

Intelsig

Room-acoustics predictions using a diffusion process

A state of the art

Alexis Billon

Laboratory of acoustics, University of Liège

ABAV Meeting 21 may 2008 - ULg

Numerical tools are now widely used for buildings projects Most popular methods:

- Ray-tracing method;
- Statistical theory.

- Basic equations
- Mixed specular/diffuse reflections
- Numerical implementation
- Atmospheric attenuation
- Presence of fitting objects
- Rooms coupled through apertures
- Rooms coupled through partition walls
- Conclusions
- Application to a virtual factory

1. Basic equations

Diffusion equation

$$\frac{\partial w(\mathbf{r},t)}{\partial t} - D\nabla^2 w(\mathbf{r},t) = P(\mathbf{r},t)$$

Propagation of sound particles in a scattering medium

Diffusion constant

$$D = \frac{\lambda c}{3}$$

w acoustic energy density

- λ room mean free path (4*V*/*S*)
- *c* sound speed

Morse and Feshbach (1953) Picaut *et al.*, Acustica **83** (1997) Valeau *et al.*, JASA **119** (2006) Ollendorff, Acustica **21** (1969) Picaut *et al.*, Applied Acoustics **56** (1999)

2. Boundary conditions

Absorption at walls

$$J_{\mathbf{n}} = -D \frac{\partial w}{\partial \mathbf{n}} = h w$$

h exchange coefficient **n** wall normal

Expressions of the exchange coefficient

$$h = \frac{c \,\alpha}{4}$$

$$h = -\frac{c\ln\left(1 - \alpha\right)}{4}$$

$$h = -\frac{c\alpha}{2(2-\alpha)}$$

Picaut *et al.*, Applied Acoustics **56** (1999)

Billon *et al.*, Applied Acoustics **69** (2008)

Jing and Xiang, JASA **123** (2008)

Absorption at walls

Comparison of different boubary conditions with experiments (Jing and Xiang, 2008).

Picaut *et al.*, Applied Acoustics **56** (1999)

Billon *et al.*, Applied Acoustics **69** (2008)

Jing and Xiang, JASA **123** (2008)

3. Numerical implementation

Simulations characteristics:

- Finite Element Model (FEM) solver (*Femlab*);
- Unstructured mesh;
- Stationary response
- Impulse response

Sound Pressure Level = 10 seconds
Sound decay < 1 minute</p>

4. Mixed specular/diffuse reflections

Empirical diffusion constant

Valeau *et al.*, AAuA **93** (2007)

$$D(s) = k(s) \times D_{theorical}$$

Generalization

Foy et al., submitted to AAuA

The empirical model gives good predictions in terms of SPL, but not in terms of sound decay.

4. Mixed specular/diffuse reflections

Empirical diffusion constant

Valeau *et al.*, AAuA **93** (2007)

$D(s) = k(s) \times D_{theorical}$

Generalization

Foy et al., submitted to AAuA

Evolution of the reverberation time as a function of the scattering coefficient [Foy et al., submitted to AAuA]

The empirical model gives good predictions in terms of SPL, but not in terms of sound decay.

5. Atmospheric attenuation

Diffusion constant

Billon *et al.*, JASA **123** (2008)

$$D' = D \times \frac{1}{1 + m \lambda}$$

Absorption term

$$\frac{\partial w(\mathbf{r},t)}{\partial t} - D' \nabla^2 w(\mathbf{r},t) + mcw(\mathbf{r},t) = P(\mathbf{r},t)$$

5. Atmospheric attenuation

Diffusion constant

Billon *et al.*, JASA **123** (2008)

Absorption term

 $D' = D \times \frac{1}{1 + m \lambda}$

The diffusion model gives good predictions both in terms of SPL (for every s) and in termes of sound decay (for s=1).

ULg, ABAV Meeting

6. Presence of fitting objects

Diffusion constant

$$\frac{\partial w(\mathbf{r},t)}{\partial t} - D_t \Delta w(\mathbf{r},t) + \frac{c \alpha_f}{\lambda_f} w(\mathbf{r},t) = P(\mathbf{r},t)$$

6. Presence of fitting objects

Diffusion constant

Jlg 7. Rooms coupled through apertures

8. Rooms coupled through apertures

8. Rooms coupled through apertures

28 may 2008

$$-D_1\nabla^2 w_1(\mathbf{r})=0$$

 $-D_1\nabla^2 w_1(\mathbf{r}) = P(\mathbf{r})$

Coupling equations

Side V_1

Side V_2

$$D_1 \frac{\partial w_1(\mathbf{r})}{\partial \mathbf{n}_1} + h_1 w_1(\mathbf{r}) = \frac{\tau c}{4} w_2$$

 $D_2 \frac{\partial w_2(\mathbf{r})}{\partial \mathbf{n}_2} + h_2 w_2(\mathbf{r}) = \frac{\tau c}{4} w_1$

τ Transmission coefficient

 $-D_2\nabla^2 w_2(\mathbf{r}) = 0$

Billon *et al.*, JASA **123** (2008)

28 may 2008

Norms 3382 and 140-4: *: Sound source o: Microphones

Conclusions

Quick and flexible approach
Handle main acoustic phenomena
Adapted in networks of rooms

Future works

Specular reflections in the sound decayCoupling with urban diffusion model

Acknowledgements

The author would like to thank the ADEME (french agency for environmental studies) for supporting part of this work.

28 may 2008

Application to a virtual factory

Industrial hall coupled with offices

Hall A

- 20m x 25m x 10m
- *α*=0.03
- source 1: 120dB

Fitted zone A'

- *a*=0.3
- $\lambda_f = 0.25 \text{m}$
- Offices D, E:
- *a*=0.06

Workshop C:

- *a*=0.03
- Corridor B:
- $\alpha = 0.06 \text{ or } 0.6$

Application to a virtual factory

Effect of the acoustic treatment

Before

After