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Abstract: The mechanical properties of faecal sludge (FS) influence its moisture retention
characteristics to a greater extent than other properties. A comprehensive fundamen-
tal characterisation of the mechanical properties is scarcely discussed in the literature.
This research focused on bulk and true densities, porosity, particle size distribution and
zeta-potential, extracellular polymeric substances, rheology and dilatancy, microstructure
analysis, and compactibility in the context of using the FS as a substitute for soil in land
reclamation and bioremediation processes. FSs from different on-site sanitation systems
were collected from around Durban, South Africa. The porosity of the FSs varied between
42% and 63%, with the zeta-potential being negative, below 10 mV. Over 95% of the par-
ticles were <1000 µm. With its presence in the inner part of the solid particles, tightly
bound extra-cellular polymeric substances (TB-EPSs) influenced the stability of the sludge
by tightly attaching to the cell walls, with the highest being in the septic tank with the
greywater sample. More proteins than carbohydrates also confirmed characterised the
anaerobic nature of the sludge. The results of the textural properties using a penetrometer
showed that the initial slope of the positive part of the penetration curve was related to the
stiffness of the sludge sample and similar to that of sewage sludge. The dynamic oscillatory
measurements exhibited a firm gel-like behaviour with a linear viscoelastic behaviour
of the sludges due to the change in EPSs because of anaerobicity. The high-TS samples
exhibited the role of moisture as a lubricating agent on the motion of solid particles, leading
to dilatancy with reduced moisture, where the yield stress was no longer associated with
the viscous forces but with the frictional contacts of solid–solid particle interactions. The
filtration–compression cell test showed good compactibility, but the presence of unbound
moisture even at a high pressure of 300 kPa meant that not all unbound moisture was
easily removable. The moisture retention behaviour of FS was influenced by its mechanical
properties, and any interventional changes to these properties can result in the release of
the bound moisture of FS.

Keywords: porosity; particle size distribution; zeta potential; extracellular polymeric
substances; compactibility; microscopy imagery

1. Introduction
With over 70% of the households in the developing world relying on non-sewered

sanitation systems, faecal sludge (FS) treatment is a pivotal step in containing land and

ChemEngineering 2025, 9, 2 https://doi.org/10.3390/chemengineering9010002

https://doi.org/10.3390/chemengineering9010002
https://doi.org/10.3390/chemengineering9010002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemengineering
https://www.mdpi.com
https://orcid.org/0000-0002-8585-6240
https://orcid.org/0000-0003-1042-6462
https://orcid.org/0000-0001-7287-4936
https://doi.org/10.3390/chemengineering9010002
https://www.mdpi.com/article/10.3390/chemengineering9010002?type=check_update&version=1


ChemEngineering 2025, 9, 2 2 of 21

water degradation. Faecal sludge management is therefore a primary measure to treat this
biohazard and pave a way to reuse the significant nutrients and organics beneficially [1,2].
FS is fundamentally challenging because of its variability and unpredictability, and it is
scientifically poorly understood [3]. The mechanical, physicochemical, and bio-chemical
properties of FS are varied and complex, and it is difficult to summarise its characterisa-
tion [4]. The association of moisture in the sludge makes it more complex, and hence, one
of the important stages of treatment of FS is solid–liquid separation. This stage of treatment
helps with substantial volume reduction, wherein both the solid and liquid fractions can be
treated separately with better effectiveness and efficiency [5].

With moisture associated with the solid particles in sludge constituting unbound
moisture and bound moisture, the separation of moisture from the solids in sludge is not
simple. Besides factors like the type of on-site sanitation system used and the quantity
of water used in toilets, different properties of the sludge influence solid–liquid separa-
tion [6,7]. With a mix of microorganisms, colloids, and particles of different origins, the
extreme variability of FS adds another difficult dimension of complexity [8]. Analysis of
these properties of sludge helps to understand the complex moisture retention behaviour
of the sludge. Further, the design of solid–liquid separation technologies requires the
characteristics of sludge for efficient operations.

The initial stage of this research distinguished the four categories of moisture asso-
ciated with sludge solids (unbound moisture, interstitial moisture, vicinal moisture, and
intracellular moisture) and their proportions by different instrumentation methods. The
focus of this paper is to provide the fundamental characteristic data and a relatively compre-
hensive analysis of the mechanical properties of faecal sludge in the context of its moisture
retention behaviour [9]. The need for the reuse of treated FS is gaining momentum, with a
particular focus on land applications. The determination of the mechanical properties will
help in understanding the moisture and nutrient retention behaviour, its compactibility
in the natural environment, and its use as a substitute for soil in land reclamation and
bioremediation in the context of circular economy. A complete database of the engineering
behaviour of FS is therefore necessary, and the minimum properties needed include the
bulk and true densities, porosity, particle size distribution (PSD) and zeta-potential (ZP),
extracellular polymeric substances (EPSs), rheology and dilatancy, microstructure analysis,
and compactibility. PSD helps determine the settleability of the sludge particles, while
ZP indicates surface charge and electrostatic repulsion to floc formation. EPSs and their
fractions hold moisture, and its quantification directly indicates the solid–liquid separability
behaviour of sludge. The rheological behaviour of sludge is important for defining the
sludge structurally, considering the interactions of sludge particles, moisture, and air. The
higher the solid–liquid separability, the more stable the sludge and hence, the better for
land applications [10].

Comprehensive studies on the mechanical behaviour of FS are scarce in the literature.
Information does exist on sewage sludge and other industrial sludges. This study hence-
forth examines the mechanical properties of FS and thus adds to the next layer of circularity,
addressing the need to investigate the properties that influence and/or are influenced by
the solid–liquid separability of FS [11].

2. Materials and Methods
2.1. Source of Samples

Faecal sludge for the research originated from different on-site sanitation systems
prevalent in different regions and countries across Africa and Asia. The samples were
collected from the peri-urban areas of eThekwini municipality, Durban, South Africa, and
Pietermaritzburg, South Africa. The three types of faecal sludge were:
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1. Faecal sludge from ventilated pit latrines (VIPs);
2. Faecal sludge from urine diversion dehydrating toilets (UDDTs);
3. Faecal sludge from septic tanks (ST) (also referred to as septage)

a. With grey water (ST-wGW);
b. With only black water (ST-BW).

The VIP samples were collected from two latrines not desludged for at least 5 years.
The UDDT samples were taken from the dehydrating vault of the UDDT, with an esti-
mated sludge storage of 15–18 months. The septic tank (ST) samples were collected from
desludging vacuum tanker trucks, and composite samples were taken from septic tanks
that are connected only to the toilets (ST-BW) and the ones connected to all the wastewater
flow (ST-wGW). The two ST samples represent both the African and South Asian types of
STs. The desludging interval of STs is usually less than a year for ST-wGW and 4–6 years
for ST-BW.

VIP, UDDT, and ST-wGW samples were collected from eThekwini municipality, Dur-
ban, and ST-BW samples from Pietermaritzburg. All the samples were collected in lined
plastic containers with air-tight lids, screened for trash and debris, and stored in the cold
room at the laboratory at 4 ◦C to avoid microbial degradation and to minimise any loss in
moisture. All the samples were analysed for total solids (TSs), volatile solids (VSs), pH, and
electrical conductivity (EC) at the time of sampling, and these parameters were monitored
for any change during the experimental period. The acceptable range of variation in the
parameters was found to be <2%.

2.2. Experimental Methods
2.2.1. Density

The true density was determined using an Ultrapyc foam gas pycnometer (Anton
Paar, Warszawa, Poland). Samples were dried in a ventilated oven for 12 h at 51 ◦C and
kept in a desiccator before performing the analysis. The measurement settings applied
were as follows: gas—helium; target pressure—18.0 psi; flow direction—sample first; target
temperature—20 ◦C; flow mode—monolith; cell size—medium, 45 cm3.

The porosity of the sludges was determined by the equation:

P(%) =

(
1 − ρb

ρt

)
× 100 (1)

where P is the porosity as a percentage, and ρb and ρt are the bulk density and true density
in g/cm3, respectively. The bulk density of the samples was determined by Archimedes’
principle by measuring the volume of water displaced by a known mass of the sample [12].

2.2.2. Particle Size Distribution and Zeta Potential Measurements

The PSD and ZP were determined using a Zetasizer Nano ZS (Malvern Instruments
Corp, Worcestershire, UK). The measurement of the angular variation of scattered light
when a laser beam is passed through the dispersed particulate matter provided the PSD of
the sample. The angular scattering intensity data were analysed to calculate the particle
size [13]. All the samples were diluted using distilled water to generate suitable scattering
intensity. The dilution was important for avoiding multiple reflections and measuring
proper values of laser light obscuration. One mL of the sample was transferred using a
micropipette into the 10 mm-diameter 40 µL disposable polystyrene cuvettes. The refractive
index of the dispersant (water) and the sludge particles was 1.330 and 1.520, respectively.
The DLS approach yielded the hydrodynamic diameter and the polydispersity index (PI)
as a measure of PSD. The mean diameter was obtained by calculating the average of three
measurements. All the experiments were conducted at 25 ◦C [14].
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The Zetasizer uses laser Doppler velocimetry to determine the electrophoretic mobility.
The experiments were conducted at 25 ◦C in 40 µL polystyrene cuvettes with a path length
of 10 mm using water as a dispersant. Measurements were performed in triplicate and by
diluting the samples in 10 mL of distilled water.

2.2.3. Measurement of EPSs and Total Organic Carbon (TOC)

EPSs are composed of many organic substances, mainly proteins, polysaccharides,
humic acids, and little fractions of lipids, nucleic acids, and amino acids. EPSs, which exist
outside the cells, are further divided into loosely bound EPSs (LB-EPSs) and tightly bound
EPSs (TB-EPSs) and can be generally separated by centrifugation [15,16].

2.2.3.1. Extraction of EPSs

There is no standard method for the extraction of EPSs and their fractions—LB-EPSs
and TB-EPSs. They can be extracted by different physical and chemical methods. Many
methods involve thorough washing, preceded by harsh extraction, which measures total
EPSs or TB-EPSs. LB-EPSs are known to influence sludge floc structure, and hence mea-
surement of it is as important as that of TB-EPSs. Hence, in this research, the EPS and
its fractions were extracted from the FS samples by adopting a two-step heat extraction
(mild step and harsh step) method. The mild extraction step yielded LB-EPSs, while the
harsh extraction step was to extract TB-EPSs from the sludge suspension [17–19]. The
method involved centrifuging the sample in a 50 mL centrifugal tube at 4000 rpm for 5 min,
discarding the supernatant, resuspending the sludge pellet in a 0.05% NaCl (w/v) warm
solution at 50 ◦C, and shearing it using a vortex mixer for 1 min. The suspension was
then centrifuged at 4000 rpm for 10 min, and the organic matter in the supernatant was
regarded as LB-EPS. For TB-EPS, the sludge pellet was resuspended again in 0.05% NaCl
solution, and this suspension was heated in a water bath for 30 min at 60 ◦C. Post heating,
the suspension was centrifuged at 4000 rpm for 15 min, and the supernatant liquid was
regarded as TB-EPS. The cell lysis was said to be of no significance after this extraction
process [20].

2.2.3.2. EPS—Protein and Carbohydrate Determination

Since proteins and carbohydrates form the major components of EPSs, measurement of
proteins and carbohydrates of the extracted fractions was carried out. For the measurement
of proteins, measuring amino acids gives an accurate approximation of the proteins present.
However, due to cost and time considerations, total nitrogen is widely used to estimate crude
protein content [21]. In this research, the nitrogen was determined by the nitrogen combustion
method, and the protein content was calculated from the nitrogen measurement.

Elemental analysis of nitrogen, along with carbon and sulphur, was quantified in the
multi-element combustion CNS analyser Leco CNS 2000 (Leco Corporation, St. Joseph, MI,
USA). Fitted with an auto-sampler, the CNS analyser was heated up to 1450 ◦C in a pure
oxygen environment, with 1–2 g of sample placed in the oven in a ceramic boat.

Crude protein percent (CP%) [22] was provided by

%CP = %N × F (2)

where F is 6.25 (from 6.25 g proteins per g N).
The total carbohydrates, including mono-, di-, oligo-, and polysaccharides, was analysed

by the phenol–sulphuric acid method [21]. All experiments were carried out in triplicate.
The total organic carbon (TOC) was determined by the standard operating proce-

dure, involving chemical oxidation of the sludge samples using sulphuric acid, potassium
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dichromate, and mercuric sulphate. The reduced chromium was measured at 590 nm in
the spectroquant [23].

2.2.4. Penetrometer Test

Penetration tests and texture profile analysis (TPA) were conducted using an LS1-302
penetrometer universal traction machine (Ametek Lloyd instruments, Hampshire, UK)
equipped with a 10 N probe and a 30 mm-diameter spherical geometry probe. FS samples
weighing 60 g were placed in an aluminium capsule and penetrated to a depth of 15 mm
at a constant speed of 1 mm/s, and the load phase (compression) and a discharge phase
(relaxation) were included [24,25]. This setup simulated the practical conditions FS might
encounter during handling and processing.

2.2.5. Rheology and Dilatancy

FS exhibits viscoelastic properties, blending the characteristics of both solids and
liquids, thereby exposing the traits of viscosity and elasticity when subjected to stress or
deformation. An oscillatory experiment such as an amplitude sweep can be conducted to
measure these changes in rheology. Dynamic rheological measurements were carried out
using Anton Paar Physica MCR 302 (Anton Paar Benelux, Gentbrugge, Belgium) in the
chemical engineering laboratory at the University of Liege, Belgium. The instrument was a
piece of controlled stress rheometer equipment with a 50 mm parallel plate geometry. The
gap between the fixed plate and the oscillating plate was fixed at 2 mm. The samples were
homogenised before being added to the plate on the rheometer at a temperature of 20 ◦C.

The samples were submitted to a frequency sweep from 0.1 to 100 rad/s at a constant
shear strain in the linear viscoelastic region, and the strain sweep experiments were con-
ducted from 0.01% to 10%. Each measurement was performed in triplicate. The elastic
modulus or storage modulus G′ characterised the energy stored in elastic form and was
retrievable by the sample (elastic component), while the viscous modulus or loss modulus
G′′ characterised the energy lost by friction (viscous component), and are given by:

G′ = G∗cos δ (3)

G′′ = G*sin δ (4)

where the complex viscoelastic modulus G* is defined as the ratio of the amplitudes stress
and strain. The G′ and G′′ were present in the results, which were the function of the
frequency [26].

Mouzaoui [27] developed a specific procedure to determine dilatancy by considering
the edge effects and measuring the normal force simultaneously with the tangential shear
stress using a rotational rheometer. Samples with different TSs of VIP and UDDT sludge
ranging from 10% to 43% were prepared with dilution (low TS) and centrifugation (high TS).
The rheological investigations were carried out at IMT-Mines, Albi, France, with a stress-
controlled RS600 HAAKE Rheostress 600 instrument (Thermo Fisher Scientific, Karlsruhe,
Germany), and the RheoWin Pro Job Manager software (Version 3.61) was used to assist
with data analysis. Serrated parallel plates of 35 mm diameter were used, with a gap of
2 mm. For different TS concentrations, a stress sweep was applied to the sample, which
consisted of successive steps of constant dynamic stress of increasing intensity. A pause
was marked between each step as a reference to allow for the correction of edge effects
(fractures and cracks). Thus, by applying a constant dynamic rotational angle, the edge
effects were reduced in accordance with the corresponding stress. Tests were conducted
in triplicate to evaluate reproducibility, and normal force was recorded along with the
tangential shear stress.
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2.2.6. Filtration–Compression Test

A lab filtration device at the Environmental Engineering laboratory, Cranfield Uni-
versity, United Kingdom, designed to carry out permeability and compressibility tests,
was adapted for compactibility experiments. Experiments were carried out for two of the
four FS samples—VIP and ST-BW—thus representing both the high-TS sample and the
low-TS sample. The device consisted of a compressive piston moving in a 40 mm-diameter
cylinder with a depth of 120 mm. At the bottom of the chamber, a filter paper (Fisherbrand
of porosity 0.6 µm) was placed on a perforated disk. A stepped pressure was applied to
the piston, controlled by a program-based regulating system. The pressure steps were at
0.2 bar, 0.5 bar, 1.2 bar, and 3 bar.

Raw FS samples of approximately 50 g ± 3 g were added to the cylindrical vessel
without any change in the initial characteristics. The piston was firmly placed in the cylinder
to avoid any air gaps. The pressure system was started, and the filtrate was collected in a
tray. The loss of moisture was measured continuously by data-logging software connected
to the device. The test duration extended to up to 3–7 days depending on the type of FS
sample. After the completion of the test, the moisture content of the sample cakes was
measured as per standard methods [28]. Thermogravimetric analysis (TGA) was carried
out for all the samples before and after the compaction tests. The analysis was carried out
using pure N2 as the carrier gas at a flow rate of 10 mL/min, with 35–40 mg of samples,
and the cell temperature increased from ambient (27◦C) to 90 ◦C at a rate of 10 ◦C/min
and was maintained at 90 ◦C in isothermal conditions for 45 min using a TGA8000 (Perkin
Elmer, Waltham, MA, USA) [29,30].

2.2.7. Microscopic Observations

While scanning electron microscopy (SEM) is widely used in various fields such
as material sciences, geology, and biology for providing direct characterisation of the
microstructure of the materials, the sample must be completely dried. Environmental
scanning electron microscopy (ESEM) is an advanced SEM capable of maintaining the
integrity of the sample at a range of different relative humidities. Hence, the micrographs
from ESEM are more representative of the microstructure of the sample [31]. Observations
were conducted with ESEM to explore the surface morphology of the FS. The Philips
XL-30 ESEM-FEG (FEI Company, Hillsboro, OR, USA) was capable of imaging any sample,
including wet samples, which was the pre-requisite for imaging raw FS samples. No
changes were made to the samples. The samples were analysed at an acceleration voltage
of 10 kV and a magnification of up to 12.8 kX.

3. Results and Discussion
3.1. Densities and Porosity

Bulk density is defined as the ratio of a sample’s mass to its bulk or macroscopic
volume, including pore spaces. Usually expressed in grams per cubic centimetre, bulk
density conforms the accepted physical terminology. True density was determined by
the gas pycnometer and porosity was calculated as per Equation (1). Table 1 contains the
results for the bulk and true densities and the porosity. The bulk density of the UDDT
sample was significantly higher than that of the other FS samples due to the lower initial
moisture content.
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Table 1. Densities, porosity, particle size distribution, and zeta potential of FSs.

FS Samples

VIP UDDT ST-wGW ST-BW

Bulk density g/cm3 0.97 ± 0.02 1.14 ± 0.03 0.83 ± 0.01 0.94 ± 0.01

True density g/cm3 1.96 ± 0.03 1.80 ± 0.05 1.92 ± 0.04 1.71 ± 0.06

Porosity % 48.94 ± 1.46 62.70 ± 1.93 42.48 ± 1.78 54.33 ± 1.32

PS < 10 µm % 19.98 ± 1.31 20.21 ± 1.12 18.68 ± 0.79 13.94 ± 0.48

PS 10–100 µm % 39.51 ± 2.76 42.38 ± 1.99 60.28 ± 2.48 54.02 ± 2.81

PS 100–1000 µm % 34.82 ± 1.11 32.93 ± 0.97 21.04 ± 0.52 31.78 ± 0.69

PS > 1000 µm % 5.68 ± 0.02 4.47 ± 0.01 0.00 ± 0.01 0.25 ± 0.01

ZP mV −17.10 ± 0.88 −17.30 ± 0.42 −10.25 ± 0.22 −12.90 ± 0.37

3.2. Particle Size Distribution (PSD)

Colloidal and supra-colloidal particles affect the settleability of sludge particles; hence,
knowing the amounts of particles present in the sludge according to the sludge’s size is
important. Different sizes of sludge particles influence the sludge’s moisture retention
characteristics. The smaller the particle size, the harder the solid–liquid separability because
of the higher specific surface, which binds more moisture per volume fraction. Smaller
particles have lower settling velocities and hence retain more moisture [32]. PSD characteri-
sation of aerobic sewage sludges is typically unimodal, and its maximum is towards the
larger particles. The particle sizes of sewage sludge from aerobic treatment facilities varied
from 0.3 µm to 310 µm, with the largest fraction of over 60% in the range of 50–60 µm and
the lowest range from 0.40 µm to 2.59 µm. Approximately 90% of the particles did not
exceed 140 µm in the sewage sludge. The presence of some colloidal particles of a size
<1 µm influenced the solid–liquid separability [14,33].

On the contrary, the primary PSDs of the FS samples were mainly distributed in the
range of 10–1000 µm, with 20% of the particles <10 µm, 40–60% in the range of 10–100 µm,
21–34% in the range of 100–1000 µm, and <5% > 1000 µm (Figure 1). The high-TS samples
of VIP and UDDT had a similar distribution, while both ST samples were similar to each
other, indicating the possible role of greywater and other contaminants. All the samples
had relatively uneven but similar distributions. Further, the literature says that the flocs are
fragmented under anaerobic conditions; hence, the FSs, which were primarily anaerobic
sludges, had reduced particle sizes that were fragmented. Over 95% of the particles were
less than 1000 µm for the UDDT and VIP sludges, and for the ST sludges, particles <1000 µm
constituted up to 99% of the sample. This reduced particle size resulted in low settleability,
which was evident in the batch-settling tests carried out for the same samples [34] (under
review). However, the presence of increased specific surface area can influence solid–liquid
separability positively with the addition of an appropriate coagulant [35].

3.3. Zeta Potential

The surface charge of the sludge particles provides the sludge’s agglomeration be-
haviour, i.e., its ability to coagulate and release moisture. The value of ZP indicates the
dispersion behaviour of the sludge. ZP is used to characterise the positive and negative
charges on the surface of materials and the electrostatic repulsion, which prevents them
from accumulating and thereby resulting in the sediment gaining mass. The ZP of all the
samples was negative, indicating that all FSs were negatively charged. While the high-TS
samples had higher values of ZP, the lower-TS samples had ZP values similar to those of
sewage sludges. Particles with a ZP between –30 mV and +30 mV tend to release vicinal
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moisture on the surface of the sludge particles upon addition of a coagulant. The closer the
ZP value is to its isoelectric point when ZP equals zero mV, the easier it is to coagulate [36].
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The heat map of the PSD and ZP (Figure 2) provided the correlatability between
fractions of the PSD and ZP. Analysing the correlation between PSD and ZP using Python,
it was found that ZP was positively correlated with the percentage of particles between 10
and 100 µm. A correlation value of 0.87 indicated strong positive correlation. The higher
the lower-diameter particles, the higher and more negative the ZP.
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ZP was negatively correlated with the percentage of particles <10 µm, between 100
and 1000 µm, and >1000 µm. The relationship between PSD size ranges (in µm) and ZP
(mV) can be given by Equation (3):

ZP = −34.34 − (0.12 × PSD < 10) + (0.44 × PSD10–100) + (0.4 × PSD > 1000) (5)

3.4. Extracellular Polymeric Substances

Though by definition interstitial moisture is simply the moisture trapped between
sludge particles, it is evident that there are some weak forces acting on interstitial moisture.
A significant fraction of moisture is held by a polymer-like network with a presence of large
concentrations of counter-ions. Extracellular polymeric substances (EPSs) are secreted by
bacteria primarily to protect the solid biomass in the sludge from the external environment.
Though their exact role is not completely understood, EPSs are characterised by high
moisture, which makes it difficult to unpack the solid aggregates, thereby leading to
a hydrated state of moisture retention. EPSs form a significant fraction of this sludge
mass. EPSs are such a critical property of FS because they influence the physicochemical
behaviour of the sludge and thus affect its moisture retention by providing electrostatic
interactions and hydrogen bonds. EPSs are one of the most influential substances in
terms of the moisture retention characteristics of sludge because of their cross-linking
polymeric network-like structure [37]. They are composed of many organic substances,
mainly proteins, polysaccharides, humic acids, and little fractions of lipids, nucleic acids,
and amino acids, with proteins and polysaccharides as the main fractions [16]. Because
of their complexity and importance, EPSs are extensively researched, specifically in solid–
liquid separability of sludges. This is because EPSs form a complex three-dimensional
sludge matrix-like structure [38]. EPSs in the sludge matrix typically form a double-layered
structure, consisting of loosely bound EPSs (LB-EPSs) and tightly bound EPSs (TB-EPSs).
LB-EPSs are said to be diffused from TB-EPSs and function as a surface for cell attachment.
This classification of EPSs is based on the extraction methodology [18]. The role of proteins
and carbohydrates in EPSs is also significant for the solid–liquid separability. The ratio of
EPScarb to EPSprot is a good indicator of the moisture retention properties [35].

Further, most on-site sanitation systems, such as septic tanks and pit latrines, in non-
sewered sanitation are anaerobic. Anaerobic atmospheres affect EPSs and were reported to
have a significant impact on biosolid structure. This study analysed the dynamics of EPSs
and the various sludge characteristics from the different type of on-site sanitation systems.
This helped determine the effect of the extent of anaerobicity on EPSs. Within EPSs, the
EPScarb-to-EPSprot ratio was analysed to investigate its effect on moisture retention.

The results of the measurement of the EPSs are shown in Table 2. TB-EPSs had a signif-
icant impact on the stability of the sludge, and UDDT and ST-wGW sludges had the highest
stability, also indicated by their VS/TS value. The high TB-EPSs in ST-wGW can also be
attributed to the other substances present, such as soaps and oils. Further, the carbohydrate-
to-protein ratio was high in the ST samples and lowest in the UDDT sludge. Further, the
carbohydrate content was significantly higher than that of the proteins, attributed to the
anaerobicity of the sludges [39], whereas in sewage sludges, the proteins were higher than
the carbohydrates. It is also argued that anaerobically digested sludges have increased EPSs
and hence have higher moisture retention [40]. More research is necessary, specifically with
anaerobic sludges from OSS, to correlate the anaerobic transformations with the binding
strength and the roles of shifting particle sizes and changing EPSs.
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Table 2. EPS—crude protein and carbohydrate measurements of FSs.

VIP UDDT ST-wGW ST-BW

LB-EPS—protein g/gDM 0.99 ± 0.07 0.26 ± 0.07 6.80 ± 0.54 3.90 ± 0.91

TB-EPS—protein g/gDM 0.54 ± 0.09 0.74 ± 0.27 14.47 ± 1.04 2.78 ± 0.21

LB-EPS—carbohydrates-g/gDM 84.03 ± 2.63 93.65 ± 3.21 326.68 ± 37.91 305.88 ± 21.56

TB-EPS—carbohydrates-g/gDM 136.70 ± 3.71 177.27 ± 16.20 360.46 ± 26.19 328.73 ± 28.68

Prot:Carb ratio 144.17 348.82 32.31 94.92

Total organic carbon (TOC) g/gDM 927.44 ± 2.81 784.36 ± 36.26 1656.05 ± 177.14 1389.67 ± 101.20

From the correlational analysis between TOC and EPSs (Figure 3), TOC was positively
correlated to proteins and carbohydrates, both loosely bound and tightly bound, with
the correlation with LB-EPScarb the highest at 0.87. TB-EPSprot was strongly correlated to
LB-EPSprot but least correlated to TOC. Both LB-EPScarb and TB-EPScarb showed strong
positive correlation with LB-EPSprot.
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3.5. Penetration Curve

The application of a ball penetrometer was carried out to investigate the cohesiveness
and adhesiveness of the FS samples. During the penetration of the ball in the sample,
the surrounding sample undergoes shear strains and softens, and a certain extent of the
softening is measured in the resistance [41]. In Figure 4, the schematic penetration curve
for faecal sludge (FS) is presented. In this graph, the maximum positive peak (Fmax in
N) represents the force required for the probe to penetrate the sample to its maximum
depth. Fmax is commonly associated with the firmness or hardness of the sample. The
positive area under the curve up to Fmax (A+ in mJ/Nmm) reflects the work performed by
the probe during the compression test on the sample [42]. For high-TS sludges, adhesion
and cohesion strengths were no longer the same due to the lower moisture content. The
shearing stress of adhesion reached a maximum, whereas the shearing stress of cohesion
continued to rise, which indicates that the resistance between the sludge and the probe
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was smaller than the internal resistance of the solid–solid and solid–liquid particles. This
explains the increase in stickiness of the sludge as moisture was removed [43].
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The minimum negative peak (Fmin in N) corresponds to the force needed to detach
the sample from the probe and is defined as the adhesive force of the sample. The more
negative the Fmin value, the greater the adhesion. The negative area under the curve (A1,
in mJ/Nmm) represents the work required to separate the probe from the sample, acting as
an indicator of adhesiveness, stickiness, or tackiness (i.e., the energy needed to remove the
sample from surfaces) [44,45].

The initial slope of the positive part of the penetration curve (S in N/mm) is related to
the stiffness of the sludge sample [46]. Finally, the cohesive load of the sample was obtained
from the maximum load recorded (in kPa) when the probe penetrated the sample [24,47].
The mean values of the textural properties for the FSs, calculated from three measurements,
are provided in Table 3.

Table 3. Textural properties of FSs.

Variable Property Units VIP UDDT

Fmax Hardness N 1.4 ± 0.11 1.3 ± 0.10

Fmin Adhesive force N −0.39 ± 0.02 −0.34 ± 0.03

S Rigidity N/mm 0.1 ± 0.01 0.1 ± 0.01

A1 Hardness work performed N·mm 8.8 ± 0.66 7.8 ± 0.82

A2 Adhesiveness N·mm −3.6 ± 0.11 −3.5 ± 0.58

- Cohesive load kPa 1.04 ± 0.08 0.96 ± 0.07

Although the mean values for the textural properties of FS are not widely reported in
the literature, the results of this study on FS samples do not compare to the same magnitude
as those reported for sewage sludge samples before their hydration nor align with those
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reported for poorly flocculated sewage sludge samples [48,49]. The cohesiveness of the FS
samples analysed in this study was between 10 and 100 times lower than that reported for
flocculated and dehydrated sewage sludge processed by filtration under optimal conditions.
The adhesiveness of the FS samples was 5 to 10 times greater than that of sewage sludge [24].
This suggests that while FS could be directly applied in agricultural settings and for land
bioremediation, it lacks the structural stability needed for storage in piles and tends to
adhere easily to tools and machinery, thereby complicating its handling. This issue can be
mitigated operationally by incorporating a texturising agent—such as sawdust, dry sludge,
etc.—that can absorb moisture (unbound and interstitial) and provide structural support to
facilitate material handling [50–53].

3.6. Rheology and Dilatancy

The rheological characterisation of FS provides valuable quantitative parameters that
describe its complex, flexible structure, which arises from the interaction of its three main
components—solid particles, moisture, and air. The forces between these components
define the molecular structure and the solid–moisture framework. FS behaves as a soft,
viscoelastic, non-Newtonian fluid with non-constant viscosity; this gel-like material does
not transition into a liquid state and exhibits significant resistance to flow, which varies with
its moisture content [54]. Specifically, the non-Newtonian properties of sludge intensify as
unbound moisture decreases and bound moisture increases. Understanding the rheological
behaviour of FS, influenced by both its initial and its bound moisture content, is essential
for predicting its solid–liquid separability [55]. To characterise the viscoelasticity of FS,
two fundamental parameters of dynamic rheology were applied—the elastic modulus or
storage modulus (G′) and the viscous modulus or loss modulus (G′′).

Most studies on the rheological behaviour of FS have focused on its unbound moisture
phase, specifically at low to moderate total solid (TS) concentrations of between 1% and 5%.
The Herschel–Bulkley model has commonly been applied to describe the yield stress and
flow curve behaviour in these low-TS sludges [42].

However, in sludges with a higher TS content, FS exhibits a solid-like behaviour at
rest that deforms under applied force and retains this deformed state after the force is
removed. This behaviour results from the interactions between the sludge’s components,
which forms microstructures that, while initially resistant to deformation, eventually break
up and flow under applied force [56].

For more concentrated FS samples, classical oscillatory rheology has been used effec-
tively to study their behaviour, yielding consistent and reproducible results by managing
crack and fracture formation [27]. The method used to measure the rheological properties
in this study is particularly useful for samples with a TS content of between 20% and
45%, representing the interface between unbound and bound moisture zones. As TS con-
tent increases, the sludge transitions from an elastic to a plastic regime, allowing for the
assessment of dilatancy.

Dilatancy, a phenomenon first described by Reynolds in 1885, is defined as the ten-
dency for densely packed hard particles to expand perpendicularly to the shear plane when
subjected to shear. In simpler terms, as particles tightly packed together exert force on
neighbouring particles during motion, a normal force arises simultaneously with tangential
shear stress, initiating movement in adjacent particles [27].

Figure 5 presents a schematic of the results from amplitude sweeps, or a rheogram,
showing three distinct regions: viscoelastic, transition, and flow. Each of these regions
is defined by specific shear strain limits. In all the samples studied, G′ and G′′ remained
nearly constant at low strain levels, thus displaying a linear viscoelastic, gel-like behaviour.
As strain increased and the FSs reached their viscoelastic limit or yield stress (γL), G′ began
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to decrease significantly, while G′′ continued rising to a peak before starting to decline.
According to the literature on sewage sludges, higher TS content expands in the linear
viscoelastic (LVE) region in sludge. However, with the FSs in this study, the LVE region
contracted to about 1% strain. This could be attributed to the anaerobic nature of the FSs,
the reduced TB-EPS content, and the absence of coagulation or flocculation treatments.
This is a significant reduction compared to the nearly 20% strain observed in other high-TS
aerobic sludges, which also increased the sludge’s sensitivity to shear [57,58].
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At the intersection point of G′ and G′′, defined as the dynamic yield stress (γF) or flow
point, the microstructure of the high-TS VIP and UDDT sludges were strong enough to
overcome any instable occurrence, such as sedimentation. Further, the higher G′′ values
indicated good elastic behaviour and spatial network structures. The increase in G′′ may
have been due to the disruption in the EPS network structure by anaerobic conditioning
and the release of interstitial moisture at higher strain amplitudes. This was also observed
by [57] for sludges treated by acidification and anaerobic mesophilic digestion.

Since G′ > G′′ for all samples, they were classified as viscoelastic gels, meaning they
behaved as viscoelastic solids under the measurement conditions used in the test. The
mean values of G′, LVE, and flow point for all the studied samples are shown in Table 4.

Table 4. Yield stress and flow point of FSs.

Yield Stress Flow Point

Gamma (%) G′ (pa) Gamma (%) G′ (Kpa)

VIP 0.031 47,000 71.772 133

UDDT 0.027 192,000 Out of range

At a lower TS, sludge behaves like a diluted suspension and can be analysed using a
classical rotational rheometer. There is enough moisture to fill the voids between the sludge
particles, and the moisture has a lubricating effect on the motion of the solid particles. As
the TS exceeds the plastic limit, the sludge can no longer be considered continuous and is
more granular in nature. Thus, at a higher TS, cracks and fractures are highlighted, and
this was captured during the shearing tests. This indicated the frictional interactions of
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solid–solid particles, influenced by solid–liquid interactions. The sludge started to dilate,
leading the solid–solid particle interactions to exhibit larger shear stresses. These frictional
interactions caused dilatancy, wherein the yield stress was no longer associated with the
viscous forces but rather with the frictional contacts of solid–solid particle interactions.
This has been observed in pasty materials such as concrete, fresh cement, clay, etc. [45,59].
The results obtained for dilatancy are shown in Figure 6.
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3.7. Filtration–Compression Cell Test

The moisture–solid particle interaction in sludges is due to the complex bio-polymeric
network of mainly bacteria, resulting in a porous fractal-like structure. For highly com-
pressible sludges, a significant quantity of moisture can be removed by filtration, especially
the free moisture and some moisture occupied in the voids between the solid particles,
called interstitial moisture. The characterisation of moisture distribution within the sludge
provides good indicators to predict the solid–moisture interactions [60].

Among the dewaterability indices, neither capillary suction time (CST) nor specific
resistance to filtration (SRF) provide either the maximum moisture removal or the type
of moisture removed. Both centrifugation and a stepped pressure filtration technique can
help evaluate the determination of the maximum moisture removal [61], and together
with thermogravimetric analysis (TGA), the type of moisture removed can further be
assessed. This approach of determining the relative contents of unbound and bound
moisture fractions, and the corresponding moisture–solid binding energy, can help evaluate
the sludge dewaterability [62].

The application of the stepped pressure filtration technique was adopted in the
filtration–compression cell test (FCC) to help understand the moisture–solid particle inter-
actions in the FSs, and the results can possibly be correlated to various other membrane
separation technologies available for solid–liquid separability. In the FCC, a compressive
piston squeezes the sludge in the direction of the filter media, and correspondingly, the
filtrate is separated from the solid particles, leaving behind a sludge cake [63].

The sample height vs. pressure plot, as shown in Figure 7, provides the filtration phase
as well as the expression phase. The filtration phase was linear, which was quite evident
in the ST-BW sample, which had a higher initial moisture content and hence a longer
filtration phase. It was during this phase that the cake formation occurred, followed by a
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compression turn-up, where the cake formation ended. During the expression phase, there
was movement of the solid particles within the cake structure, leading to shear stress, which
became higher than it was when the sample was in suspension. This led to breakdown
of weak flocs and seemed to characterise the non-traditional filtration behaviour of some
sludge samples, as in the FSs. This was in accordance with the linearised filtration theory
prediction of the classic “two-stage” behaviour of sludges [61], and represented the removal
of moisture by cake squeezing. Several researchers have made this observation, but the
results are still varied. The influence of the applied pressure on the initial sample and
the final cake was not clear. The results are in good agreement with the findings by [64],
and this phenomenon could be attributed to the moisture boundness of the sample, which
significantly decreased with increasing pressure at the filtration phase with the release of
interstitially bound moisture into unbound moisture. The transition of the filtration phase
to the expression phase was smooth, and hence, it was not possible to accurately ascertain
the interface.
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The difference in the time scale to reach the completion of the filtration phase was
dramatically different, with highly extended time for the VIP compared to the ST-BW. Given
that the initial TS of VIP sludge was higher than that of the ST-BW sludge, the time to reach
the end of filtration should have been shorter, but it was almost an order of magnitude
greater for the VIP sludge. This suggests that the VIP sludge was more compactable but
had low permeability.

3.8. Thermogravimetric Analysis

The thermogravimetric analysis (TGA) of the raw sample and the compressed sample
presented the moisture removal data (Figure 8). The slope of the TGA results provide the
derivative thermogravimetric analysis (DTG) curve, which represents the rate of change in
weight of the sample as a function of time [29]. From the DTG curves of the VIP and ST-BW,
the rate of change in weight peaked at around the same time (7.5 min) for both sludges
and for both pre-FCC and post-FCC samples. After the peak rate change, the remaining
moisture in the sludge was bound moisture. Thus, the corresponding loss in weight of the
moisture at the peak of the rate change provided the unbound moisture content (before the
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peak), and the remaining moisture was the bound moisture content (after the peak). It was
interesting to note that post compaction, there was still unbound moisture present.
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There was significant removal of moisture in the FCC, with 36.15% of moisture re-
moved in the VIP sludge and 47.11% of moisture removed from the ST-BW sludge. Sur-
prisingly, a major part of this moisture was from the bound moisture, and it was mostly
interstitial moisture (Figure 9). The unbound moisture reduction was 7.16–9.27%, whereas
the bound moisture removal was 26.88–39.96%. This corresponded to the interstitial mois-
ture content of the samples, which was 22.29% for VIP and 39.36% for ST-BW. The interstitial
moisture from the bound moisture fraction was “pushed” out from the capillaries by the
compressive force. If the compression approach of moisture removal can help remove
most of the interstitial moisture, the challenges of the sticky phase of the sludge in other
solid–liquid separation approaches can perhaps be overcome or reduced to a larger extent.
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3.9. Environmental Scanning Electron Microscopy

The environmental scanning electron microscope (ESEM) imagery at 20 µm provided
details of the micro-surface of the sludge particles (Figure 10). The micro-structure of
raw FS samples was heterogeneous in nature, with some degree of compactness and with
some degree of porosity. The unattached particles seemed to be adhesive to the surface,
demonstrating the presence of a structured EPS. The cohesive strength of the sludge was
evident from the high number of active sites that aided in moisture retention and binding
small grain particles. The micrograph from ESEM can be used as a reference for inevitable
structural disruptions encountered in SEM methods. The sludge surface was rough, with
the presence of dent-like formations. This could also have been due to the release of
internal forces from the sludge surface exposed to the electron beam. This is a limitation
of the ESEM approach, though not critical with sludge sample analysis. A more detailed
microstructural investigation is recommended since it plays a major role in determining the
deformational response of sludges to external stresses, the solid–solid particle interactions,
and the resistance of sludge to shearing force [31].
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4. Conclusions
The mechanical properties of FS and its relation to the moisture retention characteristics

is significantly important to efficient sludge handling systems in the context of its treatability
and land application. The FSs were largely anaerobic digested sludges with an almost
stable state and without any marked biological digestion taking place. The porosity of
the sludges varied between 48% to 63% for the FS samples. The true density of the FSs
was lower compared with soils but was in line with the range of specific gravity of solid
values of other anaerobic sludges. The zeta-potential was negative, below 10 mV and with
over 95% of the particles <1000 µm. The TB-EPS influenced the stability of the sludge,
with the highest being in the septic tank with the greywater sample. More proteins than
carbohydrates also ascertained the anaerobic conditioning of the sludge. The results of the
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textural properties using a penetrometer showed similar behaviour as that reported for
sewage sludges.

The dynamic oscillatory measurements exhibited a firm but smaller linear viscoelastic
behaviour of the sludges due to the change in EPS because of anaerobicity. The synchronised
behaviour of G′ and G′′ suggest a structural evolution from a solid characteristic to a
liquid property at around the 1% strain level, fitting well with the Herschel–Bulkley
model. With the application of the classical stress sweep method, with measurements
from a reference value, the FS samples showed similar behaviour as that of granular
materials. This helps in better understanding the flow characteristics of FS during solid–
liquid separation. Compaction under a filtration–compression test resulted in the removal
of both unbound and bound moisture from the sludges, reducing the moisture content of
the sludge from 91.20–75.64% to 44.09–39.49% for the ST-BW and VIP sludges, respectively.
The moisture removed corresponds to the interstitial moisture content of the samples. If
the compression approach of moisture removal can help remove most of the interstitial
moisture, the challenges of the sticky phase of sludge can perhaps be overcome or reduced
to a large extent. The microstructural investigation revealed the presence of active sites that
aided in moisture retention.

The moisture retention behaviour of the FSs was evidently dependent on their mechan-
ical properties. Influencing these mechanical properties can alter this retention behaviour.
While compaction can result in the release of interstitial moisture, the addition of a suitable
coagulant would release vicinal moisture. Intra-cellular moisture, as observed by other
researchers, can be removed only by the application of heat. It is noteworthy to observe
that the moisture retention behaviour of FS can be changed by altering the mechanical
properties by pre-treating the FS by different methods. The mechanical properties of FS
vary depending on the initial TS concentration and the extent of anaerobic biological con-
ditioning. While all the samples were anaerobic, the ST-wGW had very low TS and thus
exhibited slightly different characteristics, while the samples from VIP and UDDT were
similar, followed by ST-BW, which almost fell in the same range.

These findings provide critical insights on the influence of the mechanical properties
with respect to the moisture retention behaviour of FS. Understanding these properties can
assist in determining methods of effective moisture removal in FS and could pave the way
for effective land applications and bioremediation. More research on the study of these
mechanical properties after pre-treating can help develop a better understanding of the
moisture retention behaviour and the changing patterns of moisture distribution.
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