density has a Neumann boundary condition.
Finally, we impose a floating boundary condition for the elec-
tric potential.

Ionization Frequency

We use an iterative formula10 to obtain a steady-state value of
the ionization frequency

ν
iz =

|niui|x=−L/2 + |niui|x=L/2∫
L nedx

, (27)

with, for DD, the ion diffusive flux |niVi|x=±L/2 to account for
the outgoing flux. In this way, the number of particles rein-
jected in the domain is proportional to the flux of ions to the
wall and maintains the electron population constant in the do-
main.

VII. Results

Table I shows the important quantities and non-dimensional
parameters used for the simulations. Various collisional
regimes were investigated; the number density n of the gas
is chosen as n ∼ nn = pn/(kBTh) so, varying the background
pressure, we can vary the number of elastic collisions. Figure
5 and Table II detail the conditions of four regimes: we are
showing two of these, ranging from an almost collisionless
plasma to a dynamics fully dominated by elastic collisions.

10 1 100 101 102 103 104

Pn [Pa]
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10 4

10 3

10 2

10 1

100

101

102

ln
10

 K
n k

n [
-]

1
2

1
8
1
4

1
2

Electrons
Ions
Simulations

Figure 5: Knudsen number for electrons (blue) and ions
(orange) at different backround gas pressures, with order of
magnitudes highlighted in terms of powers of the mass ratio

ε . The lengthscale L0 = L is the width of the domain, the
characteristic length of the bulk. Simulation conditions are

shown (stars).

A. Numerical comparison

We compare solutions from the multifluid and drift-diffusion
approach in terms of number density, (diffusion) velocity and
electric potential profiles. The number density is scaled with
the value at the center of the bulk (nk (x = 0)); velocity values
are presented in non-dimensional form using the classic (colli-
sionless) Bohm velocity; lastly, the electric potential is shown
scaled with φ0. All quantities are obtained at steady state con-
dition, chosen as the moment when ||Un+1 −Un||< 10−4.
Figure 6 presents the profiles of the electrons and ions num-
ber densities: all the models can provide continuous solutions
from the bulk region (where the chosen scaling allows to over-
come the differences in the modeling of the ionization fre-
quency) to the space charge region close to the boundary. As
expected, the profiles differ significantly in the more rarefied
regime: in this condition, the convective term of eq.(9) is still
relevant and the DD model cannot capture correctly the dy-
namics of the particles. As the number of collisions increases
the movement of the charges becomes dominated by the inter-
action with the background gas, with the prediction from the
diffusion model getting closer to the multifluid profile.
In figure 7 we present the velocity profiles (uk for MF and Vk
for DD) throughout the domain and a view of the near wall re-
gion: the multifluid solution correctly captures the substantial
absence of current in the quasineutral region for all pressure
regimes while the drift-diffusion model extends the acceler-
ation region way beyond the theoretical sheath edge for low
collisional plasmas. At higher pressure, the DD model pre-
dicts the same flux of ions compared to the MF solution; the
velocity of the electrons in the sheath presents a small discrep-
ancy.
Figure 8 shows the profiles for the electric potential; similarly,
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Table I: Argon discharge conditions

Initial electron number density ne0 1016 m−3 Ion (Heavy-species) temperature Th 0.05 eV

Electron Temperature Te 2 eV Ion-neutral collision integral Q(1,1)
in 1.41×10−18 m2

Electron-neutral collision integral Q(1,1)
en 7×10−20 m2 Electron-to-ion mass ratio ε = me/mi 1.36×10−5

Ion-to-electron temperature ratio κ = Th/Te 0.025 Initial Debye length λD 10−4 m

Squared non-dimensional initial Debye length χ = λ 2
D/L2

0 1 Discharge width L 10−2 m

Table II: Knudsen number for electrons Knen and ions Knin
and the ionization degree η at different background

pressures. Characteristic lengthscale of the sheath is L0 = λD,
bulk characteristic length is L0 = L.

pn η = ne0
nn

Knen Knin

Sheath Bulk Sheath Bulk

1Pa ∼ 10−4 1143.47 11.43 56.82 0.568

10Pa ∼ 10−5 114.35 1.143 5.68 0.057

100Pa ∼ 10−6 11.43 0.114 0.568 5.68×10−3

1000Pa ∼ 10−7 1.143 1.14×10−2 5.68×10−2 5.68×10−4

the agreement of the two models increases with the neutral
background pressure.
We can now use the information from the numerical simula-
tions to obtain an estimation of the α parameter we introduced
in Section III, propose a limit value of the Knudsen number
that ensures equivalence of the two fluid models and give a
possible explanation for the discrepancies visible at higher
pressure.

B. Bridging Multifluid and Drift-Diffusion

Figure 9 shows the velocity of the charges from the center of
the domain until the wall, at different background pressures.
We can see that the charge separation, at low pressures, hap-
pens when both velocities hit the collisionless Bohm speed
ue = ui = uB; as the Knudsen number decreases, the overall
speed in the bulk diminishes. The velocity at the onset of the
sheath is now better approximated by the electrons Knudsen
number Knen. We can propose a tentative definition of α that
reflects this behavior:

α = min(Knen,1) (28)

and obtain the final scaled version of eqs.(9c)-(9d). Figure 10
shows the order of magnitude of the terms in those equa-
tions, for different values of a common Knudsen number
Kn ∼ Knen ∼ Knin. In the collisionless case, the term pro-
portional to the collision frequency is null: the full electron
momentum equation (eq.(9c)) can be rearranged (remember-
ing ε ≪ 1), keeping the dominant pressure and electric field

forcing terms, and integrated to obtain a relation for the elec-
tron number density

ne (φ (x)) = nC exp [φ (x)] ,

known as the Boltzmann relation for electrons.
When collisions are considered, we see that the correspond-
ing term gains importance in both eqs.(9c)-(9d). If we take a
collisional “limit" Kn = Knen = Knin = ε1/2 we have

∂x

[
ne

(
u2

e +
1
ε2

)]
=

ne

ε2 ∂xφ − 16
3
√

2π

neue

ε3/2 , (29a)

∂x

[
ni

(
u2

i +
κ

ε

)]
=−ni

ε
∂xφ − 8

3
√

π

niui
√

κ

ε
. (29b)

The value is chosen based on the results in the previous Sec-
tion: for the argon plasma in object ε1/2 ∼ 3.37× 10−3 ap-
proximates the Knudsen number of both species when the two
models agree the most (Pn = 1000Pa in Table II). If we rear-
range eqs.(29) we obtain an expression for the two velocities

ue =
3

16

(
2π

ε

)1/2(
−∂xne

ne
+∂xφ

)
, (30a)

ui =
3
8

(
π

κ

)1/2
(
−κ

∂xni

ni
−∂xφ

)
. (30b)

These expressions, coupled with eqs.(9a)-(9b) and eq.(9e),
give an equivalent set of equations to the Drift-Diffusion ones
in the same limit. In fact, if we repeat the procedure starting
from with eqs.(10) we obtain

Ve =
3

16

(
2π

ε

)1/2(
−∂xne

ne
+∂xφ

)
, (31a)

Vi =
3
8

(
π

κ

)1/2
(
−κ

∂xni

ni
−∂xφ

)
, (31b)

the same expressions of eqs.(30). We proved that, provided
that the elastic collisions with the background gas are fre-
quent, the two models coincide. It is important to notice that
the threshold value Kn = ε1/2 is uniquely defined by the
choice of the species in the plasma; once the electron tem-
perature Te and the domain characteristic length are fixed, the
simulation Knudsen number is set by the neutral background
pressure through the neutral number density nn appearing in
eqs.(8). Additionally, we emphasize that Kn = ε1/2 corre-
sponds to the continuum limit set by Graille et al.19 to obtain
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Figure 6: Number density of electrons and ions, scaled with
the value at the center of the domain for different background

pressures. Ions are in orange and electrons are in black.
Multifluid solution have no marker, Drift-Diffusion ones are

marked in diamonds.

fluid equations starting from the Boltzmann equation.
We can now explain also the small discrepancies at Pn =
1000Pa: the assumption Kn < ε1/2 is valid only for the ions,
while the electrons Knudsen number Knen remains slightly
higher. It is likely that, by increasing the gas pressure, the dy-
namics of the electrons will become fully dominated by the
elastic collisions and the distance of the models will reduce. A
similar consideration can be done for the sheath, whose char-
acteristic length is smaller (L0 = λD) than the bulk one. From
Table II we see that the dynamics of the charged species in the
sheath is collisionless, explaining the discrepancy between the
two models in the region close to the walls.
The formulas derived in Section V to estimate the position of
the sheath edge are tested in the following Section.
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Figure 7: Charged species velocity for different background
gas pressures, scaled with the Bohm velocity uB. Each case

comes with a close-up of the sheath region. Ions are in
orange and electrons are in black. Multifluid solution have no

marker, Drift-Diffusion ones are marked in diamonds.

C. Collisional sheath width

Figure 11 shows the prediction of the sheath width ws =
|L/2− xs| in terms of the initial Debye length λD. The po-
sition of the sheath edge xs is computed using eq.(17) and
eq.(19). We used here the value of the ionization frequency
coming from the DD simulations. The reference (“Density
(Reference)") is taken as the point where the charge density
in the numerical profile hits neρC, with ρC = 0.049, i. e. the
charge density at the position where ui = uB in a collisionless
MF simulation (in Beving et al.32 it was set to ρC = 0.019
); the uncertainty of this value is related to the discretiza-
tion of the sheath region and is below 0.1λD. As expected xρ

can better approximate the creation of the charge separation
close to the wall than the value from the asymptotic proce-
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Figure 8: Electric potential profiles at different background
gas pressures. Multifluid solution have no marker,

Drift-Diffusion ones are marked in diamonds.

dure, with an error that gets smaller with the increase of the
background pressure, approaching ∼ 1.5λD. The prediction
from eq.(17) underestimates the width of the sheath, with an
error that is constant around 7.5λD; this result is a direct ef-
fect of the distance of the asymptote from the true point where
the quasi-neutrality is broken. Figure 12 compares the predic-
tion of eq.(15) with the numerical results: one can see that the
distance of the asymptote from the point the analytical profile
departs the simulated profile is non-negligible.
The quality of the prediction of eq.(19) and its sensitivity to
the parameter ρC can be verified using analytical profiles for
the sheath. Figure 13 shows the comparison of the numeri-
cal solution with the analytical profiles corresponding to the
Mott-Gurney law9:

φ (x) =−

√
8 jiνin

9χ
s3/2, (32)
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Figure 9: Electrons (dashed) and ions (solid line) velocity
obtained with multifluid simulations varying the background

gas pressure (green:1 Pa, red:10 Pa, cyan:100 Pa,
black:1000 Pa). Orders of magnitude are highlighted with
dotted lines compared to the mass ratio ε , the collisionless
Bohm velocity uB and Knudsen numbers Knen and Knin.

with ji = niVi the ion diffusion flux at the sheath edge and
s = [0,ws] the adimensional sheath spatial coordinate. Two
different threshold values have been used: eq.(32) assumes
zero electron population in the sheath, hence it compares well
when higher values of space charge ρC are considered.
At this point, one should test if the estimations obtained from
the drift-diffusion governing laws can be transferred to the
multifluid model. We use the formulas just derived using
quantities from multifluid simulations (as the elastic collision
frequencies are the same, this reduces to using the steady state
value of the ionization frequency ν iz). Figure 14 shows a com-
parison of xAs and xρ and 3 different references: 1) “Density
(Reference)", again the point where the charge density reaches
the threshold value ρC, 2) Beving et al.32 and 3) Baalrud et
al.38; for 2) and 3) the sheath edge is taken as the position
where ui equals a modified value of the Bohm speed umod

B that
is obtained with, respectively,

umod
B =−10(λD/λin)+

√
1+100(λD/λin)

2 (33)

and

umod
B =

√
kB (Te +Ti)−meu2

e

mi
=
√

(1+κ)− εu2
euB. (34)

These three criteria have been chosen because they repre-
sent different approaches to the problem of finding a criterion
for the sheath edge: one based on physical reasoning, one
obtained from the Sagdeev potential39 and one that includes
electron dynamics in the canonical Bohm criterion.
We can see that our proposed estimations improve when the
Knudsen numbers of both species approach ε1/2, with satis-
fying results for high background pressures (Pn ∼ 1000Pa). In
the rarefied regime, the error is non-negligible, as expected.
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Figure 10: Comparison of the order of magnitude of the
different terms appearing in eqs.(9) (top:electrons,

bottom:ions). The values are computed varying the Knudsen
number Kn, common to both charges.

The two criteria taken from literature have great accuracy at
low pressures but fail to follow the behavior when this in-
creases: Baalrud et al.38 include in their modified Bohm crite-
rion the electron dynamics but neglect the collisions; Beving
et al.32 included ion collisions effects but assumed cold ions39

and constant ion mean free path while neglecting electron fric-
tion forces. In both these cases ui < umod

B at higher pressure, i.
e. the modified Bohm speed that is proposed is never met by
the ions, therefore the last two values in fig.14 give a sheath
with negligible width (L/2−ws = L/2). Results in fig.14 ob-
tained with eq.33 differ from the one showed in Figure 9 from
Beving’s paper. This can be explained with the choice of units
for the plot: in our work, the initial debye length λD is the
same for every background pressure, as both the initial elec-
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Figure 11: Estimations of the sheath width for different
background pressures width using three different approaches

to obtain the sheath edge position: the position where the
charge density for DD results equals ρC = 0.049 (“Density
(Reference)"), eq.(17) and eq.(19) with ρC = 0.049. xAs and

xρ are computed using the ionization frequency from the
drift-diffusion simulations.

tron temperature Te and number density ne0 are fixed. In the
reference work the sheath width is shown in terms of Debye
length at the center of the domain λD,c, a unit that is differ-
ent for every collisional regime that they propose. Using data
from Table 2 of the same reference, one can verify that λD,c
is almost one order of magnitude smaller at the highest back-
ground pressure condition than at the lowest one.
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Figure 12: Comparison of analytical profiles (solid) of the
electric potential φ = φ/φ0, obtained with eq.(15) with
numerical solutions (circles), at different background

pressures.
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Figure 13: Comparison of analytical profiles (solid) of the
electric potential φ = φ/φ0, obtained with eq.(32), and

electron number density n = n/n0 (obtained with eq.(16) and
eq.(32)) with numerical solutions (circles), at different

background pressures. The sheath edge positions, obtained
with eq.(19), is modified varying the imposed charge density

ρC.

VIII. Conclusions

In this work, we proved, for the first time, the existence of
a limit Knudsen number that results in the equivalence of
the multifluid model and drift-diffusion approach, under the
isothermal assumption. This value, that should be interpreted
as an order of magnitude expressing a range of conditions
rather than a strong upper limit, coincides with the square root
of the electron-to-ion mass ratio, which is the Knudsen num-
ber for the continuum limit proposed by Graille et al.19 in their
kinetic derivation of multicomponent models for plasmas. We
proved that, if a minimum collisionality is met, the multifluid
equations naturally fall back to a multicomponent description
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Figure 14: Estimations of the sheath width for different
background pressures width using five different approaches
to obtain the sheath edge position: the position where the

charge density for MF results equals ρC = 0.049 (“Density
(Reference)"), Baalrud et al.38, Beving et al.32, eq.(17) and
eq.(19) with ρC = 0.049. xAs and xρ are computed using the

ionization frequency from the multifluid simulations.

of the plasma; in fact, the drift-diffusion equations in this work
can be seen as a particular of the model in Graille et al.19,
where only binary interactions are considered and with the
movement of the particles described with respect to the labo-
ratory reference frame (not moving).
The limit value was obtained by a non-dimensional analysis
that included a novel scaling for the velocity of the charges
in the bulk. Numerical simulation of an isothermal argon
discharge showed great agreement for high background gas
pressures (Pn ≳ 1000Pa). After that, starting from the drift-
diffusion equations we obtain two formulas for a priori esti-
mation of the sheath width: the first one is independent of any
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additional hypothesis but it is less accurate; if we introduce
an estimation of the charge separation32, we can improve the
predicted value.
This work is open to further developments: higher pressure
regimes should be investigated to confirm the intuitions com-
ing from the high regime considered here; the isothermal con-
dition should be lifted, introducing the effect of chemical re-
actions; more complex mixtures should be considered, mov-
ing to a full multicomponent-diffusion description. Finally, we
considered for our simulations only the case of a sheath in
front of a floating wall: other case should be considered, such
as electron sheaths and double layers. In this latter case, for
example, the characteristic length of the quasineutral region
might be reduced, causing the Knudsen number to be larger,
hence the equivalence to happen at higher background pres-
sures.
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