
A thesis submitted for the fulfilment of the requirements for the academic degree of
Doctor of Science at the University of Liège (College of Spatial Sciences)
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Summary

Atmospheric transport models are essential tools for understanding and predicting green-
house gas (GHG) concentrations throughout the atmosphere across different regions - a
crucial requirement for effective climate change mitigation. However, these models need
thorough evaluation to ensure their reliability and identify areas for improvement. This the-
sis addresses this need through a comprehensive study at two contrasting locations where
the Belgian Institute for Space Aeronomy (BIRA-IASB) maintains long-term measurement
programs in collaboration with local partners: the remote tropical island of Réunion in the
Indian Ocean and the urbanized county of Xianghe near Beijing, China. Both measurement
sites are part of international observing networks dedicated to long-term GHG monitoring.
By examining the observed and simulated GHG concentrations at these sites, we pursue two
interconnected goals: evaluating the capabilities of atmospheric transport models in these
understudied regions, and advancing our understanding of how human activities, natural
processes, and weather patterns influence local GHG concentrations at these sites.

Our research employs the WRF-GHG atmospheric transport model to simulate concentra-
tions of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO). We analyze a
comprehensive dataset combining two measurement techniques: ground-based in situ mea-
surements that capture detailed near-surface concentrations, and remote sensing observations
that provide information across the entire atmospheric column. This dual approach, coupled
with high-resolution modeling, enables us to both validate model performance and examine
GHG behavior from multiple perspectives.

The results reveal distinct patterns at each location. At Réunion Island, where local emis-
sion sources are minimal, column measurements reflect broader regional patterns, particularly
capturing the impact of seasonal biomass burning from African and South American conti-
nents between August and December. In situ concentrations show a modest influence of local
sources, and significant diurnal variation primarily driven by local wind patterns. In contrast,
Xianghe exhibits higher concentrations and greater variability due to a huge variety of emis-
sion sources in the region. Our analysis attributes CH4 concentrations at Xianghe primarily
to agricultural activities, residential heating, fossil fuel extraction, and waste management,
while CO2 variations are largely driven by industrial activities, energy production, and bio-
sphere interactions. Further, wind direction plays a crucial role at Xianghe: southwesterly
winds transport polluted air from the heavily urbanized North China Plain to the site, while
northerly winds bring cleaner air from remote regions such as Inner Mongolia. The study
also reveals that column measurements are more sensitive to distant sources, as illustrated



by the significant contribution of energy emissions, likely from the Shanxi coal region, to
Xianghe’s CH4 column concentrations.

The WRF-GHG model successfully reproduces many observed patterns, for both in situ and
column measurements. Among the strengths of the model is the integration of VPRM (the
Vegetation Photosynthesis and Respiration Model), which allows for a detailed and realistic
simulation of biogenic CO2 fluxes, a crucial component for simulating CO2 concentrations.
However, our evaluation identified several challenges: difficulty in representing local wind
patterns on Réunion Island due to complex topography, seasonal deviations in CH4 simula-
tions linked to inaccurate boundary conditions and emission inventories, and uncertainties
in biogenic flux calculations due to VPRM input data quality.

This research contributes to both atmospheric modeling and GHG monitoring communities
by providing a detailed model evaluation in contrasting environments while advancing our
understanding of regional GHG dynamics. Our findings demonstrate the capabilities and
limitations of current modeling approaches, while identifying specific areas for improvement.
These insights are valuable for enhancing emission inventories, refining atmospheric transport
models, and ultimately supporting more effective climate change mitigation strategies.



Résumé

Les modèles de transport atmosphérique sont des outils essentiels pour comprendre et prédire
les concentrations de gaz à effet de serre (GES) dans différentes régions et contribuer signi-
ficativement à la lutte contre le changement climatique. Cependant, ces modèles doivent être
évalués en profondeur pour garantir leur fiabilité et identifier les domaines à améliorer. Cette
thèse répond à ce besoin par une étude approfondie de deux sites contrastés où l’Institut royal
d’Aéronomie Spatiale de Belgique (IASB) maintient des programmes de mesure à long terme
en collaboration avec des partenaires locaux: l’̂ıle tropicale isolée de La Réunion dans l’océan
Indien et la zone urbanisée de Xianghe près de Pékin, en Chine. Les deux sites de mesure
font partie de réseaux d’observation internationaux dédiés à la surveillance à long terme des
GES. En examinant les concentrations de GES observées et simulées à ces sites, nous pour-
suivons deux objectifs interconnectés: évaluer les capacités de notre modèle de transport
atmosphérique pour ces régions peu étudiées tout en faisant progresser notre compréhension
de l’influence des activités humaines, des processus naturels et des conditions météorologiques
sur les concentrations locales de GES pour deux situations distinctes.

Notre recherche utilise le modèle de transport atmosphérique WRF-GHG pour simuler les
concentrations de dioxyde de carbone (CO2), de méthane (CH4) et de monoxyde de car-
bone (CO). Nous analysons un ensemble de données complet combinant deux techniques de
mesure: des mesures in situ au sol qui capturent des concentrations détaillées près de la
surface et des observations par télédétection qui fournissent des informations sur l’ensemble
de la colonne atmosphérique. Cette double approche, associée à une modélisation à haute
résolution, nous permet à la fois de valider les performances du modèle et d’examiner le
comportement des GES sous plusieurs angles.

Notre étude révèle des situations distinctes. À La Réunion, où les sources d’émission locales
sont minimes, les mesures de la colonne reflètent des distributions régionales plus homogènes,
capturant notamment l’impact de la combustion saisonnière de la biomasse des continents
africain et sud-américain entre août et décembre. Les concentrations in situ montrent une
influence modeste des sources locales et une variation diurne significative principalement due
aux régimes éoliens locaux. En revanche, Xianghe présente des concentrations plus élevées
et une plus grande variabilité en raison d’une grande variété de sources d’émissions dans la
région. Notre analyse permet d’attribuer les concentrations de CH4 à Xianghe principalement
aux activités agricoles, au chauffage résidentiel, à l’extraction de combustibles fossiles et à la
gestion des déchets, tandis que les variations de CO2 sont largement dues aux activités indus-
trielles, à la production d’énergie et aux interactions avec la biosphère. De plus, la direction



du vent joue un rôle crucial à Xianghe: les vents du sud-ouest transportent l’air pollué de la
grande plaine de Chine du Nord fortement urbanisée vers le site, tandis que les vents du nord
apportent de l’air plus propre des régions éloignées comme la Mongolie-Intérieure. L’étude
révèle également que les mesures de colonne sont plus sensibles aux sources éloignées, comme
l’illustre la contribution significative des émissions d’énergie, probablement de la région char-
bonnière du Shanxi, aux concentrations de colonne de CH4 de Xianghe.

Le modèle WRF-GHG reproduit avec succès de nombreux situations ou configurations ob-
servées à la fois pour les mesures in situ et en colonne. Parmi les points forts du modèle, on
trouve l’intégration du VPRM (Vegetation Photosynthesis and Respiration Model), qui per-
met une simulation détaillée et réaliste des flux biogéniques de CO2, un élément crucial pour
simuler les concentrations de ce GES. Cependant, notre évaluation a identifié plusieurs défis:
la difficulté de représenter les motifs de vent locaux à La Réunion en raison de la topographie
complexe, des écarts saisonniers dans les simulations de CH4 liés à des conditions limites et
des inventaires d’émissions inexacts, et des incertitudes dans les calculs de flux biogéniques
en raison de la qualité des données d’entrée du VPRM.

Cette recherche contribue à la fois aux communautés de modélisation atmosphérique et de
surveillance des GES en fournissant une évaluation détaillée du modèle dans des environ-
nements contrastés tout en faisant progresser notre compréhension de la dynamique régionale
des GES. Nos résultats démontrent les capacités et les limites des approches de modélisation
actuelles, tout en identifiant des domaines spécifiques à améliorer. Ces informations sont
précieuses pour améliorer les inventaires d’émissions, affiner les modèles de transport atmo-
sphérique et, en fin de compte, soutenir des stratégies d’atténuation du changement clima-
tique plus efficaces.



Samenvatting

De concentratie van broeikasgassen in de atmosfeer, zoals koolstofdioxide (CO2) en methaan
(CH4), maar ook van het indirecte broeikasgas koolstofmonoxide (CO), varieert sterk per
locatie. Deze variatie ontstaat door een complexe wisselwerking van verschillende factoren:
zodra deze gassen worden uitgestoten - door zowel menselijke als natuurlijke bronnen - wor-
den ze door de wind verspreid in de atmosfeer. Door de grote verscheidenheid aan bronnen
en weersomstandigheden kunnen de concentraties sterk verschillen, niet alleen per locatie
maar ook van dag tot dag.
Het begrijpen van deze fluctuaties is essentieel, broeikasgassen spelen namelijk een cruciale
rol in ons klimaatsysteem via het broeikaseffect. Ze houden warmte vast in de atmosfeer en
dragen zo bij aan de opwarming van de aarde, hetgeen verstrekkende gevolgen heeft voor
zowel de menselijke beschaving als natuurlijke ecosystemen. Aangezien de concentraties van
deze gassen door menselijke activiteiten met ongekende snelheid blijven toenemen, is het
voor de klimaatwetenschap en beleidsvorming cruciaal om meer inzicht te krijgen in hun
geografische verspreiding en temporele variatie.
Wetenschappers maken gebruik van onder andere atmosferische transportmodellen om deze
verspreiding te bestuderen. Deze computermodellen simuleren parameters zoals wind en
temperatuur doorheen ruimte en tijd, gelijkaardig aan weermodellen. Daarnaast bevatten ze
ook informatie over verschillende uitstootbronnen en berekenen ze de resulterende concen-
traties in de atmosfeer. Om de nauwkeurigheid en betrouwbaarheid van deze modellen te
garanderen in verschillende situaties, is het essentieel om ze te evalueren aan de hand van
observatiegegevens. Deze evaluaties helpen onder andere ontwikkelaars bij het identificeren
van verbeterpunten.

Dit onderzoek richt zich op twee specifieke locaties waar BIRA-IASB (het Belgisch instituut
voor ruimte-aeronomie) betrokken is bij lokale metingen: het Franse eiland Réunion, een
afgelegen tropische locatie in de Indische Oceaan, en Xianghe, een verstedelijkt gebied nabij
Peking in noordoost China. Het onderzoek in deze thesis heeft zowel als doel om meer inzicht
te krijgen in de processen die de concentratieschommelingen op deze locaties bëınvloeden,
als om het atmosferische transportmodel te evalueren op deze nog niet uitvoerig bestudeerde
locaties.
Zowel de meetprogrammas’s op Réunion als Xianghe maken deel uit van internationale ob-
servatienetwerken voor langetermijnwaarnemingen van broeikasgassen, en registreren concen-
traties aan de hand van twee verschillende meettechnieken: in situ metingen die gedetailleerde
informatie geven over concentraties nabij het meetinstrument, en teledetectie-metingen die
informatie verzamelen over de hele atmosferische kolom, van grondniveau tot de top van de



atmosfeer.
Voor dit onderzoek simuleren we minimaal één jaar aan metingen met het wereldwijd ge-
bruikte WRF-Chem model (Weather Research and Forecasting model coupled with chem-
istry). We gebruiken specifiek de WRF-GHG optie, die ontwikkeld is voor het simuleren van
regionaal transport van CO2, CH4 en CO, zonder de complexiteit van atmosferische chemis-
che reacties die van minder belang zijn voor deze gassen. Door de concentraties van beide
meettechnieken te combineren met simulaties van hoge resolutie, kunnen we een uitgebreide
analyse maken van het gedrag van broeikasgassen op deze locaties.

De resultaten tonen duidelijke verschillen tussen beide locaties. Op Réunion zijn, door de
afgelegen ligging en minimale lokale bronnen, de kolomconcentraties representatief voor de
hele regio. Het belangrijkste signaal in de kolommetingen op Réunion is te wijten aan het
jaarlijks terugkerende fenomeen van het verbranden van biomassa op de Afrikaanse, of zelfs
Zuid-Amerikaanse continenten (voornamelijk voor landbouwdoeleinden) tussen augustus en
december. Deze praktijk stoot enorm veel broeikasgassen uit en is zichtbaar in de kolommetin-
gen op Réunion. Voor de in situ metingen hebben de lokale bronnen een bescheiden invloed,
en worden daarnaast sterk bëınvloed door lokale windpatronen die aanzienlijke schommelin-
gen in concentraties doorheen de dag kunnen teweeg brengen.
In Xianghe zorgt een enorme verscheidenheid aan bronnen voor hogere concentraties en meer
variatie. De modelsimulaties laten onder andere toe om een verdeling te maken van de ver-
schillende emissie sectoren die bijdragen tot de totale concentratie. Zo blijkt bijvoorbeeld
dat de CH4 concentraties in Xianghe voornamelijk afkomstig zijn van landbouwactiviteiten,
verwarming van gebouwen, fossiele brandstofwinning en afvalbeheer, terwijl industriële pro-
cessen, electriciteitsproductie en interactie met de biosfeer de belangrijkste componenten zijn
voor CO2. Verder toont onze analyse aan dat de kolommetingen gevoeliger zijn voor bronnen
op grotere afstand dan in situ waarnemingen, vergelijkbaar als op Réunion. Wij vonden bi-
jvoorbeeld dat de energiesector een groter aandeel heeft in de totale CH4 kolomconcentraties,
vergeleken met deze dicht bij het oppervlak (in situ), omdat de meeste uitstoot in deze sector
gebeurt op grotere afstand van de meetinstrumenten, namelijk in het intensieve steenkool-
gebied van Shanxi. Ook heeft de windrichting een grote invloed: zuidwestelijke wind brengt
vervuilde lucht uit het sterk verstedelijkte Chinese Laagland naar Xianghe, terwijl noordeli-
jke wind schonere lucht aanvoert uit afgelegen gebieden zoals Binnen-Mongolië.

Het WRF-GHG model bleek over het algemeen accuraat in het reproduceren van de gemeten
concentraties en hun schommelingen, zowel in situ als over de hele atmosferische kolom. Eén
van de sterke punten van het model is onder andere de integratie van VPRM (het Vegeta-
tion Photosynthesis and Respiration Model), dat een gedetailleerde en realistische simulatie
van biogene CO2 fluxen mogelijk maakt, een cruciaal onderdeel voor het reproduceren van
CO2 concentraties. Er kwamen echter ook uitdagingen naar voren. Op het eiland Réunion
had het model bijvoorbeeld moeite om de lokale windpatronen nauwkeurig weer te geven,
wat leidde tot afwijkingen in de nachtelijke CO2 concentraties dichtbij het oppervlak. Dit is
waarschijnlijk te wijten aan de grote hoogteverschillen op het kleine eiland, die ondanks de
hoge resolutie niet nauwkeurig genoeg gerepresenteerd zijn in het model. Verder vertoonde
het model een eerder zwakke correlatie met de verschillende CH4 waarnemingen op beide lo-



caties. Dit kon telkens gelinkt worden aan een seizoensafwijking in de randvoorwaarden van
de modelsimulaties afkomstig van externe globale datasets. Voor Xianghe kwamen daar extra
afwijkingen bij door onjuiste seizoensvariaties in CH4 emissiebronnen. Anderzijds komen de
grootste onzekerheden voor CO2 voort uit de parameters en input gegevens van VPRM, die
van invloed zijn op de nauwkeurigheid van simulaties van biogene fluxen. Dit demonstreert
dat de nauwkeurigheid van modelsimulaties sterk samenhangt met de kwaliteit van de input
gegevens.

Het onderzoek in deze thesis toont aan datWRF-GHG de belangrijkste aspecten van broeikas-
gasdynamiek kan simuleren in verschillende omgevingen. Het model biedt waardevolle inzichten
in de waargenomen variabiliteit op beide bestudeerde locaties. Daarnaast werden verschil-
lende aandachtspunten voor toekomstige modelontwikkeling gëıdentificeerd: onder andere
de verfijning van CH4 emissie-inventarissen en randvoorwaarden, verbetering van VPRM in-
put gegevens voor CO2 simulaties, en een betere weergave van lokale windpatronen. Het
aanpakken van deze uitdagingen zal het model verder optimaliseren, waardoor het op andere
locaties toegepast kan worden om broeikasgasvariabiliteit te onderzoeken. Dit zal uiteindelijk
bijdragen aan een beter begrip van de koolstofcyclus en ondersteunt bredere inspanningen
om de impact van klimaatverandering te beperken.



Chapter 1

Research context

1.1 The significance of greenhouse gases

Greenhouse gases (GHGs) play a vital role in the Earth’s climate system due to their con-
tribution in the greenhouse effect. Infrared active gases in the atmosphere such as water
vapor (H2O), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) allow incoming
shortwave solar radiation to reach the Earth’s surface but absorb and re-emit part of the
outgoing longwave thermal radiation. This process creates an insulating layer around the
Earth, preventing some of the planet’s infrared radiation from escaping directly into space.
Without greenhouse gases, the Earth’s average surface temperature would be approximately
−18 ◦C, instead of the current 15 ◦C, making it uninhabitable. In addition to H2O, CO2,
CH4 and N2O, other gases such as tropospheric ozone (O3) and manmade chlorofluorocar-
bons (CFCs) also contribute to this effect and are classified as greenhouse gases.

Figure 1.1: Drivers of climate change, with their respective change in radiative forcing from
1750 to 2019. Figure taken from Chapter 7 (Fig. 7.6) of the sixth assessment report of the
Intergovernmental Panel on Climate Change (IPCC AR6, Masson-Delmotte et al., 2021).
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Figure 1.2: Top panel: Incoming solar radiation and outgoing thermal radiation, together
with the Planck law’s curves for their associated blackbodies, on a normalized scale. Middle
and bottom panels: Absorption bands of the (cloud free) Earth’s atmosphere and from
specific gases (same scales as for the total absorption panel). Taken from Robert A. Rohde
for the Global Warming Art project. CC BY-SA 3.0, via Wikimedia Commons.

In the last few centuries, human activities (such as the use of fossil fuels, deforestation and
agricultural practices) have significantly increased the levels of greenhouse gases, especially
CO2 and CH4. This increase has amplified the natural greenhouse effect, a phenomenon now
referred to as the enhanced greenhouse effect, leading to positive radiative forcing. Radia-
tive forcing quantifies the imbalance in the Earth’s energy budget caused by various factors,
including greenhouse gases, aerosols, solar radiation, and surface albedo. Although H2O is
the most prevalent greenhouse gas in the atmosphere (varying between 0 to 4%, depending
on time and location), its contribution to the enhanced greenhouse effect is minimal. This is
because human activities have not significantly altered its concentrations, and it has a short
atmospheric lifetime of just a few days. In contrast, CO2 and CH4 are the most significant
contributors to the enhanced greenhouse effect, accounting for over 70% of the total radiative
forcing, see Fig. 1.1. This is largely due to their much longer atmospheric lifetimes —rang-
ing from one year to millennia for CO2 and around a decade for CH4— and the significant
increase in their concentrations since the Industrial Era, see below. Furthermore, CO2 has
a broad absorption band around 15 µm, which is close to the peak wavelength of outgoing
thermal radiation (see Fig. 1.2).

Figure 1.3 depicts the rising trends of the major greenhouse gases (CO2 and CH4) in the at-
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Figure 1.3: Globally averaged concentration trend and absolute growth rate of the most
abundant greenhouse gases: CO2 (top) and CH4 (bottom), as observed by different measure-
ment networks with global spatial coverage. Adapted from Figure 2.5 of Gulev et al. (2021).

mosphere over recent decades. The global averaged CO2 concentration is estimated at 417.9
± 0.2 ppm (parts per million per unit of volume, also ppmv) in 2022, while it was relatively
stable at around 278 ppm before the industrial revolution (Masson-Delmotte et al., 2021;
WMO, 2023). Due to the continuous extraction and burning of fossil fuels, atmospheric CO2

is still rising with on average 2.4 ± 0.5 ppm per year, since 2011. Studies of ice cores and
other data suggest that current atmospheric CO2 levels are the highest they have been in at
least 2 million years.
According to the latest Greenhouse Gas Bulletin of the World Meteorological Organization
(WMO, 2023), the global average concentration of CH4 in the atmosphere was approximately
1923 ± 2 ppb (parts per billion per unit of volume, also noted as ppbv) in 2022, reflecting an
increase of over 150% since pre-industrial times (before 1750). The yearly increase of atmo-
spheric CH4 shows more variability than that of CO2, as presented in the latest report from
the Intergovernmental Panel on Climate Change (IPCC AR6, Masson-Delmotte et al., 2021).
In the 1980s, the average growth rate of CH4 was 15 ± 5 ppb per year. This rate dropped to
0.48 ± 3.2 ppb per year during the quasi-equilibrium phase from 2000 to 2006, and then rose
again to an average of 7.6 ± 2.7 ppb per year over the past decade (2010–2019). Methane
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concentrations in the atmosphere significantly surpass the natural fluctuations observed over
the past 800,000 years.

This rapid increase of greenhouse gases in the Earth’s atmosphere leads to an accumulation
of energy and an imbalance in the Earth’s climate system: anthropogenic forcing has given
rise to global warming. Over the past 120 years, the average global surface temperature has
already increased by more than 1.0 ◦C. This warming has caused significant sea-level rise and
the rapid melting of polar ice and glaciers.
A major consequence of current climate change is the increase in the frequency and intensity
of various weather extremes, such as heatwaves (Pörtner et al., 2023). Furthermore, climate
change affects the global water cycle, leading to more frequent and intense heavy precipita-
tion events (including major tropical cyclones) and droughts, as well as shifting precipitation
patterns. These extreme events disrupt ecosystems worldwide: e.g. causing a loss of biodi-
versity, coral bleaching and mortality, ocean acidification, and tree mortality due to droughts
and wildfires, ultimately deteriorating their structure, function, and resilience. Additionally,
human societies already feel an impact through increased heat-related mortality, infectious
diseases, changes in water and food security, and damage to cities and infrastructure from
events like flooding and cyclones. Climate change profoundly impacts the current world on
many levels and presents humanity with unprecedented challenges.

If CO2 and other greenhouse gas concentrations continue to rise at current or higher rates,
global surface temperatures will increase by anything between 1.4 and 4.4 ◦C (depending on
the emission scenario) by the end of this century, relative to the 1850-1900 average (Gulev
et al., 2021). Current observed extremes will likely intensify even further: more and stronger
heatwaves, excessive precipitation, acute droughts and reduction of ice sheets and permafrost.
Therefore the Paris Agreement, adopted at the COP21 of December 2015 under the United
Nations Framework Convention on Climate Change (UNFCCC), aims to limit global warming
to well below 2 ◦C above pre-industrial levels, with efforts to further limit it to 1.5 ◦C. In
this agreement, 195 countries committed to set and regularly update their own national
targets for reducing greenhouse gas emissions and enhance adaptation efforts in the so-called
Nationally determined contributions (NDCs). Moreover, the treaty presents a framework to
provide financial support to developing countries, and establish transparent reporting and
review mechanisms to track progress.

1.2 Key sources and sinks of CO2, CH4 and CO

As potent greenhouse gases, CO2 and CH4 are the main focus of this thesis. Furthermore, this
work studies time series of carbon monoxide (CO), which is considered an indirect greenhouse
gas : while CO does not absorb infrared radiation, its presence in the atmosphere affects the
concentration of other GHGs, thereby indirectly impacting the overall greenhouse effect.

Various natural and anthropogenic processes influence the exchange of these gases between
the Earth’s surface, which includes both land and ocean, and the atmosphere, ultimately
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Figure 1.4: Global CO2 budget in GtC per year, average over 2013-2022 from Friedlingstein
et al. (2023).

influencing their atmospheric abundance. Processes that remove gases from the atmosphere
are called sinks, whereas those that release gases into the atmosphere are known as sources.
While these processes are relatively well understood and estimated on a global scale, uncer-
tainties remain, with some processes (particularly those of natural origin) being less certain,
and even more so at regional scales. Below, we discuss the primary sources and sinks of CO2

CH4, and CO, together with their global annual estimates.

1.2.1 Carbon dioxide

Carbon dioxide, or CO2, is the fourth most abundant molecule in dry air, after nitrogen (N2,
78.08%), oxygen (O2, 20.95%) and argon (Ar, 0.93%), and is chemically inert whereby it can
remain in the atmosphere for hundreds of years.
The main sources of CO2 are:

• Combustion of fossil fuels. This is the most important anthropogenic source of CO2

and includes the burning of coal, natural gas and oil for power generation, vehicles and
heating of residential houses and commercial buildings.

• Industrial processes. The largest industries emitting CO2 are the production of ce-
ment and other minerals, production of chemicals, metals and paper, petroleum refining
and food processing.
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• Land use, land-use change and forestry (LULUCF). This represents the direct
human interference with vegetation such as the conversion of forested area to agri-
culture by deforestation, cutting trees for commercial use (logging) as well as forest
management, regrowth and changes therein. Trees capture CO2 from the atmosphere
during their lifetime by photosynthesis (see below) and a part of this carbon is released
back when they die. This category could in theory also be a net sink (if more trees are
planted than cut down), however it is currently a source on the global level.

• Forest fires. A much smaller source compared to the others is biomass burning. This
can be caused by both natural factors such as drought, heat or lightning as well as
by anthropogenic factors such as the burning of agricultural waste or to clear land for
agricultural purposes (so-called slash-and-burn method).

• Other natural sources. Natural sources of minor importance are for example volcanic
eruptions and decomposition and respiration of the terrestrial biosphere.

The total global anthropogenic CO2 source is estimated to be 10.9 ± 0.8 GtC (gigatonnes
of carbon) per year (Fig. 1.4), of which 9.6 ± 0.5 is attributed to fossil fuels and industry
(Friedlingstein et al., 2023).

The most important processes where CO2 is removed from the atmosphere, or sinks, are:

• Photosynthesis by forests and other vegetation. (also called land uptake or land
sink). During the day, plants use sunlight to convert CO2 in glucose and biomass and
thereby they grow. The land sink is stronger in the Northern Hemisphere (due to a
larger area of land surface) and during the growing season. This terrestrial sink is
estimated at 3.3 ± 0.8 GtC per year (Fig. 1.4).

• Ocean uptake. The ocean is an important carbon reservoir where CO2 is exchanged
with the surface layer and the air above, followed by vertical transport to deeper layers
of the ocean. The estimated ocean sink is 2.8 ± 0.4 GtC per year (Fig. 1.4).

Currently, about half of the CO2 that is emitted into the atmosphere by anthropogenic
processes is compensated by the land and ocean sink. The rest accumulates in the atmosphere
with a growth rate of about 5.2 GtC per year, thereby contributing to human-induced climate
change.

1.2.2 Methane

About 40 % of the CH4 sources is of natural origin while 60 % is emitted by human activities
(Saunois et al., 2024). In general, the most important sources of CH4 are:

• Natural wetlands and inland waters. This is biogenic CH4 which is formed by the
decomposition of organic matter in anaerobic environments, also called methanogenesis.
It is the largest natural source of CH4, estimated at about 248 Tg per year (Fig. 1.5).
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Figure 1.5: Global CH4 budget in Tg per year, average over 2010-2019 from Saunois et al.
(2024).
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• Agriculture. This includes emissions from livestock (enteric fermentation in rumi-
nants), manure management and rice cultivation. The latter is an important source
due to the long-term flooding of rice paddies, creating the ideal conditions for methano-
genesis. These sources are one of the largest anthropogenic sources of CH4.

• Waste management. Another form of methanogenesis of anthropogenic origin, where
CH4 is emitted due to decaying organic material in environments lacking oxygen, are
landfills and wastewater treatment systems. Together with agriculture, annual waste
emissions are estimated at about 211 Tg (Fig. 1.5).

• Fossil fuels. CH4 is the main constituent of natural gas which is formed over millions of
years when organic matter is decomposed under intense heat and pressure underground,
similar to oil. The extraction (including fracking) of gas, oil, and also coal, emits large
portions of CH4 into the atmosphere as it escapes from underground during drilling
and mining operations. Further, CH4 is also emitted during transport (gas pipe leaks)
and incomplete combustion of fossil fuels that are further used for energy, transport
and heating purposes. The total emissions of CH4 of fossil fuel exploitation and use
are estimated to be 120 Tg per year (Fig. 1.5).

• Biomass burning. As for CO2, fires can originate from both natural and anthro-
pogenic sources. Wildfires, peat fires, biomass and biofuel burning produce pyrogenic
CH4 due to incomplete combustion of organic material. This source is believed to emit
about 28 Tg of CH4 per year.

• Other natural emissions.There are many other sources of CH4 that occur naturally
and are estimated to emit about 63 Tg of CH4 annually altogether. These sources
include wild animals, termites, gas seeps, volcanoes, and thawing permafrost. While
these natural processes are typically seen as having a minor role in climate change since
only disturbances in these sources would lead to a rise in atmospheric CH4, the thawing
permafrost stands out as potentially more impactful. This is because it can intensify
rapidly through positive climate change feedback mechanisms.

Methane is removed from the atmosphere by chemical reactions and by uptake in soils:

• Atmospheric chemistry. The largest CH4 sink is oxidation by the hydroxyl radical
(OH) in the troposphere. OH is created as a result of a chemical reaction between
O3, H2O and ultraviolet (UV) sunlight. The formed OH radicals are highly reactive,
they have an atmospheric lifetime of about a second, and react with trace gases such
as CH4 and CO. Because of this cleansing property, OH is often called the ”detergent”
of the atmosphere. About 90 % of CH4 is destroyed by OH oxidation (Saunois et al.,
2024). There are also chemical reactions with atomic chlorine (Cl) in the troposphere
and with excited atomic oxygen O(1D), atomic fluorine (F) and OH in the stratosphere
but these are of minor importance. The total loss of CH4 from chemical reactions is
estimated at 602 Tg per year.

• Soil uptake. Methanotrophs, or methane oxidizing bacteria in soils, consume CH4 for
survival leading to a removal of about 31 Tg CH4 per year from the atmosphere.
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1.2.3 Carbon monoxide

CO is created by incomplete combustion, mainly in the following processes:

• Fossil fuels. Incomplete combustion occurs when there is insufficient O2 available.
This mainly happens in engines of motorized vehicles and machinery. Thereby the
transport sector (cars, trucks, airplanes, boats etc.) is an important source of CO.
Further, burning of wood or gas for cooking or heating purposes also releases a lot of
CO.

• Industry. The production of for example metals and chemical manufacturing releases
CO into the atmosphere.

• Biomass burning. Wildfires are an important source of CO due to incomplete com-
bustion of organic material, and can be caused by both natural and anthropogenic
factors

• Oxidation of CH4 and NMVOCs. Approximately half of the CO present in the
atmosphere is produced through the oxidation of CH4 and non-methane volatile organic
compounds (NMVOCs).

CO is mainly removed from the atmosphere by dry deposition and chemical reactions in the
troposphere. The most important sink is its reaction with OH. As a result, the emission of
CO reduces the abundance of OH in the atmosphere and thus affects the atmospheric CH4

lifetime and concentration (as less OH is available to remove CH4). It also plays a role in
the formation of tropospheric O3 and urban smog.
In addition to being an important air pollutant, CO is considered an indirect greenhouse gas
as it serves as a precursor to several direct climate forcers. Due to its chemical reactivity, CO
has a much shorter atmospheric lifetime than CO2 and CH4, ranging from approximately 1
to 4 months, compared to CO2 and CH4. This shorter lifetime leads to less uniform mixing
in the atmosphere, resulting in higher spatial and temporal variability.

1.3 Observing greenhouse gases

In the context of climate change, it is crucial to monitor greenhouse gas concentrations in the
atmosphere. The unprecedented levels of GHGs, driven by anthropogenic emissions (Masson-
Delmotte et al., 2021), necessitate detailed observation to understand their contribution to
global warming, identify trends, ingest reliable data into climate prediction models, and pin-
point emission sources for effective mitigation. Continuous monitoring helps to unravel local
and regional budgets, to assess the impact of specific events, and to differentiate between
natural variability and anthropogenic impacts. Moreover, it supports the assessment of the
impact of policy regulations and ensures compliance with international agreements like the
Paris Agreement and the EU’s Green Deal, that strive to limit the growth of atmospheric
GHGs.
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Historically, monitoring of GHGs in the atmosphere began with in situ air sampling at remote
locations to minimize the influence of local pollution and to obtain representative samples
of the global background atmosphere. Mauna Loa Observatory in Hawaii, chosen for its
isolation and stability of atmospheric conditions, became a benchmark site for such high-
precision, continuous observations, initiated by Charles David Keeling in 1957. Generally,
in situ air sampling occurs close to the surface or on tall towers, capturing the local air
to provide detailed snapshots of atmospheric composition. Other in situ techniques include
for example AirCore sampling using balloons, which provides vertical profiles of greenhouse
gases, or instruments mounted on aircrafts, which collect data along the flight track, offer-
ing insights into the atmospheric composition at various altitudes. Organizations like the
National Oceanic and Atmospheric Administration (NOAA) and the World Meteorological
Organization (WMO) have since expanded on this foundational work, establishing a network
of monitoring stations worldwide, such as the Global Atmosphere Watch (GAW) program.
These sites utilize various observational methods, such as Non-Dispersive Infrared (NDIR)
and Cavity Ring-Down Spectroscopy (CRDS) sensors, to measure GHGs with high precision
and accuracy.

Starting in the 2000s, remote sensing techniques became crucial in observing GHGs, en-
abling the measurement of concentrations over larger spatial scales. Unlike in situ sampling,
which provides detailed local measurements, remote sensing offers vertical profiles or column-
averaged dry-air mole fractions of GHGs, representing the concentration from the ground up
through the atmosphere. Ground-based remote sensing employs instruments such as Fourier
Transform Infrared (FTIR) spectrometers, which measure solar absorption spectra by point-
ing towards the sun. These instruments are often organized into networks like the Total Car-
bon Column Observing Network (TCCON), the Network for the Detection of Atmospheric
Composition Change Infrared Working Group (NDACC-IRWG), or the Collaborative Car-
bon Column Observing Network (COCCON), providing consistent, high-precision GHG data
across various locations spread over the globe. Space-based remote sensing, conducted by sim-
ilar instruments (usually grating spectrometers) aboard satellites, observes GHG absorption
lines in back-scattered solar or emitted thermal radiation spectra, offering extensive global
coverage. Prominent satellite missions such as the Orbiting Carbon Observatory (OCO-
2/3), the Greenhouse Gases Observing Satellite (GOSAT and GOSAT-2), the Tropospheric
Monitoring Instrument (TROPOMI) onboard Sentinel-5P, TanSat, and GHGSat extend the
observational capabilities, enabling comprehensive monitoring of atmospheric GHGs nowa-
days.

Among the different techniques available for measuring atmospheric trace gases, this research
focuses on ground-based observations. More specifically, we will exploit the observations from
both in situ and remote sensing measurement systems at two specific observatories: Réunion
Island in the Indian Ocean and Xianghe, near Beijing in China. More detail on these sites will
be given in Sect. 1.6, while below we provide a brief description of the type of instruments
employed at the these locations, together with an introduction of the international networks
they are embedded in.
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1.3.1 Ground-based in situ observations

The ground-based in situ observations that are analyzed in this work are made by Picarro
Cavity Ring-Down Spectroscopy (CRDS) gas analyzers, see Fig. 1.6. This type of instrument
is highly sensitive and precise and works as follows: the locally sampled air is brought into
an optical cavity. Then, a laser beam is sent through the cavity and its intensity is measured
by a detector. When the laser is shut down, the intensity of the light detected will decay
over time, depending on the amount of absorbers in the sample. This decay time, also called
the ring-down time, reveals the absorption rate of the air and thus the abundance of the gas
species. CRDS gas analyzers can detect species at very low concentrations and are known
for their accurate measurements of greenhouse gases. Depending on the specific instrument
employed, dry air mole fractions of CO, CO2 and CH4 are reported every couple of minutes
with a precision up to 2 ppb, 0.05 ppm and 1 ppb, respectively.

(a) (b) (c)

Figure 1.6: Illustration of Cavity Ring-Down Spectroscopy (CRDS) technique: (a) A Picarro
CRDS analyzer and (b-c) Schematic overview of CRDS technique, and change in light inten-
sity and ring-down time due to absorption.

ICOS

The Picarro CRDS analyzer at Mäıdo, Réunion Island, is contributing to the Integrated
Carbon Observing System (ICOS) research infrastructure. It is a European-wide facility
dedicated to carbon cycle research in three domains: atmosphere, ecosystem and ocean. The
observations are carried out at more than 170 stations in 16 European countries. The final
quality-assured data products are publicly available according to the FAIR data principles
(Findable, Accessible, Interoperable and Reusable) and the CC-BY-4.0 data license. More
information can be found at https://www.icos-cp.eu/.

1.3.2 Ground-based remote sensing observations

The ground-based remote sensing observations of CO2, CH4 and CO that are analyzed in
this study are made by FTIR spectrometers that are installed near the Earth’s surface (i.e.
ground-based), see Fig. 1.7. These devices are in fact Michelson interferometers that utilize
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a connected solar tracker to direct sunlight into a beam splitter. The beam splitter then
divides the incoming light into two beams, each directed toward separate mirrors. The com-
bination of the two beams, of which one has a variable path due to a moving mirror, creates
an interferogram. Finally, a Fourier transform is applied to convert the interferogram to a
high resolution infrared spectrum. Using spectroscopic databases for atmospheric species, we
can assign the wavelength-specific absorption to the gases (and aerosols) in the atmosphere,
leading to the retrieval of trace gas concentrations. Note that, since FTIR spectrometers use
sunlight, measurements can only be made during daytime and clear sky conditions.

(a) (b)

Figure 1.7: Illustration of Fourier Transform Infrared (FTIR) spectroscopy technique: (a) A
Bruker IFS125HR instrument and (b) Schematic overview of FTIR.

The process of retrieving trace gas concentrations from absorption spectra is based on in-
version theory, where a forward model, a priori information and the remotely sensed obser-
vation are combined to compute atmospheric concentrations. The forward model F links
the atmospheric state space with the observation space and includes all parameters and pro-
cesses affecting the observed signal (Maahn et al., 2020), such as a radiative transfer model:
F (x) = y, where x is the atmospheric state (e.g. trace gas concentration profile) and y is
the observed quantity (e.g. infrared spectrum).
Generally, we are interested in inverting this forward model to retrieve the concentration
profile from the remotely sensed observation. As these inversion problems are often ill-posed
(different atmospheric states xi can all lead to the same measurement y), and both the for-
ward model and measurement have uncertainties, additional constraints are required, such as
a priori information on the unknown atmospheric state (xa). A widely used retrieval method
is Optimal Estimation (OE) where it is assumed that these uncertainties follow a Gaussian
distribution (Rodgers, 2000). It is essentially an iterative process that starts from the a priori
information and tries to minimize a constrained cost function to get to an optimal state that
best matches the observation, see Fig. 1.8.

The retrieval method additionally provides a weighting function or averaging kernel matrix
A. This matrix represents the sensitivity of the retrieved profile to the true profile at each
retrieval altitude. Ideally, every row is a delta function peaking at its corresponding altitude.
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Figure 1.8: Principle of optimal estimation: the ellipses show the (left) prior state and (right)
measurement uncertainty. The iterative process starts with applying the forward operator
F to the first guess xa. Based on the difference of F (xa) to yobs, x1 is obtained. This is
repeated until the retrieval converges to a solution x3 that is close to the true state xtrue.

In reality however, remote sensing measurements are not equally sensitive to all levels of
the atmosphere and have much broader sensitivity bands than delta functions. The relation
between the true atmospheric profile xtrue and the retrieved profile x̂ can be expressed as:

x̂− xa = A(xtrue − xa) + ϵ, (1.1)

where ϵ is the retrieval error. The trace of A is the number of independent pieces of infor-
mation that are retrieved, also called the degrees of freedom (DOF) for signal.

As noted earlier, these type of measurements are typically made in the context of international
observation networks, such as TCCON (Wunch et al., 2011) and NDACC (De Mazière et al.,
2018). At Réunion Island, FTIR instruments are located at two separate sites: in Saint-Denis
and on the Mäıdo mountain, contributing to TCCON and NDACC, respectively. Similarly,
the instrument at Xianghe is affiliated with TCCON. Due to differences in retrieval strategies
between these networks, a brief description of each network and the resulting product is given
below. An example of their column averaging kernels for CO and CH4 retrievals is show in
Fig. 1.9, for different solar zenith angles (SZA). In contrast to the averaging kernel matrix
A, the column averaging kernel a represents the sensitivity of the retrieved total column
to the true profile. For example the TCCON CO retrieval is more sensitive to the upper
troposphere compared to the lower troposphere: it overestimates deviations from the a priori
above ± 7 km (where a is 1.0), while it underestimates them below (see Fig. 1.9a).

TCCON

Currently, a total of 29 sites spread all over the globe (see Fig. 1.10) are equipped with
solar-viewing FTIR spectrometers to continuously provide high accuracy remotely sensed
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Figure 1.9: Example of column averaging kernels of CO and CH4 retrievals in the context of
TCCON and NDACC at Réunion Island, taken from Zhou et al. (2018).
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Figure 1.10: Map of the FTIR sites contributing to TCCON.

measurements of trace gases in the atmosphere. More specifically, near-infrared (NIR) solar
spectra from Bruker IFS 125HR instruments are used to retrieve column-average dry air mole
fractions, also called Xgas, of various gases. This type of concentration measure is denoted
by an ’X’ preceding the compound, i.e. XCO2 for carbon dioxide. The available species
further include CH4, N2O, H2O, CO, HDO and HF. Remark that the TCCON retrieval does
not provide atmospheric profiles. The used approach is centered around scaling the a priori
profile to optimize the fit with the observed spectrum, which is then integrated over the total
atmospheric column. It assumes the shape of the vertical profiles are known, and performs
a so-called scaling retrieval. The Xgas of a target species G, XG, is then computed from a
combination of the total column (TC) of G and O2:

XG = 0.2095
TCG

TCO2

, (1.2)

since the mole fraction of O2 is stable in the atmosphere with a value of 0.2095. The ob-
served column of O2 is used to represent the column of dry air and to eliminate systematic
uncertainties in the retrieval method. A more detailed mathematical formulation of the total
column and the dry air column-average mole fraction is given in Appendix B. All data in
the network is processed with the GGG software, of which the latest version is GGG2020
(Laughner et al., 2024), leading to column-averaged dry air mole fractions with a precision
of 0.25% for XCO2, 0.3% for XCH4 and 1% for XCO. More information can be found at
https://tccondata.org/, where the data is also publicly available to download.
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Figure 1.11: Overview of the different types of observations performed in the context of
NDACC.

NDACC

NDACC is a network of over 90 stations worldwide focusing on the establishment of long-
term time series to detect changes and trends in the chemistry and physics of the atmosphere
(De Mazière et al., 2018). Both total columns and vertical profiles of a variety of species are
measured by several ground-based observational techniques: not only FTIR spectrometers,
but also Dobson-Brewer and UV/Visible DOAS (differential optical absorption spectroscopy)
type instruments are applied, as are sonde, lidar and UV and microwave radiometers. Besides
greenhouse gases and CO, aerosols, UV irradiance, O3, H2O and NOy, many other species
are being observed, see Fig. 1.11. These different techniques are gathered in corresponding
instrument working groups. The Infrared Working Group (IRWG) is responsible for over 22
solar-viewing FTIR instruments spread over the globe, see Fig. 1.12. They measure solar
transmission in the mid-infrared (MIR) spectral window, of which volume mixing ratio pro-
files are retrieved using the optimal estimation approach as implemented into the SFIT4 or
PROFITT9 software. These retrieved profiles have on average 2.3 DOF for CO and 2.5 for
CH4, meaning that there are roughly two individual layers of information. Finally, column-
averaged dry air mole fractions are computed from the total column of the species and of dry
air. The latter is calculated from the surface pressure, gravitational acceleration and total
column of H2O. The NDACC data is known for its high-quality data where the accuracy and
precision is below 3% for XCH4 and XCO. Note that the NDACC-IRWG retrievals do not offi-
cially provide XCO2 values. More information can be found at https://ndacc.larc.nasa.gov/.
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Figure 1.12: Map of the FTIR sites contributing to NDACC.

1.3.3 In situ versus remote sensing

Ground-based in situ and remote sensing techniques each offer distinct advantages and limita-
tions. In situ sampling provides direct, high-accuracy measurements of GHG concentrations
at specific locations, delivering high temporal resolution data that captures rapid changes
and local fluctuations in GHG levels. These observations are heavily influenced by nearby
sources and sinks, except at remote marine or mountain sites where they can be more repre-
sentative of large-scale atmospheric distributions (Levin et al., 2020).

In contrast, remote sensing, whether ground-based or space-based, typically measure column-
averaged mole fractions, which represent broader atmospheric patterns by integrating con-
centrations through the entire atmospheric column. This method is advantageous for under-
standing large-scale spatial patterns and trends, as it is relatively insensitive to local surface
fluxes and vertical mixing (Keppel-Aleks et al., 2011; Wunch et al., 2011). Consequently,
spatial and temporal variations in column-averaged mole fractions are typically smaller than
those observed near the surface. It is important to recognize that remote sensing involves
indirect measurements that require complex retrieval algorithms to convert raw spectral data
into usable GHG concentrations. Effective interpretation of these data necessitates consid-
eration of retrieval characteristics such as prior information, sensitivity, and potential errors.
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1.4 Dispersion of gases in the atmosphere

Once emitted into the atmosphere, gases disperse downwind, where they may undergo chem-
ical reactions or be removed by processes such as uptake by vegetation (e.g., photosynthesis
for CO2). In this section, the most important atmospheric processes governing the transport
of gases are briefly described. These processes occur across different spatial and temporal
scales, affecting how gases move through the atmosphere. Meteorological phenomena are
often categorized by scale:

• Synoptic-scale processes, such as high- and low-pressure systems and weather fronts,
typically cover distances of 1,000 km or more and last several days. These systems can
transport pollutants across continents, making them key players in large-scale advec-
tion.

• Mesoscale processes, ranging from a few kilometers to several hundred kilometers, act
over hours to a day. These include localized phenomena like thunderstorms, sea breezes,
and mountain-valley circulations.

1.4.1 Factors influencing dispersion

Several key factors influence how gases are dispersed in the atmosphere, including wind speed,
atmospheric stability, and topography (Ahrens and Henson, 2021). Below, we describe how
each affects the concentration and spread of species.

• Wind speed: Wind speed plays a critical role in both the rate at which gases disperse
from their source and how well they mix with the surrounding air. Strong winds
tend to lower concentrations of pollutants by spreading them over a larger area and
enhancing vertical mixing through increased turbulence. In contrast, weak winds lead
to atmospheric stagnation, allowing pollutants to accumulate locally, often resulting in
higher concentrations.

• Atmospheric stability: The vertical temperature gradient determines atmospheric
stability. When the temperature decreases with height, the atmosphere is unstable,
promoting vertical mixing and dispersion. In contrast, when temperature increases
with height (this is called an inversion), the atmosphere is stable, inhibiting vertical
movement. Pollutants trapped below an inversion layer spread horizontally but cannot
rise, leading to potential accumulation near the surface. Inversions are common under
high-pressure systems, where subsiding air warms as it descends, creating a “lid” over
cooler air below. Similarly, frontal inversions, such as those associated with warm fronts,
can create stable layers that suppress vertical mixing. On a smaller scale, radiational
inversions frequently occur at night when the ground cools more rapidly than the air
above, particularly under clear skies and light winds, enhancing stability and reducing
mixing.

• Topography: Terrain plays a significant role in shaping airflow and pollutant dis-
persion. Mountains, for example, can block prevailing winds, trapping pollutants in
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valleys, which can result in poor ventilation. Mountain-valley circulations also affect
pollutant transport: during the night, cold air flows downhill, potentially strengthening
surface inversions and concentrating pollutants within valleys. By day, solar heating
of mountain slopes generates upslope winds (anabatic winds), which can carry pollu-
tants out of valleys, redistributing them elsewhere. Similarly, coastal topography can
influence dispersion through sea breezes, which carry pollutants inland or out to sea,
depending on the time of day.

1.4.2 Planetary boundary layer

The Planetary Boundary Layer (PBL), also called the atmospheric boundary layer, is the
lowest part of the atmosphere, directly influenced by its interaction with the Earth’s surface
(Foken, T., 2008). Most anthropogenic and natural emissions are released into this layer. It
is characterized by turbulence due to wind shear (the difference in wind speed between the
surface and the air aloft) and the surface roughness created by natural and man-made fea-
tures such as buildings and trees. This turbulence promotes strong vertical mixing, playing
a key role in the dispersion of gases and pollutants. The PBL typically ranges between 1 and
3 km in thickness, though it varies significantly depending on atmospheric conditions.
At a certain height, the atmosphere transitions from the turbulent PBL into the free at-
mosphere, where turbulence diminishes, and the flow becomes more stratified. In this layer
above the PBL, vertical motion is more limited, and gases are mainly transported by large-
scale advection rather than turbulent mixing.
The PBL undergoes a distinct diurnal cycle driven by solar radiation:

• Daytime: when the sun rises, the surface warms, causing convection that mixes the air
vertically. This creates a well-mixed boundary layer with relatively uniform temper-
ature, humidity, and pollutant concentrations throughout its depth. However, during
winter or on cloudy days, convection is weaker, leading to a shallower mixed layer. As
a result, the PBL height and the degree of mixing can be significantly reduced, which
impacts how effectively pollutants are dispersed during the day.

• Nighttime: after sunset, the surface cools rapidly through emission of longwave radi-
ation, while the air above cools more slowly, creating a nocturnal inversion near the
surface. This results in a shallow, stable boundary layer that limits vertical mixing and
tends to trap pollutants close to the ground. The depth of this layer depends on fac-
tors like cloud cover and wind speed, with clear skies and light winds favoring stronger
inversions.

These dynamics mean that the PBL acts as a variable lid on the atmosphere, controlling
how pollutants are mixed and dispersed both vertically and horizontally. The evolution of
the PBL, illustrated in Fig. 1.13, plays a critical role in determining the extent to which
pollutants are dispersed or confined near the surface.
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Figure 1.13: Diurnal evolution of the planetary boundary layer (PBL).

1.5 Atmospheric modeling and WRF-GHG

Modeling Earth’s atmosphere involves simulating the interactions of various physical and
chemical processes using mathematical equations and how they evolve over time. These equa-
tions are based on the fundamental laws of physics and (photo-)chemical reactions, enabling
scientists to explore atmospheric phenomena, interpret them and predict future conditions.
As a result, atmospheric models are essential tools for a wide range of applications, includ-
ing weather forecasting, climate studies, air quality management, and environmental policy
development. Chemical Transport Models (CTMs) are a specialized subset of atmospheric
models that focus on the dispersion and transformation of atmospheric gases and aerosols.
They are widely used to study pollutant distribution, identify sources, analyze chemical re-
actions, and assess impacts on air quality and human health. This work examines the use of
the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) in its
greenhouse gas option, hereafter referred to as WRF-GHG.

WRF-Chem is an open-source community model that continuously advances with annual
updates and offers a wide range of options for simulating gas-phase and aqueous chemistry
and aerosols (Grell et al., 2005). WRF-GHG was officially created in 2012 when two sepa-
rate modules for calculating the biogenic fluxes of CO2 and CH4 online were implemented
into WRF-Chem V3.4, based on the work of Beck et al. (2011) and Ahmadov et al. (2007):
the Vegetation Photosynthesis and Respiration Model (VPRM) for CO2 and the wetland
inventory of Kaplan (2002) for CH4. Together with meteorology, this model simulates the
passive tracer transport of CO2, CH4 and CO in different components —such as background,
anthropogenic and biogenic sources— enabling to disentangle the total simulated concentra-
tion. Designed to simulate emission, mixing, and transport of these species without chemical
transformations, WRF-GHG is computationally more efficient than other WRF-Chem op-
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tions that account for full chemistry. This simplification is based on the assumption that these
gases are long-lived in the atmosphere. The model relies on initial and boundary conditions
and external emission inventories as key inputs, producing high-resolution 4D concentration
fields within a regional domain. Typically, users opt for spatial resolutions of several kilome-
ters and temporal resolutions of an hour. A more detailed description of the WRF modeling
system will be provided in Chapter 3.

Originating from the need to simulate CO2 transport with higher resolution than global mod-
els (which usually have a coarse resolution), WRF-GHG aims to better capture mesoscale
transport patterns and surface flux exchanges and ultimately improve emission estimates.
Indeed, Ahmadov et al. (2007, 2009) showed that, by coupling VPRM to WRF, processes
like the sea-land breeze circulation and spatiotemporal variability of biospheric CO2 fluxes
during the CERES (CarboEurope Regional Experiment Strategy) campaign in France could
be well captured.
This ability of WRF-GHG to simulate CO2 concentrations at high spatial resolution is par-
ticularly valuable in regions with complex terrains and urban environments.
Pillai et al. (2011) demonstrated this in their study at the Ochsenkopf tall tower in Germany,
where they found that mesoscale flows, such as frontal passages, thermal circulation patterns
but also variation in vertical mixing, have a strong influence on CO2 levels. Their research
highlighted that even minor deviations in CO2 concentrations, if not properly accounted for,
can lead to large biases in flux estimates, underlining the need for high-resolution modeling
to accurately capture local variability.
In urban environments, WRF-GHG has demonstrated its effectiveness in accurately simu-
lating and assessing greenhouse gas patterns. For instance, Park et al. (2018) acknowledged
the value of WRF-GHG in their study conducted during the CalNex campaign in California,
USA, where the model accurately simulated meteorological fields and diurnal CO2 varia-
tions, providing valuable insights into regional-scale CO2 transport, temporal variability, and
budget in a complex urban setting. Also in the United States, Feng et al. (2016) compared
WRF-GHG simulations with in situ CO2 observations across Los Angeles, and concluded that
while high-resolution transport modeling is essential, the detailed resolution of emission in-
ventories plays an even more critical role in capturing the observed variability and accurately
estimating urban emissions. Further, Zhao et al. (2019) utilized WRF-GHG combined with
the differential column methodology (DCM) and a series of FTIR observations in Munich,
Germany, to effectively estimate concentration enhancements attributable to city emissions
and highlighted the model’s capability in identifying and understanding major urban green-
house gas sources.

During the past decade, many scientists have recognized the power of the WRF-GHG model
in enhancing our understanding of the spatial and temporal variability of GHGs and the
underlying processes driving these changes all over the globe. For instance, Liu et al. (2018)
and Dong et al. (2021) employed WRF-GHG to refine their understanding of CO2 fluxes
and concentrations across China, making comparisons with satellite data and flask sam-
ples. Expanding this scope to a broader region, Ballav et al. (2020) used WRF-GHG to
simulate CO2 over a three-year period in Asia, comparing the results with data from nine

21



ground-based sites. Moreover, their analysis disentangled the contributions of different flux
components—such as oceanic, biospheric, and fossil fuel sources—shedding light on the fac-
tors influencing observed variations in atmospheric CO2.
A number of studies focused more specifically on the contributions of the biosphere and the
role of meteorological processes. For example, Li et al. (2020) evaluated WRF-GHG against
CO2 fluxes and concentrations measured by two towers in northeast China, finding that
while the model generally performed well, the respiration equation within VPRM could be
improved. This study further underscored the importance of accounting for terrestrial sig-
nals, which can be as significant as anthropogenic contributions in regional CO2 budgets. Hu
et al. (2020) performed a similar analysis over the entire continental USA during the ACT-
America campaign, where WRF-GHG successfully captured the spatiotemporal variation
of CO2 fluxes consistent with satellite-derived Solar-Induced Fluorescence (SIF) data. The
model demonstrated its capability in capturing XCO2 variability driven by synoptic weather
systems and diurnal flux variations influenced by clouds and temperature changes, highlight-
ing WRF-GHG’s potential in investigating the interaction between land surface dynamics
and atmospheric CO2 variability. In a follow-up study, Hu et al. (2021) further investigated
the link between CO2 and cold fronts, highlighting the significance of respiration fluxes and
the need for an improved representation of these processes within the VPRM model. With
a focus on meteorological influences, Martin et al. (2019), assessed the impact of different
anthropogenic emission inventories and weather conditions on CO2 variability in Washington,
D.C. This study identified two distinct scenarios: frontal passages that cause drastic shifts
in meteorological fields and CO2 concentrations, often leading to large model errors if not
accurately captured, and periods of steady winds where CO2 variation is minimal and largely
determined by background values, resulting in generally lower model errors.

The success of WRF-GHG in CO2 research can be largely attributed to its ability to simu-
late biogenic CO2 fluxes alongside meteorological processes at high resolution, thanks to the
integration of the VPRM model. This combination allows for a more accurate representa-
tion of the complex interactions between surface fluxes and atmospheric dynamics, which is
why the model is often referred to as WRF-VPRM when focused exclusively on CO2. While
WRF-GHG’s application in CO2 studies has been extensive, its capabilities extend beyond
CO2. The model also supports the online calculation of biogenic CH4 fluxes and the passive
tracer transport of CH4 and CO, although these features have been less frequently utilized.
Nevertheless, recent studies are beginning to explore these capabilities, revealing the model’s
potential to advance our understanding of the spatial and temporal dynamics of other critical
direct and indirect greenhouse gases, such as CH4 and CO.
For CH4, Beck et al. (2013) were among the first to leverage the model’s capability for online
calculation of wetland fluxes during the BARCA campaign in the Amazon. Their study un-
derscored the critical role of accurately simulating convection processes and of the choice of
wetland inundation maps for reliable CH4 predictions. Similarly, Zhang et al. (2023) demon-
strated WRF-GHG’s utility in simulating the spatial and temporal distribution of CH4 across
China, using GOSAT and surface observations, although they did not use the online wetland
emission model of Kaplan. Their findings highlighted the model’s effectiveness, while noting
that neglecting the OH sink might lead to an overestimation of XCH4 during spring and
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summer.
Further, Dekker et al. (2017) explored the potential to quantify CO emissions from Madrid by
combining WRF-GHG simulations with MOPITT observations, while Borsdorff et al. (2019)
analyzed CO enhancements over Iran, comparing WRF-GHG simulations with TROPOMI
satellite data. They found a generally good agreement between the model and satellite ob-
servations, although discrepancies at city scales likely originated from inaccurate emission
inventories. In another study, Dekker et al. (2019) investigated a significant pollution event
in India in November 2017 using TROPOMI data, where WRF-GHG simulations highlighted
the dominant role of meteorology over emission variations in driving the observed CO levels.
Vellalassery et al. (2021) conducted a follow-up study on this topic.

Collectively, these studies underscore WRF-GHG’s versatility and its ability in advancing our
understanding of the dynamics of CO2, CH4, and CO across various spatial and temporal
scales, regional settings and environments. Additionally, these research efforts play a crucial
role in the ongoing evaluation and refinement of the model, enhancing its accuracy and
relevance for future research.

1.6 Observatories in focus: Réunion Island and Xi-

anghe

This thesis focuses on ground-based observations at two distinct locations: Réunion Island
and Xianghe, as briefly mentioned in Sec. 1.3. These sites are highlighted on the global
map in Fig. 1.14. Moreover, on Réunion Island, GHG measurements are conducted at two
different sites: the capital city, Saint-Denis, and near the summit of Mäıdo mountain.

The selection of these locations is primarily driven by the strong involvement of BIRA-IASB
in both conducting and analyzing these measurements, ensuring easy access to the data and
leveraging their extensive expertise in remote sensing retrieval processes. BIRA-IASB has
been conducting FTIR observations on Réunion Island since 2002, initially on a campaign
basis and later through the installation of a fixed instrument in Saint-Denis, followed by
a similar setup at Mäıdo. Both sites now operate automatically with remote control and
are additionally equipped with in situ measurement instruments, in collaboration with local
partners of the Observatoire de Physique de l’Atmosphère de La Réunion (OPAR) and the
Laboratoire des Sciences du Climat et de l’Environnement (LSCE). Similarly, the Xianghe
site in China, operated by the Institute of Atmospheric Physics, Chinese Academy of Science
(IAP-CAS) since 1974, has benefited from a fruitful collaboration with BIRA-IASB, which
led to the addition of an FTIR instrument in 2016. The longstanding and successful part-
nerships at both locations are invaluable, as local partners contribute their understanding of
the instruments and surrounding environments, aiding in accurate data interpretation.
The FTIR observations at Saint-Denis and Xianghe are integrated into TCCON, therefore
using the same retrieval strategies. The data from Mäıdo on the other hand, contributes to
both NDACC-IRWG (remote sensing) and ICOS (in situ).
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Figure 1.14: Global map highlighting the locations of ground-based observation sites analyzed
in this study.

Both locations are particularly interesting to study, as they offer co-located near-surface and
column measurements and are each characterized by distinct environmental processes.
Réunion Island, a French overseas department located in the Indian Ocean about 700 km
east of Madagascar, is a remote and relatively isolated tropical island. Covering a small area
of approximately 50 by 60 km, Réunion features a complex orography, with mountains rising
up to 3,000 meters. The island itself has only minor emission sources, making it well-suited
to represent background tracer concentrations in the Southern Hemisphere, a region that is
notably underrepresented in global observing networks.
Xianghe, on the other hand, is a more recent site for greenhouse gas observations, located
close to Beijing in a highly populated and industrialized region of China. Unlike Réunion,
Xianghe is situated in a heavily polluted area, making it an ideal location to study the
impacts of urbanization and industrialization on atmospheric composition. Ground-based
GHG measurements are still relatively limited in China, particularly when compared to the
extensive networks in the USA and Europe. This scarcity, combined with China’s status as
one of the world’s largest emitters of greenhouse gases, highlights the importance of Xianghe
as a critical site for understanding regional emissions and their global implications.
A more detailed description of the sites and their instrumentation is given further in this
thesis.
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Chapter 2

Objectives

In the context of climate change and the need to unravel local and regional greenhouse gas
budgets, this work intends to provide deeper insights into atmospheric processes and the
representativeness of specific sites by focusing on the variabilities of atmospheric greenhouse
gases at Réunion Island and Xianghe. Specifically, this research will apply the WRF-GHG
model to these locations for the first time, focusing on CO2, CH4 and CO simultaneously.
By comparing the model results with co-located in situ and remote sensing observations, this
study will also evaluate the model’s ability in attributing changes in these GHG concentra-
tions to anthropogenic and biogenic emission sources as well as meteorological processes.
More precisely, my research aims to answer the following question:

How effective is the WRF-GHG model in evaluating the impact of anthropogenic and biogenic
emission sources and sinks, and meteorological processes on the observed time series of CO2,
CH4 and CO at Réunion Island and Xianghe?

To answer this question, the following specific objectives will be addressed:

1. To simulate the various time series of atmospheric CO2, CH4, and CO at Réunion
Island and Xianghe over a period of at least one year using the WRF-GHG model in
an appropriate configuration.

2. To compare the simulated time series with the observed in situ and remote sensing
measurements and assess the model’s performance in capturing temporal variations at
Réunion Island and Xianghe.

3. To analyze the contributions of tagged tracers to distinguish between biogenic and
anthropogenic sources and sinks, and assess the influence of both local and regional
factors on the observed time series of atmospheric CO2, CH4, and CO at Réunion Island
and Xianghe by comparing these contributions between in situ and remote sensing
observations.

4. To investigate the specific meteorological processes that drive variability in atmospheric
CO2, CH4, and CO observations at Réunion Island and Xianghe.
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5. To assess the strengths and limitations of the WRF-GHG model and the input datasets
in accurately simulating atmospheric CO2, CH4, and CO in the selected regions.
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Chapter 3

Methodology

A substantial part of this research consists in simulating the observed time series using the
WRF-GHG model. Sections 3.1 and 3.2 describe the model’s components and input data.
Further, Sect. 3.3 outlines the key steps and decisions required before running the model,
followed by a brief overview of the practical execution in Sect. 3.4. The specific set-up of
the model for the studies at Réunion Island and Xianghe will be provided in the respective
chapters (Chapters 4 and 5). Lastly, Sect. 3.5 explains the methodology used to compare
the simulated time series with the observations.

3.1 The WRF modeling system

As introduced in Sect. 1.5, WRF-GHG is integrated within the widely utilizedWRFmodeling
system, a versatile numerical weather prediction (NWP) model designed for both research
and operational applications. Over time, continuous contributions from a global community
of users have allowed WRF to evolve into a comprehensive tool set for various Earth system
prediction applications, built upon its core software. These applications include air chemistry
(WRF-Chem), hydrology (WRF-Hydro), wildfires (WRF-Fire), hurricanes (HWRF), and
urban climate (WRF-Urban) (Powers et al., 2017). In the following sections, we will first
outline the key components of the base WRF system (Sect. 3.1.1), followed by a detailed
discussion of the specific elements within WRF-Chem (Sect. 3.1.2) and finally, WRF-GHG
(Sect. 3.1.3).

3.1.1 WRF

The Weather Research and Forecast Model (WRF) is a globally recognized atmospheric
modeling tool, renowned for its versatility across a wide range of applications. Supported by
the US National Center for Atmospheric Research (NCAR) and sustained by a large, active
user community, WRF is well-documented and integrates the compressible, non-hydrostatic
Euler equations.
These Euler equations, a set of partial differential equations rooted in the fundamental princi-
ples of fluid dynamics, i.e. conservation of mass, energy and momentum, describe the motion
and evolution of the atmosphere from initial conditions. To solve these complex equations
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(a) Spatial grid in WRF: Arakawa C-grid.
(b) Example of the hybrid vertical coordinate
in WRF, for a model top at 25 km.

Figure 3.1: Illustration of the spatial discretization within WRF.

using computers, numerical approximations are applied. The model domain is discretized
into a finite 3D grid or mesh, with time split into small intervals. Each grid cell represents a
small volume of air, or air parcel, within the atmosphere.

WRF follows a staggered Arakawa C-grid for the spatial discretization, see Fig 3.1a where a
model grid cell at index i,j,k is shown. The points where θ is located are referred to as mass
points and are at the center of the cell. Almost all model variables are defined here, except
for the geopotential which is computed on w points (vertical cell boundaries). The velocity
vectors u, v, and w are staggered one half grid length from the thermodynamic variables: they
are defined at the boundaries of the cell. The horizontal grid lengths ∆x and ∆y describe
the horizontal resolution, while the vertical grid length ∆η represents the vertical resolution.
Since model version V4, WRF uses a hybrid sigma-pressure vertical coordinate. This is a
coordinate system that is terrain-following near the surface and becomes isobaric near the
top, see Fig 3.1b.

Given the spherical shape of the Earth and the rectangular grid framework used in computer
models, a map projection is necessary. WRF supports four different map projections and
each one is recommended in a different region of the globe to minimize the distortion in the
physical distances on the Earth’s surface. The polar stereographic projection is best suited
for high-latitude domains, while the Lambert conformal is recommended for mid-latitude
domains (as was chosen for the Xianghe study, see Chapter 5). The Mercator projection on
the other hand, is good for low-latitude domains (such as Réunion Island, see Chapter 4)
and finally, the cylindrical equidistant projection should be used for global simulations.

Even though WRF supports global domains, it is however advised to use this option with
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Figure 3.2: Overview of the physics schemes in WRF and their interactions. Illustration
taken from the WRF Users Guide. For clarity, the following abbreviations are used in the
figure: PBL (planetary boundary layer), T (temperature), Qv (specific humidity), LH (latent
heat), SH (specific heat), SW (shortwave radiation), and LW (longwave radiation).

caution as it is not commonly used. The majority of applications apply limited area modeling,
i.e. there is a focus on a specific geographic area, providing high-resolution predictions within
that limited domain. In this case, lateral boundary conditions are required to describe the
flow in and out of the model domain. This information is generally relying on global models
with a coarser resolution. In the current work, the ERA5 and CAMS reanalysis data sets are
used and will be described in Sect. 3.2.1.

WRF allows nesting of model domains to further increase the horizontal resolution over a
specific region of interest. In a nesting configuration, multiple domains are simulated at the
same time. A subdomain, or child domain, is completely surrounded by the parent domain
and gets its lateral boundary conditions from its parent domain. Several parent-child do-
mains can be included into the model simulation. Nesting can be either one-way or two-way.
In a one-way nesting configuration the parent provides boundary data to the child, while in
the two-way option, the child additionally feeds information back to the parent domain. This
can also be referred to as no feedback vs feedback.

Finally, a variety of physics schemes is implemented within the WRF model to represent the
several physical processes occurring in the atmosphere that cannot be explicitly resolved and
must be parameterized. These subgrid-scale processes include radiation, cumulus parame-
terization, planetary boundary layer, land-surface processes and microphysics (Fig. 3.2).
Cumulus parameterization schemes describe convective clouds that are smaller than the

model’s grid size (subgrid-scale). Microphysics schemes resolve cloud and precipitation pro-
cesses such as cloud formation, condensation, evaporation and rainfall. These cloud properties
are passed on to the radiation scheme, which compute the longwave and shortwave radiation
fluxes. The planetary boundary layer (PBL) schemes parameterize the turbulent mixing in
the atmospheric boundary layer i.e. the lowest layer of the atmosphere which is directly
influenced by the surface. They simulate the surface fluxes of heat, moisture and momentum
and redistribute them by turbulent eddies. Finally, land-surface processes such as heat and
moisture exchange coefficients and friction velocities are represented by surface layer schemes
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and land surface model schemes. They take into account soil and vegetation properties.
For each of these processes, there is a variety of options available within WRF and it is up
to the user to select the scheme that suits his specific region, grid size and research goal
best. The options selected for the studies at Réunion Island and Xianghe are detailed in the
respective chapters (Chapters 4 and 5).

3.1.2 WRF-Chem

WRF-Chem is the WRF model coupled online with chemistry: meteorology and chemistry
are simulated at the same time. This extension of WRF includes the release, transforma-
tion and transport of atmospheric constituents, such as gases and aerosols and is a widely
used tool in air quality studies worldwide. Depending on the chosen option, it may also in-
clude interactions of for example aerosols with radiation and microphysics processes. These
chemistry options cover a variety of chemical mechanisms and modules to include for ex-
ample aerosol processes at different levels of complexity. This model system is supported
by NOAA/ESRL/GSL (National Oceanic and Atmospheric Administration / Earth Systems
Resource Laboratories / Global Systems Laboratory ).
The WRF-Chem model requires gridded emission data as additional input, which the user
should prepare corresponding to his chosen option. An overview of the external data sets
applied in this work is given in Sect. 3.2.3.

3.1.3 WRF-GHG

WRF-GHG, the greenhouse gas option of WRF-Chem, focuses on simulating the passive
transport and mixing of CO2, CH4, and CO, making it an effective tool for studying these
gases’ behavior in the atmosphere with reduced computational demands.
A fundamental aspect of WRF-GHG is the implementation of the Vegetation Photosynthesis
and Respiration Model (VPRM, Mahadevan et al. (2008)) for biogenic CO2 fluxes as well
as the online calculation of biogenic CH4 fluxes by the Kaplan wetland inventory, Ridgwell
soil uptake model and termite database of Sanderson (Kaplan, 2002; Ridgwell et al., 1999;
Sanderson, 1996). A presentation of these components is given further below.

The simulation of gases in WRF-GHG is split into several tracers which correspond to sev-
eral emission sources. The default configuration includes a background tracer, anthropogenic
tracer, biomass burning tracer, biogenic tracer and ocean tracer (for CO2 only). The back-
ground tracer describes the evolution of the initial and lateral boundary conditions over time.
The sum of all these tracers represents the total concentration in the atmosphere and can be
directly compared with measurements. It is however possible to adjust the included tracers
by making some small adaptations to the model code and the corresponding emission input.
This gives the user a large flexibility, leading to a variety of applications where this tool can
be relevant.

Figure 3.3 shows the different elements that are part of the process of running WRF-GHG.
The top of the flowchart (above the gray dashed line) indicates the steps that are part
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Figure 3.3: Flowchart of running WRF-GHG. Some of the essential components in the chart
will be explained in the next sections.
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of the base meteorological WRF model and is very well documented (WRF Users’ Page:
https://www2.mmm.ucar.edu/wrf/users/), while all items below represent additional steps
specific to WRF-GHG.

Biogenic CO2 fluxes

VPRM is a simple diagnostic model to calculate CO2 exchange between the biosphere and
the atmosphere using satellite indices (Mahadevan et al., 2008; Ahmadov et al., 2007). It
is implemented in WRF-GHG in such a way that it uses the simultaneously computed 2m
temperature and shortwave radiation to calculate the fluxes online. The biogenic CO2 flux
is represented by the Net Ecosystem Exchange (NEE) which in turn is the sum of the Gross
Ecosystem Exchange (GEE) and Respiration (RES). Essentially, GEE describes the CO2

uptake by photosynthesis and has a negative sign while RES is the CO2 emission due to
respiration processes and is positive.
The computation of this exchange is based on the satellite indices EVI (Enhanced Vege-
tation Index) and LSWI (Land Surface Water Index). They are derived from surface re-
flectance bands of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
onboard NASA’s Aqua and Terra satellites. EVI is a good indicator of the vitality of veg-
etation and its greenness, and ranges from 0 (no vegetation) to 1 (very active vegetation).
LSWI, on the other hand, represents the presence of moisture in the vegetation and soil and
ranges from -1 (very dry) to 1 (very wet).
The main equations of the VPRM module in WRF-GHG are the following:

NEE = GEE +RES

GEE = −λTscaleWscalePscaleEV I
SW

1 + SW
PAR0

RES = αTs + β.

(3.1)

The factors of GEE are:

• λ: fixed parameter representing maximum quantum yield and empirical adjustments
to the other parameters.

• Tscale: parameter that represents the sensitivity of photosynthesis to temperature. It
is a function of the 2m temperature T and fixed literature values of Tmin, Tmax and
Topt which represent the optimal and limit temperatures for photosynthesis to occur.
Tscale is calculated as

(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)− (T − T 2
opt)

.

The parameter is set to 0 when the temperature goes below Tmin or above Tmax.

• Wscale: parameter to include the effect of water stress on photosynthesis. It is a function
of LSWI:

1 + LSWI

1 + LSWImax

,

where LSWImax is the maximum value within the growing season per pixel.
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• Pscale: parameter that describes the dependence of photosynthesis on leaf age. It uses
the satellite indices EVI and LSWI to represent the leaf expansion and senescence
phases. Generally Pscale is computed as (1+LSWI)/2, except after the bud burst and
before the senescence phases when the leaves are at their maximum expansion, then
Pscale is set to 1. The transition between these phases is defined based on a threshold
for EVI: EV Imin + 0.55(EV Imax − EV Imin).

• EVI: the Enhanced Vegetation Index representing vegetation health to describe the
fraction of incident light absorbed by the photosynthetically active vegetation.

• SW: shortwave radiation as computed by WRF.

• PAR0: empirically fixed parameter illustrating the half-saturation value.

The equation for RES is essentially made up by the parameters α, β and the surface tem-
perature Ts. For the latter the model field for the 2m temperature T is used while the other
parameters are empirically defined by comparing with flux tower data. As for the λ and
PAR0 parameters, default values for α and β over a couple of regions (USA, Europe, Trop-
ics) are fixed within the model code and should be selected by the user. If alternative values
are available, these should be manually included by the user.

Within WRF-GHG, the above equations are computed for 7 vegetation classes separately:
evergreen trees, deciduous trees, mixed trees, shrubland, savanna, cropland and grassland. In
fact there is an eighth category representing all barren, urban or snow-covered land surfaces
where no vegetation is present and the biogenic CO2 flux is set to 0. Then, for every grid
cell, the weighted average of these values is taken using the fraction of every vegetation class
in that cell. This information is taken from the high resolution global land cover product
SYNMAP (Jung et al., 2006). The extraction of the vegetation indices from MODIS and
regridding to the WRF model domain is done by two separate programs written in R and
distributed by MPI-BGC: the VPRM preprocessor and the VPRM shapeshifter (see also
Fig. 3.3). These tools also map the different SYNMAP vegetation classes to the 7 VPRM
categories and regrid them to the WRF grid, and write all variable fields into NetCDF files
which can be given as input to WRF-GHG.

To complete the description of how VPRM is implemented within WRF-GHG, it should
be noted that some of the above parameters have slightly different calculations for specific
vegetation types. As grassland and shrubland are xeric systems, i.e. they are better adapted
to low water conditions, the Wscale parameter is calculated as

LSWI − LSWImin

LSWImax − LSWImin

,

when LSWImax > 0 and 0 otherwise. Similarly, Pscale = 1 for evergreen trees and Pscale =
(1 + LSWI)/2 for savanna and grasslands, independent of the growing season.
Finally, remark that Eq. 3.1 differs slightly from Mahadevan et al. (2008) in that the Pho-
tosynthetically Active Radiation (PAR) is used instead of SW for the calculation of GEE.
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However, they are closely related by SW ∼ 0.505 · PAR, so one only has to be careful when
taking parameter values from literature to check which version of the equation is used and
adjust the parameters accordingly.

Biogenic CH4 fluxes

Within WRF-GHG, the online calculation of biogenic CH4 is split into three parts: wetlands,
termites, and soil uptake. In personal communication with other WRF-GHG users at MPI-
BGC in Jena, it was advised not to use the soil uptake model due to detected irregularities,
suggesting that modifications may be needed for proper implementation. Further, the wet-
land model by Kaplan (2002) requires additional external input and has only been employed
in one study: Beck et al. (2013), who integrated it within WRF-GHG. Given that there
are established offline inventories, such as the global WetCHARTs climatology (Bloom et al.,
2017), which is widely used and deemed reliable, we opted to use this instead. Furthermore,
for the regions we are focusing on, the contribution of wetland CH4 emissions is not antici-
pated to be significant compared to other sources. Consequently, we have included emissions
from the WetCHARTs climatology as a separate tracer and only the termite model will be
explained below.

The computation of CH4 emissions from termites follows Sanderson (1996). There, fluxes
are described as the product of termite biomass (g m−2) and CH4 emission rates (µ g CH4

/ (g termite h−1)) per ecological region (or vegetation class). These values were determined
by observations and given in Table 3 of Sanderson (1996) or Table 3.1 below. For every
WRF grid, the value corresponding with the land use category that was determined during
the initialization process is used for the termite flux. The distinction that Sanderson (1996)
makes for the new world (America, Australia) and the old world (Europe, Asia, Africa) is
applied by selecting the corresponding option in the model configuration file. These fluxes
do not depend on any meteorological variable within WRF, only the land use category is
used. This information is generally downloaded from the WPS (WRF Preprocessing System)
geographical static data website, where two options are available: USGS 24-category or
IGBP-Modified MODIS 20-category dataset. In the current work, the latter was used and
the corresponding mapping and CH4 emissions are given in Table 3.1.

WRF-GHG user guide

Following its integration into WRF-Chem in 2012, WRF-GHG lacks a dedicated user manual.
The official documentation for WRF-Chem only briefly covers WRF-GHG due to the model’s
wide spectrum of options. In 2019, I had the opportunity to learn the fundamentals of running
this model during a visit to the Max Planck Institute for Biogeochemistry (MPI-BGC) in
Jena, Germany, and received valuable support from their scientists in the subsequent years.
To share the insights gained during my PhD research with the broader modeling community,
I wrote a general ’User Guide for WRF-GHG’, which synthesizes essential information from
the model’s code, the WRF-Chem User’s Guide, Emissions Guide, and the report by Beck
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et al. (2011). This guide is publicly available through the BIRA-IASB data repository:
https://doi.org/10.18758/Q6RAPNEU (Callewaert, 2024).

3.2 Model input data

This section outlines the external data sources utilized for the WRF-GHG simulations, pre-
sented sequentially as depicted in the flowchart in Fig. 3.3, from top to bottom.

3.2.1 Initial and lateral boundary conditions

As already briefly mentioned in Sect. 3.1.1, initial and lateral boundary conditions (IC-BCs)
are required for limited area models to include information about the state of the atmosphere
before the simulations start: the initial condition, and during the simulations over the rest
of the globe (outside the model domain): the lateral boundary condition. The IC-BCs for
WRF-GHG contain both meteorological fields and tracer fields and are coming from external
data sets. This data should be processed into an appropriate input format and is then read
by the model before starting the simulations.
The meteorological input data is handled by the WRF Preprocessing System (WPS), while
it is up to the user to select the appropriate tools to handle the chemical input data, see Fig.
3.3. In the current work, this is done in Python using the Climate Data Operator (CDO)
software (Schulzweida, 2020/2023). For the meteorological IC-BCs, ERA5 is used while for
the tracers we apply the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis,
both provided by the European Center for Medium-Range Weather Forecasts (ECMWF). A
brief description of each data set is given below.

ERA5

ERA5 is the global reanalysis data set of ECMWF providing estimates of a large number
of atmospheric, ocean-wave and land-surface quantities. The reanalysis uses 4D-Var data
assimilation based on the Integrated Forecast System (IFS) model CY41R2 to ensure consis-
tency over a long period. Currently, hourly fields are available from 1940 up to the present.
The hourly data for this study was retrieved through the C3S Climate Data Store (CDS,
https://cds.climate.copernicus.eu/), both on single levels (for lower atmospheric and land
surface quantities, GRIB1 format, Hersbach et al. (2023b)) and on pressure levels (for upper
air fields, GRIB2 format, Hersbach et al. (2023a)). There are 137 vertical model levels up
to 0.01 hPa following a hybrid pressure/sigma system. The native resolution of ERA5 is
31 km (or 0.28125◦), however for convenience the data on CDS is regridded to a regular
latitude-longitude grid of 0.25◦.
The following surface level parameters are used: sea ice area fraction, sea surface tempera-
ture, volumetric soil water (layer 1-4), surface pressure, snow depth, mean sea level pressure,
soil temperature (level 1-4), 10m u wind component, 10m v wind component, 2m tempera-
ture, 2m dewpoint temperature, land-sea mask and skin temperature.
At the model levels, the following parameters are used: geopotential, temperature, u wind
component, v wind component, specific humidity and the logarithm of surface pressure.
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CAMS reanalysis

The CAMS reanalysis is a global data set of atmospheric composition that is based on 4D-Var
data assimilation and the IFS CY42R1 model of ECWMF with several updates to the aerosol
and chemistry modules. In fact, there are two separate data sets: the EAC4 reanalysis with
full chemistry and aerosols and the EGG4 greenhouse gas reanalysis focusing on the long-lived
greenhouse gases CO2 and CH4 (Inness et al., 2019). They both cover the period 2003 until
2020 and the EAC4 reanalysis even extends to 2022. The sub-daily fields can be retrieved
from the Atmosphere Data Store (ADS, https://ads.atmosphere.copernicus.eu/), but for this
thesis we have used the GRIB2 data that was already available on the BIRA-IASB servers at
a 3-hourly frequency for EGG4 and 6-hourly frequency of EAC4. The tracers are provided on
60 hybrid sigma/pressure levels up to 0.1 hPa with a horizontal resolution of approximately
80 km on a reduced Gaussian grid.
To drive our WRF-GHG simulations at the boundaries, we use the mass mixing ratio of CO
from EAC4 while from EGG4 we take the mass mixing ratios of CO2 and CH4.

3.2.2 Static geographical data

The geogrid program of the WRF Preprocessing system (see Fig. 3.3) establishes the model
domains and interpolates various terrestrial datasets to these domains. This time-invariant
data includes for example soil and land use categories, terrain height, monthly vegetation
fraction and albedo. Global datasets for these mandatory fields are downloaded from the
WPS Geographical Static Data Downloads page at different resolutions:
https://www2.mmm.ucar.edu/wrf/users/download/get sources wps geog.html .

3.2.3 Emission inventories

Most of the CO2, CH4, and CO emissions in WRF-GHG originate from external inventories,
with the exception of the biogenic fluxes detailed earlier (Sect. 3.1.3). Users are responsible
for sourcing and correctly managing this data to integrate it into the model simulations.
A wide range of gridded emission datasets is available for this purpose, covering specific
geographical regions or the entire globe, targeting individual species or multiple gases, fo-
cusing on various processes, and offering diverse spatial and temporal resolutions. Table 3.2
provides a brief overview of the anthropogenic emission inventories used in this thesis. Ta-
ble 3.3 lists the datasets considered for ocean fluxes, biomass burning, and wetland emissions.

To correctly use these data sets as input into WRF-GHG, the user should process these
emissions with a tool set of his own choice, as there is no single tool available for this purpose.
This is a consequence of the large variety of options within WRF-Chem. More specifically,
the emission data should be spatially regridded to the WRF model grid, converted to the
expected unit (mol km−2 h−1) and written into NetCDF files with appropriate dimensions,
variables and attributes such that the model code can handle the incoming information. In
this thesis, the processing was done in Python and using the CDO software for regridding.
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Temporal profiles for anthropogenic emissions

In general, anthropogenic emissions from offline inventories are reported on an annual or
monthly basis. In reality, the emission of species varies from day to day, and even from hour
to hour. In the weekends, for example, there is usually less traffic than on weekdays, and some
industrial activities might be reduced. The same holds for daytime hours versus nighttime
hours. To cope with this, scientists have developed data sets of temporal profiles that can be
multiplied with emissions at lower temporal frequency to make them more realistic. The idea
behind this is that the more accurate the emissions are that are used as input for chemistry
transport models, the more accurate the resulting simulated concentrations will be. In this
thesis, I have explored three different data sets of temporal profiles, created by Guevara et al.
(2021), Crippa et al. (2020a) and Nassar et al. (2013). Each data set will be briefly presented
below.

Guevara et al. (2021) The Copernicus Atmosphere Monitoring Service TEMPOral pro-
files (CAMS-TEMPO) developed by Guevara et al. (2021) provide temporal profiles for a
variety of chemical species (including CO2, CH4 and CO) at monthly, weekly, daily and
hourly frequency. As the name of this data set suggests, it is following the spatial resolu-
tion (0.1◦) and source sector classification from the CAMS global anthropogenic inventory
(CAMS-GLOB-ANT). The definition of the profiles is based on international statistics and
meteorological parameterizations. The temporal variation of emissions from the energy indus-
try, residential combustion and road transportation is country- or even grid cell dependent,
while other sectors show spatially constant monthly, weekly or daily variation. Some sectors,
such as the energy industry, have different profiles for different pollutants. The monthly pro-
files are already applied to the CAMS-GLOB-ANT data set while the remaining weekly, daily
and hourly profiles from 2000 up to 2020 are available to download through the Emissions of
atmospheric Compounds and Compilation of Ancillary Data (ECCAD, eccad.aeris-data.fr)
platform.

Crippa et al. (2020a) The high resolution temporal profiles of Crippa et al. (2020a) are
developed in the context of the EDGAR inventory. A corresponding classification of over
20 source sectors is made, describing the monthly and hourly variation of these processes.
These sector-specific profiles are also country-specific, taking into account different holidays
and weekend definition, and can be applied to a wide set of pollutants. This extensive set of
temporal profiles is available at figshare: https://doi.org/10.6084/m9.figshare.c.4780547.v1
(Crippa et al., 2020b).

Nassar et al. (2013) The Temporal Improvements for Modeling Emissions by Scaling, or
TIMES, data set by Nassar et al. (2013) provides global profiles to temporally dissaggregate
CO2 emissions in weekly and diurnal fluxes. In contrast to the first two data sets as described
above, the TIMES profiles are not sector-dependent and are available at a spatial resolution
of 0.25◦. The day-to-day and hour-to-hour variability is country-dependent. The scale factors
can be downloaded at https://doi.org/10.15485/1463822 (Nassar, 2013).
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Due to the correspondence between the data sets of temporal profiles and emissions, it is
straightforward to use the temporal profiles of Guevara et al. (2021) together with the CAMS-
GLOB-ANT emissions and those of Crippa et al. (2020a) with the EDGAR emissions. When
only the total emissions are used in simulations, instead of those for each sector separately,
or when there is no sector information available, the scaling factors by Nassar et al. (2013)
are the easiest way to implement some temporal variation into the fluxes.
However, during the case study of Xianghe (Chapter 5), the need emerged to apply some
temporal disaggregation to the sector-specific emissions of for example REAS, PKU-FUEL or
MEIC-China. These inventories provide emissions in 4 or 5 broad sectors such as residential
combustion, industrial processes, power plants, agriculture and transportation, which is much
less than in CAMS-GLOB-ANT or EDGAR, where the classification contains at least 11 or
24 sectors, respectively. In order to apply the temporal factors of these sub-sectors to the
broader ones, the following methodology was applied:

• Choose a set of temporal profiles to proceed with. For the Xianghe case study, I have
chosen the EDGAR profiles (Crippa et al., 2020a).

• Create a mapping between the EDGAR sub-sectors and the more broader sectors of
REAS, PKU-FUEL and MEIC-China. This is given in Table 3.4.

• Obtain temporal profiles for the broader sectors by weighing them with the EDGAR
v6.0 emissions: for every broad sector, compute the hourly and daily variation in
EDGAR v6.0 flux by multiplying the annual flux with the Crippa et al. (2020a) profiles
for every sub-sector. Then, sum up all sub-sector fluxes following the mapping in Table
3.4 to get a total emission for every broad sector, but with a high temporal resolution.
Then divide this sum by the total emission at low temporal resolution (annual or
monthly) to retrieve the relative weight of every hour for each broad sector. These are
then the temporal profiles for the broad sectors.

• Multiply the EDGAR-weighted profiles with the total flux for each of the broad sectors
in the targeted inventory.

3.2.4 VPRM input: SYNMAP and MODIS surface reflectance

To enable the online calculation of biogenic CO2 fluxes within WRF-GHG, external data
is required as input: a land cover product and a surface reflectance satellite product, as
outlined in Sect. 3.1.3. This work utilizes the SYNMAP land cover product from Jung
et al. (2006) and the 8-day MODIS/Terra surface reflectance product (MOD09A1). The first
of these two datasets is downloaded from a wepage (https://www.bgc-jena.mpg.de/4758306
/bsi vprmpreproc) hosted by MPI-BGC that also serves as the main hub for accessing the
VPRM Preprocessor, a tool written in R that is used to process both datasets. SYNMAP was
created in 2005 as the ’best estimate’ of the Global Land Cover Characterization Database
(GLCC), Global Land Cover 2000 (GLC2000), and the MODIS land cover product, and cov-
ers the globe at a resolution of 1 km.
Further, the MODIS product MOD09A1 is publicly available at the download page of
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NASA’s Land Processes Distributed Active Archive Center (LP DAAC): https://e4ftl01.cr
.usgs.gov/MOLT. It provides the global surface reflectance in seven spectral bands with a
spatial resolution of 500 m, which is used to calculate the vegetation indices EVI and LSWI.

3.3 Model configuration

The configuration of the WRF-GHG model is a crucial step in ensuring that the simulation
accurately represents the processes involved in greenhouse gas dynamics. This section out-
lines the key components of the model setup where choices need to be made to optimize its
performance and ensure the relevance of the model output. These decisions include the con-
figuration of the model domain, the choice of grid spacing and nesting options, as well as the
selection of appropriate physics schemes, emission inventories, and specialized configurations
such as the VPRM parameter optimization and tagged tracer adaptation. More details on
the specific choices made for the two locations studied in the context of this thesis are given
in the respective chapters (Ch. 4 and 5).

3.3.1 Model domain setup

For accurate simulations, it is essential to center the area of interest, which is a specific obser-
vatory in this case, within the model domain. Further, the extent of the domain must balance
computational efficiency with the physical relevance of the simulation. While a larger domain
increases computational costs, a smaller domain risks being overly influenced by boundary
conditions, potentially undermining the benefits of high-resolution modeling. To avoid this,
it is recommended to define a domain of at least 100×100 grid cells, ensuring that the lateral
boundaries are sufficiently distant from the area of interest and strong forcings.
For simulations involving passive tracers, the domain should additionally include as much of
the relevant emission sources as possible. This allows these emissions to be represented as
specific tracers rather than being included in the background signal.
Grid spacing determines the model’s resolution, requiring a careful balance between detail
and computational resources. Changes in horizontal resolution impact not only atmospheric
transport but also the representation of topography and surface fluxes. Higher resolutions
generally improve both diurnal and day-to-day variability of atmospheric species, with sig-
nificant benefits observed in mountainous regions due to more accurate orographic represen-
tation. However, to fully benefit from higher resolution, it is necessary that the resolution of
the flux information corresponds with the model’s spatial resolution.
Equally important is vertical resolution, with 40 to 60 vertical levels across the troposphere
recommended to accurately resolve atmospheric processes, especially within the boundary
layer and the free atmosphere. A model top pressure level of 50 hPa is typically sufficient to
capture the necessary dynamics without imposing excessive computational demands.
Finally, nesting is employed to achieve finer resolution than what is provided by the global
analysis data used at the lateral boundaries (in the current study, the IC-BCs fields have
a resolution of approximately 25 km for meteorological fields and 80 km for tracers). This
involves creating nested domains within the primary domain to refine the coarse input data.
A nesting ratio of 3:1 or 5:1 is generally recommended to ensure that the central grid cells
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of the child domain align with those of the parent domain, thereby maintaining accuracy. It
is also important to position the nest boundaries well within the coarse domain, away from
steep topography and the outer boundaries, to minimize potential boundary-related issues.

3.3.2 Simulation period selection

The selection of the simulation period is mainly determined by the availability of observational
datasets for model evaluation and high-quality input data. It is essential to choose a period
for which global meteorological and chemical analyses are available to drive the simulations,
alongside up-to-date emission data, to ensure the accuracy of the model output. Since the
current study aims at comparing model simulations with observational data, the chosen
periods should additionally align with the observational time series and minimize any gaps
in the data coverage.

3.3.3 Physics schemes options

As mentioned in Sect. 3.1, the WRF modeling system offers a wide variety of physical pa-
rameterization options. While certain combinations of physics schemes can produce notably
different results, particularly for specific atmospheric processes or regions of interest, not
all changes in parameterizations lead to significant impacts on the final results. Selecting
appropriate physics schemes is an important step in configuring WRF-GHG, but testing
every possible combination is neither feasible nor necessary for most studies. This is par-
ticularly relevant given that there is no universal set of physics options that performs best
under all conditions - the capability of a particular combination depends on many factors
such as domain size, geographical location, initialization data, and the specific atmospheric
phenomena being studied. While all WRF options simulate the basic processes, making it
unlikely to choose a completely “wrong” combination, certain schemes have been tested more
extensively than others. Therefore, a practical approach is to focus initial sensitivity tests on
well-established schemes, as supported by literature on similar WRF applications, and then
evaluate if additional testing of alternative parameterizations is warranted for the specific
research objectives.

3.3.4 Emission inventory selection

High-quality emission inventories are essential components for accurately simulating green-
house gas concentrations, as the quality of the emission data directly influences the model’s
ability to reproduce observed GHG patterns. Ideally, these inventories include all emission
processes and source sectors for each species at very high spatial and temporal resolutions.
However, in practice, such precise data are often unavailable and are typically estimated
using various approaches, as briefly discussed in Sect. 3.2.3. To achieve the most realistic
simulation output, it is important to select inventories that offer the highest resolution (both
spatial and temporal) and the most comprehensive coverage of source sectors, with data that
aligns as closely as possible with the time period of the simulations.
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3.3.5 VPRM parameter optimization

As described in Sect. 3.1.3, the online calculation of biogenic CO2 fluxes based on VPRM
requires a table of fixed values for four parameters (α, β, λ and PAR0) over seven vegetation
categories. Ideally, these parameters are tuned using flux tower data from the region of
interest to best match the local conditions. In the absence of such data, it is recommended
to use one of the three parameter tables that are provided within the model code for Europe,
US and the tropics, or to use parameter values optimized for a similar region, as reported in
the literature. The first option is available in the namelist.input configuration file while the
latter requires adapting the model source code and recompiling.

3.3.6 Tagged tracer customization

WRF-GHG includes a default set of tracers that represent various sources, such as back-
ground concentrations from lateral boundary conditions, anthropogenic emissions, biogenic
emissions, biomass burning, and oceanic sources. These tracer fields can be modified accord-
ing to the study’s objectives with minor adjustments to the model source code, followed by a
recompilation. For instance, if the emission inventory provides sector-specific data, it might
be beneficial to define additional tracers to track these sectors separately. This allows for a
more detailed analysis of how different processes contribute to overall GHG concentrations.
However, while defining additional tracers offers greater insight, it is important to consider
the computational cost, as more tracers will increase the overall computation time.
For the simulations in this work, we modified the biogenic CH4 tracers to save the three com-
ponents (soil uptake, termite, and wetland emissions) in separate fields. This adjustment was
made due to concerns about the quality of the soil uptake model, as discussed in Sect. 3.1.3.
Additionally, for the case study on Réunion Island, the default tracers were used, while in
the Xianghe domain, the anthropogenic tracer was divided into different source sectors, as
will be explained in the respective chapters.

3.4 Running the model

Running the model executable (wrf.exe), which integrates the governing equations, is actu-
ally the final step in the modeling process, see also Fig. 3.3. Before reaching this stage,
it is essential to have a properly configured namelist.input file and all the required input
files, such as emissions and meteorological data, in the correct formats. The entire process
of running WRF-GHG in the context of this thesis can be broadly divided into two main
stages: preparing data on the BIRA-IASB servers and organizing all necessary input data on
the High-Performance Computing (HPC) system, where the WRF-GHG model is ultimately
run.
The preprocessing stage involves preparing the necessary external datasets for input into
the model. This task is primarily managed on the BIRA-IASB compute servers using a set
of Python scripts. Once the relevant intermediate files are ready, they are transferred to
the HPC, where the WRF-GHG model runs. The HPC, a shared resource among the three
institutes at the Space Pole (Royal Meteorological Institute of Belgium, Royal Observatory
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of Belgium, and BIRA-IASB), is a powerful SGI Rackable Cluster with 2688 compute cores
distributed across 112 Linux servers, each containing 24 cores. Designed for parallel comput-
ing, the HPC uses the PSPro batch scheduler to manage jobs, which are queued based on a
complex formula considering factors such as the number of compute cores, duration, memory
requirements, and the number of jobs already submitted.
The handling of input data on the HPC and the execution of WRF-GHG are managed by a
series of Bash scripts. Once the model run is completed, the output files are copied back to
the BIRA-IASB servers, as the HPC is not intended for long-term storage and does not offer
backup services. A detailed step-by-step guide for this entire process is provided in appendix
C.

3.5 Comparing model and observations

After generating the dataset of simulated concentration fields, the next step is to compare
it with observations in a process known as post-processing. This involves reading the output
files, extracting relevant data, performing additional calculations for accurate comparisons,
and conducting data analysis. This is all done in Python. The following sections provide
a detailed overview of the approach used to compare the model output with ground-based
observations. It is crucial that the model output and greenhouse gas observations are co-
located both temporally and spatially. Additionally, when comparing model profiles with
remote sensing measurements, further calculations are required to account for the retrieval
process, as explained in subsequent sections. The approach for comparing the model data
with the measurements is outlined separately for in situ and FTIR remote sensing data in
Sect. 3.5.1 and 3.5.2, respectively.

3.5.1 Comparing with in situ observations

Local ground-based observations usually have a high temporal frequency, going from every
minute to every hour to everything in between. The model output is hourly and represents
the status of the atmosphere at exactly that time step, not averaged. To compare the model
with in situ observations, a time window should be selected over which the high-frequency
measurements are averaged. With a large time window, possible measurement errors are
weakened. However, a too large window might result in values that are not fully representing
the specific time step anymore. A too small time window, on the other hand, might also
result in representation errors due to the variability inherent to the in situ measurement of
species close to the surface. It is important to find a good balance here, where a time window
of 10 to 30 minutes is common.

For spatial co-location, generally the model grid cell covering the instrument is used. This is
done by selecting the model cell of which the center coordinates (mass points θ) are closest
to those of the measurement. In case of complex orography, such as for mountain sites,
an adjacent grid cell might be more appropriate. This should be evaluated for every case
separately.
Finally, the measurement and model should match vertically. There are several options
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depending on the instrument setup. If the instrument is located close to the ground, the
lowest model level is likely representative. However, Picarro gas analyzers are frequently
installed at or near towers with varying sampling heights. In such situations it might be
more appropriate to compare the observations with another model level, or to interpolate
the model profile to the specific sampling altitude, depending on the model vertical resolution.
This altitude can be expressed in meter above ground level (m.g.l.) or meter above sea level
(m.s.l.), which additionally includes information on the surface altitude of the site (above sea
level). Caused by horizontal discretization of the Earth’s surface within the model, the surface
altitude at the selected grid cell does not always match the real value. The discrepancy will
be larger for regions with strong altitude differences and for low model resolutions. We can
vertically interpolate the model profile to the instrument altitude m.g.l. or m.s.l., however
both options will likely be different, depending on how accurate the model is representing
the surface altitude. As the strongest concentration gradients are often found close to the
surface, it is suggested to give priority to the altitude relative to the ground level, as opposed
to sea level. As such, the impact of mixing processes in the lowest layer of the atmosphere
on the measured concentrations will be better captured by the model value.

3.5.2 Comparing with remote sensing observations

As explained in Sect. 1.3.2, FTIR observations are the result of a retrieval method to ex-
tract information on the atmospheric composition in a column of air from a solar absorption
spectrum. The outcome is influenced by instrument characteristics as well as retrieval tech-
nique choices (such as the a priori information). To take this into account, the Rodgers and
Connor (2003) smoothing approach can be used when comparing FTIR data with other data
sets. In the case of comparing with (high resolution) model data, it is common to assume
that the model profile represents the true atmospheric profile, and that the smoothed model
profile is then how it would be retrieved by the (lower vertical resolution) FTIR instrument.
The general smoothing equation is given below. However, since the retrieval approach is
slightly different for the FTIR observations associated with either TCCON or NDACC, some
network-specific features are discussed further for the two networks separately.

The smoothing procedure is performed on all model-data pairs within a certain time frame
(usually 30 min around the model hourly time step), after which the resulting Xgas values
XG are averaged to gain a unique model-data pair for every hour where FTIR observations
are available. Spatially, the model profile directly above the grid cell of the instrument is
used, similarly as for in situ measurements.

In general, the smoothed model profile of species G is calculated as:

νsmooth
G = νapriori

G +A · (νWRF
G − νapriori

G ), (3.2)

where νapriori
G is the a priori volume mixing ratio profile and A the averaging kernel matrix of

the FTIR measurement, while νWRF
G is the original model profile. The smoothed XG is then

computed using the smoothed profile and the profile of dry air. A mathematical description
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of such computation is given in Appendix B.

In order for the data to fit in Eq. 3.2, the model profile needs to be regridded to the same
vertical grid as the a priori profile and averaging kernel matrix (the ’FTIR grid’). A first
obstacle is that usually WRF-GHG simulates the atmosphere up to 50 hPa, while the FTIR
observations use solar radiation and thus cover the complete atmosphere of the Earth. To
cope with this altitude difference, we extend the model profile above its upper limit with the
a priori profile. Then, to regrid the extended profile to the FTIR grid with conservation of
mass, the layer height weighted regridding algorithm of Langerock et al. (2015) is applied.
This includes the calculation of a transformation matrix D that contains the fraction of how
each layer of the model grid is covered by a FTIR grid layer. This matrix is then multiplied
with the extended partial column profile: PCregrid

G = D ·PCG. A partial column (mol m−2)
of species G represents the integrated amount of that species within a specific vertical section
of an atmospheric column: it is the product of its volume mixing ratio in that section (mol
mol−1), the number density of dry air (mol m−3) and its thickness (m).
Finally, to apply the smoothing equation 3.2, we divide this regridded partial column profile
of G with the regridded partial column profile of dry air to retrieve the regridded volume
mixing ratio profile of G:

νregrid
G =

PCregrid
G

PCregrid
da

.

Smoothing equation 3.2 can then be rewritten as:

νsmooth
G = νapriori

G +A · (νWRF,regrid
G − νapriori

G ), (3.3)

TCCON

The smoothing equation for TCCON data looks a bit different than in Eq. 3.3 because
the averaging kernel matrix is provided as a column averaging kernel vector a. Instead of
calculating a smoothed mixing ratio profile, a smoothed total column is calculated:

TCsmooth
G = TCapriori

G + a ·
(
PCWRF,regrid

G − PCapriori
G

)
, (3.4)

where the regridded partial column profile of WRF-GHG is computed as described above and
in Appendix B. For the smoothed XG, the smoothed total column TCsmooth

G has to be divided
by the total column of dry air TCda. Here we can choose to use the atmospheric profiles of
pressure, temperature and water vapour from the TCCON retrieval or from the WRF-GHG
simulations. As both sources are already included in Eq. 3.4, it is most appropriate to use a
combination and calculate the smoothed XG as:

Xsmooth
G =

TCapriori
G

TCTCCON
da

+ a ·
(
PCWRF,regrid

G

TCWRF,regrid
da

− PCapriori
G

TCTCCON
da

)
. (3.5)

An alternative is to not use the model dry air partial column at all, but only the model’s
volume mixing ratio profile and use the TCCON a priori information in every term:

Xsmooth
G =

1

TCTCCON
da

(
TCapriori

G + a ·
(
νWRF,regrid
G PCTCCON

da − PCapriori
G

))
. (3.6)
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As mentioned above, we can take into account the altitude difference between the WRF-GHG
simulations and the FTIR observations by extending the WRF-GHG data above the model
limit to the top of the atmosphere. There is an alternative where the FTIR XG is scaled to be
representative for the atmospheric column from surface up to 50 hPa. Both methods are an
option, but we must be consistent and manipulate both data sets (model and observations)
in a comparable way.
When choosing to scale the XG up to 50 hPa, the smoothed XG from WRF-GHG is calcu-
lated as in Eq. 3.5 or 3.6 where the sum is taken over those layers i below 50 hPa. The
TCCON retrieval provides only information on the total column, so the data of the a priori
profile is used to compute the column below the model limit: a scaling factor is calculated
that represents the fraction of the total column up to 50 hPa to the total column based on
the same fractions in the a priori profile. By multiplying this factor with the retrieved total
column, a column representative for the lowest part of the troposphere (up to 50 hPa) is then
calculated.
The alternative is to use the original FTIR data, representing the full atmospheric column,
and to manipulate the WRF-GHG data. Then, the procedure is as described above in Eq.3.5
or 3.6 where the sum is taken over all layers i.

NDACC

The NDACC retrieval results in mixing ratio profiles and an associated averaging kernel
matrix, so Eq. 3.3 can be applied directly. The smoothed XG then follows by multiplication
with the dry air partial column profile. Here, we can choose to use either the information
from the model or from the NDACC a priori:

Xsmooth
G =

TCsmooth
G

TCNDACC
da

=

∑
i ν

smooth
G PCNDACC

da,i∑
i PCNDACC

da,i

, (3.7)

or

Xsmooth
G =

TCsmooth
G

TCWRF,regrid
da

=

∑
i ν

smooth
G PCWRF,regrid

da,i∑
i PCWRF,regrid

da,i

, (3.8)

As explained for the TCCON data, we can compare NDACC with WRF-GHG by truncating
the observed XG values to 50 hPa or by extending the model data above this value. The
truncated NDACC XG is easily calculated from the retrieved profile and taking the sum of
only those layers below 50 hPa (see Eq. B.4). Similarly the smoothed WRF-GHG XG is
calculated from Eq. 3.7 or 3.8 and taking the sum over the layers i below 50 hPa.
For the second option the sum is taken over all layers when computing both observed and
simulated XG.
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Chapter 4

Atmospheric GHG patterns in a
remote tropical environment: a
WRF-GHG study at Réunion Island

This chapter focuses on the in situ and column observations of CO2, CH4 and CO at Réunion
Island. The observations from the two sites on the French Island (Saint-Denis and Mäıdo)
are simulated with the WRF-GHG model. The model performance is assessed and the main
source sectors and meteorological parameters that influence the observed time series are dis-
cussed. In June 2022, this chapter was published in the peer-reviewed journal Atmospheric
Chemistry & Physics and is available online:

Callewaert, S., Brioude, J., Langerock, B., Duflot, V., Fonteyn, D., Müller, J.-F., Metzger,
J.-M., Hermans, C., Kumps, N., Ramonet, M., Lopez, M., Mahieu, E., and De Mazière, M.:
Analysis of CO2, CH4, and CO Surface and Column Concentrations Observed at Réunion
Island by Assessing WRF-Chem Simulations, Atmospheric Chemistry and Physics, 22, 7763–
7792, doi: 10.5194/acp-22-7763-2022, 2022
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Abstract. Réunion Island is situated in the Indian Ocean and holds one of the very few atmospheric observa-
tories in the tropical Southern Hemisphere. Moreover, it hosts experiments providing both ground-based surface
and column observations of CO2, CH4, and CO atmospheric concentrations. This work presents a comprehensive
study of these observations made in the capital Saint-Denis and at the high-altitude Maïdo Observatory. We used
simulations of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), in its pas-
sive tracer option (WRF-GHG), to gain more insight to the factors that determine the observed concentrations.
Additionally, this study provides an evaluation of the WRF-GHG performance in a region of the globe where it
has not yet been applied.

A comparison of the basic meteorological fields near the surface and along atmospheric profiles showed
that WRF-GHG has decent skill in reproducing these meteorological measurements, especially temperature.
Furthermore, a distinct diurnal CO2 cycle with values up to 450 ppm was found near the surface in Saint-Denis,
driven by local anthropogenic emissions, boundary layer dynamics, and accumulation due to low wind speed
at night. Due to an overestimation of local wind speed, WRF-GHG underestimates this nocturnal buildup. At
Maïdo, a similar diurnal cycle is found but with much smaller amplitude. There, surface CO2 is essentially driven
by the surrounding vegetation. The hourly column-averaged mole fractions of CO2 (XCO2) of WRF-GHG and
the corresponding TCCON observations were highly correlated with a Pearson correlation coefficient of 0.90.
These observations represent different air masses to those near the surface; they are influenced by processes
from Madagascar, Africa, and further away. The model shows contributions from fires during the Southern
Hemisphere biomass burning season but also biogenic enhancements associated with the dry season. Due to
a seasonal bias in the boundary conditions, WRF-GHG fails to accurately reproduce the CH4 observations at
Réunion Island. Furthermore, local anthropogenic fluxes are the largest source influencing the surface CH4
observations. However, these are likely overestimated. Furthermore, WRF-GHG is capable of simulating CO
levels on Réunion Island with a high precision. As to the observed CO column (XCO), we confirmed that
biomass burning plumes from Africa and elsewhere are important for explaining the observed variability. The in
situ observations at the Maïdo Observatory can characterize both anthropogenic signals from the coastal regions
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and biomass burning enhancements from afar. Finally, we found that a high model resolution of 2 km is needed
to accurately represent the surface observations. At Maïdo an even higher resolution might be needed because
of the complex topography and local wind patterns. To simulate the column Fourier transform infrared (FTIR)
observations on the other hand, a model resolution of 50 km might already be sufficient.

1 Introduction

Major greenhouse gases such as carbon dioxide (CO2) and
methane (CH4) have a direct impact on the radiative forc-
ing of the atmosphere. They are the main drivers of cli-
mate change, since their global mean concentrations have in-
creased over the industrial era by about 47 % and 156 %, for
CO2 and CH4, respectively, as a result of human activities
(IPCC, 2021). Carbon monoxide (CO), on the other hand,
is not a greenhouse gas but indirectly affects the lifetime of
CH4 in the atmosphere through its competing reaction with
OH. Additionally, it plays a major role in air pollution as it
participates in the formation of tropospheric ozone and urban
smog.

The importance of these gases, hereafter all referred to
as greenhouse gases (GHGs), has led to the establishment
of global observation networks to monitor their trends and
variability. Ground-based remote sensing networks such as
the Network for the Detection of Atmospheric Composi-
tion Change (NDACC) and the Total Carbon Column Ob-
serving Network (TCCON) are known for their long time
series of accurate column observations (De Mazière et al.,
2018; Wunch et al., 2011). The Fourier transform infrared
(FTIR) spectrometer observations carried out in these net-
works use direct sunlight to measure the absorption of at-
mospheric trace gases along the line of sight and provide
precise information on the total column abundance or ver-
tical profile of GHGs and other species. They are used by
scientists worldwide to detect changes in the atmospheric
composition, to improve our understanding of the carbon cy-
cle, or to provide validation for space-based measurements.
Recently, these kinds of observations from mobile low-cost
FTIR spectrometers within the Collaborative Carbon Col-
umn Observing Network (COCCON) have been used to con-
strain fluxes in urban regions (Hase et al., 2015; Vogel et al.,
2019; Makarova et al., 2021). In addition to FTIR observa-
tions, surface in situ observations of these gases are carried
out to better constrain sources and sinks on an even smaller
scale. Both observation types contain valuable information
on the emissions and transport of these species and are com-
plementary.

Réunion Island (55◦ E, 21◦ S) is a French island in the In-
dian Ocean, situated about 550 km east of Madagascar. It
hosts one of the very few atmospheric observatories in the
tropical Southern Hemisphere, which provides both ground-
based in situ and FTIR observations of GHGs, contributing
to the Integrated Carbon Observation System (ICOS) and

NDACC and TCCON, respectively. GHG observations at
Réunion Island are made at two sites, i.e., in the capital Saint-
Denis and at the high-altitude Maïdo Observatory (Baray
et al., 2013). Several studies have already investigated the
factors influencing the observations at Réunion Island. Zhou
et al. (2018) analyzed the trends and seasonal cycles of CH4
and CO by comparing the ground-based remote sensing and
in situ observations. They noticed a distinct seasonal cycle
in the column-averaged dry air mole fractions of CO (XCO),
with peak values between September and November, linked
to the biomass burning season in Africa and South America,
which confirmed the earlier work from Duflot et al. (2010).
Furthermore, backward trajectory simulations revealed dif-
ferent origins of air masses observed at Réunion Island near
the surface and higher up, resulting in surface CO concen-
trations that are systematically lower than XCO. Near the
surface, air masses generally originate in the Indian Ocean,
while those higher up come from Africa and South Amer-
ica. The ability to detect biomass burning plumes at Réu-
nion Island was also reported by Vigouroux et al. (2012). The
available XCO2 time series has, however, not yet been inves-
tigated. Additionally, the Maïdo Observatory hosts a wide
range of instruments, of which the measurements have al-
ready been used by a variety of scientists to characterize the
processes that occur at this particular location (Guilpart et al.,
2017; Foucart et al., 2018; Duflot et al., 2019; Verreyken
et al., 2021). However, the in situ observations at the Maïdo
Observatory of the longer-lived species, CO2 and CH4, have
not yet been studied in detail, and this applies also to the
available surface measurements at Saint-Denis.

Therefore, the aim of the current work is to make a com-
prehensive description and analysis of in situ and column ob-
servations of CO2, CH4, and CO at Réunion Island, both
at Saint-Denis and Maïdo. To gain more insight into the
factors that influence the observed concentrations, we will
rely on the simulations of the widely used Weather Research
and Forecasting model coupled with chemistry (WRF-Chem;
Skamarock et al., 2021) in its passive tracer option called
WRF-GHG (Beck et al., 2013). This regional atmospheric
model simulates 4D fields of CO2, CH4, and CO, resulting
from their sources, sinks, and transport in the troposphere,
without interaction with other species, while accounting for
the meteorology. The model makes it possible to separate
each chemical compound into several tracers representing the
contributions of different emissions sources within the model
domain, such as anthropogenic, biogenic, biomass burning,
and oceanic. Moreover, it supports the online calculation of
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biogenic CO2 fluxes following the Vegetation Photosynthe-
sis and Respiration Model (VPRM; Mahadevan et al., 2008).
Thus far, applications of WRF-GHG have mainly focused on
CO2 to study city emissions (Pillai et al., 2016; Feng et al.,
2016; Park et al., 2018; Zhao et al., 2019) or to evaluate
the VPRM model (Ahmadov et al., 2007; Jamroensan, 2013;
Dayalu et al., 2018; Hu et al., 2020; Park et al., 2020). It has
also been used in combination with in situ and column obser-
vations, flux towers, and satellite measurements to better un-
derstand the carbon cycle (Pillai et al., 2010, 2012; Liu et al.,
2018; Li et al., 2020). The model has shown to be an excel-
lent tool for studying regional carbon budgets and is there-
fore very well suited to our needs. Few studies have used
WRF-GHG to simulate CH4 and CO, and these studies fo-
cused on explaining enhancements identified by satellite in-
struments (Beck et al., 2013; Dekker et al., 2017; Tsivlidou,
2018; Borsdorff et al., 2019; Dekker et al., 2019; Verkaik,
2019). Hence, this work additionally aims at evaluating the
model performance for these species in a region where it has
not yet been applied. This might potentially draw attention to
shortcomings in the model, thus allowing and motivating the
model community to improve it.

This paper focuses on the factors that influence the ob-
served GHG concentrations and their variations at Saint-
Denis and the Maïdo Observatory. In particular, it addresses
the following questions: (1) to what extent are the obser-
vations influenced by local and nearby sources and sinks
or long-range transport of emitted gases? (2) What are the
different contributions (of anthropogenic, biogenic, biomass
burning, and ocean fluxes) to the observed concentrations,
both at the surface and in the total column? (3) How accurate
is WRF-GHG in simulating the different observation types of
the three gases (CO2, CH4, and CO) in the Southern Indian
Ocean region, in particular at Saint-Denis and at the Maïdo
Observatory? What are its strengths and weaknesses?

The structure of this document is as follows. Section 2 de-
scribes the location of the observation sites at Réunion Is-
land, the general transport patterns, the GHG-measuring in-
struments, and the data sets used in this study. Details on the
model setup and input inventories are described in Sect. 3.
Section 4 constitutes the main part of this work. First, the
model performance is evaluated with regard to meteorolog-
ical fields, both at the surface and higher up, in Sect. 4.1.
The model assessment and data analysis at Saint-Denis and
Maïdo are discussed in Sect. 4.2 and 4.3, respectively. Fi-
nally, the impact of model resolution is discussed in Sect. 5,
and conclusions are drawn in Sect. 6.

2 Observations at Réunion Island

The data used in this study come from two observation sites
on Réunion Island, namely Saint-Denis (referred to as SDe
from now on; 20.9014◦ S, 55.4848◦ E; 85 m a.s.l. or me-
ters above sea level), which is the capital city and is situ-

Figure 1. Map of Réunion Island, indicating the location of the
two measurement sites: Saint-Denis (star) and Maïdo (triangle). The
white arrows roughly illustrate the local wind patterns, which are
generated by the trade winds and the orography of the island.

ated close to the northern coast, and the Maïdo Observatory
(referred to as MA from now on; 21.0796◦ S, 55.3841◦ E;
2155 m a.s.l.), which is close to the top of a mountain ridge
on the northwestern side of the island. Currently, each site
is equipped with a Fourier transform infrared (FTIR) spec-
troscopy instrument and an in situ cavity ring-down spec-
troscopy (CRDS) analyzer, both of which are described more
in detail below. These instruments measure the column-
averaged dry air mole fractions and local near-surface mole
fractions, respectively. The locations of both sites on the is-
land are shown in Fig. 1.

2.1 Climate and transport patterns

The atmospheric transport around Réunion Island is con-
trolled by the position of the Intertropical Convergence Zone
(ITCZ) and the south Hadley cell (Baldy et al., 1996; Foucart
et al., 2018). During a large part of the year, a strong subtrop-
ical high induces steady southeasterly trade winds near the
surface and westerlies aloft. Hence, the air above Réunion Is-
land is characterized by a wind (and temperature) inversion
causing generally clear skies which are common during the
dry season (Baldy et al., 1996; Lesouëf et al., 2011; Baray
et al., 2013). Typically, this (colder) dry season lasts from
May to November (Foucart et al., 2018). In austral summer
(January to March) the ITCZ moves south, sometimes reach-
ing Réunion Island. This results in weaker trade winds and
often heavy rains, resulting in the (warmer) wet season in
those months (Baldy et al., 1996; Foucart et al., 2018).

With its high altitudes (up to 3000 m a.s.l.), Réunion Island
represents a sudden obstacle for the stable southeasterly trade
winds. In combination with the inversion layer, this causes a
blocking on the windward side and wind flow splitting (and
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accelerating) around the island to form counter-flowing vor-
tices on the northwestern (lee) side (Lesouëf et al., 2011).
This is illustrated by the white arrows in Fig. 1. Moreover,
the split flow is under the influence of thermally driven circu-
lations (so-called trade breathing); nighttime downslope and
land breezes push the trade wind offshore, whereas daytime
upslope and sea breezes allow the wind to pass over coastal
areas (Lesouëf et al., 2011, 2013). These circulations are the
dominant (daily) wind pattern on the northwestern side of
Réunion Island (where MA is situated), which is sheltered
from the trade winds (Lesouëf et al., 2011; Baray et al., 2013;
Guilpart et al., 2017; Verreyken et al., 2021).

2.2 Saint-Denis

Saint-Denis is the capital of Réunion Island, located on the
coast in the northern part of the island. As of 2018, there were
309 635 inhabitants in the metropolitan area of Saint-Denis,
with a population density of about 1100 km−2. The city lies
on a slope between the ocean and the nature reserve of La
Roche Écrite (ultimately reaching a height of 2276 m).

The observations at SDe are made on top of a building at
the University of Réunion Island (85 m a.s.l.). In situ mole
fractions of CO2 and CH4 have been measured by a CRDS
analyzer (Picarro G1301) since August 2010, in collabora-
tion with the Laboratoire de l’Atmosphère et des Cyclones
(LACy), the Observatoire des Sciences de l’Univers de la
Réunion (OSU-R), and the Laboratoire des Sciences du Cli-
mat et de l’Environnement (LSCE). The measurements are
available with a time frequency of 1 min, and the uncertain-
ties on the measured mole fractions are about 0.1 ppm (parts
per million) and 2 ppb (parts per billion), for CO2 and CH4,
respectively.

In September 2011, the Royal Belgian Institute for Space
Aeronomy (BIRA-IASB) installed a high-resolution Bruker
IFS 125HR FTIR at SDe, next to the Picarro analyzer. This
instrument is primarily dedicated to measuring the near-
infrared (NIR; 4000–16 000 cm−1) spectra and contributes to
TCCON (Wunch et al., 2011). The solar spectra are used to
retrieve the total column-averaged dry air mole fractions of
CO2, CH4, and CO (De Mazière et al., 2017). The standard
TCCON retrieval algorithm, called GGG2014, applies a pro-
file scaling, therefore deriving information on the total col-
umn only and not on the vertical profile. TCCON measure-
ments have been calibrated to World Meteorological Organi-
zation (WMO) standards, so it is assumed that there are no
systematic biases compared to in situ measurements (Wunch
et al., 2010). More detail on both instruments can be found
in Zhou et al. (2018).

2.3 Maïdo

The Maïdo Observatory (2155 m a.s.l.) is located close to the
summit of a mountain with the same name, which has an
altitude of about 2200 m.a.s.l. and is situated in the western

part of the island. The observatory is devoted to long-term at-
mospheric monitoring in the tropical region of the Southern
Hemisphere and houses a variety of atmospheric measure-
ment instruments such as lidar systems, spectroradiometers,
and in situ gas and aerosol analyzers (Baray et al., 2013).
To the west of MA is a gentle slope reaching the coastal ar-
eas and the ocean, while the summit lies to the east of the
site, followed by a cliff leading to the caldera of Cirque de
Mafate. The area around MA is covered by mountain shrubs
and heathlands (Duflot et al., 2019).

The mole fractions of all three gases (CO2, CH4, and CO)
have been collected by a CRDS analyzer (Picarro G2401)
at MA since December 2014 and were certified as ICOS at-
mospheric data in late 2019 (De Mazière et al., 2021). The
measurements are available at a time resolution of 1 min, and
the uncertainties are about 50, 1, and 2 ppb for CO2, CH4,
and CO, respectively.

In March 2013, BIRA-IASB started operating a second
Bruker IFS 125HR FTIR spectrometer, in addition to the one
at SDe, for observing the solar spectra in the mid-infrared
(MIR) range from 600 to 4500 cm−1 (Baray et al., 2013).
These FTIR measurements are affiliated with NDACC. Gas
mole fractions of CH4 and CO are retrieved from the FTIR
solar spectra by the SFIT4 algorithm, which is based on the
optimal estimation method of Rodgers (2000). More infor-
mation about the specific methods used can be found in Zhou
et al. (2018). The final data consist of the retrieved vertical
profiles, expressed as volume mixing ratio (VMR) profiles
on a vertical altitude grid.

2.4 Meteorological measurements

The quality of the WRF-GHG simulations is evaluated
against meteorological fields that are being measured in par-
allel at the two observation sites. More specifically, there are
in situ measurements of 2 m temperature and 10 m wind di-
rection and wind speed. These fields are measured by the
Vaisala Weather Transmitter (model WXT510 at SDe and
model WXT520 at MA) every 3 s.

Additionally, we will compare the WRF-GHG output with
vertical profiles from operational daily meteorological Me-
teomodem M10 radiosonde launches performed by Météo-
France at 12:00 UTC at Roland Garros Airport (4 km away
from SDe). The Meteomodem M10 radiosondes provide
measurements of temperature, pressure, and relative humid-
ity with respect to water and zonal and meridional winds. A
detailed description of this sensor can be found in Dupont
et al. (2020).

3 WRF-GHG model

WRF-GHG is an abbreviation for the Weather Research and
Forecast model coupled with Chemistry (WRF-Chem) in its
passive tracer option (Skamarock et al., 2021; Beck et al.,
2011). WRF-Chem simulates the emission, transport, mix-
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ing, and chemical transformation of trace gases and aerosols
simultaneously with the meteorology. In WRF-GHG, only
CO2, CO, and CH4 are transported, and there are no chemi-
cal reactions simulated. Separate tracers for each compound
represent the contribution from the fluxes within the model
domains (d01–d03) from the following different categories:
anthropogenic, biomass burning, biogenic (for CO2 and CH4
(termites)), ocean (for CO2), and wetlands (for CH4). Addi-
tionally, there is a so-called background tracer which repre-
sents the contribution of the initial and lateral boundary con-
ditions. The sum of all tracers for a species is equal to the
total modeled mole fractions. In this study, WRF-Chem ver-
sion 4.1.5 is used.

In total, two time periods have been simulated, i.e., from
1 August 2015 until 1 May 2016 and from 1 July 2016 until
15 July 2017. These periods have been selected because then
quite complete data sets are available from all considered in-
struments. The first 14 d in each period are regarded as the
spin-up period and are not used in the model–data compar-
isons. The model provides 3D fields of CO2, CH4, CO, and
meteorological fields every hour.

3.1 Emissions and initial and boundary conditions

An overview of the data that are used as input to the WRF-
GHG model are given in Table 1 and described hereafter.
The hourly meteorological initial and lateral boundary con-
ditions (IC-BCs) are obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) global ERA5
reanalysis data set (0.25◦× 0.25◦; Hersbach et al., 2018a, b),
while the chemical IC-BCs are imported from the CAMS
global reanalysis for greenhouse gases (EGG4, for CO2 and
CH4) and reactive gases (EAC4, for CO; Inness et al., 2019).
The data for CO2 and CH4 are available every 3 h, while data
are available for CO every 6 h. These fields from the Coperni-
cus Atmosphere Monitoring Service (CAMS) reanalysis are
used to drive the background tracers. The IC-BCs of the trac-
ers corresponding with the contribution from surface fluxes
are set to zero.

The anthropogenic emissions for CH4 and CO are taken
from the Emission Database for Global Atmospheric Re-
search (EDGAR). For CH4, we have used the v5.0 Global
Greenhouse Gas Emissions product (Crippa et al., 2019b),
while for CO, the EDGAR v5.0 Global Air Pollutant Emis-
sions product (Crippa et al., 2019a) was used. Furthermore,
we performed simulations over a short period of a few
days to test alternative inventories for anthropogenic CO2
and CO fluxes. We concluded that the Open-Data Inven-
tory for Anthropogenic Carbon dioxide (ODIAC2020; Oda
and Maksyuto, 2015, 2011; Oda et al., 2018) was more rep-
resentative for the anthropogenic CO2 emissions, probably
due to its much higher spatial resolution (1 km) compared to
EDGAR (0.1◦).

Similarly, we use a CO surface emission inventory at a
resolution of 500 m, based on the posterior estimates of a
mesoscale inverse model (Jérôme Brioude, personal commu-
nication, 2020), but only in the innermost domain d03. The
atmospheric transport of the inverse model was calculated us-
ing the FLEXPART (FLEXible PARTicle dispersion model)
Lagrangian dispersion model (Verreyken et al., 2019) cou-
pled with the Meso-NH mesoscale model (Lac et al., 2018)
at a resolution of 500 m and 60 vertical levels. FLEXPART-
Meso-NH was run backward in time to calculate the source–
receptor relationships between MA and the surface sources
from the CO measurements at MA, from 4 April to 3 May
2019, during the BIO-MAIDO (Bio-physico-chemistry of
tropical clouds at Maïdo, Réunion Island) campaign (Domin-
utti et al., 2022). The ODIAC CO2 emission inventory was
used a priori to benefit from its native spatial resolution of
major urban areas. A scaling factor, based on the ratio be-
tween the mean CO enhancement above background and
mean CO2 enhancement above background, was applied on
the CO2 fluxes to obtain a priori surface CO fluxes. A tempo-
ral resolution of 1 h was used for the observed and simulated
CO mixing ratios at MA. A lognormal distribution was as-
sumed for the observation and surface flux errors (Brioude
et al., 2012, 2013). Such an assumption better matches the
CO distribution in the atmosphere and prevents the inversion
from calculating negative fluxes.

The anthropogenic fluxes used within WRF-GHG are
combined with a temporal emission factor from Nassar et al.
(2013). Note that these factors are representative for CO2 and
might be less accurate for CO and CH4.

Daily biomass burning emissions for all three gases are
obtained from the Fire INventory from NCAR (FINN v1.5;
Wiedinmyer et al., 2011). The biogenic CH4 flux from
wetlands is obtained from the WetCHARTs v1.0 ensemble
(Bloom et al., 2017), while the biogenic CO2 flux from
oceans is taken from the observation-based global monthly
gridded sea surface pCO2 climatology by Landschützer et al.
(2017), which also provides air–sea CO2 fluxes. Finally, the
biogenic CO2 flux from the vegetation is simulated online
using the VPRM model (Mahadevan et al., 2008; Ahmadov
et al., 2007). This model uses the 2 m temperature and down-
ward shortwave radiation calculated by WRF-GHG in com-
bination with surface reflectance data from the Moderate
Resolution Imaging Spectroradiometer (MODIS). Further-
more, it uses the global SYNMAP land cover data of 1 km
resolution by Jung et al. (2006). Additionally, the VPRM
requires a set of four model parameters for each vegetation
class, dependent on the region of interest. Ideally, these pa-
rameters are optimized using a network of eddy flux tow-
ers. Since this is not available at Réunion Island, we use the
set of parameters optimized by Botía et al. (2021), based
on measurements from nine sites in the Amazon region in
Brazil, created in the context of the Large Scale Biosphere–
Atmosphere Experiment (LBA-ECO). Exact parameter val-
ues are given in Table A1 of Appendix A.
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Table 1. Overview of data sets used as input for the WRF-GHG simulations.

Species Source Time and spatial resolution

Initial and lateral CO2, CH4 CAMS reanalysis for greenhouse gases 3 h, 0.75◦

boundary conditions CO CAMS reanalysis for reactive gases 6 h, 0.75◦

Anthropogenic flux CO2 ODIAC2020 Monthly, 1 km (land), 1◦ (ocean)
(multiplied with CH4 EDGAR v5.0 Global Greenhouse Emissions Yearly, 0.1◦

temporal factors of CO EDGAR v5.0 Global Air Pollutant Emissions Yearly, 0.1◦

Nassar et al., 2013) (d01, d02)
Jérôme Brioude (personal communication,
2020), (d03)

Yearly, 500 m

Biomass burning CO2, CH4, FINN v1.5 Daily, 1 km
flux CO

Biogenic flux CO2 Online (VPRM) Hourly, model resolution
CH4 Online, WetCHARTs v1.0 Monthly, 0.5◦

Ocean flux CO2 Observation-based global monthly gridded sea
surface pCO2 climatology

Monthly, 1◦

3.2 Settings

To achieve a high-resolution model grid over Réunion Island,
a configuration of three nested domains was established, go-
ing from a larger domain with a lower resolution to a smaller
domain with a higher resolution. The domains are shown in
Fig. 2. Their respective resolutions are 50, 10, and 2 km. The
innermost domain, d03, covers Réunion Island and the two
measurement sites completely. WRF-GHG uses a hybrid ver-
tical coordinate, which is a coordinate that is terrain follow-
ing near the ground and becomes isobaric higher up. In all
our domains, the model has 60 vertical levels extending from
the surface up to 50 hPa.

The following physical parameterization options are used:
the Morrison two-moment scheme (Morrison et al., 2009) for
microphysics, the Rapid Radiative Transfer Model for gen-
eral circulation models (RRTMG) shortwave and longwave
schemes (Iacono et al., 2008). The Eta similarity scheme
(Janjić, 1994) for surface layer processes and the Unified
Noah LSM (land surface model; Tewari et al., 2004) for
the land surface. To choose between the diverse parameteri-
zation schemes for cumulus parameterization and planetary
boundary layer (PBL) physics, several model test runs were
made for a short simulation period of a couple of days and
compared with the observed meteorology. As a result, the
University of Washington turbulence kinetic energy (TKE)
boundary layer scheme (Bretherton and Park, 2009) for PBL
physics and the Grell–Freitas ensemble scheme (Grell and
Freitas, 2014) for cumulus parameterization, but only in the
largest domain (d01), were chosen for this study.

3.3 Data handling

The various observation types are dealt with in different ways
for comparison with the model.

The surface observations (both meteorological fields and
GHGs) are averaged over a period of 30 min around the
hourly model time step. At SDe, we compare these data with
the lowermost level of the model grid cell, whose center is
closest to the location of the instrument. Because of the com-
plex topography, the cell covering MA is less representative
for the observatory, as its center is located behind the sum-
mit, in the caldera of Cirque de Mafate below. Model–data
comparisons of the surrounding cells showed that the cell to
the west of MA is more representative. Therefore, this al-
ternative model grid cell, of which the center is only 1.3 km
away from the observatory, is used in the analysis.

In order to compare similar quantities, the total column-
averaged dry air mole fractions from TCCON and NDACC
are truncated to the same atmospheric column that is simu-
lated by WRF-GHG, e.g., from surface up to 50 hPa. This
is needed because the FTIR data represent the total atmo-
spheric column, whereas the WRF-GHG upper limit lies at
around 21 km.

As NDACC additionally provides volume mixing ratio
profiles, the column-averaged mole fractions are recalculated
by taking only those layers below the model upper limit. For
TCCON, only information on the total column is retrieved.
Therefore, we multiply the TCCON data with a factor rep-
resenting the ratio between the column-averaged mole frac-
tion of the smaller column (up to 50 hPa) to that of the total
column. This ratio is calculated from the a priori informa-
tion. In the rest of this paper, all dry air column-averaged
mole fractions (so-called Xgas) mentioned refer to this re-
duced atmospheric column only (surface up to 50 hPa). Due
to the specific profile of the respective gases in the atmo-
sphere, this scaling is more significant for XCH4 than it is
for XCO or XCO2; the values generally increase after scaling
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Figure 2. Location of the WRF-GHG domains, with horizontal resolutions of 50 km (d01), 10 km (d02), and 2 km (d03). All domains have
60 (hybrid) vertical levels extending from the surface up to 50 hPa.

by about 27–35 ppb for XCH4, 3 ppb for XCO, and 0.25 ppm
for XCO2.

To compare with the hourly WRF-GHG outputs, the
scaled mole fractions are averaged over a period of 30 min
around the model time step. Furthermore, a smoothing is ap-
plied to the WRF-GHG profiles, according to Rodgers and
Connor (2003). Because of the different characteristics of
the TCCON and NDACC observing systems, this smooth-
ing procedure is slightly different at the two sites. Technical
details on how the smoothed dry air column-averaged mole
fractions of WRF-GHG are calculated at SDe and MA can
be found in Appendix B.

4 Results

4.1 Meteorological evaluation

4.1.1 Surface measurements

To assess the general model performance, the hourly model
output of d03 near the surface is compared with local mea-
surements of 2 m temperature and 10 m wind direction and
speed at both sites. Table 2 gives the root mean square er-
ror (RMSE), mean bias error (MBE), and Pearson correla-
tion coefficient (CORR) of the model–data comparison over
the complete time series (13 583 paired data points at SDe;
14 031 at MA).

The 2 m temperature is well simulated by WRF-GHG at
both sites with very high correlation coefficients of 0.93 at
SDe and 0.83 at MA and RMSE between 1 and 2 ◦C (1.33
at SDe, 1.94 at MA). Figure 3a–b compare the median di-
urnal cycle at both sites, which is very well reproduced by
the model. Overall, higher temperatures are measured at SDe

Table 2. Overview of the meteorological evaluation of the surface
measurements at the two sites. The root mean square error (RMSE),
mean bias error (MBE), and Pearson correlation coefficient (CORR)
are shown.

2 m 10 m wind 10 m wind
temperature direction speed

(C) (◦) (m s−1)

SDe MA SDe MA SDe MA

RMSE 1.33 1.94 52.33 66.80 4.29 2.93
MBE 0.74 −0.35 – – 3.83 1.59
CORR 0.93 0.83 0.72 0.76 0.73 0.27

compared to MA because of the large difference in altitude
between the sites (85 m a.s.l. compared to 2155 m a.s.l.).

The wind roses in Fig. 4 show the most-occurring 10 m
wind directions and their corresponding wind speed. The
10 m wind direction of WRF-GHG correlates well with the
measurements at both sites (correlation coefficients of 0.72
and 0.76). There is a larger error of the wind direction at MA
(RMSE of 66.80◦) compared to SDe (RMSE of 52.33◦). At
SDe, the wind is mainly from the east or southeast (trade
winds); however, for calmer wind speeds (< 2 m s−1), the
wind can also come from the south(west). WRF-GHG cap-
tures the dominant southeastern winds but does not simu-
late winds from the south. It highly overestimates the wind
speed, with a mean bias error of 3.83 m s−1 and a RMSE
of 4.29 m s−1. There is a clear diurnal cycle of the wind
speed at SDe, shown in Fig. 3c, with stronger winds dur-
ing the day and calmer conditions at night. As WRF-GHG
follows the observed pattern, the correlation coefficient is
still quite high (0.73). The overestimation might be caused
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Figure 3. (a–b) Diurnal cycle of the 2 m temperature and (c–d) 10 m wind speed at both SDe and MA. The blue and black lines show the
median values for every hour of the measurements and simulations, respectively. The shaded blue and gray areas indicate the corresponding
interquartile ranges of the measurements and simulations, respectively. Hours are given in UTC (local time at Réunion Island is UTC+4).
Note that the temperature plots have different y axes.

by an underestimation of the surface roughness of the city
within WRF-GHG. Besides the unified Noah land surface
model (see Sect. 3.2), no additional urban surface model was
included in the simulations. Other studies using the WRF
model often show wind speed overestimation above urban
areas (Feng et al., 2016; Barlage et al., 2016; Zhang et al.,
2009; Kim et al., 2013). Additionally, there is a large gradi-
ent in the surface wind speed near SDe caused by the pres-
ence of the strong trade winds. Therefore, an insufficient high
model resolution might also be the cause for the wind speed
overestimation.

At MA, on the other hand, the most common wind direc-
tion is east with some occurrences of westerly winds. This
points to the typical thermally induced circulations during
the day, whereby wind is driven from the coast upwards and
sometimes reaches MA (Duflot et al., 2019). The prominent
east winds illustrate the presence of overflowing trade winds.
The simulated winds from WRF-GHG are mainly from the
east, indicating that the larger errors at MA might be linked to
the missing westerly wind components. This is likely due to
the complex topography around the Maïdo Observatory and
the model resolution (of 2 km), which might be insufficient
for resolving these very local wind dynamics.

As to the wind speed at MA, the bias and RMSE are
smaller (1.59 and 2.93 m s−1, respectively) than at SDe, but
the model is still overestimating the wind speed. Moreover,
the correlation is very low at this site. The daily 10 m wind
speed cycle at MA is less distinct than at SDe; however, at
night the wind is more often faster (> 2 m s−1) than during
the day. This could be linked to the local wind dynamics
around MA, where calmer upslope winds from the west of-
ten reach MA during the day, while at night the observatory
is generally in the free troposphere under the influence of the
faster trade winds (Guilpart et al., 2017).

4.1.2 Radiosonde profile measurements

Daily radiosonde profiles of air temperature, wind direction,
wind speed, and relative humidity are compared with the
model data to assess the accuracy of WRF-GHG on all lev-
els of the troposphere. The profiles were matched as follows:
for every data point measured by the radiosonde, the grid cell
corresponding to its coordinate is selected. Next, the model
profile (consisting of the meteorological field in the complete
vertical column above the selected grid cell) is interpolated
to the altitude of the measurement. This interpolated value is
then paired with the value of the measurement. This results in
a paired model–data profile for the four variables once every
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day. An example of such a paired profile on 5 July 2016 is
shown in Fig. 5. For every paired profile, the RMSE, MBE,
and CORR statistics are calculated. This is done for a total of
267 d in the year 2016.

For the temperature, correlation coefficients are very high
on all days (median is 0.99). Moreover, the RMSE values are
quite small on most days (median is 1.07 ◦C), indicating that
WRF-GHG can simulate the temperature in the troposphere
quite accurately.

There is a good correlation for the wind direction and
speed profiles as well. Half of the days in 2016 have a cor-
relation coefficient higher than 0.87 for wind direction and
0.83 for wind speed. When calculating the RMSE of wind
direction along the daily profiles, we find a median of 48.18◦,
while the median RMSE of the wind speed is 3.87 m s−1. On
most days, WRF-GHG is slightly underestimating the wind
speed (median bias error is −1 m s−1), which is in contrast
with the overestimation found at the surface sites.

The profiles of relative humidity are analyzed up to an
altitude of 15 km because the measurements are less accu-
rate higher up. WRF-GHG correlates well with these pro-
files, with a correlation coefficient higher than 0.87 on 75 %
of the days in 2016. The median RMSE on the daily profiles
of relative humidity is only 11.6 %, showing a decent model
performance.

Overall, we can conclude that the simulations of basic me-
teorological parameters are quite accurate along vertical pro-
files, where near the surface wind speed and direction agree
less well with the observations.

4.2 GHG data at Saint-Denis

At SDe, the in situ surface mole fractions of CO2 and CH4
are measured together with the TCCON column-averaged
dry air mole fractions of CO2, CH4, and CO. The compar-
ison with the WRF-GHG simulations will be described in
detail below, for each species and measurement type sepa-
rately. The full time series of the observed and modeled data
can be found in Appendix C. An overview of the statistics of
the comparisons is given in Table 3.

4.2.1 Surface CO2

The model–data comparison of the surface data shows a
moderate correlation coefficient of 0.62 together with a rela-
tive large error of 9.17 ppm and a model underestimation of
5.39 ppm. The scatterplot in Fig. 6a indicates that these dis-
crepancies arise from a model underestimation of the higher
CO2 mole fractions. The lower CO2 concentrations are, in
general, much better reproduced.

The CO2 measurements at SDe show a clear diurnal cycle
(see Fig. 7a), with lower values during the day and higher
values during the night. The diurnal cycle of WRF-GHG re-
produces this pattern but with much lower nighttime concen-
trations, leading to the moderate correlation found in Table 3.

Table 3. Overview of the WRF-GHG performance for hourly in situ
and column observations of GHG at Réunion Island. The compari-
son with the column observations is based on the smoothed model
profiles. There are no in situ CO data available at SDe (Saint-Denis)
and no XCO2 data at MA (Maïdo).

SDe MA

(X)CO2 (X)CH4 (X)CO (X)CO2 (X)CH4 (X)CO
(ppm) (ppb) (ppb) (ppm) (ppb) (ppb)

In situ

RMSE 9.17 18.51 – 1.95 19.33 10.99
MBE −5.39 9.04 – −0.15 14.09 5.51
CORR 0.62 0.35 – 0.75 0.30 0.83

FTIR

RMSE 0.75 10.26 8.08 – 10.80 7.37
MBE −0.37 5.69 5.07 – −5.65 1.81
CORR 0.90 0.31 0.89 – 0.37 0.90

As shown in the diurnal cycle in Fig. 7b, the main contrib-
utors to the total CO2 signal in WRF-GHG, in addition to the
background signal, are the anthropogenic and biogenic trac-
ers. They correspond with anthropogenic and biogenic fluxes
within the model domains (d01–d03) and show similar diur-
nal patterns with maxima at night and minima during the day.
The influence of biomass burning or ocean fluxes is negligi-
ble at SDe.

In urban areas, anthropogenic pollution is generally
trapped in and around the city, creating a so-called urban
CO2 dome (Idso et al., 2002). The strength of this dome is
primarily dependent on the local emissions and variations in
the boundary layer. In calm weather, near-surface air temper-
ature inversions at night trap anthropogenic pollution near
the ground in the shallow nocturnal boundary layer, leading
to strongly enhanced CO2 mixing ratios. During the day, so-
lar radiation causes convective mixing of the air, creating a
deep planetary boundary layer (PBL). The near-surface CO2
concentrations are then diluted by this thorough mixing of
air, and the urban dome extends to greater heights.

However, wind speed and direction can alter the strength
of this urban CO2 enhancement; at higher wind speeds (from
2 m s−1), ventilation processes prevent strong CO2 accumu-
lation, while winds from rural areas could bring pristine air to
the city (Idso et al., 2002; Rice and Bostrom, 2011; Massen
and Beck, 2011; García et al., 2012; Xueref-Remy et al.,
2018).

Within WRF-GHG, the main contributors to the simulated
CO2 in the grid cells around SDe are anthropogenic and peak
during the day. The biogenic CO2 flux at the grid cell of SDe
is zero because the corresponding VPRM vegetation class is
100 % barren, urban, and built-up. Thus, the model assumes
that there is no vegetation within the city. Given that Saint-
Denis is the capital city of Réunion Island and has plenty
of anthropogenic activities, the impact of local vegetation is
probably very small, and these WRF-GHG fluxes appear re-
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Figure 4. Wind rose from observations and WRF-GHG simulations at SDe (a–b) and at MA (c–d). The colors indicate the associated wind
speed (in m s−1), while the lengths of the bars show the frequency of any wind direction binned by 15◦, given in percentage.

Figure 5. Example of the radiosonde data at Roland Garros Airport on 5 July 2016, compared with the model for (a) temperature, (b) wind
speed, (c) wind direction, and (d) relative humidity. The black line represents the measured values. The red line is the corresponding WRF-
GHG data.
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Figure 6. Scatterplot of hourly observed and modeled in situ greenhouse gases at SDe (a, b) and MA (c, d, e). The colors indicate the point
density.

Figure 7. Diurnal cycle of (a) in situ CO2 at SDe (b) and model tracer contributions. The black line in panel (a) represents the median hourly
concentrations of WRF-GHG, while the blue line represents the observed values. The shaded areas cover the interquartile ranges. The gray
dotted vertical lines at 02:00 and 14:00 UTC indicate the approximate times of sunrise and sunset. The colored lines in panel (b) represent the
different tracer deviations from the background concentration in WRF-GHG, including anthropogenic (red), biogenic (green), ocean (cyan),
and biomass burning (brown) tracers. The black line is the sum of all tracers, except the background.
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Figure 8. Scatterplot of nighttime wind speed at SDe against hourly
observed in situ CO2. Nighttime hours are defined as those between
14:00 and 02:00 UTC.

alistic. The nighttime peak of CO2 mixing ratios is therefore
attributed to PBL dynamics and regional transport.

Figure 7a shows that the observed interquartile range at
night is wide, indicating a large variability in the CO2 accu-
mulation. We find a negative correlation between 10 m wind
speed and in situ CO2 concentrations at night for the observa-
tions at SDe (see Fig. 8). At low wind speeds, a large variabil-
ity in CO2 mixing ratios is observed from 400 up to 450 ppm.
For wind speeds above 2 m s−1, on the other hand, values
higher than 410 ppm are rarely found, which indicates that
ventilation processes take place. At the same time, there is
a large overestimation of the wind speed within WRF-GHG
(Sect. 4.1.1; Table 2). At night, 91.7 % of the simulated hours
has a wind speed of more than 2 m s−1, compared to only
23.2 % of the nocturnal observations, leading to a wind speed
MBE of 3.23 m s−1 at night. Note that the mean wind speed
at night within WRF-GHG is 4.4 m s−1 (see also Fig. 3c),
while the nighttime CO2 concentration in WRF-GHG is on
average 403.8 ppm (see also Fig. 7a). Looking at Fig. 8, these
values follow the pattern as found in the observations, where
a nocturnal wind speed of more than 4 m s−1 corresponds
with CO2 mole fractions of about 403–404 ppm. Therefore
the model is likely underestimating the in situ CO2 observa-
tions at SDe because of an overestimation of the surface wind
speed.

Furthermore, we examine the relation of nighttime CO2
concentrations and 10 m wind direction at SDe. Figure 9a
shows that the dominant observed wind direction at night is
easterly–southeasterly (ESE), followed by southerly (S). The
ESE winds generally correspond with higher wind speeds
(> 2 m s−1) and lower CO2 concentrations (generally below
410 ppm), whereas observations with southerly winds gen-
erally coincide with very low wind speeds and CO2 accu-
mulation (Fig. 9a and b). The region in the ESE of SDe is
a rural area dominated by agricultural activities. Therefore,

these stronger ESE winds would generally bring air with a
lower CO2 content to SDe. WRF-GHG, on the other hand,
overestimates the wind speed and almost consistently simu-
lates ESE winds and lower CO2 concentrations (Fig. 9c and
d). As such, the model–data mismatch is likely caused by
a combination of both wind speed overestimation in WRF-
GHG and discrepancies as to the wind direction, which are
interrelated.

4.2.2 XCO2

A higher correlation coefficient of 0.90 is found when com-
paring the daytime hourly averaged TCCON XCO2 data with
the smoothed XCO2 from WRF-GHG (see Table 3). More-
over, the RMSE along the time series is 0.75 ppm, and there
is a model underestimation of 0.37 ppm. The hourly relative
model–data errors are below 0.5 % (Fig. 10). This is, how-
ever, slightly larger than the TCCON standard deviation of
the hourly averages, which is around 0.1 %.

WRF-GHG provides a separation into different tracer con-
tributions, which are shown in Fig. 11. Monthly averages of
these contributions for XCO2 show a large (positive) bio-
genic enhancement in the months from August to Decem-
ber. The biogenic tracer in WRF-GHG is driven by the on-
line biogenic CO2 fluxes calculated through the VPRM mod-
ule as the sum of the gross ecosystem exchange (GEE) and
respiration (Mahadevan et al., 2008). A positive biogenic
tracer suggests that the respiration accumulates more CO2
than the ecosystem can capture during the day by photosyn-
thesis. Indeed, in the Southern Hemisphere, the dry season is
generally from May until November, leading to a decrease
in GEE in some ecosystems (Quansah et al., 2015; Räsä-
nen et al., 2017). Moreover, this carbon source was higher
in 2016 because of a strong El Niño–Southern Oscillation
(ENSO) event, leading to higher temperatures and less pre-
cipitation in the tropics (Yue et al., 2017).

The anthropogenic enhancement is relatively constant
throughout the year. There is also a small biomass burning
component modeled in XCO2 in the months from August to
December, which corresponds to the biomass burning (BB)
season. During these months, frequent fires occur in southern
Africa and South America. Duflot et al. (2010) showed that
these polluted air masses can be transported to Réunion Is-
land and detected by FTIR observations, such as XCO. Note
that the XCO2 enhancements due to biomass burning coin-
cides with the biogenic enhancements because, especially in
the tropics, the occurrence and duration of the BB season are
linked to the dry season (Giglio et al., 2006).

A recent study using a COCCON spectrometer at Goba-
beb in Namibia showed that the African biosphere can im-
pact the observed XCO2 signal there due to medium- and
long-range transport (Frey et al., 2021). More specifically,
they demonstrated that the carbon sink of the African bio-
sphere during austral summer can be observed in their XCO2
measurements, while it is not (or to a lesser extent) visible in
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Figure 9. Wind rose of hourly nighttime data at SDe, where the night is defined between 14:00 and 02:00 UTC. Panels (a) and (b) show the
distribution of the observed wind speed per wind direction and near-surface CO2 concentration per wind direction, respectively. Panels (c)
and (d) show the same for WRF-GHG simulated data. The lengths of the bars show the frequency of occurrence in percentage.

the time series at Réunion Island. Backward trajectories for
1 specific day in February 2017 revealed that this contrast
comes from the sampling of different air masses. This might
suggest that the influence of fluxes from the African conti-
nent on the air above Réunion Island is seasonally depen-
dent, with a high impact during the dry season and a lower
impact during wet season. Backward trajectory simulations
over a longer time period performed by Zhou et al. (2018)
might suggest this as well; however, more research is needed
to prove this statement.

As expected, the column observations of CO2 are deter-
mined by different processes than the in situ CO2 concen-
trations. Where the variation in XCO2 is mainly driven by
fluxes on the African continent, the surface CO2 mole frac-
tions are heavily influenced by local sources and PBL dy-
namics. This also agrees with the trajectory calculations by
Zhou et al. (2018), showing that surface air mainly originates

in the Indian Ocean, while free tropospheric air is mainly
coming from Africa and South America.

4.2.3 Surface CH4

The model–data comparison for CH4 at SDe (Table 3) shows
only a weak correlation (0.35) between modeled CH4 and
observations at SDe. WRF-GHG shows an overestimation
of about 9 ppb. Figure 6b and d show two apparent dis-
tributions in the scatterplot. This is linked with the sea-
sonal cycle of CH4, where observations show minimum val-
ues in December–February and maximum values in August–
September. The errors between the observations and WRF-
GHG are not constant over time. In Fig. 12, a seasonal bias
is found, with larger errors between December and February,
which is austral summer. This is a known weakness in the
CAMS reanalysis, used as boundary information, as pointed
out in the most recent validation report by Ramonet et al.
(2020).
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Figure 10. Relative percentage differences between hourly (smoothed) WRF-GHG and FTIR observations of XCO2, XCO, and XCH4. The
blue dots represent the data at SDe (WRF–TCCON), while the orange data are from MA (WRF–NDACC).

For all observations CH4 shows a seasonality in
the relative difference between observations and
CAMS simulations, which is increasing in the
Southern Hemisphere after 2008. . . . The sea-
sonal dependence, which needs to be investigated
in more detail, may be related to the representa-
tion of OH in the model, or/and to errors in the
seasonal cycle of surface emissions (mainly from
agriculture and wetlands). (Ramonet et al., 2020)

This demonstrates the importance of accurate lateral
boundary conditions for simulating long-lived tracers with
regional models such as WRF-GHG.

The diurnal cycle of the CH4 tracer contributions in Fig. 13
shows that the modeled CH4 consists almost entirely of
the background signal and an anthropogenic enhancement,
whereby both factors can add to the model–data mismatch.

The diurnal cycle is less pronounced in the observations
(not shown). Nighttime values are on average only slightly
larger than during the day, with a mean difference of only
3.09 ppb (σ 2

= 6.35), indicating that a nocturnal accumula-
tion as identified for CO2 in Saint-Denis is less evident for
CH4. Moreover, the overestimation of the daily amplitude in
WRF-GHG suggests an overestimation of the local anthro-
pogenic CH4 fluxes from EDGAR.

In contrast to CO2, the CH4 mole fractions near the sur-
face are less impacted by PBL dynamics and more by the
background concentration.

4.2.4 XCH4

Incorrect boundary values and hence background concentra-
tions have an impact on all CH4 simulations at Réunion Is-
land. Therefore, the statistics for the column-averaged mole
fraction of XCH4 at SDe (part of TCCON) are worse than
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Figure 11. Monthly mean tracer contributions to the column-averaged mole fractions of (a) CO2, (b) CO, and (c) CH4. The different colors
represent different tracers, i.e., anthropogenic (red), biogenic (green), ocean (blue), wetlands (dark green), termites (light green), or biomass
burning (brown). The solid lines are the mean monthly contributions at SDe, while the dashed lines are for MA.

Figure 12. Time series of daily mean relative percentage differences between model and in situ observations of CH4 at SDe (orange) and
MA (blue). The black dashed line indicates zero difference.
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Figure 13. Diurnal cycle of in situ CH4 tracer contributions of
WRF-GHG at SDe. The black crosses represent the median hourly
enhancements above the background for the sum of all tracers. The
separate tracer contributions are given in red (anthropogenic), dark
green (wetlands), light green (termites), or brown (biomass burn-
ing). The shaded areas cover the interquartile ranges. The gray dot-
ted vertical lines at 02:00 and 14:00 UTC indicate the approximate
times of sunrise and sunset.

for CO2. A weak correlation is found (0.31; Table 3), and
the model overestimates TCCON XCH4 by 5.69 ppb, which
is slightly less than the bias with respect to in situ data
(Sect. 4.2.3).

Figure 10c shows the relative differences between WRF-
GHG and observational data, which have the same seasonal
pattern as for the in situ comparisons (Fig. 12) caused by
the reported seasonal bias for CH4 in the CAMS reanalysis
data. The relative differences are below 2 %, but due to this
seasonality in the errors, very little correlation is found.

Even though the model fails at reproducing the measured
time series, it is still interesting to examine the different mod-
eled tracer contributions to XCH4 (Fig. 11b). The tracers
contribute only a few ppb to the total signal, with the anthro-
pogenic being dominant throughout the year. Furthermore,
small peaks in biomass burning enhancements are found dur-
ing the BB season, as for the other species. The biogenic trac-
ers for CH4 in WRF-GHG are generated by emissions from
termites and wetlands. The termite signal is, however, very
small and thus not relevant for this region. The signal from
wetlands is larger, especially in austral summer. This roughly
coincides with the rain season, causing a greater wetland ex-
tent (Lunt et al., 2019).

In the same way as for CO2, the surface CH4 mole frac-
tions at SDe are influenced by local sources at Réunion
Island, while fluxes from Africa and Madagascar are de-
tected in the column observations because of the different
air masses they sample.

4.2.5 XCO

At SDe, CO is only available as a column-averaged mole
fraction (part of TCCON). As seen in Table 3, a very high
correlation (0.89) is found for the hourly averaged paired
data. WRF-GHG slightly overestimates the observed XCO
(MBE of 5.07 ppb). Figure 10c shows that the relative error
between WRF-GHG and the XCO observations from TC-
CON is often below 20 % but not constant because larger
errors up to 30 % are found from January until May.

As for the other species, large contributions of BB emis-
sions are found in the months from August to December
(Fig. 11c). Duflot et al. (2010) showed that XCO values
during the BB season can reach up to twice the CO back-
ground concentration from other months. The rather limited
BB enhancement found in WRF-GHG suggests that a sub-
stantial XCO increase in the BB season is already included
in the background tracer. This suggests that fires outside of
the large domain can also be detected at Réunion Island, such
as those from South America, which would confirm the find-
ings of Duflot et al. (2010). The anthropogenic contribution
is more constant throughout the year, and it is the dominant
contribution outside BB season. However, it remains rather
small compared to the background, which appears to be the
main driver behind the simulated XCO values at Réunion Is-
land.

The larger model overestimations in January 2016 and
April 2017 are thus likely linked to the background tracer,
which is based on the CAMS global reanalysis for reactive
gases. The corresponding CAMS validation report (Errera
et al., 2021) mentions no known biases but shows similar
relative errors in those months in the Southern Hemisphere
and in particular at MA (visible in Errera et al., 2021; see
their Fig. S6 on p. 10). Again this demonstrates the impor-
tance of accurate boundary conditions for simulating XCO
in this region but additionally points to the large influence of
remote regions (outside domain d01) on the observed XCO
time series at Réunion Island.

4.3 GHG data at Maïdo

At MA, the surface mole fractions of all three gases (CO2,
CH4, and CO) are measured together with the column-
averaged mole fractions of CH4 and CO that are part of
NDACC. The results of each species are given in the sections
below. Again, the full time series of the observed and mod-
eled data can be found in Appendix C, and statistical metrics
of the model–data comparison are shown in Table 3. Note
that all statistical analyses of in situ observations at MA are
performed on the complete data set. Studies at other high-
altitude stations often filter only those measurements which
are representative for the free troposphere (Sepúlveda et al.,
2014). However, analyses comparing only day- or nighttime
data at MA showed no significant differences in the results.
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4.3.1 Surface CO2

At MA, the in situ CO2 observations by the Picarro in-
strument are well reproduced by WRF-GHG, resulting in
a correlation coefficient of 0.75 and a very small MBE of
−0.15 ppm (see Table 3). As at SDe, the diurnal CO2 cy-
cle at MA shows a daytime minimum and a nighttime maxi-
mum (see Fig. 14a); however, the amplitude is much smaller.
This pattern is caught by WRF-GHG, although the ampli-
tude is slightly underestimated. During the day, WRF-GHG
shows a small overestimation of the CO2 measurements of
about 0.9 ppm, while at night a slight underestimation (about
0.4 ppm) is found. As seen on Fig. 14b, the modeled diurnal
variation is almost entirely produced by the biogenic tracer,
indicating that the biogenic flux calculated by VPRM might
be the reason for the model–observation discrepancies. The
VPRM parameters used in the model are based on model
tests in the Amazon region.

Foucart et al. (2018) showed that, due to surface radiative
cooling, the observatory is primarily situated in the free tro-
posphere at night. The air at MA is then disconnected from
local pollution sources, and air from remote regions can be
sampled. Indeed, no anthropogenic contribution is detected
during the nighttime. However, the observed and simulated
diurnal cycle of CO2 (Fig. 14a and b) shows that nighttime
measurements at MA are still influenced by the respiration
of the local vegetation.

The anthropogenic contribution at MA is very minor in
WRF-GHG, which is expected because of the remote loca-
tion of the observatory. A very small enhancement is iden-
tified during the day. Since the local grid cell used for the
model comparison does not include any anthropogenic flux,
this enhancement is advected from elsewhere. It has been
shown that orographic lifting can bring polluted air from
coastal areas in the west towards MA during the day (Fou-
cart et al., 2018; Duflot et al., 2019). Despite the fact that
these westerly winds during the day were not reproduced by
WRF-GHG (see Sect. 4.1.1), a daytime anthropogenic en-
hancement is found in the simulations. The model compo-
nents representing biomass burning and ocean fluxes at MA
are negligible.

So, according to WRF-GHG, the main contribution (above
the background) to the CO2 signal at MA is coming from
the local vegetation and its photosynthesis and respiration,
leading to a distinct diurnal cycle. The importance of the sur-
rounding biosphere for the surface observations at MA was
also found by Verreyken et al. (2021), for volatile organic
compounds. Even though the diurnal cycles of CO2 at SDe
and MA display similar patterns of minima during the day
and maxima at night, they are caused by entirely different
mechanisms.

4.3.2 Surface CH4

Because of the importance of accurate background concen-
trations, the model performance at simulating in situ CH4
concentrations at MA is very similar compared to SDe as
the correlation is low (0.30) and the model overestimates the
observations by circa 19 ppb. The modeled signal consists
almost entirely out of the anthropogenic tracer (in addition
to the background signal; see Fig. 15a). Since the errors at
MA follow the same pattern (Fig. 12) as at SDe, and because
inaccurate background information affects all CH4 simula-
tions, the seasonal bias in the CAMS reanalysis is also the
cause for the weak model performance at MA. The errors at
MA are larger than those at SDe, likely due to the relatively
low resolution of the EDGAR inventory (0.1◦) used for an-
thropogenic CH4 emissions, leading to horizontal dilution,
where the concentration difference between high-emission
areas and their surroundings becomes smaller, leading to an
overestimation of the emissions in the low-emission areas.
In contrast with the model results, no diurnal cycle could be
detected in the observations (not shown).

4.3.3 XCH4

The model–data comparison for the NDACC data shows a
very weak correlation (0.37) and a model underestimation
of NDACC XCH4 (−5.65 ppb). This MBE has an opposite
sign compared to TCCON CH4. Zhou et al. (2018) showed
that NDACC XCH4 is generally about 10 ppb lower than TC-
CON XCH4 at Réunion Island due to their difference in ver-
tical sensitivity. This pattern in the bias is the same as the one
found by Ramonet et al. (2020) in comparisons of the CAMS
reanalysis with NDACC and TCCON XCH4. Again, a sea-
sonal pattern is found in the relative differences (Fig. 10b),
which are caused by the reported bias for CH4 in the CAMS
reanalysis data.

The tracer contributions to the XCH4 signal at MA in
WRF-GHG are very similar to those at SDe, with sea-
sonal enhancements from biomass burning and wetlands
from Africa alongside a more constant anthropogenic part
(Fig. 11b). Note that the contributions at MA seem to be
slightly larger than those at SDe. This is because the at-
mospheric column above the high-altitude station of MA is
smaller than the one above SDe and because the enhance-
ments are transported from Africa and Madagascar by the
westerlies higher up in the troposphere. The relative contri-
butions averaged over the column are then higher at MA than
at SDe.

4.3.4 Surface CO

WRF-GHG captures the in situ surface CO time series at MA
quite well, and there is a high correlation of 0.83 (Table 3;
Fig. 6e). The RMSE is about 11 ppb, and there is a small
model overestimation of 5.51 ppb. During the day, a small
anthropogenic enhancement is found (see Fig. 15b), as for
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Figure 14. Same as Fig. 7 but for Maïdo.

Figure 15. Diurnal cycle of tracer contributions for (a) CH4 and (b) CO in situ surface concentration at MA.

CO2. As already noticed, thermal contrasts make air masses
from the coastal areas arise during the day along the moun-
tain slope before reaching the Maïdo Observatory. This air
contains anthropogenic pollution. At the observatory itself,
no anthropogenic CO fluxes are implemented, so the model
is representing this daytime advection to some extent.

Another contributor is the BB signal from August to De-
cember. The contribution is not very visible in the diurnal cy-
cle due to its seasonal nature, but daily enhancements of up to
40 ppb are simulated by WRF-GHG. BB contributions from
the African continent and Madagascar are highest during the
night, when MA is generally located in the free troposphere
and transport from distant regions is detected (Baray et al.,
2013).

4.3.5 XCO

A very high correlation (0.90) is found for the hourly av-
eraged paired column data of NDACC and WRF-GHG (Ta-
ble 3). In general, WRF-GHG slightly overestimates the ob-

served XCO (MBE of 1.81 ppb). Note that the errors are
larger (the overestimation is larger) for the TCCON data
compared to the NDACC data (also Fig. 10b). This is prob-
ably linked to biases between the TCCON and NDACC data
sets. Zhou et al. (2019) showed that there is a bias of 2.5 %
between TCCON XCO and NDACC XCO at Réunion Island
due to differences in the retrieval algorithm and data correc-
tions.

As for XCH4, the average monthly tracer contributions of
XCO at MA are very similar as those at SDe (Fig. 11b), with
large contributions of BB emissions in the months August
to December. Because of the unique location of MA, both
the in situ observations and the column-averaged XCO are
sensitive to these large seasonal events.

5 Model resolution

The above analysis was done using the WRF-GHG simula-
tions from the innermost domain d03 (Fig. 2), which has a
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horizontal resolution of 2× 2 km. As surface in situ obser-
vations are heavily influenced by local fluxes and dynamics,
this high resolution is necessary to represent these measure-
ments accurately, especially in regions with complex topog-
raphy. As the ground-based remote sensing FTIR observa-
tions sample a much larger volume of air, a lower model res-
olution is likely sufficient to catch the fluxes and processes
that influence them. Therefore, the model–data comparison
for domains d01 and d02, with a horizontal resolution of 50
and 10 km, respectively, is given in this section. Table 4 gives
the statistical metrics for the FTIR observations at both sites,
for all model domains.

The results are very similar among the different model res-
olutions, indicating that even a horizontal resolution of 50 km
(as in d01) could be sufficient to simulate the FTIR observa-
tions at Réunion Island. In addition to the larger sampling
volume, this can be explained by the fact that the most im-
portant contributions to the column are coming from remote
areas such as Africa and Madagascar, situated in d01 and
d02. The added value of high-resolution transport in d03 is
negligible for the FTIR observations.

6 Conclusions

We studied the variability in CO2, CH4, and CO surface and
column observations at Réunion Island and evaluated the
possible factors influencing their observed mole fractions.
This was achieved by comparing the available data sets with
simulations of the WRF-GHG model over two periods be-
tween 2015 and 2017, totaling 20 months. The model perfor-
mance was first evaluated for basic meteorological fields both
near the surface and along atmospheric profiles. WRF-GHG
shows good skill in reproducing these measurements, espe-
cially temperature. However, the local wind speed in Saint-
Denis is overestimated by almost 4 m s−1, and also at Maïdo,
there are some discrepancies in the wind speed and direc-
tion, which are likely linked to the complex topography and
the model resolution of 2 km not being sufficient to represent
the very local dynamical processes.

Nevertheless, the results enable us to answer the scientific
questions posed in the introduction.

1. To what extent are the observations influenced by local
and nearby sources and sinks or long-range transport
of emitted gases?
At both Saint-Denis and Maïdo, the in situ observations
are heavily influenced by local and nearby sources and
sinks, especially for CO2. However, the in situ observa-
tions at Maïdo can detect both signals from the coastal
regions and from afar at night, when the observatory is
located in the boundary layer and the free troposphere,
respectively. On the other hand, the column-averaged
mole fractions describe different air masses to those
near the surface and are not or only very slightly influ-
enced by local activities. As shown by previous studies

and confirmed here, these measurements at Réunion Is-
land are influenced by processes from distant areas such
as Africa and Madagascar. This is further evidenced by
the fact that a model resolution of 50 km appears to be
sufficient to simulate these observations.

2. What are the different tracer contributions to the ob-
served concentrations, both at the surface and in the
total column?
The surface CO2 mole fractions in Saint-Denis follow
a distinct diurnal cycle, with values up to 450 ppm at
night, driven by local anthropogenic emissions, plane-
tary boundary layer dynamics, and accumulation due to
low wind speeds. Additionally, the signal includes res-
piration from vegetation that is carried by eastern winds
from more rural regions. At the Maïdo Observatory, on
the other hand, a similar diurnal cycle of CO2 is found
but with much smaller amplitude. There, the surface
CO2 mole fractions are essentially driven by the sur-
rounding vegetation that take up CO2 during the day
and release CO2 during the night through respiration.
The different model tracers of XCO2 show contribu-
tions from fire emissions during the biomass burning
season but also positive biogenic enhancements associ-
ated with the dry season. For CH4, tracer contributions
reveal that the emission sources within the model do-
main have only a minimal effect on the overall signal.
Besides the background, local anthropogenic fluxes are
the major source influencing the in situ CH4 observa-
tions at Réunion Island. However, the comparisons be-
tween the model fields and observations at Saint-Denis
show that the anthropogenic emissions from EDGAR
are likely largely overestimated; this is even more ev-
idenced at Maïdo. Some (minor) impacts from Africa
and Madagascar can be seen in the XCH4 observations,
with fire plumes during the biomass burning season and
wetland emissions during the rainy season. For XCO,
the importance of biomass burning plumes from Africa
and elsewhere for the observed variability is confirmed.
These plumes can also be detected by the in situ ob-
servations at Maïdo at night, while local anthropogenic
signals are the main influence during the day.

3. How accurate is WRF-GHG in simulating the different
observation types of the three gases (CO2, CH4, and
CO) in the Southern Indian Ocean region, in particular
at Saint-Denis and at the Maïdo Observatory? What are
its strengths and weaknesses?
In general, WRF-GHG shows great skill in simulating
the different in situ surface and column observations of
GHG. The simulations of XCO2 and XCO show a high
correlation with the TCCON data, with coefficients of
0.9 and 0.89, respectively. Similarly, a Pearson corre-
lation coefficient of 0.9 and low errors are found be-
tween the model and NDACC XCO time series. Fur-
thermore, WRF-GHG is able to adequately reproduce

https://doi.org/10.5194/acp-22-7763-2022 Atmos. Chem. Phys., 22, 7763–7792, 2022



7782 S. Callewaert et al.: Analysis of CO2, CH4, and CO observations at Réunion Island using WRF-Chem

Table 4. Overview of WRF-GHG performance of simulating hourly FTIR observations of GHG at Réunion Island, for all model domains.
Comparison with the column observations is done using the smoothed model profiles.

SDe MA

XCO2 (ppm) XCH4 (ppb) XCO (ppb) XCH4 (ppb) XCO (ppb)

d01 d02 d03 d01 d02 d03 d01 d02 d03 d01 d02 d03 d01 d02 d03

RMSE 0.66 1.26 0.75 12.45 11.89 10.26 8.05 8.01 8.08 10.55 11.03 10.80 7.64 7.24 7.37
MBE 0.12 −0.24 −0.37 8.69 6.89 5.69 5.06 5.02 5.07 −5.22 −6.00 −5.65 1.92 1.46 1.81
CORR 0.90 0.75 0.90 0.27 0.34 0.31 0.88 0.89 0.89 0.36 0.37 0.37 0.89 0.89 0.89

the in situ CO observations at Maïdo, and consequently,
to some extent, the anabatic winds that are typical for
the northwestern part of the island, despite the differ-
ences in modeled and observed wind directions. The
high model resolution of 2 km is needed to accurately
represent local fluxes and small-scale processes that af-
fect the in situ observations. However, because of the
complex topography and the unique local wind patterns,
an even higher resolution might be needed to simu-
late more precisely the observations at Maïdo. In addi-
tion, certain model flaws were discovered in this study.
Due to an overestimation of local wind speeds in the
capital, WRF-GHG underestimates the nocturnal CO2
buildup, leading to a correlation coefficient of only 0.62
between the model and surface CO2 measurements at
Saint-Denis. Furthermore, we found a small model un-
derestimation of the amplitude of the diurnal cycle of
surface CO2 at Maïdo, which might indicate that the
VPRM parameters could be improved for this region.
Finally, WRF-GHG fails to accurately reproduce the
different CH4 observations at Réunion Island due to a
seasonal bias in the background arising from the CAMS
reanalysis.

This study showed an application of the WRF-GHG model
in a region of the globe where it had not yet been run be-
fore. It demonstrated that WRF-GHG had great skill in sim-
ulating the meteorological fields and different in situ surface
and column observations of GHG. However, the results are
highly dependent on accurate boundary conditions and the
availability of high-resolution emission inventories.

Appendix A: VPRM parameters

As mentioned in Sect. 3.1, this study uses the VPRM pa-
rameter set that was optimized by Botía et al. (2021) for the
Amazon region in Brazil. Table A1 gives the exact values for
every vegetation class.

Appendix B: Smoothing model data

A smoothing correction is applied when comparing the
model data with the TCCON and NDACC data. Retrieved

column-averaged mole fractions are affected by the observ-
ing system characteristics, and therefore, Rodgers and Con-
nor (2003) suggest taking into account the a priori informa-
tion and averaging kernels of the retrieval when calculating
the Xgas of the model. The different steps undertaken to cal-
culate this are explained hereafter for TCCON and NDACC
separately.

Generally, the smoothed Xgas from WRF-GHG is calcu-
lated as follows:

Xgas,s =
TCgas

s

TCair
=

∑
iPCgas,i

s

TCair
=

∑
ix
i
sPCiair

TCair
, (B1)

where PCiair is the partial column number density of dry air in
layer i, and xis is the volume mixing ratio with respect to dry
air in layer i of the smoothed model profile. In the following,
all parameters indicating a volume mixing ratio or column
number density are also with respect to dry air; however, for
brevity, it will not be specified any more.

B1 TCCON

Equation (B1) requires a smoothed vertical profile (xis). Since
TCCON does not provide profile retrievals, we cannot calcu-
late this. Instead, we use the following smoothing equation
for TCCON:

Xgas,s =
TCgas

apriori

TCTCCON
+a·

(
PCgas

WRF,regrid

TCWRF,regrid
−

PCgas
apriori

TCTCCON

)
, (B2)

where TCTCCON is the total column (number density) of dry
air from TCCON (for an atmospheric column up to 50 hPa).
Similarly, TCgas

apriori is the total column of the a priori mole
fraction from TCCON calculated as the sum of the partial
columns PCgas,i

apriori over those layers i that are below 50 hPa.
Furthermore, a is the vector with the column averaging ker-
nels of TCCON.

The regridded partial column profile of WRF-GHG
(PCgas

WRF,regrid) and the total column of dry air from WRF
(TCWRF,regrid) are calculated in a few steps which are ex-
plained below. By including the total column of dry air from
WRF in Eq. (B2), we want to eliminate potential differences
in air between TCCON and the model. As such, the priority
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Table A1. VPRM parameters used within WRF-GHG.

Evergreen Deciduous Mixed Shrubs Savanna Crops Grasses
forest forest forest

PAR0 993.9 324.0 206.0 303.0 6860.7 2329.0 15475.5
λ 0.1096 0.1729 0.2555 0.0874 0.0277 0.0417 0.0568
α 0.2114 0.3258 0.3422 0.0239 −0.2535 −0.0814 −0.3122
β 1.8187 0.0 0.0 0.0 7.1125 3.6716 7.3377

is given to the volume mixing ratio profiles (instead of the
calculation of dry air). The steps we take are as follows:

1. Extend the WRF-GHG atmospheric profiles (gas mole
fraction, pressure, temperature, and water vapor) above
the model limit (50 hPa) using information of the TC-
CON a priori profiles.

2. Calculate the dry air partial column in layer i using the
ideal gas law as follows:

PCiair =
P i

RT i

τ i

1+ 1.6075qi,

with P as atmospheric pressure, T as air temperature,
R as the ideal gas constant, q as the mass mixing ratio
of water vapor, and τ as the layer thickness.

3. Calculate the gas number density partial columns as
PCigas = x

i
gasPCiair, with xigas as the gas mole fraction in

layer i.

4. Regrid these partial column profiles to the full TCCON
grid using a transformation matrix D, as in Langerock
et al. (2015), as follows:

PCgas
WRF,regrid = D ·PCgas,

and

PCWRF,regrid = D ·PCair.

5. Finish with TCWRF,regrid =
∑
iPCiWRF,regrid, where the

sum is taken over all layers i below 50 hPa.

B2 NDACC

The smoothed Xgas from WRF-GHG at MA is calculated
slightly differently to at SDe, as, for NDACC, the volume
mixing ratio profiles are provided. The smoothing equation
can be written as follows:

xgas,s = x
gas
apriori+A ·

(
x

gas
WRF,regrid− x

gas
apriori

)
, (B3)

where x
gas
apriori is the volume mixing ratio (VMR) a priori

profile from NDACC, and A is the NDACC VMR averag-
ing kernel matrix. Similar to that for TCCON, a few steps
need to be taken to make the WRF-GHG data fit in Eq. (B3).
Steps 1–4, as described above, should be followed but by us-
ing NDACC information instead of TCCON (a priori VMR
profile, temperature, and water vapor profiles; vertical grid).
Then the regridded VMR profile from WRF-GHG is calcu-

lated as x
gas
WRF,regrid =

PCgas
WRF,regrid

PCWRF,regrid
. Finally, the smoothed dry

air mole fraction at MA is given by the following:

Xgas,s =

∑
ix
i
gas,sPCiWRF,regrid∑
iPCiWRF,regrid

,

where the sum is taken over all layers i below 50 hPa.

https://doi.org/10.5194/acp-22-7763-2022 Atmos. Chem. Phys., 22, 7763–7792, 2022



7784 S. Callewaert et al.: Analysis of CO2, CH4, and CO observations at Réunion Island using WRF-Chem

Appendix C: Time series

The full time series of both the observed and modeled con-
centrations at SDe and MA are given in the figures hereafter.
Figures C1 and C2 show the time series of the in situ data at
SDe and MA, respectively. Similarly, Figs. C3 and C4 show
the comparison of the FTIR data at SDe (TCCON) and MA
(NDACC).

Figure C1. Time series of all observed (black) and modeled (red) in situ concentrations at SDe of (a) CO2 and (b) CH4. The blue dots
represent the modeled background tracer.
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Figure C2. Time series of all observed (black) and modeled (red) in situ concentrations at MA of (a) CO2, (b) CH4, and (c) CO. The blue
dots represent the modeled background tracer.
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Figure C3. Time series of all observed (black) and modeled (red) column concentrations at SDe of (a) CO2, (b) CH4, and (c) CO. The blue
dots represent the modeled background tracer. The modeled data are hourly and smoothed. The observed data are scaled to the atmospheric
column until 50 hPa, and all available measurements are shown.
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Figure C4. Time series of all observed (black) and modeled (red) column concentrations at MA of (a) CH4 and (b) CO. The blue dots
represent the modeled background tracer. The modeled data are hourly and smoothed. The observed data are scaled to atmospheric column
until 50 hPa, and all available measurements are shown.
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Chapter 5

Explaining GHG variability in
northeast China: a WRF-GHG study
at Xianghe

This chapter examines the in situ and column observations of CO2, CH4, and CO at the Xi-
anghe site near Beijing, China. The WRF-GHG model is used to simulate the observed time
series, assessing the model’s accuracy at this location. It also investigates the primary source
sectors and meteorological processes influencing the observed variabilities, and attempts to
explain discrepancies between the model and observed data.
The manuscript discussing the results for CH4 was submitted to the peer-reviewed journal
Atmospheric Chemistry & Physics in October 2024 and is currently under review. The first
section of this chapter consists of this preprint, which is also available online at the EGU-
sphere platform:

Callewaert, S., Zhou, M., Langerock, B., Wang, P., Wang, T., Mahieu, E., and De Mazière,
M.: A WRF-Chem Study of the Greenhouse Gas Column and in Situ Surface Concentrations
Observed at Xianghe, China. Part 1: Methane (CH4), EGUsphere, pp. 1–39, doi: 10.5194/
egusphere-2024-3228, 2024

The results for CO2 and CO will be published in a follow-up article and are given in the
second part of this chapter.

5.1 Analysis of CH4 time series
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Abstract. This study is the first of two companion papers which investigate the temporal variability of CO2, CH4 and addi-

tionally CO concentrations measured at the Xianghe observation site near Beijing in China using the Weather Research and

Forecast model coupled with Chemistry (WRF-Chem), aiming to understand the contributions from different emission sectors

and the influence of meteorological processes. Simulations of the in situ (PICARRO) and remote sensing (TCCON-affiliated)

measurements are produced by the model’s greenhouse gas option, called WRF-GHG, from September 2018 until September5

2019. The present study discusses the results for CH4. The model shows good performance, after correcting for biases in bound-

ary conditions, achieving correlation coefficients up to 0.66 for near-surface concentrations and 0.65 for column-averaged data.

The simulations use separate tracers for different source sectors and revealed that energy, residential heating, waste manage-

ment and agriculture are the primary contributors to the CH4 concentrations, with the energy sector having a greater impact on

column measurements than surface concentrations. Monthly variability is linked to both emission patterns and meteorological10

influences, with advection of either clean or polluted air masses from the North China Plain playing a significant role. The

diurnal variation of the in situ concentrations due to planetary boundary layer dynamics is quite well captured by WRF-GHG.

Despite capturing the key variability of the CH4 observations, the model displays a seasonal bias, likely originating from an

incorrect seasonality in the emissions from agricultural and/or waste management activities. Our findings highlight the value

of WRF-GHG to interpret both surface and column observations at Xianghe, offering source sector attribution and insights15

in the link with local and large-scale winds based on the simultaneously computed meteorological fields. However, they also

highlight the need to improve the knowledge on the seasonal CH4 cycle in northern China to obtain more accurate emission

data and boundary conditions for high-resolution modeling.

1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the most important anthropogenic greenhouse gases (GHG), contributing to20

climate change. Driven by human activities, the atmospheric burden of both species has been increasing over the last 200 years

1
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to unprecedented levels (Masson-Delmotte et al., 2021). Moreover, CH4 has a 28 times larger global warming potential than

CO2 over a period of 100 year and a 10 times shorter atmospheric lifetime. Controlling CH4 emissions is therefore a priority

to mitigate climate change in the near future (Saunois et al., 2020).

Because of rapid industrialization in the past decades and its heavy dependence on coal, China is the world’s largest emitter of25

CO2 and CH4 (Friedlingstein et al., 2022; Worden et al., 2022). The main anthropogenic CO2 sources in China are industry,

power generation, residential and commercial activities and transportation (Zhao et al., 2012), while sectors such as coal min-

ing, livestock, rice paddies, landfills and wastewater management are the largest contributors to the CH4 emissions in China

(Chen et al., 2022). China has pledged to reach its carbon peak by 2030 and neutrality by 2060. To help battle climate change

and reach these goals, it is essential to have accurate observations of the GHG concentrations. Not only does atmospheric30

monitoring aid in revealing sources and sinks and controlling the impact of mitigation measures, but by studying temporal

variations a better understanding of the carbon cycle and its interactions with the atmosphere can be achieved.

Since 2018, both ground-based in situ and remote sensing observations of GHGs have been deployed at the Xianghe ob-

servatory, which is located about 50 km southwest of Beijing. Its location in the center of the Beijing-Tianjin-Hebei (BTH)

megalopolis makes it an interesting site to study the properties and variability of GHGs in a polluted area. The remote sensing35

observations are made by a Fourier Transform Infrared (FTIR) spectrometer and are part of the international Total Column

Carbon Observing Network (TCCON), while the in situ concentrations are measured by a PICARRO cavity ring-down spec-

troscopy (CRDS) analyzer that samples air from a tower at an altitude of 60 m above the ground.

Our work aims to perform a comprehensive analysis of both in situ and column observations of CO2, CH4 and additionally CO

at Xianghe to gain a better understanding of the causes of the observed temporal variabilities and complement previous studies.40

The present article is the first of two companion papers where the focus of the current work lies on the CH4 observations. A

second paper (in preparation) will cover the analysis for CO2 and CO.

Some first insights in the observed CH4 time series at Xianghe were made by Yang et al. (2020) and Ji et al. (2020). They

found that the seasonal cycle of XCH4 is different compared to those at other TCCON sites at similar latitude, with larger

concentrations in summer and autumn and lower values in spring. Furthermore, the column observations of CO2, CH4 and45

CO show a large day-to-day variability and are correlated with each other. Yang et al. (2020) showed that the high values are

related to both local pollution and pollution originating from the south, while low concentrations are corresponding with clean

airmasses from more remote regions in the north.

To achieve our goal, we will simulate the time series at a high spatial resolution with the WRF-Chem model for greenhouse

gases (WRF-GHG). This widely used regional atmospheric transport model simulates the 3-D concentrations together with50

meteorological fields without chemical interactions, which is generally a valid assumption regarding the regional domain and

the relatively long atmospheric lifetimes of the target species (∼ 100 yrs for CO2, ∼ 10 yrs for CH4 and several weeks for

CO)(Dekker et al., 2017). Nevertheless, both CH4 and CO are prone to chemical reactions in the atmosphere, making this

assumption a simplification of actual conditions, which should be taken into account when analyzing the results. WRF-GHG

has already shown to be a useful tool to study CO2 fluxes and variability in China (Dayalu et al., 2018; Liu et al., 2018; Li55

et al., 2020; Dong et al., 2021). However, and to our best knowledge, applications to CH4 or CO observations in China have
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not been reported yet. Elsewhere, this model was successfully used to analyze comparable observations (Zhao et al., 2019; Hu

et al., 2020; Park et al., 2020; Callewaert et al., 2022). Therefore, this study will additionally assess the model’s capability of

simulating these time series in north China and highlight its strengths and weaknesses in this region.

This work is structured as follows: in Sect. 2 the Xianghe site and its observations are described, together with the XCH460

product of TROPOMI (the TROPOspheric Monitoring Instrument onboard Sentinel-5P), which will give additional insight

into the results. Further, an overview of the WRF-GHG model system is given and the approach used to compare the model

simulations with the different measurements. Section 3 presents the results and discussion: the main model performance is

evaluated in Sect.3.1, followed by an analysis of the contributions from different source sectors to the CH4 observations at

Xianghe in Sect.3.2. Section 3.3 explores potential causes of the observed seasonal bias in the model simulations, while Sect.65

3.4 examines the key meteorological processes influencing CH4 variability. Further, a comparison with TROPOMI XCH4 is

conducted in Sect. 3.5 to investigate the potential overestimation of emissions from a coal mine source near Tangshan. Finally,

Sect.4 summarizes the key findings and conclusions for CH4.

2 Data, models and methods

2.1 Xianghe site70

The observation site is situated in Xianghe county (39.7536◦ N, 116.96155◦ E; 30 m a.s.l.), a suburban area in the Beijing-

Tianjin-Hebei (BTH) region in north China. The center of Xianghe is about 2 km to the east of the site, while the metropolitan

cities of Beijing and Tianjin are located about 50 km to the northwest and 70 km to the south-southeast, respectively (see

Fig. 1b). Cropland and irrigated cropland are the predominant kind of vegetation in the area. The East Asian Monsoon, which

causes hot, humid summers with plenty of precipitation and cold, dry winters, determines the climate.75

Since 1974, atmospheric observations are made at the Xianghe observatory by the Institute of Atmospheric Physics (IAP),

Chinese Academy of Sciences (CAS). In June 2016 a FTIR spectroscopy instrument (Bruker IFS 125HR) was installed on

the roof of the observatory, two years later, a solar tracker was added to the setup and continuous measurements are made

from June 2018 onwards. This ground-based remote sensing instrument measures spectra in the infrared and is affiliated with

TCCON (Wunch et al., 2011; Zhou et al., 2022), providing total column-averaged dry air mole fractions (denoted as Xgas) of80

CO2, CH4 and CO. In the current study, the GGG2020 data version (Laughner et al., 2024) is used. Depending on the weather

and measurement status, observations occur every 5-20 min. TCCON measurements are performed under clear sky conditions

only. The measurement uncertainty is about 6 ppb for XCH4. Further details about the instrument and retrieval methodology

can be found in Yang et al. (2020).

Additionally, in situ mole fractions of CO2 and CH4 are measured by a PICARRO cavity ring-down spectroscopy G230185

analyzer since June 2018. The instrument samples air from an inlet fixed at 60 m above the ground on a tower. More detail

about the measurement setup is given in Yang et al. (2021). The measurement uncertainty is 1 ppb for CH4.
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Figure 1. (a) Location of the WRF-GHG domains, with horizontal resolutions of 27 km (d01), 9 km (d02) and 3 km (d03). All domains

have 60 (hybrid) vertical levels extending from the surface up to 50 hPa. (b) Terrain map including the largest cities in the region of Xianghe,

roughly corresponding to d03. The location of the Xianghe site is indicated by the red triangle in both maps.

2.2 TROPOMI

The TROPOMI instrument on board the Sentinel-5 Precursor (S5P) satellite is observing the Earth on a polar sun-synchronous

orbit. With a daily global coverage, it measures solar backscatter in the near and shortwave infrared absorption bands of which90

column-average mixing ratios of CH4 can be retrieved. In the current study, the bias-corrected reprocessed L2 RemoTec-S5P

XCH4 product from SRON (ESA, 2021) was used, where a quality filter of 1.0 was applied. This L2 product was evaluated

at Xianghe by Yang et al. (2020) and Tian et al. (2022): they found a small negative bias of -0.6% and -0.39% with TCCON

XCH4, respectively. These values are well within the mission requirements of 1.5 % and therefore indicate a good quality of

TROPOMI XCH4 in this part of China.95

2.3 WRF-GHG modelling system

We use the Weather Research and Forecasting model coupled with Chemistry version 4.1.5 (WRF-Chem, Grell et al. (2005);

Skamarock et al. (2019); Fast et al. (2006)) in its greenhouse gas option, called WRF-GHG (Beck et al., 2011). WRF-GHG is a

Eulerian atmospheric transport model that simulates the 3-D concentration of trace gases at every time step simultaneously with

meteorological fields, neglecting chemical reactions. The model configuration consists of three nested domains with increasing100

resolution in a Lambert Conformal projection (see Fig. 1a). The parent domain (d01) has 134 by 130 grid cells of 27×27 km2

and covers a large part of China, Mongolia, North and South Korea and Japan. The second domain (d02), which has 133 by

121 grid cells of 9×9 km2, mainly covers north China. Finally, the innermost domain (d03) has a resolution of 3×3 km2 over

145 by 124 grid cells and almost completely covers BTH. There are 60 vertical levels between the surface and 50 hPa. A set

of physical parameterization schemes was chosen (see Table 1) after performing several sensitivity tests which are detailed in105

Appendix A. Given the wide range of global anthropogenic emission datasets available and the significance of these fluxes
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Physics Scheme name Option

Microphysics Morrison 2-moment 10

Longwave radiation RRTMG 4

Shortwave radiation RRTMG 4

Planetary boundary layer Mellor-Yamada-Janjic 2

Surface layer Eta similarity 2

Cumulus Grell 3D Ensemble 5

Land surface Unified Noah Land Surface Model 2
Table 1. Overview of physical parameterization options used for WRF-GHG simulations.

to simulate accurate concentrations in regions with large anthropogenic activity such as BTH, several anthropogenic emission

inventories were also included in these sensitivity tests.

2.3.1 Input data and parameterization

The model was driven by the hourly European Centre for Medium-Range Weather Forecasts (ECMWF) global ERA5 reanalysis110

data set (0.25◦ × 0.25◦, Hersbach et al. (2023a, b)) for meteorological fields. The concentration fields for CO2 and CH4

are initialized by the 3-hourly Copernicus Atmosphere Monitoring Service (CAMS) global reanalysis for greenhouse gases

(EGG4), while the 6-hourly reactive gases product is used for CO (EAC4, Inness et al. (2019)). These CAMS reanalysis data

sets are also used at the model domain boundaries to represent influences coming from outside the parent domain (d01). The

evolution of these initial and lateral boundary conditions inside the domain over time is stored in a separate tracer, the so-called115

background tracer. Similarly, the evolution of concentrations caused by emissions within the boundaries of d01 is saved in

different tracers, dependent on their source sector. The sum of all tracers, including the background, gives the total simulated

concentrations which can be compared to the observations.

The simulations are re-initialized with the ECMWF ERA5 data every 30 h, starting at 18:00 UTC the previous day with a 6 h

spin-up period, as done in other WRF-GHG modelling studies (Feng et al., 2016; Park et al., 2018; Pillai et al., 2011). Every120

day at 00:00 UTC, the tracer fields from the previous run are copied to the new simulation to ensure continuous transport of

the concentrations.

We conducted sensitivity tests to identify a set of physical parameterization schemes and anthropogenic fluxes that provide

appropriate simulations for all three species (CH4, CO2, and CO) across the different observation methods (in situ and remote

sensing). The details of these tests are provided in Appendix A. Our findings indicate that the anthropogenic fluxes from CAMS-125

GLOB-ANT v5.3 (Granier et al., 2019; Soulie et al., 2023) for CO2 and CH4, and from REAS v3.2.1 (Regional Emission

Inventory in Asia, Kurokawa and Ohara (2020)) for CO offer the best alignment with the Xianghe observations. We released

all fluxes in the lowest model layer near the surface and multiplied them with temporal factors of CAMS-TEMPO (Guevara

et al., 2021) to account for hourly and daily variation. Remark that both chosen anthropogenic inventories additionally provide

sector-specific information. To include this information in our simulations, different sectors are linked to separate tracers. The130
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This study CAMS-GLOB-ANT (for CO2 and CH4) REAS (for CO)

Energy

Power generation (ene) Power plants point

Fugitives (fef) Power plants non-point

Oil refineries and transformation sector (ref)

Industry Industrial processes (ind) Industry

Transport

Road transportation (tro) Road transport

Off Road transportation (tnr) Other transport

Ships (shp)

Residential &

Waste

Residential, commercial and other combustion (res) Domestic

Solid waste and waste water (swd)

Agriculture

Agriculture soils (ags)

Agricultural waste burning (awb)

Agriculture livestock (agl)
Table 2. Overview of mapping between the five broad sectors used in this study (first column) and the emission sectors provided by CAMS-

GLOB-ANT v5.3 (second column) and REAS v3.2.1 (third column).

11 sectors from CAMS-GLOB-ANT were aggregated into five broad sectors to make the model simulations computationally

less expensive. A similar aggregation was performed on the REAS sectors. The mapping is given in Table 2. This will allow us

to track the respective contributions to the total simulated concentrations of the following source categories: energy, industry,

transportation, residential & waste and agriculture. More detail about what is included in every sub-sector can be found in the

documentation of the respective data set.135

Further, biomass burning emissions are coming from the Fire INventory from NCAR (FINN v2.5, Wiedinmyer et al. (2011))

for all species. The observation-based global pCO2 climatology from Landschützer et al. (2017) is used to represent the

ocean-atmosphere exchange of CO2, while the CH4 fuxes from wetlands are taken from the WetCHARTS v1.0 climatology

(Bloom et al., 2017). Finally, WRF-GHG calculates the biogenic CO2 fluxes online based on the Vegetation Photosynthesis and

Respiration Model (VPRM, Mahadevan et al. (2008); Ahmadov et al. (2007)). It uses its own calculated 2 m temperature and140

downward shortwave radiation together with surface reflectance data from the Moderate Resolution Imaging Spectroradiameter

(MODIS) onboard the Aqua and Terra satellites. The extra required parameters for VPRM are taken from Li et al. (2020).

2.4 Comparing observations with WRF-GHG simulations

2.4.1 Xianghe in situ observations

The WRF-GHG model cell which covers the location of the instrument is selected to compare with the in situ observations.145

Because the concentrations are measured at an altitude of 60 m.a.g.l., this WRF-GHG profile is interpolated to that altitude,
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using the model surface as ground level. Finally, the observations are averaged over a period of 30 minutes around the hourly

model output.

2.4.2 Xianghe TCCON remote sensing observations

The same model cell as for the in situ observations is used to compare with the column observations. The five TCCON150

observations that are closest in time with the WRF-GHG output, but deviate no more than 15 minutes, are averaged and used

for the comparison. The model profile is extended above 50 hPa with the TCCON a priori profile and then smoothed by using

the averaging kernels in order to account for the instrument and retrieval characteristics (Rodgers and Connor, 2003). Note

that an alternative approach would be to extend the model profiles with the CAMS reanalysis that is used as initial and lateral

boundary conditions. However, the accuracy issues with CAMS CH4 data in the stratosphere are well-documented (Ramonet155

et al., 2021; Agustí-Panareda et al., 2023), and would introduce known biases into our study. Moreover the optimized a priori

profiles of the TCCON GGG2020 data show improved accuracy in the stratosphere (Laughner et al., 2023), supporting our

decision to utilize this data for extending the model profiles.

2.4.3 TROPOMI observations

To compare the spatial XCH4 distribution of TROPOMI with those of WRF-GHG, the model profiles are extended above 50160

hPa with the TROPOMI a priori column number density profiles of CH4 and dry air (mol m−2) to ensure that both products

in the comparison cover the same altitude range. Since a typical CH4 profile shows a sharp decrease in the upper layers of

the atmosphere, this part has a non-negligible impact on the column-averaged mole fraction. Further, the extended WRF-GHG

CH4 profiles are smoothed with the TROPOMI column averaging kernels and a priori profiles following Apituley et al. (2023).

The column number density profiles of CH4 and dry air are calculated from the hourly 3-D WRF-GHG output as follows:165

ρCH4
i = νCH4

i ρda
i , with ρda

i =
Pi

RTi

1
1 +1.6075qi

τi. (1)

In the above equation νCH4
i is the CH4 dry air volume mixing ratio (ppb) and ρda

i the dry air column number density in WRF-

GHG layer i. The dry air column number density ρda
i is calculated according to the ideal gas law, where Pi, Ti and qi are the

air pressure (Pa), temperature (K) and water vapour mixing ratio with respect to dry air (kg kg−1), respectively. The thickness

of layer i (m) is represented by τi. Finally, R is the ideal gas constant 8.3145 J K−1 mol−1. Note that 1.6075 is the ratio of the170

molar mass of dry air with respect to the molar mass of water to convert wet air to dry air.

TROPOMI has an equator crossing time of around 13:30 local solar time, so we compute the equivalent simulated XCH4

by taking the average over 12h-15h LT. Note that we use the model simulations from the d02 domain (which has a horizontal

resolution of 9×9 km2) for this analysis, instead of d03 as for the comparisons with Xianghe observations, since a larger spatial

extent is advantageous for a statistically effective comparison with TROPOMI.175

Using the HARP toolset (part of the Atmospheric Toolbox, https://atmospherictoolbox.org/) for TROPOMI and the CDO

software (Schulzweida, 2020) for WRF-GHG, both XCH4 products are then binned to a common spatial grid to enable a

quantitative analysis: we have chosen a regular latitude-longitude grid with a horizontal resolution of 0.05◦.
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3 Results and discussion

3.1 Overall model performance180

With the model settings as elaborated in Sect. 2.3, WRF-GHG was run from 15 August 2018 to 1 September 2019. However,

the first two weeks were regarded as a spin-up phase, so the analysis is made on one full year of data: from 1 September 2018

until 1 September 2019. This conservative spin-up period is implemented to ensure thorough mixing of the tracers within the

domain. The complete data set can be accessed on https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023).

An overview of the simulated and observed time series of the CH4 concentrations at Xianghe is shown in Fig. 2, together with185

the model error. For the column observations, the model shows a mean underestimation of -3.03 ppb, with a moderate correla-

tion of 0.56 (Table 3). At the surface level, the data were divided into afternoon (13:00–18:00 LT) and nighttime (03:00–08:00

LT) periods for statistical analysis, as models generally perform better in simulating concentrations during the afternoon when

the lower atmosphere is better mixed. The definition of these time periods is based on the daily maximum and minimum values,

as will be discussed later in Sect. 3.4.2. Indeed, the correlation is higher during the afternoon (0.66) compared to nighttime190

(0.42), with mean bias errors of 14.22 ppb and 12.68 ppb, respectively (see Table 3). Additionally, significantly larger errors

were found at night, indicating greater challenges for the model in accurately capturing nighttime values compared to after-

noon.

The moderate correlation coefficients are likely due to a seasonality in the bias: WRF-GHG is underestimating the CH4 data

at Xianghe in summer and autumn (June - November) and slightly overestimating them in winter (January - March), which is195

especially visible for the column data in Fig. 2c.

insitu CH4 (afternoon) insitu CH4 (night) XCH4

BIAS 14.22 12.68 -3.03

RMSE 159.74 334.06 23.96

CORR 0.66 0.42 0.56
Table 3. Statistics of the model-data comparison of the ground-based CH4 observations at the Xianghe site from 1 September 2018 until 1

September 2019. We present the mean bias error (BIAS), root mean square error (RMSE) and Pearson correlation coefficient (CORR). The

mean bias error and root mean square error are given in ppb. For in situ observations, the data is split in afternoon (13-18 LT) and night (3-8

LT) hours.

Possible sources of this bias are inaccuracies in the background values, misrepresentation of CH4 sources and sinks within

WRF-GHG, or a combination of these factors. Given CH4’s long atmospheric lifetime, background values significantly con-

tribute to the total simulated signal, as also illustrated by the mean values for the background and total simulated tracer in200

the top of Table 4. We therefore start by further examining the global CAMS reanalysis which is used to represent the inflow

and outflow at the model domain boundaries. In the CAMS validation report by Ramonet et al. (2021), a similar seasonal bias

between CAMS CH4 and TCCON is found. To explore this pattern in more detail and include Xianghe in the analysis, we
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Figure 2. Time series of the observed (black) and simulated (red) (a) XCH4 and (b) insitu CH4 concentrations at the Xianghe site. Panels

(c) and (d) show the differences between WRF-GHG simulations and observations for XCH4 and in situ CH4, respectively. Data points are

hourly. The red points in (c) and (d) represent the monthly mean differences.

XCH4 (ppb) in situ CH4 (ppb)

Q1 median mean Q3 Q1 median mean Q3

Total 1900.74 1916.18 1927.36 1942.42 2028.75 2132.50 2212.50 2302.58

Background 1885.79 1890.75 1891.34 1896.57 1912.83 1927.69 1925.37 1938.20

Biomass burning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Energy 2.61 11.13 19.04 28.90 12.03 49.67 105.88 135.21

Residential (& waste) 2.65 5.86 8.17 10.72 31.24 65.49 94.33 122.11

Industry 0.07 0.17 0.21 0.30 0.77 1.63 2.29 2.99

Transportation 0.06 0.12 0.15 0.20 0.66 1.40 2.00 2.58

Agriculture 2.00 4.75 7.56 9.49 24.95 51.77 76.08 97.30

Wetlands 0.02 0.12 0.56 0.62 0.09 0.66 4.17 3.91

Termites 0.17 0.29 0.34 0.46 1.13 2.02 2.37 3.17

Total tracers 9.86 24.76 36.02 51.21 102.75 209.15 287.13 377.48
Table 4. Statistics of the total simulated CH4 concentrations and the different tracer contributions over the complete simulation period. Q1

and Q3 represent the first and third quartile, respectively, between which 50 % of the data fall.

reproduce their calculations for several TCCON sites at similar latitudes (Karlsruhe (49.1◦ N), Orleans (48.0◦ N), Garmisch

(47.5◦ N), Park Falls (45.9◦ N), Rikubetsu (43.5◦ N), Lamont (36.6◦ N), Tsukuba (36.0◦ N), Edwards (35.0◦ N), Pasadena205

(34.1◦ N), Saga (33.2◦ N), and Hefei (31.9◦ N)) for the period of interest, as shown in Fig. 3. Indeed, we find a seasonal
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Figure 3. Monthly mean difference (in ppb) between CAMS reanalysis model and TCCON XCH4 between 30 - 50◦ N over the simulation

period of this study.

bias where CAMS is overestimating TCCON XCH4 from December until May and showing a small underestimation in the

rest of the period. The bias at Xianghe ranges from 13.17 ppb in February 2019 to -6.56 ppb in August 2019 (monthly mean

differences). The monthly mean bias of WRF on the other hand, ranges between 24.49 ppb in February 2019 and -28.70 ppb in

August 2019 and shows a significantly larger amplitude than the CAMS bias. Moreover, the same seasonal pattern is found in210

the time series of the differences for the in situ data (Fig. 2d). Ramonet et al. (2021) assume the seasonal bias within CAMS is

related to an inaccurate representation of the seasonal cycle of surface emissions and/or the OH sink. Similarly, the remaining

WRF-GHG bias likely arises from errors in the seasonality of the CH4 emissions and/or neglecting the reaction of CH4 with

OH. This will be further investigated in Sect. 3.3.

In the rest of this work, we have applied a bias correction to the WRF-GHG simulations by subtracting the monthly mean215

difference between CAMS and TCCON XCH4, averaged over all sites (except Pasadena due to outlier behavior) between 30

- 50◦ N, from the background tracer. The updated statistical metrics are given in Table 5. The correlation coefficient for the

column data slightly improves to 0.65, where for the surface concentrations the bias correction has only a negligible impact on

the model-data comparison. The remaining monthly mean bias for XCH4 (in situ CH4) ranges between 13.04 ppb (95.20 ppb)

in February 2019 and -25.70 ppb (-121.25 ppb) in August 2019, which is still larger than the measurement uncertainty of 6 ppb220

(1 ppb).

3.2 Sector contributions to observed concentrations

All fluxes that are included in WRF-GHG are tracked in separate tracers, as explained in Sect. 2.3. This allows us to disentangle

the total simulated concentrations into the different tracer contributions and evaluate the influence of different source sectors

on the observations at Xianghe, as well as their respective importance. An overview of the monthly mean values is shown in225
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insitu CH4 (afternoon) insitu CH4 (night) XCH4

BIAS 8.43 6.88 -8.10

RMSE 158.29 333.22 22.35

CORR 0.66 0.43 0.67
Table 5. Same as Table 3 but with bias corrected model values.

Figure 4. Monthly mean tracer contributions above the background for (a) XCH4 and (b) in situ CH4 simulated concentrations at Xianghe.

Fig. 4, while additionally the median and interquartile range of the complete period are given in Table 4. Note that all simulated

hours were used for this analysis, not just the ones coinciding with observations.

For CH4, the simulated signal at Xianghe is mainly determined by three sectors: energy, residential & waste (which com-

bines both residential heating and waste management sectors) and agriculture. They respectively contribute with a median230

enhancement of 11.13 ppb, 5.86 ppb and 4.75 ppb above the background for the columns and 49.67 ppb, 65.49 ppb and 51.77

ppb near the surface (see Table 4). Furthermore there is a small contribution from wetlands in summer, peaking in July with a

median tracer contribution of 1.49 ppb for the columns and 10.65 ppb near the surface. Other sectors such as industry, trans-

portation, termites and biomass burning seem to be irrelevant at Xianghe. Overall, the total tracer enhancement is about ten

times larger for the in situ concentrations compared to the column-averaged values.235

The fact that the dominant source sectors (agriculture, residential heating, waste management and energy (which is mainly coal

mining in this case)) are not known for releasing CH4 at elevated altitudes, supports our choice to implement the emissions

only in the lowest model layer.

Futhermore, remark that for the in situ concentrations, the three dominant sectors are roughly equally important, while for

11

https://doi.org/10.5194/egusphere-2024-3228
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 5. (a) Mean vertical profile of the tracer fields in WRF-GHG for CH4 at Xianghe. All simulated hours were used for this plot. (b-f)

Maps of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d02 during the entire simulation period for the most important sectors.

Remark that different sectors have different ranges in the colorbar. The lcoation of the Xianghe site is indicated by the blue cross.

the column concentrations we find a larger impact of the energy sources: the relative mean enhancement of the energy tracer240

is 52.87% for the column concentrations, while it is only 36.88% for the surface concentrations. When looking at the mean

vertical profiles of the different tracer contributions above Xianghe (Fig. 5a) we see that the contributions from the energy

sector are generally found at a higher altitude compared to other sectors. High concentrations near the surface are associated

with emission sources nearby, while those aloft are likely caused by long-distance pollutant transport in the free troposphere.

Therefore, we assume that this difference between column and surface energy contribution is because the strongest energy245

sources are situated in Shanxi (the largest coal producing province in China), which is much further away from Xianghe than

for example the strongest residential (mainly Beijing and Tianjin) and agricultural sources, see Fig. 5b-d.

In Fig. 4, we further observe a larger residential signal in winter, where the median tracer contribution peaks with 13.43 ppb in

February for the columns and with 132.75 ppb in January, near the surface. Meanwhile, the influence from agriculture reaches

its maximum in September (monthly median values of 14.46 ppb for XCH4 and 196.07 ppb for in situ CH4) and its minimum250

in March-April (monthly median values of 0.89 ppb for XCH4 and 11.49 ppb for in situ CH4). This corresponds with the

seasonal pattern of emissions within CAMS-GLOB-ANT.

3.3 Seasonal CH4 bias

In Sect. 3.1, we identified a seasonal bias in the CH4 simulations (WRF-GHG underestimates CH4 in summer and autumn,

overestimates in winter) that could not be fully explained by a similar bias in the background data, indicating a potential bias255

in the seasonality of the emission data and/or a consequence of ignoring the OH sink. In this section, we first investigate the
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primary emission sectors that may have contributed to this seasonal bias. One of the major sources of CH4 at Xianghe is

the energy sector (see Sect. 3.2), primarily through fugitive emissions from the extraction, processing, storage, and transport

of coal, oil, and natural gas. These emissions are not expected to exhibit significant monthly variation. Indeed, the energy

emissions in the CAMS-GLOB-ANT inventory are relatively stable throughout the year: they show a coefficient of variation260

(CV, calculated as the ratio of the standard deviation to the mean) of only 0.42% for the monthly averaged values across

the model domain. As a result, our focus will be on the following emission categories: agriculture, residential & waste, and

wetlands.

– Agriculture. As presented in Table 2, the agricultural sector is comprised of three subsectors: soils (this is mainly rice

cultivation), agricultural waste burning, and livestock (manure management and enteric fermentation). In China, rice265

cultivation plays a vital role but is predominantly concentrated in regions south of 35◦N. In CAMS-GLOB-ANT, the

most important agriculture subsector in the region of the Xianghe site is livestock. According to the emission inventory,

livestock emissions in the wide region around Xianghe peak in September and reach their lowest levels in March and

April. Unfortunately, the source of these monthly variations in CH4 emissions within the inventory is unclear, as the

accompanying data set of temporal factors, CAMS-GLOB-TEMPO (Guevara et al., 2021), references constant factors270

for CH4 emissions from agricultural sources. Previous research by Maasakkers et al. (2016) suggests that emissions from

manure management often correlate with air temperature, with higher emissions during warmer months (May to Septem-

ber in this case) and lower emissions during colder months (December to February). If the true seasonality of agricultural

emissions around Xianghe is indeed temperature-driven, this implies that the current inventory underestimates emissions

during spring and summer (May to August) and overestimates them in winter, as it shows a peak only in September275

and a minimum in spring (March-April) rather than in winter. This discrepancy in the seasonality of emissions could

explain the seasonal bias observed in our CH4 simulations, pointing to inaccuracies in the representation of agricultural

emissions.

– Residential & waste. This sector represents emissions from residential, commercial and other combustion sources to-

gether with CH4 emissions from solid waste and waste water treatment. In CAMS-GLOB-ANT, the waste sector is the280

most important one in the Xianghe region and assumed to be relatively constant throughout the year: monthly total CH4

emissions between 38-41 ◦N and 115-119 ◦E range between 0.0408 Tg and 0.0452 Tg. In summer, total residential com-

bustion emissions in the region can be as low as 0.0039 Tg per month, while in winter, they are almost of the same size as

the waste emissions: 0.0357 Tg. So the seasonality of the residential & waste sector is coming from the residential part,

peaking in winter. However, Hu et al. (2023) showed that CH4 emissions from waste treatment often follow the season-285

ality of air temperature. Even though this study is based on observations in the Hangzhou megacity, their results could

possibly be representative for the BTH region as well. This would mean that the waste emissions are underestimated in

summer and/or overestimated in winter, which would match the current model-observation mismatch for CH4.

– Wetlands. Within the WRF-GHG simulations, wetlands only show minor contributions to the surface and column data,

and only in summer. Emissions are taken from the WetCHARTs v1.0 ensemble data set. In the BTH area, the main290
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wetland areas are located close to the Bohai Sea (see Fig. 5f). However, according to WetCHARTs, these emissions

are relatively small compared to those from wetlands more in the south of China. In an evaluation of the WetCHARTs

ensemble against GOSAT observations by Parker et al. (2020), a general underestimation of the seasonal amplitude in

China was found. Furthermore, Chen et al. (2022) showed increased posterior wetlands emissions compared to the a

priori values when inferring yearly CH4 emissions over China using TROPOMI satellite observations. This could point295

to an underestimation of the wetland emissions in the current study, and therefore an underestimation of CH4 in summer.

The observed seasonal error pattern between the WRF-GHG CH4 simulations and the Xianghe observations may be due to one

or more of the reasons previously mentioned. To gain a spatial perspective on this seasonal bias, we compared the WRF-GHG

XCH4 field with TROPOMI observations. Figure 6 shows the seasonal mean XCH4 from both WRF-GHG and TROPOMI, as

well as their normalized difference over the broader Xianghe region. To highlight seasonal variations, we subtracted the mean300

difference between WRF-GHG and TROPOMI over the entire simulation period (also shown in Fig. 12d) from the seasonal

means, resulting in a ’normalized difference.’ Overall, we find a mean bias error between WRF-GHG and TROPOMI of -10.55

ppb (or -0.56% [(TROPOMI - WRF-GHG)/WRF-GHG]), consistent with previous studies. (Yang et al., 2020; Tian et al., 2022;

Sha et al., 2021).

The analysis reveals a model underestimation in summer (JJA) and an overestimation in winter (DJF), see Fig. 6. The biases305

are smaller in spring and autumn. However, we cannot identify a distinct spatial pattern throughout the seasons that could point

to errors within a specific source sector. Figure 6 shows differences on a large spatial scale, suggesting that for example the

underestimation by WRF-GHG is linked to emission sources that are widespread in the region. Since the North China Plain is

a livestock-dominated region with strong urbanization and industrial activities, this implies that the fluxes of either agriculture

(livestock), waste treatment, or both, rather than the fluxes from wetlands, are underestimated in summer in CAMS-GLOB-310

ANT. Given the lack of a clear outcome from our analysis, it is likely a combination of factors.

Finally, we used backward simulations with the FLEXible PARTicle dispersion model (FLEXPART) v10.4 (Pisso et al., 2019)

to evaluate the impact of the OH sink on CH4 concentrations at Xianghe. Details of the model configuration are provided in

Appendix B. By comparing simulations that include or exclude the chemical reaction with OH, we estimated its influence. The

results indicate a more pronounced difference in summer than in winter, with mean relative backward sensitivity differences of315

about 0.04%, 0.005%, 0.05%, and 0.2% in October 2018, January 2019, April 2019, and July 2019, respectively, over the entire

footprint. Considering the size of CH4 emissions within the WRF-GHG domain (Table 4), the contribution of the ignored OH

reaction to the CH4 mole fraction is around 0.11 ppb in winter and 4.4 ppb in summer, which remains small compared to the

measurement uncertainties (1 ppb for in situ data and 6 ppb for TCCON) and the magnitude of the observed bias. Moreover,

the higher impact in summer should theoretically cause a model overestimation during this season if the OH sink is ignored.320

However, since the observed seasonal bias shows a different trend, it is unlikely to be driven by CH4 chemistry.

Therefore, our analysis highlights an urgent need for further research into the seasonality of CH4 emissions in northern China.
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Figure 6. Seasonal mean XCH4 (ppb) over the domain d02 (provinces of Beijing, Tianjin, Hebei, Shanxi and part of Shandong) as simulated

by WRF-GHG (first column) and observed by TROPOMI (second column), as well as the normalized difference between them (WRF-GHG

- TROPOMI, in ppb). Normalized difference indicates that the mean difference over the entire simulation period is subtracted from the

seasonal means. The seasons are defined as (a,b,c) SON: September - November (autumn), (d,e,f) DJF: December - February (winter), (g,h,i)

MAM: March - April (spring) and (j,k,l) JJA: June - August (summer). White pixels indicate that there are no observations available during

the entire period.
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3.4 Impact of meteorology on variability of concentrations

In Sect. 3.2, we showed how emissions from different sources affect the CH4 observations at Xianghe. In the current section

we want to focus on the meteorological factors that influence the temporal variability of the time series. More specifically we325

will discuss the impact of large-scale phenomena, the planetary boundary layer and local winds.

3.4.1 Synoptic scale winds

Because FTIR observations generally have a large area of representativeness (generally a few 100 km), column concentrations

are relatively insensitive to local fluxes and vertical mixing, while they are strongly influenced by large-scale patterns (Keppel-

Aleks et al., 2011). We use the winds at 800 hPa to represent horizontal transport in the free troposphere, as this altitude is330

generally above the planetary boundary layer height. More specifically, we looked at the daily mean column concentrations

above the background for every wind direction to see if a clear relationship could be found. This is shown in Fig. 7.

Remark that only southwest (SW) and northwest (NW) wind segments are given because southeast and northeast winds occur

only seldom at 800 hPa: only on 2 and 13 days out of 231, respectively. We find that in general, larger enhancements are found

when winds blow from the SW wind segment (median tracer contribution of 57.79 ppb) compared to the NW segment (median335

tracer contribution of 7.33 ppb). To quantify the difference, we conducted a non-parametric Mann-Whitney U test on the two

categories, which yielded p-values well below 0.05 (see Fig. 7, in the title), indicating that the differences are statistically

significant. Higher concentrations coincide with 800 hPa winds coming from the SW while NW winds correspond with lower

concentrations. Yang et al. (2020) already showed that the day-to-day variation of the column observations of CH4, CO2 and

CO are highly intercorrelated, and that clean days are linked with air from the north, while polluted days are linked with air340

from the south, which is confirmed here by the WRF-GHG simulations. Air masses from the north have been moving over

rather remote and clean areas such as Inner Mongolia, Mongolia and Russia. Meanwhile, southerly air is linked with the highly

populated North China Plain (NCP), where many anthropogenic emission sources are located.

The influence of polluted air from the southwest is visible in the surface concentrations as well, as we find a high correlation

coefficient of 0.79 between the daily mean column and surface tracer enhancements. This indicates that both surface and col-345

umn CH4 concentrations are affected by synoptic-scale winds, which advect either clean or polluted air masses to Xianghe.

Furthermore, the levels of pollution in these air masses can vary significantly from month to month due to changing meteoro-

logical conditions. For instance, during the winter months, weather conditions are generally more favorable to the accumulation

of pollutants, leading to higher pollution levels (Li et al., 2022). This can intensify both local pollution plumes and those trans-

ported by southwestern winds. This phenomenon likely explains why despite relatively constant emissions throughout the year,350

we observe a significant month-to-month variability in the energy tracer contributions (see Fig. 4). More specifically, we find a

CV of 26.53% for the column and 26.65% for the surface tracers. These findings suggest that tracer concentrations at Xianghe

result from a complex interplay of emissions, wind direction, and weather patterns both near and far.
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Figure 7. The distribution of the daily mean simulated column tracers above the background per 800 hPa wind direction category and species.

NW is for winds with an angle of 292.5 to 337.5 ◦ from north, while SW represents the angles between 202.5 and 247.5◦. There are 72 days

with NW winds and 33 days with SW winds. The colored boxes indicate the range between the first and third quartile, while the thick solid

line is the median. Outliers (values that are 1.5 times the interquartile range above (below) the third (first) quartile) are shown by black dots.

3.4.2 Planetary boundary layer dynamics355

The planetary boundary layer (PBL) is the lowermost layer of the atmosphere which is in direct contact with the Earth’s

surface. The characteristics of this layer vary throughout the day. During the day, under influence of solar radiation, turbulent

motions cause strong vertical mixing of the air within the PBL. These processes allow gases to be dispersed and transported

upwards, which generally leads to reduced concentrations near the surface. At night, radiational cooling of the surface creates

a temperature inversion close to the ground. This causes the nocturnal PBL to be stable and more shallow, trapping pollutants360

near the surface and as such increasing their local concentrations.

Figure 8 shows the diurnal variation of the PBL height as simulated by WRF-GHG and the CH4 concentrations near the surface

(both simulated and observed). Indeed, the height of the PBL in WRF-GHG is largest in the afternoon when solar radiation

is strongest, reaching its peak at 15:00 (local time). This corresponds with the lowest simulated surface concentrations (Fig.

8b), where we find median (and interquartile) values of 2039.77 (1977.74 - 2158.28) ppb. Right after sunset, the height of the365

PBL drops to its lowest value (≈ 50 m - 430 m in WRF-GHG), after which it persists during the course of the night, until

sunrise. This period corresponds with slightly increasing CH4 concentrations as emissions near the surface accumulate within

this stable shallow layer. Hence, the highest concentrations are found in the early morning: at 8:00 with 2239.75 (2079.29 -

2484.04) ppb. As the PBL height starts to rise at 8:00 due to turbulent mixing, CH4 start to drop in WRF-GHG, creating a

diurnal cycle.370

Note that WRF-GHG is quite capable at simulating this diurnal variation of CH4 in situ observations. The observations show
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Figure 8. Hourly median and interquartile range of the (a) simulated planetary boundary layer height, and (b) observed and simulated surface

CH4 concentration at Xianghe.

minimal concentrations at 16:00 with a median (and interquartile) value of 2041.94 (1981.54 – 2135.88) ppb, which are well

captured by WRF-GHG, even though one hour earlier. The peak CH4 concentrations however, are observed at 6:00 with a

median (and interquartile) value of 2252.71 (2104.36 – 2451.01) ppb, portraying a small model underestimation of about 13

ppb. Together, this leads to a small underestimation of the CH4 diurnal amplitude in WRF-GHG of 10.79 ppb.375

We have shown that these PBL dynamics are very important for the variability of the surface concentrations, however they are

irrelevant for the column concentrations, as the latter are much less affected by vertical transport (Wunch et al., 2011). Indeed,

the WRF-GHG simulated column concentrations don’t exhibit a clear diurnal cycle, suggesting that this aspect is well captured

by the model. It is however difficult to validate this using observations, as FTIR measurements are only possible during periods

of sunlight.380

3.4.3 Local emissions

Regional emissions are influencing both column and in situ concentrations at Xianghe, as elaborated in Sect. 3.4.1. However,

emission sources nearby could also have an impact on these values, especially for the in situ observations as they sample the

local air. To analyze which nearby sources influence the Xianghe measurements, we look for correlations between the 10m

wind speed and direction and the simulated concentrations. Figure 9 reveals the mean WRF-GHG tracer contribution per wind385

direction and speed for CH4. To eliminate the influence of polluted plumes from further away, we select only those days on

which the mean daily XCO enhancement is smaller than 45 ppb. We use XCO as a tracer for polluted events as it is the species

with the shortest atmospheric lifetime. Furthermore, we compute the mean concentrations separately for day and night to avoid

the effects of the PBL. The night hours are defined as those with the peak concentrations, i.e., between 3h and 8h LT, while

the day represents those hours with highest atmospheric mixing and lowest concentrations, i.e., between 13h and 18h. During390
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Figure 9. Mean CH4 simulated tracer concentrations (indicated by colour scale, in ppb) binned per wind speed and direction for the main

sectors (a) energy, (b) residential & waste, (c) agriculture, (d) industry and (f) wetlands on days without strong regional pollution. The first

row represents afternoon hours (13h - 18h LT), while the second row represents nighttime hours (3h - 8h LT). Data is binned per 1 m s−1

and 11.25◦ wind direction. (f) Count of data points in each bin. Only bins with at least 3 points are included in the figure. Remark that the

panels have different colour scales.

the day most winds are coming from the north and southwest, while at night the most frequent wind directions near the surface

are north and east. Higher wind speeds are found during the day than at night. The northern winds typically have the lowest

tracer contributions since there are fewer emission sources in this direction, with the exception of agriculture (see Fig. 10).

In general, we see that wind directions with the largest enhancements correspond with the largest sources nearby (Fig. 9-10):

east and west for energy, all but north for residential, all directions for agriculture, southwest for industry and southeast for395

wetlands. The highest values overall (> 400 ppb) are found for the energy tracer at night and they are coming from the east,

where some very large CH4 point sources are located that correspond to coal mine emissions nearby the city of Tangshan (see

Fig. 10a). However, when looking closer at the CH4 time series (not shown) we see that WRF-GHG is often overestimating

the Xianghe in situ CH4 observations at times where the model shows a large energy contribution. This is also visible in Fig.

11. This makes us to believe that these coal mine emissions might be overestimated in CAMS-GLOB-ANT. In the next section400

we further investigate this hypothesis by comparing WRF-GHG concentration fields with TROPOMI observations.

3.5 Source assessment near Tangshan

By comparing the yearly TROPOMI XCH4 with WRF-GHG XCH4, we want to assess if the CH4 emissions from coal mines

around Tangshan are indeed overestimated in CAMS-GLOB-ANT or not. Figure 12 shows the maps of the mean XCH4 during

the entire simulation period: September 2018 until September 2019. The yearly mean total CH4 fluxes from CAMS-GLOB-405

ANT in the WRF-GHG d02 is also given, as well as the difference between WRF-GHG and TROPOMI. By taking the average
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Figure 10. Map of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d03 during the entire simulation period from September 2018

until September 2019, for the most important sectors. Remark that the panels have different colour scales. The location of the Xianghe site

is indicated by a blue cross.

Figure 11. Correlation between energy tracer contribution to simulated CH4 surface concentrations and differences between total simulated

and observed surface concentrations. For this plot, the data was not filtered on day, night or polluted/clean days.
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over the complete simulation period we minimize the influence of meteorological patterns on the XCH4 concentration and

expose the main emission sources.

When comparing the WRF-GHG input fluxes in Fig. 12a with the resulting XCH4 concentration field in Fig. 12b, we indeed

find a strong agreement. The largest sources are found to the west of 114◦E, which correspond to the extensive coal mining ac-410

tivities in Shanxi. In the same locations on the XCH4 map of WRF-GHG we find the highest concentration values of the region.

Unfortunately due to the mountainous terrain, TROPOMI observations are sparse in this area. Other sources, such as a hotspot

around 36.25◦N, 116.75◦E and the slightly smaller emissions around Beijing (40◦N, 116.3◦E) and Tangshan (39.6◦N, 118.4◦E)

correspond with elevated XCH4 values. This suggests that yearly averaged XCH4 maps can indeed reveal the strongest emis-

sion sources. It should be noted however, that the CH4 sources around Beijing and Tangshan are approximately three times415

smaller than those in Shanxi (west of 114◦E) and are barely strong enough to cause significant enhancements in the yearly

XCH4 maps. Our analysis indicates that point sources should emit at least around 0.1 Tg per year to be clearly distinguishable

on annual XCH4 maps, taken into account the noise of the observations. The region below 37◦N shows high simulated XCH4

values as well, however they do not directly correspond to strong sources in the inventory. This can likely be explained by the

presence of the Taihang mountains on the west which lead to poor dispersion conditions (Fu et al., 2014). Therefore the larger420

concentrations in this area are likely more determined by the topography and associated meteorological conditions than by

surface fluxes.

We observe slightly elevated XCH4 values near the coal mines of Tangshan in both the WRF-GHG (1888.39 ppb compared

to 1883.12 ppb in the surrounding area) and TROPOMI (1879.01 ppb vs 1876.64 ppb) maps. The surrounding area is defined

between 39.3-40 ◦N and 117.8-118.8 ◦E as there are no major CH4 sources located therein, while the coal mine sources are425

concentrated in the area between 39.45-39.8 ◦N and 118.15-118.6 ◦E. Although these differences are minor, the enhancement

in WRF-GHG is somewhat greater than in TROPOMI. More specific, the mean difference between WRF-GHG and TROPOMI

is 8.87 ppb around Tangshan, while it is 11.85 ppb near the emission sources, suggesting that the model overestimation is more

pronounced over the coal mines of Tangshan compared to the surrounding area. This difference is statistically significant with a

p-value of 7e-10, according to a one-sample t-test. This analysis suggests that these emission sources are indeed overestimated430

in CAMS-GLOB-ANT, occasionally leading to an overestimation of the energy tracer at Xianghe.

Note that the XCH4 maps in Fig. 12 suggest that it is very likely that the CH4 hotspot around 36.25◦N, 116.75◦E is overesti-

mated as well, as the very strong XCH4 enhancement in WRF-GHG is absent in the TROPOMI map.

4 Conclusions

We have used the WRF-Chem model in its greenhouse gas option WRF-GHG to simulate surface concentrations and col-435

umn abundances of CO2, CH4 and CO observed at the Xianghe site in China, aiming to improve our understanding of the

variabilities in the measured time series. Since June 2018, column-averaged concentrations are measured with a FTIR spec-

trometer that is part of TCCON, while near-surface concentrations of CO2 and CH4 are measured with a PICARRO CRDS

analyzer at an altitude of 60 m.a.g.l. We computed 3-D concentration fields from September 2018 until September 2019 in
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Figure 12. (a) The CH4 flux from all sectors in CAMS-GLOB-ANT averaged from September 2018 until September 2019 and regridded to

WRF-GHG grid d02 (9 km resolution). Mean XCH4 over the same period as (b) simulated by WRF-GHG and (c) observed by TROPOMI

(both regridded to 0.05 ◦). (d) Mean difference between WRF-GHG and TROPOMI XCH4 over the entire simulation period.

three nested domains covering a large part of China. The ground-based observations are compared with simulations from the440

innermost domain, centered on the Beijing-Tianjin-Hebei region, with a horizontal resolution of 3×3 km2. We employed the

CAMS-GLOB-ANT v5.3 inventory for anthropogenic emissions of CO2 and CH4, and the REAS v3.2.1 dataset for CO. To

disentangle the total simulated signal into the various source sectors, including a wide range of both natural and anthropogenic

sources, they were simulated as separate tracers. This study is the first part of the analysis, focusing on CH4.

In general, the model demonstrated moderate performance, with a correlation coefficient of 0.66 for near-surface CH4 concen-445

trations in the afternoon and 0.56 for column-averaged concentrations. After adjusting for the observed seasonal bias coming

from the boundary conditions (CAMS reanalyses), the performance improved, as indicated by an increase in the correlation

coefficient to 0.67 with the TCCON time series.

The simulated CH4 concentrations is predominantly influenced by emissions from three main human activity sectors: energy,

residential & waste, and agriculture. The energy sector has a more significant impact on column abundances (accounting for450

52.9% of the total enhancement) compared to surface concentrations (36.9%), reflecting differences in the sensitivity of remote

sensing and in situ measurements to sources at large distances, such as Shanxi province. For the in situ concentrations, the three

emission sectors are equally important.
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Monthly variability in the contributions from each tracer is found to align broadly with expected emission patterns: the residen-

tial tracer is higher in winter, while the agricultural tracer peaks in late summer (September). This month-to-month variation455

is further influenced by meteorological conditions such as horizontal advection and atmospheric stability, which is especially

visible in the energy tracer where corresponding emissions remain relatively constant throughout the year, while the contribu-

tions from this tracer show notable variations.

The model simulations confirm the importance of large-scale wind patterns, with air masses from the southwest transporting

higher CH4 concentrations to the Xianghe site compared to those from the northwest (median tracer contributions of 57.8 ppb460

vs. 7.3 ppb, respectively). During southwest wind regimes, pollution from the densely populated North China Plain reaches

the Xianghe site. While large-scale air masses influence the variability of both measurement types, smaller-scale factors such

as planetary boundary layer dynamics and local wind patterns, also play a significant role for the near-surface concentrations.

WRF-GHG effectively captures the diurnal variability driven by these boundary layer dynamics, with CH4 surface concen-

trations reaching their lowest levels in the afternoon (16:00 LT) and peaking around sunrise (6:00 LT), leading to a diurnal465

amplitude of almost 200 ppb.

Despite correcting for the bias in boundary conditions, a residual seasonal bias remained in the model, likely due to inaccura-

cies in emission estimates from agricultural (livestock) and waste management activities. Furthermore, comparisons between

simulated and observed CH4 concentrations near the surface, along with TROPOMI XCH4 data, indicate an overestimation of

coal mine emissions near Tangshan in the emission inventory of CAMS-GLOB-ANT. However, due to the averaging effect in470

the column measurements and the relatively low emission strength, this source is just at the threshold of being distinguishable

in the XCH4 enhancements.

In summary, the WRF-GHG model successfully captures key aspects of CH4 variability at the Xianghe site for both remote

sensing and in situ observations. The model simulations also provide valuable insights into the relative contributions of differ-

ent source sectors and the influence of meteorological processes on CH4 concentrations.475

However, the observed discrepancies, particularly the seasonal bias and overestimated emissions from certain sources, under-

score the need for improved emission inventories in this region of China, especially for agricultural, waste management, and

coal mining activities. Future research should aim to enhance our understanding of the monthly variations of CH4 in north-

ern China, which is crucial for providing more accurate boundary conditions and emission flux information to high-resolution

modeling studies like the present work. By addressing these challenges, we can further refine our understanding of CH4 sources480

and their impacts on regional air quality, ultimately contributing to more effective greenhouse gas mitigation strategies.

Code and data availability. The ERA5 and CAMS reanalysis data set (Hersbach et al., 2023a, b), used as input for the WRF-GHG sim-

ulations, was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store (2022). The CAMS-GLOB-ANT v5.3

emissions (Granier et al., 2019; Soulie et al., 2023) and temporal profiles CAMS-GLOB-TEMPO v3.1 (Guevara et al., 2021) are archived and

distributed through the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) platform. The REAS emission485

inventory is publicly available at https://www.nies.go.jp/REAS/ (Kurokawa and Ohara, 2020). The WRF-Chem model code is distributed by
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Test PBL Surface Layer Radiation

BASE YSU scheme (option 1) Revised MM5 scheme (option 1) RRTM and Dudhia (option 1)

A YSU scheme (option 1) Revised MM5 scheme (option 1) RRTMG (option 4)

B MYJ scheme (option 2) Eta similarity scheme (option 2) RRTMG (option 4)

C MYNN3 scheme (option 6) Eta similarity scheme (option 2) RRTMG (option 4)

D MYNN3 scheme (option 6) Revised MM5 scheme (option 1) RRTMG (option 4)
Table A1. Overview of sensitivity tests on different physical parameterization options. They are a combination of three different PBL

schemes: Yonsei University (Hong et al., 2006), Mellor-Yamada-Janjic (Janjić, 1994) and Mellor-Yamada-Nakanishi Niino Level 3 (Nakan-

ishi and Niino, 2006, 2009; Olson et al., 2019); two surface layer schemes: Revised MM5 (Jiménez et al., 2012) and Eta similarity (Janjić,

1994); and two radiation schemes: RRTMG Longwave and Shortwave schemes (Iacono et al., 2008) versus RRTM Longwave and Dudhia

Shortwave schemes (Dudhia, 1989; Mlawer et al., 1997).

NCAR (https://doi.org/10.5065/D6MK6B4K, NCAR, 2020). The WRF-GHG simulation output created in the context of this study can be ac-

cessed on https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023). The TCCON data were obtained from the TCCON Data Archive hosted

by CaltechDATA at https://tccondata.org (Zhou et al., 2022), while the surface observations at Xianghe were received through private com-

munication with the co-authors. TROPOMI Level 2 Methane Total Column data are publicly available online at https://doi.org/10.5270/S5P-490

3lcdqiv and the Copernicus Open Access Hub.

Appendix A: WRF-GHG sensitivity tests

Sensitivity tests were carried out to identify a model configuration that matches the observations (of CO2, Ch4 and CO) well.

We have tested several physical parameterization schemes and anthropogenic fluxes because these elements are essential to

accurately simulate tracer concentrations. The initial set of physical parameterization schemes (BASE) was taken from Li et al.495

(2020) and Dong et al. (2021) as they have shown good model performance for simulating CO2 concentrations in China. Four

alternative combinations (A-D) were created by changing the schemes for the longwave and shortwave radiation, planetary

boundary layer (PBL) and surface layer physics, leading to 5 different model configurations in total (see Table A1). Remark

that there are several more physical parameterization schemes that could have been included in these tests. Nevertheless, a full

sensitivity analysis is outside the scope of this study. Thus, we restricted our tests to the most frequently used schemes in the500

literature and chose the combination that produced satisfactory model simulations without additional optimization.

Further, the following anthropogenic flux inventories were tested: EDGAR GHG v6.0 (for CO2 and CH4, Ferrario et al.

(2021)), EDGAR Air Pollutants v5.0 (for CO, Crippa et al. (2019)), CAMS-GLOB-ANT v5.3 (for CO2, CH4 and CO, Granier

et al. (2019); Soulie et al. (2023)), PKU v2 (for CO2 and CO, Wang et al. (2013); Zhong et al. (2017)), REAS v3.2.1 (for

CO2 and CO, Kurokawa and Ohara (2020)), MEICv3.1 (for CO2 and CO, http://www.meicmodel.org/ ), ODIAC2020b (for505

CO2, Oda and Maksyuto (2011, 2020); Oda et al. (2018)) and FFDAS v2.2 (for CO2, Asefi-Najafabady et al. (2014)). Monthly

fluxes are disaggregated into hourly fluxes using the temporal factors of Crippa et al. (2020), Guevara et al. (2021) and Nassar
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et al. (2013). The model code was adapted to include these different anthropogenic emission inventories in separate tracers. As

such, one simulation is sufficient to compare the effect of all inventories.

The five simulations, representing different combinations of physical parameterization schemes and anthropogenic fluxes,510

were run over three periods of about 2 weeks spread over the year: 1-17 October 2018, 1-17 February 2019 and 10-25 June

2019. The first 48h were regarded as spin-up and are not taken into account in the analysis.

For each time series the root mean square error (RMSE), mean bias error (BIAS) and Pearson correlation coefficient (CORR)

were calculated. In order to find the most suitable combination of physical parameterization schemes and anthropogenic emis-

sion inventory for all observations at Xianghe, a combined skill score (S) was computed as follows, based on Gbode et al.515

(2019):

S = (1−RMSEnorm) + (1− |BIASnorm|) +CORRnorm, (A1)

where Xnorm = Xi−Xmin

Xmax−Xmin
is the normalized statistical metric. As such, the combination with the highest S will overall have

the lowest RMSE, lowest absolute BIAS and highest CORR. Exact values of the statistical metrics and combined skill scores

for every sensitivity test can be found below in Tables A2, A3, A4, A5 and A6 for the time series of in situ CO2, in situ CH4,520

XCO2, XCH4 and XCO, respectively.

Unfortunately, there is not one combination of physical parameterization schemes and anthropogenic flux inventories that

yields optimal scores for all species (CO2, CH4 and CO) across various observation types (surface and column). To identify the

most appropriate model configuration for simulating all observations at the Xianghe site, it is necessary that the chosen physical

parameterization schemes (denoted as test A - D, BASE) show satisfactory skill scores across all five time series. Moreover,525

the choice of anthropogenic flux inventory, although potentially varying among species, should yield reasonable score values

for all observation types of the same species. Therefore, the final combination was determined through the following logical

process, where preference was given to the surface data (as it is assumed that the physical schemes will have the highest impact

on these simulations):

– We reject the combination with the worst retults: for each statistical metric, we calculate a threshold derived from the530

mean (µ) and standard deviation (σ) of all occurring values. Combinations in which one or more of the metrics exceed

or fall below these thresholds are excluded from the selection process. Specifically, these combinations must conform to

the following set of equations:

CORR ≥ µCORR −σCORR,

|BIAS| ≤ µ|BIAS|+ σ|BIAS|,

RMSE ≤ µRMSE + σRMSE (A2)

The combinations that are discarded after this step are indicated with an asterisk (∗) behind the inventories name in the535

tables below.
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– For CO2 and CH4, discard the combinations that are only present in the table of either the surface or either the column

data in order to keep only those that are performing good enough on both time series. The combinations that are discarded

after this step are highlighted in italic in the tables below.

– From what is left, we see that only combinations with test A, B or C should be considered as those with test D and BASE540

settings have been discarded for CH4. The choice of physical parameterization option should be the same for all species.

When sorting the remaining combinations for CO2 and CO based on S (from the in situ time series for CO2), we find

that options with test B and C are superior to those with test A. Finally, a choice has to be made between options with

test B and options with test C.

– For both test B and C, we take the emission inventory which has the highest S, for CO2 and CH4 based on the in situ545

time series and for CO based on the column. This leads to the following options:

– Test B: CAMS-GLOB-ANT for CH4 and CO2; REAS for CO

– Test C: CAMS-GLOB-ANT for CH4, REAS for CO2 and PKU for CO

– The final choice between these two options is rather arbitrary since certain combinations yield slightly improved results

for one time series but perform less favorably for another, and vice versa. In our study we have chose the combinations550

with test B.

This approach leads to the settings of test B, together with CAMS-GLOB-ANT v5.3 fluxes for CO2 and CH4 and REAS v3.2.1

(Regional Emission Inventory in Asia) fluxes for CO.

Appendix B: FLEXPART simulations555

The FLEXPART v10.4 model (Pisso et al., 2019) is applied to quantitatively estimate the OH impact on the WRF-GHG

CH4 simulation at Xianghe. Table B1 lists the main settings of the FLEXPART model. CH4 particles are released using the

FLEXPART backward mode at Xianghe site with and without OH reaction. We release the CH4 particles between 00:00-01:00

and 12:00-13:00 (LT) every day in Oct 2018, Jan 2019, Apr 2019 and July 2019. The release height is set to 0-100 m a.g.l., since

the OH reaction will have a higher impact near the surface where the wind is weaker than at higher altitudes. The backward560

running duration is set to 3 days, and the backward sensitivities are extending outside of the WRF-GHG d01 boundary. As an

example, Fig. B1 shows the spatial distribution of CH4 backward sensitivities for a release at 12:00-13:00 LT on 30 January

2019 including the OH reaction, and Fig. B2 shows the corresponding relative difference in the CH4 backward sensitivities

between the simulations with and without OH reaction. Note that FLEXPART v10.4 includes a monthly OH climatology based

on GEOS-Chem simulations (Pisso et al., 2019).565
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Test Flux CORR BIAS RMSE S

B PKU 0.67 -1.62 16.09 2.91

B CAMS 0.63 -0.12 17.50 2.81

B EDGAR 0.63 0.92 17.87 2.72

C PKU 0.64 -3.96 16.91 2.65

C REAS 0.61 -1.19 18.88 2.58

A PKU 0.63 -4.51 17.16 2.57

BASE PKU 0.61 -3.51 17.65 2.53

D PKU 0.62 -4.84 17.38 2.52

C FFDAS 0.58 -0.92 19.12 2.50

C CAMS 0.59 -2.77 18.06 2.49

C EDGAR 0.58 -1.71 18.53 2.47

D FFDAS 0.58 -1.69 19.19 2.44

B REAS 0.58 1.44 20.14 2.41

B FFDAS 0.60 2.97 20.19 2.41

A CAMS 0.58 -3.46 18.26 2.40

A EDGAR 0.57 -2.46 18.58 2.40

A FFDAS 0.56 -1.36 19.76 2.35

C MEIC 0.63 5.15 20.68 2.34

D CAMS 0.57 -3.74 18.90 2.30

D EDGAR 0.55 -2.73 19.32 2.29

BASE REAS 0.55 -0.29 22.00 2.27

A REAS 0.55 -1.33 21.49 2.25

A MEIC 0.59 4.60 21.84 2.20

D MEIC 0.58 4.02 21.86 2.19

D REAS 0.54 -1.33 22.02 2.19

BASE FFDAS ∗ 0.51 0.11 21.66 2.17

BASE CAMS ∗ 0.52 -2.21 20.93 2.13

BASE EDGAR ∗ 0.51 -1.11 21.72 2.09

B MEIC ∗ 0.64 9.16 22.95 2.07

BASE MEIC ∗ 0.57 5.94 23.34 1.99

D ODIAC ∗ 0.52 3.63 22.57 1.96

C ODIAC ∗ 0.53 5.04 22.80 1.91

A ODIAC ∗ 0.49 4.56 24.46 1.69

B ODIAC ∗ 0.54 8.63 24.91 1.63

BASE ODIAC ∗ 0.47 5.81 25.67 1.51
Table A2. Statistical metrics for sensitivity tests, in situ CO2 data at Xianghe. Unit of BIAS and RMSE is ppm. Rows where the inventory

name if followed by an asterisk (∗) indicate those where one or more statistical metrics surpass the thresholds defined in Eq. A2. Rows in

italic represent combinations that are rejected due to the XCO2 value falling outside the thresholds. The bold lines represent the final two

options as determined by the methodology outlined in Appendix A. 27
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Test Flux CORR BIAS RMSE S

C CAMS 0.52 2.19 206.50 2.81

C EDGAR 0.52 19.09 208.24 2.67

BASE CAMS 0.48 3.26 213.26 2.47

A CAMS 0.45 -7.09 210.84 2.31

BASE EDGAR 0.48 22.33 216.09 2.28

A EDGAR 0.46 12.50 213.59 2.27

B CAMS 0.50 31.39 228.56 2.17

B EDGAR ∗ 0.51 52.53 237.75 1.87

D EDGAR ∗ 0.41 8.83 237.26 1.70

D CAMS ∗ 0.39 -9.19 237.31 1.60
Table A3. Same as Table A2 but for in situ CH4. Unit of BIAS and RMSE is ppb.

Figure B1. The spatial distribution of CH4 backward sensitivities (in sm3kg−1) for a release at 12:00-13:00 LT (which is 04:00-05:00 UTC

as indicated in the title) on 30 January 2019 from the FLEXPART simulation including the OH reaction. The location of WRF-GHG d01 is

indicated by the dashed line.
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28

https://doi.org/10.5194/egusphere-2024-3228
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Test Flux CORR BIAS RMSE S

D MEIC 0.77 0.62 1.52 2.87

C MEIC 0.76 0.62 1.54 2.83

BASE MEIC ∗ 0.66 0.95 1.95 1.86

D ODIAC 0.78 -1.27 2.28 1.86

C ODIAC 0.79 -1.32 2.29 1.85

A MEIC ∗ 0.62 0.97 2.03 1.62

D FFDAS 0.80 -1.60 2.43 1.58

C FFDAS 0.80 -1.62 2.45 1.55

BASE ODIAC 0.75 -1.36 2.47 1.54

D EDGAR 0.79 -1.59 2.45 1.54

A ODIAC 0.74 -1.30 2.50 1.49

B ODIAC 0.72 -1.23 2.53 1.47

C EDGAR 0.77 -1.57 2.49 1.45

D CAMS 0.79 -1.70 2.52 1.38

B EDGAR 0.76 -1.54 2.55 1.38

B FFDAS 0.75 -1.52 2.58 1.33

C REAS 0.80 -1.81 2.56 1.33

BASE FFDAS 0.77 -1.65 2.58 1.32

D REAS 0.79 -1.80 2.56 1.32

BASE EDGAR 0.77 -1.64 2.59 1.31

C CAMS 0.77 -1.68 2.57 1.30

A FFDAS 0.76 -1.62 2.60 1.28

B CAMS 0.75 -1.64 2.63 1.22

BASE CAMS 0.76 -1.74 2.66 1.15

D PKU ∗ 0.80 -1.98 2.67 1.13

C PKU ∗ 0.80 -2.00 2.67 1.13

B REAS 0.75 -1.71 2.69 1.10

A EDGAR 0.72 -1.54 2.71 1.09

BASE REAS 0.76 -1.85 2.73 1.03

A CAMS 0.72 -1.65 2.76 0.98

A REAS 0.75 -1.84 2.75 0.97

B MEIC ∗ 0.55 1.25 2.30 0.95

B PKU ∗ 0.76 -1.91 2.77 0.94

BASE PKU ∗ 0.77 -2.02 2.81 0.87

A PKU ∗ 0.76 -2.00 2.82 0.84
Table A4. Same as Table A2 but for XCO2.
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Test Flux CORR BIAS RMSE S

B CAMS 0.69 -0.79 20.53 2.94

B EDGAR 0.69 0.65 20.94 2.62

C EDGAR 0.67 -0.96 21.24 1.73

D EDGAR 0.66 -0.80 21.45 1.47

C CAMS 0.67 -2.16 21.31 1.12

A EDGAR 0.65 -1.17 21.72 0.86

BASE EDGAR ∗ 0.65 -1.66 21.76 0.59

D CAMS ∗ 0.65 -2.09 21.75 0.55

A CAMS ∗ 0.65 -2.75 21.45 0.37

BASE CAMS ∗ 0.65 -3.03 21.42 0.34
Table A5. Same as Table A2 but for XCH4. Unit of BIAS and RMSE is ppb.

Figure B2. Relative difference in the CH4 backward sensitivities between simulations with and without OH reaction. The location of WRF-

GHG d01 is indicated by the dashed line.
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Test Flux CORR BIAS RMSE S

B REAS 0.78 -3.99 30.25 2.96

B PKU 0.78 -5.38 30.32 2.94

D REAS 0.76 -5.32 31.54 2.83

BASE REAS 0.77 -7.12 31.39 2.81

C PKU 0.76 -6.88 31.73 2.79

D PKU 0.76 -6.82 31.75 2.79

C REAS 0.75 -5.53 32.00 2.79

BASE PKU 0.77 -7.85 31.74 2.77

A REAS 0.75 -7.15 32.35 2.72

A PKU 0.75 -7.51 32.67 2.71

B CAMS 0.68 -24.21 43.48 1.70

BASE CAMS 0.66 -25.16 44.35 1.61

D CAMS 0.64 -24.34 44.34 1.57

BASE EDGAR ∗ 0.52 3.27 57.84 1.45

A CAMS 0.59 -23.19 44.78 1.44

C CAMS 0.60 -23.77 45.07 1.43

B EDGAR ∗ 0.53 5.90 59.57 1.34

A EDGAR ∗ 0.50 6.27 62.83 1.16

D MEIC ∗ 0.65 -37.13 49.72 1.05

C MEIC ∗ 0.61 -37.10 50.26 0.94

B MEIC ∗ 0.53 -30.94 47.80 0.93

C EDGAR ∗ 0.46 8.30 67.22 0.87

D EDGAR ∗ 0.47 8.66 68.01 0.86

BASE MEIC ∗ 0.55 -34.80 49.89 0.82

A MEIC ∗ 0.52 -34.49 50.35 0.72
Table A6. Same as Table A2 but for XCO. Unit of BIAS and RMSE is ppb.
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Parameter Settings

Release location ±0.1◦ around Xianghe site

Release height 0 - 100 m.a.g.l

Release time 00:00-01:00 and 12:00-13:00 (LT) every day in Oct 2018, Jan 2019, Apr 2019 and July 2019

Number of backward running days 3

Number of releasing particles 20 000

OH reaction On and off

Meteorological data NCEP CFSv2 with 0.5◦× 0.5◦ horizontal resolution and 64 vertical levels (Saha et al., 2014)
Table B1. The main settings of FLEXPART model run with a CH4 tracer
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5.2 Analysis of CO2 and CO time series

Building on the CH4 analysis presented in the previous section, this part focuses on both in
situ and column observations of CO2 and CO at Xianghe. Likewise, the goal is to better un-
derstand the causes of the observed temporal variability and to evaluate the model’s ability
to simulate these time series in northern China.
Initial insights into the observed CO2 time series at Xianghe were provided by Yang et al.
(2020, 2021). They found that the seasonal cycle of CO2 at Xianghe aligns with patterns
observed at other sites of similar latitude, showing higher concentrations in winter and lower
levels in summer. This variation is driven by increased fossil fuel use from traffic and heating
systems during winter and enhanced biospheric uptake in summer due to photosynthesis.
Additionally, as mentioned in the CH4 section, they observed a strong correlation between
the column observations of CO2, CH4, and CO, which is influenced by pollution transport
from the south and cleaner air masses from the north.
WRF-GHG has proven to be a valuable tool for studying CO2 fluxes and variability in China,
as demonstrated by previous studies (Dayalu et al., 2018; Liu et al., 2018; Li et al., 2020;
Dong et al., 2021).
This section utilizes the same model simulations and methods described earlier, so they will
not be repeated here.

The following aspects will be discussed: the model’s performance in simulating the observed
time series (Sect. 5.2.1), the monthly mean contributions of different source sectors (Sect.
5.2.2), the possible causes of the observed XCO2 model bias (Sect. 5.2.3), and the impact of
meteorological processes on the temporal variability of observed concentrations (Sect. 5.2.4).
A summary of the conclusions for CO2 and CO is provided in Sect. 5.2.5.

5.2.1 Model performance

Figure 5.1 provides an overview of the simulated and observed time series of CO2 and CO
concentrations at Xianghe, along with their respective differences.
Overall, WRF-GHG demonstrates a reasonable accuracy in replicating these measurements:
the XCO2 observations are slightly underestimated, with a mean bias error of -1.43 ppm (as
detailed in Table 5.1), while the XCO simulations show a very minor overestimation, with
a mean bias error of 0.42 ppb. As with CH4 in Sect. 5.1, the data near the surface has
been divided into afternoon (13:00 - 18:00 LT) and nighttime (03:00 - 08:00 LT) periods to
evaluate model performance, as these time frames often yield different results. Indeed, WRF-
GHG shows a smaller bias (-2.14 ppm) during the afternoon, when the lower atmosphere is
well-mixed, compared to nighttime (6.02 ppm). Additionally, the mean bias error differs in
sign between the two periods: in situ CO2 levels tend to be underestimated in the afternoon
but overestimated at night. This result will be further discussed in Section 5.2.4. Except
for the moderate correlation observed for in situ CO2 during nighttime (0.58), WRF-GHG
achieves relatively high correlation coefficients (≥ 0.68) for other CO2 and CO data, indicating
satisfactory model performance.
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Figure 5.1: Time series of the observed (black) and simulated (red) (a) XCO2, (c) insitu
CO2 and (e) XCO concentrations at the Xianghe site. Panels (b), (d) and (f) show the
differences between WRF-GHG simulations and observations for XCO2, in situ CO2 and
XCO, respectively. Data points are hourly. The red data points in (b), (d) and (f) represent
the monthly mean differences.

insitu CO2 (afternoon) insitu CO2 (night) XCO2 XCO
BIAS -2.14 6.02 -1.43 0.42
RMSE 14.50 24.93 2.45 31.85
CORR 0.75 0.58 0.70 0.69

Table 5.1: Statistics of the model-data comparison of the ground-based CO2 and CO obser-
vations at the Xianghe site from 1 September 2018 until 1 September 2019. We present the
mean bias error (BIAS), root mean square error (RMSE) and Pearson correlation coefficient
(CORR). Note that the XCO2 time series was de-trended before calculating the correlation
coefficient in order to remove the effect of the seasonal variation. The mean bias error and
root mean square error are given in ppm for CO2 and in ppb for CO. For in situ observations,
the data is split in afternoon (13-18 LT) and night (3-8 LT) hours.

Looking at the time series of XCO2 in Fig. 5.1a and b, a few aspects stand out. Firstly, a clear
model underestimation is observed between September 2018 and May 2019, after which the
bias diminishes. Secondly, from May onward, XCO2 concentrations generally decline, which
is associated with the northern hemisphere’s growing season and enhanced photosynthesis.
However, a significant spike in XCO2 levels occurs between 20-29 July, highlighted in gray
in Fig. 5.1a. A more detailed analysis of this summer spike will be provided in Sect.5.2.4,
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while the bias between September 2018 and May 2019 will be discussed in Sect. 5.2.3.

5.2.2 Sector contributions

WRF-GHG tracks all fluxes in separate tracers, enabling the decomposition of total simulated
concentrations into contributions from different source sectors. This subsection will assess
each sector’s influence on the CO2 and CO observations at Xianghe. Figure 5.2 shows the
monthly mean values, while additionally the median and interquartile ranges are presented
in Table 5.2 for CO2 and Table 5.3 for CO.

Figure 5.2: Monthly mean tracer contributions above the background for (a) XCO2, (b) in
situ CO2 and (c) XCO simulated concentrations at Xianghe.

CO2

The main sectors contributing to the modeled CO2 variability at Xianghe are energy, industry,
and the biosphere (Fig. 5.2a,b). For XCO2, we find median values of 0.85 ppm and 0.63 ppm
for the energy and industry sectors, respectively. Furthermore, the biosphere significantly
influences the column-averaged CO2 values, where it acts as a sink from April to September
with a median value of -0.77 ppm during this period. During the rest of the year, the biogenic
tracer acts as a small source (median value of 0.22 ppm).
Near the surface, median enhancements of in situ CO2 concentrations are 6.85 ppm and
5.69 ppm for the energy and industry sectors, respectively. The biosphere generally acts as a
minor source throughout the year, with a median contribution of 2.69 ppm, except in August,
when it becomes a significant sink of -6.76 ppm.
The difference between the biosphere functioning as a sink in the column measurements for
five months, but not in the in situ concentrations (except in August), might result from
Xianghe’s location relative to strong land sinks (e.g., forests) and the different sensitivities
of the measurement techniques. In situ observations are typically less sensitive to distant
sources and sinks compared to FTIR observations. VPRM-computed fluxes suggest that the
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XCO2 (ppm) in situ CO2 (ppm)
Q1 median mean Q3 Q1 median mean Q3

Total 408.06 411.19 410.84 413.55 418.81 430.45 437.33 449.31
Background 407.09 409.20 409.01 411.37 396.59 411.52 410.55 413.79
Biomass burning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy 0.36 0.85 1.07 1.53 2.74 6.85 10.51 14.06
Residential 0.03 0.06 0.17 0.17 0.30 0.65 1.88 1.95
Industry 0.24 0.63 0.79 1.14 2.70 5.69 8.53 10.51
Transportation 0.08 0.16 0.18 0.25 0.81 1.73 2.43 3.19
Biosphere -0.77 0.04 -0.38 0.31 -0.01 2.36 3.44 7.39
Ocean -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 -0.00
Total tracers 0.33 1.23 1.82 2.80 7.36 18.99 26.78 38.30

Table 5.2: Statistics of the total simulated CO2 concentrations and the different tracer con-
tributions over the complete simulation period. Q1 and Q3 represent the first and third
quartile, respectively, between which 50 % of the data fall.

local biosphere near Xianghe (cropland) acts primarily as a net source, except in August,
while the forested mountains approximately 50 km north and 90 km east of the site serve as
a strong sink (see Fig. 5.3).
Next to the biosphere, industry, and energy, also transportation and residential sources have
a small but discernible influence on the Xianghe data. During winter, the contribution of
residential sources increases, where the highest values for the column simulations are found
in February (median of 0.45 ppm) while near the surface this occurs in January (4.28 ppm).
This peak aligns with heightened residential emissions in winter, driven by increased heating
demands correlated with air temperature (Guevara et al., 2021). Finally, no relevant impact
was found from biomass burning and the ocean. Overall, the total tracer enhancement for the
in situ concentrations is approximately ten times greater than that of the column-averaged
values.

CO

Based on our model simulations, the CO column time series is primarily influenced by sources
from the industry, residential and transportation sectors (see Fig. 5.2c). With a median
value of 25.23 ppb, the industry sector is the largest contributor to XCO, followed by the
residential and transportation sectors with values of 10.64 ppb and 10.54 ppb, respectively
(see Table 5.3). Both residential and transportation tracers show larger values in winter,
peaking in February with monthly median values of 33.03 ppb and 19.87 ppb, respectively.
This increase is in agreement with higher emissions in that period of the year due to colder
air temperatures (Guevara et al., 2021). Finally, energy sources and biomass burning are not
important for the observations at Xianghe (< 1 ppb).
Note that due to CO’s much shorter lifetime (a few weeks) compared to CO2, the contribution
of fluxes within the model domain constitutes a significantly larger portion of the total
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Figure 5.3: Map of the mean CO2 flux (mol km−2 h−1) in WRF-GHG domain d03 during the
entire simulation period from September 2018 until September 2019, for the most important
sectors. Remark that the panels have different color scales. The location of the Xianghe site
is indicated by a blue cross.

XCO (ppb)
Q1 median mean Q3

Total 119.10 146.07 161.67 184.85
Background 89.60 96.27 98.91 103.17
Biomass burning 0.00 0.00 0.00 0.00
Energy 0.09 0.21 0.26 0.37
Residential 4.75 10.64 16.68 20.45
Industry 11.83 25.23 32.72 45.39
Transportation 5.57 10.54 13.09 17.48
Total tracers 24.00 48.70 62.76 83.63

Table 5.3: Same as Table 5.2 but for XCO.

simulated column concentration for CO than for CO2: on average 38.82% for XCO compared
to just 0.44% for XCO2.

5.2.3 XCO2 bias

In Section 5.2.1, we observed that WRF-GHG underestimates XCO2 by approximately 2
ppm until May 2019, after which the negative bias diminishes. This bias likely originates
from a similar error in the background data, inaccuracies in representing the actual sources
and sinks in the region, or a combination of both. Given that the background contributes
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significantly to the total simulated XCO2 concentration (see Table 5.2), it is probable that
the bias originates from this source.

The CAMS validation report (Ramonet et al., 2021) presents “a very good agreement for all
(TCCON) sites”, suggesting that the CAMS reanalysis that is driving the WRF-GHG simu-
lations is of good quality without known biases. However, their criteria for what constitutes
“very good” appears to be relatively mild (within ±2 ppm). Moreover, the Xianghe site
wasn’t included in this report and the accompanying figure does not provide very detailed
information. Therefore, we reproduced their analysis for several TCCON sites at similar lati-
tudes for the period of our interest (September 2018 - September 2019): Karlsruhe (49.1◦ N),
Orleans (48.0◦ N), Garmisch (47.5◦ N), Park Falls (45.9◦ N), Rikubetsu (43.5◦ N), Lamont
(36.6◦ N), Tsukuba (36.0◦ N), Edwards (35.0◦ N), Pasadena (34.1◦ N), Saga (33.2◦ N), and
Hefei (31.9◦ N). The results of this analysis are presented in Fig. 5.4.
We find an underestimation of the CAMS reanalysis XCO2 at all TCCON sites between 30 -
50◦ N (except Pasadena) from October 2018 until May 2019. More specifically for Xianghe,
monthly mean errors range from -2.20 (± 1.3) ppm in January 2019 to 3.38 (± 1.28) ppm in
July 2019, which is of a similar order as the bias found with WRF-GHG (where the monthly
mean differences with respect to the TCCON site of Xianghe range from -2.53 ± 1.7 ppm in
December 2018 to 1.28 ± 1.57 ppm in July 2019).
Therefore, we assume that the error pattern detected in the XCO2 time series is primarily the
result of the same pattern in the background information. Moreover, this bias pattern is not
found in the in situ CO2 time series (Fig. 3b), likely because the mean tracer contribution
to the in situ concentrations is larger than the size of this background bias (see Table 5.2).

Figure 5.4: Monthly mean difference (in ppm) between CAMS reanalysis model and TCCON
XCO2 between 30 - 50◦ N over the simulation period of this study.

5.2.4 Impact of meteorology

Similarly as for CH4 in Sect. 5.1, we additionally want to discuss the meteorological factors
that influence the temporal variability of the time series by focusing on the impact of large-
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scale phenomena, the planetary boundary layer and local winds.

Synoptic scale winds

For CH4, we found that synoptic weather conditions significantly influence the temporal vari-
ability of the observations: higher XCH4 values are associated with winds from the southwest
(bringing polluted air from the North China Plain), while lower XCH4 concentrations corre-
spond with winds from the northwest (see Sect. 5.1). This finding aligns with the results of
Yang et al. (2020), who demonstrated that the day-to-day variability of XCH4, and simulta-
neously XCO2 and XCO, is closely linked to wind direction.
Consistent with this, we observe significant differences in XCO2 and XCO concentrations
depending on the 800 hPa wind direction, as shown in Fig. 5.5. The median XCO2 (XCO)
enhancement during polluted days is 2.35 ppm (79.50 ppb), compared to 0.42 ppm (18.53
ppb) on clean days. This indicates that air masses from the southwest transport polluted air
from the North China Plain to the Xianghe site, and that this transport is reflected in the
column concentrations of all three species: CH4, CO2 and CO. Conversely, when winds shift
to the northwest, a decrease in column concentrations is observed across all species.

Figure 5.5: The distribution of the daily mean simulated column tracers above the back-
ground per 800 hPa wind direction category and species. NW is for winds with an angle of
292.5 to 337.5 ◦ from north, while SW represents the angles between 202.5 and 247.5◦. There
are 72 days with NW winds and 33 days with SW winds. The colored boxes indicate the
range between the first and third quartile, while the thick solid line is the median. Outliers
(values that are 1.5 times the interquartile range above (below) the third (first) quartile) are
shown by black dots.

Additionally, we find a strong correlation of 0.79 between daily mean CO2 enhancements at
the surface and in the columns, similar to the correlation observed for CH4. This indicates
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that the variability in in situ concentrations is also influenced by the clean or polluted nature
of the air masses.

Finally, as observed for CH4, the month-to-month variability in the tracer contributions for
CO2 and CO is more pronounced than the variability in their emissions. For example, the
monthly mean CO2 energy emissions over the entire model domain have a coefficient of vari-
ation (CV) of 6.93%, while the corresponding tracer fields exhibit a CV of 20.12% in the
columns and 32.61% near the surface. Similarly, for CO, while the CV of monthly industry
emissions is just 2.95%, the column tracer contributions show a much larger variability, with
a CV of 29.6%. It is worth noting that both CO2 and CO show similar monthly variability,
with higher contributions in February and lower in May, which is very likely influenced by
shifts in meteorological conditions.
Among the observed variability, the previously highlighted episode of elevated XCO2 concen-
trations stands out (see Sect. 5.2.1), and is possibly linked to synoptic weather conditions.
The next section delves deeper into this period, aiming to uncover the mechanisms driving
this summertime increase.

Focus on a specific event in July 2019

A notable spike in XCO2 levels is observed between 20-29 July (see Fig. 5.1a), diverging
from the typical decreasing trend of XCO2 from May to September, which is linked to the
northern hemisphere’s growing season and increased photosynthesis. We will focus on the
model simulations between 7 July 2019 and 30 August 2019 to explain the causes of this
XCO2 summer spike, as WRF-GHG correlates well with the observations during this period
(correlation coefficient of 0.84).

The total simulated XCO2 increases from 407.43 (± 1.19) ppm before to 410.76 (± 1.19)
ppm during the summer spike (20-29 July), and then decreases to 405.75 (± 0.98) ppm
after, as shown in Fig. 5.6a. This sudden increase of more than 3 ppm is significant and
warrants further investigation. Figure 5.6 shows the simulated background and tracer contri-
butions during this period. Figure 5.6a shows that the background XCO2 remains relatively
constant in July (408.69 ± 0.78 ppm), and decreases to 406.67 ± 0.73 ppm in August. It
further clearly indicates an enhancement of the tracers from below the background before
and after the summer spike to above the background during the spike period. Looking at
the different tracers in Fig. 5.6b, we see that it is mainly the biogenic tracer that has a
different behavior in the spike period compared to the periods before and after. Thus, the
increase in XCO2 between 20-29 July is mainly linked to a less strong biogenic sink (-0.33
± 0.57 ppm) compared to the periods before (-2.88 ± 0.71 ppm) and after (-1.76 ± 1.11 ppm).

Further analysis reveals that during the spike, a heatwave with surface temperatures up to
39◦C occurred, together with 800 hPa winds predominantly from the west (see Fig. 5.6a
and c). The biogenic tracer also shows increased values across a large vertical extent in the
troposphere (Fig. 5.6c), indicating advection from other regions. Synoptic maps (not shown)
suggest eastward advection of a warm air mass with high biogenic CO2 levels, originating
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Figure 5.6: Simulated time series of XCO2 at Xianghe from 7 July 2019 to 30 August 2019,
with the spike period highlighted in all panels. Daily mean (a) background tracer (cyan
triangles) and total tracers (red diamonds) from WRF-GHG at Xianghe, and TCCON values
(black dots). Error bars represent the standard deviation of the daily mean. Daily mean 800
hPa wind direction is indicated by wind barbs at the bottom. (b) Time series of different
tracer contributions at Xianghe ,with hourly values shown as thin lines and points for TCCON
observation times. (c) Color coded vertical profiles of the biogenic CO2 contributions (left
y-axis) shown in red and blue, and surface temperature (right y-axis) in black.

from the Gobi Desert and grasslands in Inner Mongolia, both areas that are characterized
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by sparse vegetation and elevated temperatures.
Additionally, the mean biogenic CO2 flux around Xianghe, as calculated by VPRM, is slightly
higher between 20 and 29 July (average of -5 941 mol km−2 h−1 over domain d03) compared
to the periods before and after (respectively -9 153 and -12 785 mol km−2 h−1). In VPRM, the
respiration component is linearly dependent on surface temperature, and the gross ecosystem
exchange also has a temperature dependency representing the temperature sensitivity of pho-
tosynthesis, with CO2 uptake decreasing at temperatures higher than optimal (Mahadevan
et al., 2008). Indeed, it has been shown that extreme temperatures impact CO2 fluxes (Xu
et al., 2020; Ramonet et al., 2020; Gupta et al., 2021).
Therefore, we conclude that the spike was caused by an atmospheric circulation anomaly
resulting in the advection of a warm air mass with high biogenic CO2 levels, along with a
locally reduced ecosystem exchange due to the resulting hot temperatures.

PBL

Figure 5.7: Hourly median and interquartile range of the (a) simulated planetary boundary
layer height, and observed and simulated surface (b) CO2 concentration at Xianghe.

The planetary boundary layer (PBL) plays a crucial role in regulating near-surface CO2 con-
centrations. Figure 5.7 displays the diurnal variation of the PBL height as simulated by
WRF-GHG, along with the corresponding CO2 concentrations near the surface (both simu-
lated and observed).
During the day, the PBL height increases due to solar radiation and enhanced turbulent
mixing, leading to lower CO2 concentrations near the surface. As observed for CH4, the
PBL reaches its maximum height around 15:00 local time, coinciding with the lowest simu-
lated surface CO2 concentrations, with median (and interquartile) values of 419.41 (413.75
- 428.69) ppm. Conversely, during the night, radiative cooling leads to the formation of a
stable, shallow PBL, trapping CO2 near the surface and causing concentrations to rise. The
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peak CO2 concentrations in WRF-GHG are reached at 3:00, with values of 445.91 (430.03
- 461.75) ppm. However, unlike CH4, the simulated CO2 concentrations remain relatively
stable between 3:00 and 8:00. As the sun rises and the PBL height begins to increase again,
the CO2 concentrations drop, giving rise to a characteristic diurnal cycle.

WRF-GHG is able to replicate this diurnal pattern in CO2 in situ observations, but some
biases are present. For instance, a slight underestimation is observed during the daytime, as
the lowest observed concentrations typically occur at 16:00, with a median (and interquartile)
value of 421.13 (415.62 - 431.56) ppm. A more pronounced overestimation is noted during the
night, with observed concentrations peaking at 7:00 with values of 443.21 (427.81 - 459.10)
ppm. This leads to an overestimation of the CO2 diurnal amplitude in WRF-GHG by 4.42
ppm.

WRF-GHG is overestimating surface CO2 during much of the night, a discrepancy not ob-
served for CH4. This suggests a potential bias in the representation of CO2 fluxes rather
than in the model dynamics.
In the special case of CO2, its distinct diurnal cycle near the surface is actually determined
by a combination of PBL dynamics and biogenic fluxes. During the day, photosynthesis
in vegetation results in negative CO2 fluxes, leading to a reduction in CO2 concentrations
near the surface. At night, however, photosynthesis ceases, and plants release CO2 through
respiration. These biogenic fluxes can therefore amplify the impact of PBL dynamics on near-
surface concentrations. This correlation between PBL dynamics and biogenic CO2 fluxes is
driven by solar radiation and is commonly referred to as the atmospheric CO2 rectifier effect.
Therefore, incorrect biogenic CO2 fluxes can also result in biases of the diurnal cycle.
Several uncertainties in the online calculation of biogenic CO2 fluxes can be identified. First
of all, the VPRM parameters in the current study are taken from Li et al. (2020) but were
optimized for the United States. An update on these parameters for China is essential to
reduce the uncertainties on the biogenic CO2 fluxes (Li et al., 2020; Dong et al., 2021).
Furthermore, the simplicity of the linear respiration model could introduce inaccuracies, as
suggested by Li et al. (2020); Dong et al. (2021); Hu et al. (2021). Finally, another potential
source of error may arise from the misclassification of land cover types. VPRM fluxes are
calculated as a weighted average of biogenic fluxes across seven vegetation classes, combined
with the fractional vegetation cover for each grid cell. This classification is based on the 1-km
global land cover product SYNMAP by Jung et al. (2006), where the region surrounding the
Xianghe site is categorized as 100% cropland. While this aligns with the general landscape,
the omission of significant urbanization in this product, likely due to its dated nature, could
lead to discrepancies. Since built-up areas in WRF-GHG result in zero biogenic fluxes, this
oversight could contribute to the observed overestimation of nighttime respiration and day-
time photosynthesis near Xianghe.
While errors in biogenic fluxes are a likely contributor, the overestimation of nighttime CO2

concentrations could also originate from inaccuracies in the representation of anthropogenic
emission heights, particularly given the strong influence of such sources at the site. In the
WRF-GHG simulations, all emissions were released near the surface in the lowest model layer
which is a simplification of reality since especially industrial and energy sources (power plants)
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usually emit CO2 at higher altitudes. As Brunner et al. (2019) demonstrated, neglecting this
vertical distribution can lead to an overestimation of near-surface CO2 concentrations.

Local winds

Figure 5.8: Mean CO2 simulated tracer concentrations (indicated by color scale, in ppm)
binned per wind speed and direction for the main sectors (a) energy, (b) residential, (c)
transportation, (d) industry and the (f) biosphere on days without strong regional pollution.
The first row represents afternoon hours (13h - 18h LT), while the second row represents
nighttime hours (3h - 8h LT). Data is binned per 1 m s−1 and 11.25◦ wind direction. (f)
Count of data points in each bin. Only bins with at least 3 points are included in the figure.
Remark that the panels have different color scales.

To assess the impact of near-surface wind direction on in situ CO2 concentrations at Xianghe,
we analyze the correlations between the 10 m wind speed and direction and the simulated
concentrations, following a similar approach as for CH4 in Sect. 5.1. Figure 5.8 illustrates
the mean WRF-GHG tracer contribution for CO2 by wind direction and speed. To focus on
this relationship specifically, we exclude polluted days based on the XCO enhancement and
separate the data into afternoon and nighttime periods to minimize diurnal variability.
Afternoon winds tend to be stronger, originating from the north and southwest, while weaker
nighttime winds generally come from the north and east. Given that CO2 sources are dis-
tributed in nearly all directions around Xianghe (see Fig. 5.3), no strong correlation emerges
between the 10m wind direction and in situ CO2 concentration overall. However, for the
residential sector, higher CO2 levels are observed when winds come from the west, where
Beijing is located. Similarly, elevated CO2 concentrations are linked to industrial sources in
the southwest, likely due to the influence of the strong point source around 39.55◦ N, 116.25◦

E (see Fig. 5.3). For biogenic sources, the observed pattern is as expected: negative contri-
butions during the daytime due to photosynthesis and positive at night due to respiration.
Additionally, slightly lower nighttime enhancements are observed when winds come from the
north, which aligns with the more densely vegetated areas in that direction.
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5.2.5 Conclusions

In the second part of this chapter, we analyzed CO2 and CO time series from the Xianghe
site, focusing on both column-averaged (XCO2 and XCO) and in situ CO2 observations to
understand their variabilities through comparisons with WRF-GHG simulations.
The model shows good performance for CO2, achieving correlation coefficients of 0.70 for
XCO2 and 0.75 for afternoon in situ concentrations. However, nighttime performance is
weaker, with a correlation of 0.58 and a mean overestimation of 6.02 ppm. For XCO2, a
mean bias of -1.43 ppm relative to TCCON is found, primarily due to an underestimation
from September 2018 to April 2019 linked to biases in the CAMS reanalysis. Accurate bound-
ary conditions are found to be crucial for XCO2 due to CO2’s long atmospheric lifetime, with
emissions in the model domain contributing to a mean tracer enhancement of only 1.82 ppm.
For near-surface CO2, emissions within the domain play a larger role, resulting in a mean
tracer enhancement of 26.78 ppm and mitigating the influence of biases in the background.

The model simulations further indicate that the industry and energy sectors are the primary
contributors to CO2 concentrations at Xianghe, with the biosphere playing a seasonal role.
The biosphere acts as a sink for XCO2 from April to September, averaging -0.77 ppm, and
becomes a source of 0.22 ppm for the rest of the year. Near the surface, it acts as a sink only
in August (-6.76 ppm) and a source during other months (2.69 ppm on average). These dif-
ferences between column and surface measurements are likely due to the distance to strong
land sinks and the varying sensitivity of each measurement method. The residential and
transportation sectors contribute smaller amounts to CO2, peaking in winter.
All tracers, however, are influenced by monthly variations in meteorological conditions, such
as horizontal advection and atmospheric stability. This influence is particularly noticeable
in the energy and industry sectors, whose emissions remain relatively stable throughout the
year, but show larger enhancements in for example November and February. The analy-
sis of CO2 and CO, in line with earlier CH4 findings, shows a strong correlation between
tracer levels and the free tropospheric wind direction. Synoptic weather systems play a key
role in transporting clean or polluted air to the site, making them a dominant factor in the
variability of column-averaged data. This influence is evident in events like the July 2019
heatwave, where XCO2 significantly increased over a period of 10 days due to advection of a
hot, CO2-rich air mass.
Near the surface, smaller-scale circulations also impact variability, with the diurnal cycle
of the planetary boundary layer being especially important. WRF-GHG generally captures
these changes well, though it overestimates the average daily amplitude of 22.08 ppm by
4.42 ppm, mainly due to an overestimation of nighttime concentrations. This discrepancy
likely stems from inaccuracies in biogenic CO2 fluxes from VPRM or in the release height of
anthropogenic emissions.
Finally, since major CO2 sources surround Xianghe from all directions, no distinct correlation
between in situ concentrations and local wind direction can be found. However, some regional
patterns emerge, such as elevated residential tracer values from the west, where Beijing is
located, and increased tracer enhancements due to a strong industrial source to the southwest.
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For CO, the analysis is limited to column observations, resulting in fewer conclusions. Nev-
ertheless, CO’s shorter atmospheric lifetime, compared to CH4 and CO2, makes it a useful
tracer for identifying pollution events. Emissions within the model domain contribute on
average about 62 ppb (or almost 40%) to the total XCO concentration at Xianghe. Overall,
WRF-GHG is able to capture the variability in XCO quite well, showing a correlation coef-
ficient of 0.69 and no under-or overestimation with mean bias of 0.42 ppb. Lastly, we could
identify that the main sources contributing to XCO are industry (with an average of about
25 ppb), residential combustion and transportation (both about 10 ppb).
This analysis enhances our understanding of the regional drivers of CO2 and CO variability
at Xianghe, while emphasizing the critical role of accurate emission inventories and boundary
conditions in regional modeling efforts.
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Chapter 6

Conclusions and outlook

In this concluding chapter, we revisit the key insights gained from this study, tying them
back to the broader goal of understanding greenhouse gas dynamics at Réunion Island and
Xianghe, and assessing the effectiveness of the WRF-GHG model. The first section provides
a concise overview of the main factors influencing the observed CO2, CH4, and CO con-
centrations, focusing on the roles of emissions, sinks, and meteorological processes at both
sites. This is followed by a reflection on the model’s overall performance, offering a balanced
perspective on its strengths and limitations. The second section looks ahead to potential
future research directions and finally, the chapter concludes with a set of recommendations
for future applications of the WRF-GHG model.

6.1 Conclusions

In this study, we simulated CO2, CH4, and CO observations at two sites on Réunion Island:
Saint-Denis and Mäıdo, each equipped with a remote sensing FTIR instrument and an in
situ CRDS instrument. The main conclusions of this study are presented below, starting
with an overview of the processes affecting column observations, and then discussing the in
situ measurement results.

Given that FTIR instruments measure the entire atmospheric column, their sampling vol-
umes are significantly larger compared to the localized observations made by the in situ
instruments. As a result, the column observations at Saint-Denis and Mäıdo, which sample
similar air masses, yield similar conclusions.
Previous studies have demonstrated that the wind inversion above Réunion leads to distinct
footprints for surface versus column measurements. Near the surface, the prevailing eastern
trade winds transport air parcels primarily from the Indian Ocean. In contrast, at higher al-
titudes, the westerlies bring air from Africa or South America. This phenomenon enables the
column observations at Réunion to effectively capture tracer enhancements associated with
the biomass burning season in Africa and South America, which is generally between Au-
gust and December. Our model simulations support this, revealing biomass burning-related
enhancements in the tracer contributions for all three species, particularly for CO, which is
the primary emission from biomass burning, during this part of the year.
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Moreover, the WRF-GHG simulations indicate a positive contribution from the biosphere
during this period, likely associated with the coinciding dry season when biospheric CO2

uptake is reduced. During the austral summer, on the other hand, our simulations reveal
only a minor biogenic CO2 sink, which is likely due to changing wind patterns that cause the
column observations at Réunion to be less sensitive to the African biosphere, as originally
suggested by Frey et al. (2021). Additionally, a small wetland signal is detected in the CH4

columns during the austral summer, corresponding to the rainy season.
This source attribution analysis, combined with the fact that Réunion Island lacks major
local emission sources, and that model performance remains consistent at resolutions of 50
km compared to 10 km or 2 km, indicates that the primary sources influencing the column
observations are located further away, particularly in continental Africa. Furthermore, the
relatively small tracer contributions above the background level throughout the year (smaller
than 0.5% for CO2 and CH4) and the fact that the largest variations in the time series are
already captured by the background tracer emphasize the importance of boundary informa-
tion to simulate these column measurements at Réunion Island. This further confirms the
strategic location of Réunion for studying atmospheric background concentrations.

The in situ observations of CO2 and CH4 at Saint-Denis were simulated and analyzed in
detail for the first time. Our analysis highlights the influence of local emissions and various
meteorological processes on the observed variations. One key factor is the diurnal variation
in the planetary boundary layer height, which leads to higher concentrations at night com-
pared to daytime, due to tracer accumulation near the surface at night versus vertical mixing
during the day. This effect is more pronounced for CO2 than for CH4, likely due to stronger
local CO2 emissions.
Both species are influenced by anthropogenic activities in the capital city, but a notable bio-
genic CO2 tracer enhancement is also identified, originating from outside the city. Despite
Saint-Denis’ coastal location, the contribution from oceanic sources is negligible. Further-
more, our findings indicate that the strength of the nocturnal buildup of CO2 is highly
dependent on local wind speed and direction. Stronger winds result in greater dispersion,
reduced accumulation, and lower concentrations. Typically, these stronger winds originate
from the east-southeast, whereas weaker winds, associated with significant nocturnal CO2

buildup, come from the south. This might indicate that the stronger east-southeast winds
can advect CO2-depleted air from outside the city.

Finally, we analyzed the in situ time series at the Mäıdo Observatory. Previous research
has highlighted the unique location of the Mäıdo Observatory: at high altitude, it is often
situated in the free troposphere at night, while during the day, anabatic winds transport air
from the lower coastal regions upslope to the mountain top. Our model simulations capture
these patterns to some extent, as reflected in the partitioning of tracer contributions.
Despite the absence of local sources, small anthropogenic contributions to CO2 and CO are
detected, likely originating from the coastal regions. Additionally, a small biomass burning
contribution is observed for CO, suggesting an influence from distant sources and indicating
the presence of the instrument in the free troposphere. Further, a distinct diurnal cycle is
identified for CO2, driven by the biogenic tracer, with local vegetation contributing to CO2
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uptake during the day and respiration at night.

6.1.1 Xianghe

In this study, we simulated the time series of CO2, CH4 and CO at Xianghe, analyzing both
near-surface observations and those from the atmospheric column above. Unlike the distinct
circulation patterns observed at Réunion Island, where surface and column observations are
influenced by different air masses, the air masses affecting both surface and column mea-
surements at Xianghe are largely similar. Consequently, the relative distribution of tracer
contributions to both in situ concentrations and column-averaged values is comparable and
can be discussed per species.

For CO2, the primary contributing sectors at Xianghe are energy and industry, followed by
the biosphere. CH4 concentrations are mainly influenced by the energy sector, residential
activities, waste management, and agriculture. Meanwhile, CO levels at Xianghe are mainly
driven by emissions from industry, residential areas, and transportation.
A notable difference between the in situ and column-averaged observations is the magnitude
of the tracer enhancements. The in situ measurements, conducted close to the surface where
emission sources are concentrated, show significantly higher enhancements: up to ten times
greater than those in the column-averaged measurements. This is because remote sensing
captures an average over the entire atmospheric column, diluting the effect of surface emis-
sions. Our model simulations also indicate a relatively stronger biogenic CO2 sink in the
column-averaged measurements compared to the surface observations. Similarly, the energy
sector shows a relatively larger contribution to the XCH4 time series than to the in situ
concentrations. These discrepancies are likely due to the distance of major source regions
from Xianghe: while distant sources are less likely to impact surface measurements directly,
they can still influence column data when air masses carrying these tracers are advected at
higher altitudes.

The in situ observations at Xianghe exhibit a distinct diurnal cycle, characterized by lower
concentrations during the day and higher values at night, driven by variations in the plane-
tary boundary layer height. Additionally, both surface and column observations are heavily
influenced by the prevailing winds: polluted air from the North China Plain is typically
brought in by southwestern winds, while cleaner air from Inner Mongolia is advected by
northern winds. These wind patterns are a dominant factor contributing to the substantial
day-to-day variability observed in the remote sensing time series.
Furthermore, the XCO2 time series is subject to significant variations due to anomalous
weather conditions, such as the advection of CO2-rich air during a summer heatwave. This
highlights the impact of episodic meteorological events on atmospheric composition at Xi-
anghe.
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6.1.2 WRF-GHG evaluation

WRF-GHG is a sophisticated tool designed for simulating the transport and concentration
of greenhouse gases and other atmospheric tracers. Its versatility and high resolution make
it suitable for a range of atmospheric studies. However, like any model, WRF-GHG has its
strengths and weaknesses, which must be considered when interpreting its results. Through
our application of the model to the observations at Réunion Island and Xianghe, we have
identified several key insights as listed below.

Strengths of the WRF-GHG Model

• Versatility: One of the key strengths of the WRF-GHG model is its versatility. It
offers a wide array of configuration options that allow users to tailor the model to
their specific research needs. This includes the ability to define alternative passive
tracers with only minor modifications to the model’s source code. Such flexibility
enables researchers to, for example, test multiple emission inventories simultaneously
or to incorporate additional tracers, providing greater detail and precision in identifying
and analyzing emission sources. Moreover, the capability to separately track different
components of the signal allows researchers to identify the key sources driving observed
variability.

• Integration of tracers and meteorological data: WRF-GHG simulates tracer con-
centrations simultaneously with meteorological data, allowing for in-depth analysis of
the correlations between them. This integrated approach is crucial for understand-
ing the transport mechanisms and dispersion of tracers, providing insights into how
meteorological conditions impact greenhouse gas concentrations.

• Good overall performance: As demonstrated by various studies and confirmed in
the current work, the WRF-GHG model displays a good overall performance. It ef-
fectively captures the main temporal variations in the time series, particularly for CO
and CO2, as evidenced by high correlation values. These temporal variations are driven
by a combination of emission changes and meteorological phenomena, which are well-
represented by the model. Additionally, the model accurately simulates the diurnal
cycles of in situ observations and replicates specific transport patterns, such as tracer
advection from coastal regions to the Mäıdo mountain. Although some discrepancies in
local wind simulations were noted, the model still performed well in representing these
complex dynamics at Réunion Island.

• VPRM integration: The integration of the Vegetation Photosynthesis and Respira-
tion Model (VPRM) within WRF-GHG is another strength. VPRM allows the simu-
lation of hourly varying biogenic CO2 fluxes, providing a more dynamic and accurate
representation of biospheric contributions to atmospheric CO2 levels. This capabil-
ity is particularly important for studies focused on carbon cycle dynamics and land-
atmosphere interactions.
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• High spatial resolution: WRF-GHG offers users the flexibility to choose spatial
resolutions as high as 1 km or even finer. This level of detail is significantly higher than
that of most global models, enabling more precise simulations of local transport patterns
and emission dispersion, especially when high-resolution emission data is available to
match.

• Evaluating input datasets: By identifying discrepancies between observed green-
house gas concentrations and model simulations, WRF-GHG can reveal inaccuracies in
existing emission inventories. This study specifically highlighted inaccuracies in CH4

emissions from EDGAR at Réunion and CAMS-GLOB-ANT around Xianghe.

Remark that it is common to use Lagrangian models for studies tracing backward trajec-
tories to link observations at a specific site to potential source regions or to estimate the
influence of sources on a receptor (source-receptor analysis). This type of models, of which
FLEXPART (FLEXible PARTicle dispersion mode) or STILT (Stochastic Time-Inverted La-
grangian Transport model) are widely used examples, follow individual air parcels as they
move through the atmosphere, based on wind fields and turbulence. They represent a differ-
ent approach compared to Eulerian models, such as WRF-GHG, that simulate the movement
of gases on a fixed spatial grid, allowing for a detailed representation of physical processes
across a continuous domain. One of the objectives of this study was to assess the usefulness
of WRF-GHG in simulating ground-based measurements, both in situ and remote, at specific
observation sites. While it was not an explicit goal to compare it with Lagrangian models,
the strengths and weaknesses of WRF-GHG revealed in this analysis, and as stated above,
provide insights for future users to make thoughtful choices when selecting between modeling
approaches. WRF-GHG offers several advantages, including its ability to simulate online
biogenic CO2 fluxes, its continuous domain-wide concentration fields, and its high-resolution
representation of meteorological processes influencing GHG variability. Additionally, WRF-
GHG simplifies the comparison with both in situ and remote sensing data by allowing direct
extraction from relevant grid cells, as well as the possibility to compare with satellite prod-
ucts.

Weaknesses of the WRF-GHG Model

• Complexity: While the versatility of WRF-GHG is a strength, the vast number of
configuration options can also be a drawback. Users may spend considerable time on
sensitivity tests, trying to identify the optimal settings for their specific study, which can
make it challenging to choose the best configuration and lead to delays. Additionally,
the model requires a substantial amount of preprocessing to correctly prepare input
data for ingestion into the model, involving several steps and multiple programs that
must be run before the actual forward integration begins. This lengthy and intricate
process demands considerable effort to navigate and understand, increasing the risk of
errors along the way. If the model fails or produces unexpected results, pinpointing the
specific source of the error can be particularly challenging.

• Dependency on accurate emission data: The accuracy of WRF-GHG simulations
is directly influenced by the quality of the used emission data. Errors in the spatial,
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temporal, or quantitative aspects of these datasets can lead to significant errors in
the model output. For instance, the EDGAR dataset was found to overestimate CH4

emissions at Réunion, likely due to its low spatial resolution. Similarly, CAMS-GLOB-
ANT emissions around Xianghe showed an incorrect seasonality for CH4, possibly linked
to agricultural or waste management sources, and a potential overestimation of CH4

from large point sources in the energy sector.

• Reliance on accurate boundary conditions: As a limited-area model, WRF-GHG
relies on accurate initial and lateral boundary conditions provided by global models.
This dependency is especially crucial for long-lived tracers like CO2 and CH4, where
enhancements due to emissions within the model domain are often small compared to
the total atmospheric concentrations. This reliance is especially significant for remote
regions such as Réunion Island, where local emissions are very low. Any biases in the
boundary conditions can propagate through the simulations, leading to errors in the
results. For example, seasonal biases in CH4 from the CAMS reanalysis were observed
at both Réunion and Xianghe. Additionally, a bias in the CAMS reanalysis for CO2

over Asia was identified during a large part of the simulation period, further highlighting
the importance of accurate boundary information for reliable model outcomes.

• Surface wind speed overestimation: WRF-GHG has a known tendency to over-
estimate surface wind speeds, a common issue documented in other WRF studies.
At Réunion Island, this overestimation was particularly evident at Saint-Denis. Un-
fortunately, we could not evaluate this issue at Xianghe due to the lack of reliable
meteorological data at the site.

• Lack of CH4 and CO chemistry: The absence of CH4 and CO chemistry in WRF-
GHG can introduce biases in the model simulations, especially in long-term studies
or those involving very large domains. While the impact of this limitation may vary
depending on the specific study, it remains a potential source of error that researchers
must consider.

• Challenges in optimizing VPRM parameters: Optimizing the VPRM parame-
ters for a specific region is a complex task that often requires a separate, dedicated
study. Unfortunately, this process has not been undertaken for many regions, poten-
tially contributing to the errors observed in in situ CO2 simulations at Mäıdo and
Xianghe. Region-specific parameters will likely improve the accuracy of biogenic CO2

flux simulations in these areas.

WRF-GHG is a powerful tool with significant strengths that make it highly valuable for
atmospheric research, particularly in studies that require high spatial resolution and detailed
tracer analysis. However, its weaknesses—such as its dependence on accurate input data and
the complexity of its configuration—highlight the need for careful application and thorough
validation. Understanding these strengths and weaknesses is crucial for interpreting model
results accurately and for making informed decisions about the model’s application in future
research studies.
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6.2 Outlook

This section explores potential avenues for future research aimed at enhancing model accu-
racy and deepening our understanding of the observations at Réunion Island, Xianghe or
elsewhere.

1. If a more accurate representation of the in situ observations at Réunion Island is re-
quired for further analysis, it may be beneficial to explore model resolutions finer than
the 2 km used in the current study. Increasing the spatial resolution could lead to
better-resolved local wind patterns, such as those around Mäıdo, and better represen-
tation of the weak winds near Saint-Denis. However, for research focused on the remote
sensing observations, a higher spatial resolution is likely not beneficial.

2. For future studies concentrating on the surface CH4 observations at Réunion Island,
obtaining a more precise anthropogenic emission inventory with higher spatial resolu-
tion is essential. Improving the EDGAR v5.0 inventory, which has shown inaccuracies
in our study, is expected to lead to more accurate simulations for these observations.

3. The observed bias in the CAMS reanalysis for CH4 in the Réunion domain under-
scores the need for a better understanding of CH4 sources and sinks in the Southern
Hemisphere in general.

4. Similarly, research into the seasonal cycle of CH4 in the wide region around Xianghe is
needed. Previous studies, such as Yang et al. (2020), have noted the unique seasonality
of XCH4 at Xianghe compared to other sites at similar latitudes. Our study faced
difficulties in simulating CH4 due to potential inaccuracies in both CAMS reanalysis and
CAMS-GLOB-ANT emissions, emphasizing the need for focused research on regional
CH4 sources and sinks.

5. To gain further insights into the observations at Xianghe, it could be valuable to define
new tracers linked to specific source regions rather than source sectors, as employed in
the current study. This approach could illuminate the contributions of different coun-
tries, provinces or even targeted point sources to the observed atmospheric variabilities.

6. Implementing a vertical distribution to CO2 emission sources could result in a more
accurate representation of reality.

7. The VPRM model’s treatment of vegetation respiration has been highlighted as over-
simplified in several studies. Further evaluation of the proposed modifications by for
example Gourdji et al. (2022) to incorporate EVI, water stress and a more complex de-
pendence on temperature, might lead to an updated WRF-GHG distribution and more
accurate simulations of biogenic CO2 fluxes in the future. Further, more region-specific
VPRM parameter optimization is also needed, as current studies are limited to Europe,
the United States, and the Amazon region. Other tropical regions and Asia would ben-
efit from updated parameters to improve biogenic CO2 flux simulations, underscoring
the importance of establishing more extensive flux observations in these areas.
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8. The Kaplan model for simulating biogenic CH4 fluxes from wetlands, has not been
thoroughly evaluated since its inclusion in WRF-GHG. Evaluating this model over
regions with extensive wetland areas could provide valuable insights. Similarly, a formal
evaluation and potential modification of the online soil uptake model for CH4 fluxes
should be considered to enhance WRF-GHG’s relevance.

9. Application of WRF-GHG in Belgium: I am currently involved in the VERBE project
(https://verbe.aeronomie.be/) which aims at establishing a top-down, spatially explicit
GHG emission monitoring and verification system (MVS) for Belgium. This project
will apply WRF-GHG in an inversion framework, to evaluate the existing inventories of
GHG emissions in Belgium, while interacting with the local stakeholders. This initiative
will ultimately support government policies and EU strategies to reduce CO2 and CH4

emissions.

6.3 Recommendations for future WRF-GHG applica-

tions

Based on my experience, I wish to conclude this thesis with several recommendations for
future applications of WRF-GHG.

• Select appropriate emission data and boundary conditions: Ensure that emission data
matches the model resolution as closely as possible and that boundary conditions are as
accurate as possible to minimize errors that can propagate through the model. Avoid
biases, such as those encountered with CH4 in our study.

• Optimize model domain size: The model domain should be sufficiently large to include
a comprehensive range of emission sources. This is particularly important for CO2 and
CH4 simulations, where insufficient domain size can lead to under-representation of
tracer contributions.

• Update fixed data sets for online biogenic fluxes: This includes for example using a
more recent land cover classification for the VPRM model, as the SYNMAP dataset
is outdated, at least for China as shown in our study over Xianghe. The recently
distributed pyVPRM preprocessor can be used for smooth ingestion into WRF-GHG.
Moreover, this tool can additionally include newer satellite products (as MODIS will be
decommissioned soon), offering improved accuracy. Further, it may also be beneficial
to evaluate whether the relatively old termite database from Sanderson (1996) is still
relevant.

• Allocate sufficient time for study design: Carefully consider which tagged tracers are
most relevant to your research objectives. Thorough study design is crucial for obtaining
meaningful results.

• Consider higher model top height: Increasing the model top above 50 hPa could benefit
CH4 column simulations, as this species is significantly influenced by processes in the
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upper atmosphere. However, extending the model top may introduce new inaccuracies,
as chemical processes become more significant at higher altitudes, potentially affecting
the CH4 simulations. Therefore, it is essential to find a balance between extending the
model top to capture the complete atmospheric profile, which may lead to inaccuracies
due to neglected chemistry and an increased computation time, and maintaining a lower
model top that might miss important stratospheric contributions.

• Select suitable model resolution: For studies focused on column observations, a model
resolution similar to that of the emission inventory is generally sufficient. Higher reso-
lution may not be necessary unless specific details are required.
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Appendix A

List of Acronyms

ADS Atmospheric Data Store
AR6 Sixth Assessment Report
BIRA-IASB Royal Belgian Institute for Space Aeronomy
CAMS Copernicus Atmosphere Monitoring Service
CAMS-GLOB-ANT Global Anthropogenic emission database of the European CAMS
CAS Chinese Academy of Science
CDO Climate Data Operator
CDS Climate Data Store
COCCON Collaborative Carbon Column Observing Network
CRDS Cavity Ring-Down Spectroscopy
CTM Chemical Transport Model
DOAS Differential Optical Absorption Spectroscopy
DOF Degrees Of Freedom
ECCAD Emissions of atmospheric Compounds and Compilation

of Ancillary Data
ECMWF European Centre for Medium-Range Weather Forecasts
EDGAR Emissions Database for Global Atmospheric Research
ESRL Earth Systems Resource Laboratories
EVI Enhanced Vegetation Index
FFDAS Fossil Fuel Data Assimilation System
FINN Fire Inventory from NCAR
FLEXPART FLEXible PARTicle dispersion model
FTIR Fourier Transform Infrared
GAW Global Atmosphere Watch
GEE Gross Ecosystem Exchange
GHG Greenhouse Gas
GOSAT Greenhouse gas Observing SATellite
HPC High-Performance Computing
IAP Institute of Atmospheric Physics
IC-BC Initial and lateral Boundary Condition

144



ICOS Integrated Carbon Observing System
IFS Integrated Forecast System
IPCC Intergovernmental Panel of Climate Change
IRWG Infrared Working Group
IR Infrared
LSCE Laboratoire des Sciences du Climat et de l’Environnement
LSWI Land Surface Water Index
LULUCF Land Use, Land-Use Change and Forestry
LW Longwave
MEIC-China Multi-resolution Emission Inventory for China
MIR Mid-infrared
MODIS Moderate Resolution Imaging Spectroradiometer
MPI-BGC Max Planck Institute for Biogeochemistry
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NDACC Network for the Detection of Atmospheric Composition Change
NDIR Non-Dispersive Infrared
NEE Net Ecosystem Exchange
NIR Near-infrared
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
OCO Orbiting Carbon Observatory
ODIAC Open-source Data Inventory for Anthropogenic CO2

OE Optimal Estimation
OPAR Observatoire de Physique de l’Atmosphère de La Réunion
PAR Photosynthetically Active Radiation
PBL Planetary Boundary Layer
PKU Peking University
REAS Regional Emission inventory in ASia
RES Ecosystem respiration
SW Shortwave
SZA Solar Zenith Angle
TC Total Column
TCCON Total Carbon Column Observing Network
TIMES Temporal Improvements for Modeling Emissions by Scaling
TROPOMI Tropospheric Monitoring Instrument
UNFCCC United Nations Framework Convention on Climate Change
UV Ultraviolet
VPRM Vegetation Photosynthesis and Respiration Model
WMO World Meteorological Organization
WPS WRF Preprocessing System
WRF Weather Research and Forecasting model
WRF-Chem WRF coupled with Chemistry
WRF-GHG WRF for Greenhouse Gases
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Appendix B

Describing atmospheric composition

The concentration of a species G in the atmosphere can be expressed as a mixing ratio νG
or mole fraction, which is defined as the number of moles of species G per mole of air (mol
mol−1). Note that for species with very small amounts in the atmosphere, the mixing ratio
is usually expressed as parts per million by volume (ppmv) or parts per billion by volume
(ppbv). For example, a CO2 mixing ratio of 400 ppm indicates that there are 400 moles of
CO2 per 106 mole of air.
Alternatively, the concentration can be described as number density ρG, which is the number
of moles of species G per unit volume of air (mol m−3). They are related through the number
density of air ρa (mol m−3):

ρG = νGρa (B.1)

Both measures can be expressed with respect to wet air or dry air (i.e. wet air without H2O),
whereby we add a or da as sub-/superscript, respectively: ρaG = νa

Gρa and ρdaG = νda
G ρda. The

number density of wet air can be calculated according to the ideal gas law:

ρa =
P

RT
,

where P is the pressure (in Pa), T the temperature (in K) and R the ideal gas constant
(8.314 JK−1mol−1).
We can derive a formula for the number density of dry air, using the fact that νa

H2O
ρa =

νda
H2O

ρda:

ρa = ρda + ρaH2O

= ρda + νa
H2O

ρa

= ρda + νda
H2O

ρda

=
(
1 + νda

H2O

)
ρda

⇔ ρda = ρa
1

1 + νda
H2O

= ρa
1

1 + Mda

MH2O
q

= ρa
1

1 + 1.6075q
.
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In the last two equations, q is the mass mixing ratio of water vapor (kg kg−1) with respect
to dry air, while Mda = 28.96 (g mol−1) is the molar mass of dry air and MH2O = 18.015 (g
mol−1) is the molar mass of H2O. So, with the atmospheric variables of water vapor, pressure
and temperature, the number density of dry air can be computed: ρda =

P
RT

1
1+1.6075q

, and we
can easily convert the dry air number density of a species G to its mixing ratio and vice versa.

In this thesis, concentration quantities are always mentioned with respect to dry air, unless
otherwise specified, and thus the superscript da is dropped.

When working with remotely sensed data, other concentration measures are often used, such
as the partial and total column concentration (mol m−2).
In a partial column profile, the thickness of the several atmospheric layers are taken into
account. It can be expressed for a species G as :

PCG = (PCG,0 . . . PCG,n) , where PCG,i = νG,i
Pi

RTi

1

1 + 1.6075qi
∆zi, (B.2)

with νG,i the volume mixing ratio of species G, Pi the atmospheric pressure, Ti the air
temperature, qi the water vapour mass mixing ratio and ∆zi the thickness of layer i (in m).
Note that the partial column of dry air (PCda) is calculated as in Eq. B.2 without the
volume mixing ratio profile of G. As a result, we can state the following for any layer i:

PCG,i = νG,iPCda,i = νG,iρda,i∆zi = ρG,i∆zi

The total column concentration is then simply the sum of partial columns over all vertical
layers:

TCG =
∑
i

PCG,i =
∑
i

νG,i
Pi

RTi

1

1 + 1.6075qi
∆zi. (B.3)

Further, the column-averaged dry air mole fraction XG or Xgas is very frequently used. It
can be calculated by dividing the total column concentration of G by the total column of dry
air:

XG =
TCG

TCda

=

∑
i PCG,i∑
i PCda,i

=

∑
i νG,iρda,i∆zi∑

i ρda,i∆zi
(B.4)
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Appendix C

Running WRF-GHG at BIRA-IASB:
procedure

This section outlines the steps involved in creating WRF-GHG simulations within the IT
infrastructure of BIRA-IASB.

To ensure that atmospheric transport in the center of the domain remains consistent with
the ERA5 reanalysis used at the lateral boundaries, meteorological fields are re-initialized
with ERA5 data every 24 hours, after a 6-hour spin-up period. In practice, this results in
the workflow illustrated in Fig. C.1 and summarized below:

Figure C.1: Schematic diagram on the process of meteorological re-initialization.

• Run the model without emissions for a 6-hour period each day throughout the simu-
lation timeframe, from 18:00 to 00:00 UTC. Use the restart interval = 360 setting
in namelist.input to generate a WRF restart file (wrfrst) at 00:00.
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• Copy the tracer fields from the previous day’s WRF-GHG simulation (wrfout files)
into the corresponding fields in the restart file, ensuring continuity of the tracer field.

• Run WRF-GHG for a 24-hour period, starting from the modified restart file (using
restart = true in namelist.input).

Technically, this approach results in a series of separate meteorological simulations of 30
hours each (from 18:00 UTC the previous day until 00:00 UTC the following day), but with
continuous tracer advection.

To perform WRF-GHG simulations at BIRA-IASB, follow these steps (see Fig. 3.3 for the
different programs that are called):

1. Download external datasets, including ERA5 reanalysis data and emission invento-
ries for the selected area and simulation period. The CAMS analysis data is already
available on BIRA-IASB servers.

2. Define the model domain, resolution, and nesting configuration by adjusting the WPS
configuration file namelist.wps, and then execute the geogrid program.

3. Use the geo em files generated by geogrid to regrid the external emission inventories
and CAMS data to the model domain. Apply temporal profiles to the anthropogenic
emissions if needed (see Sec 3.2.3). This step is conducted using Python scripts on the
BIRA-IASB compute servers.

4. Prepare the meteorological fields from ERA5 by running a Bash script on the HPC,
which locates the required input data and launches the ungrib program.

5. Generate the final meteorological input files (met em files) by running a Bash script on
the HPC, which queues a job to execute metgrid and completing WPS.

6. Define the model settings by adjusting a Bash script that creates the namelist.input
file. This script also queues a job to launch the real program, which performs vertical
interpolation of the meteorological data (met em files) and generates initial and lateral
boundary condition files (wrfinput and wrfbdy).

7. Prepare additional input data, that require the wrfinput files generated by real :
biomass burning emissions from FINN (handled by the fire emis program) and VPRM
input files created by the VPRM preprocessor and VPRM shapeshifter (see Sec. 3.1.3).
This step creates wrffire and vprm input files.

8. Transfer the regridded CAMS and emission data from the BIRA-IASB servers to the
HPC for use in the model.

9. Execute a script on the HPC for the first simulation. This script: 1) reads regridded
CAMS data and fills the corresponding tracer fields in wrfinput and wrfbdy files,
2) reads regridded emission data and creates wrfchemi and wrfoce files, 3) adjusts
namelist.input to include these auxiliary files, and 4) queues a job on the HPC to
execute wrf.
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10. Launch scripts for the meteorological spin-up runs: a 6-hour simulation without emis-
sions is run every 24 hours. Since these runs only require WPS-processed ERA5 data
(met em files) for the entire simulation period, they can be executed all at once. For
each day, these scripts generate a namelist.input file with the same settings as the
chemistry run and launch real and wrf.

11. After the spin-up simulations and the initial 24-hour WRF-GHG simulations are com-
plete, start a cronjob (a Unix command that automatically runs specified scripts). The
initial job from step 9 is necessary to fill the lateral boundary conditions with CAMS
data and create the emission files for the complete period. The cronjob follows a text
file listing dates for sequential simulations, checks if the previous day’s simulation was
successful, starts from the spin-up meteorological data (wrfrst files), transfers the
tracer fields from the previous simulation into these files, and launches wrf for the next
24-hour simulation. Monitor this process through a logfile for errors. For the setup in
this thesis, a 24-hour simulation of three nested domains typically takes 1-2 hours to
complete. The cronjob also cleans up successful simulations by deleting large logfiles
and copying the output to the BIRA-IASB servers.
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Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y.,
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M., Vı́tková, G., Conil, S., Heliasz, M., Kubistin, D., and Lindauer, M.: A Dedicated Flask
Sampling Strategy Developed for Integrated Carbon Observation System (ICOS) Stations
Based on CO2 and CO Measurements and Stochastic Time-Inverted Lagrangian Transport
(STILT) Footprint Modelling, Atmospheric Chemistry and Physics, 20, 11 161–11 180, doi:
10.5194/acp-20-11161-2020, 2020.

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H.,
Zhang, Q., and He, K.: Anthropogenic Emission Inventories in China: A Review, National
Science Review, 4, 834–866, doi: 10.1093/nsr/nwx150, 2017.

Li, X., Hu, X.-M., Cai, C., Jia, Q., Zhang, Y., Liu, J., Xue, M., Xu, J., Wen, R., and Crowell,
S. M. R.: Terrestrial CO2 Fluxes, Concentrations, Sources and Budget in Northeast China:
Observational and Modeling Studies, Journal of Geophysical Research: Atmospheres, 125,
e2019JD031 686, doi: 10.1029/2019JD031686, 2020.

Liu, Y., Yue, T., Zhang, L., Zhao, N., Zhao, M., and Liu, Y.: Simulation and Analysis of
XCO2 in North China Based on High Accuracy Surface Modeling, Environmental Science
and Pollution Research International, 25, 27 378–27 392, doi: 10.1007/s11356-018-2683-x,
2018.

Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., Peng, S., Zhang, Q., Hubacek, K.,
Marland, G., Andres, R. J., Crawford-Brown, D., Lin, J., Zhao, H., Hong, C., Boden, T. A.,
Feng, K., Peters, G. P., Xi, F., Liu, J., Li, Y., Zhao, Y., Zeng, N., and He, K.: Reduced
Carbon Emission Estimates from Fossil Fuel Combustion and Cement Production in China,
Nature, 524, 335–338, doi: 10.1038/nature14677, 2015.

156
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son, R., Neininger, B., and Lavrié, J. V.: High-Resolution Simulations of Atmospheric
CO&lt;Sub&gt;2&lt;/Sub&gt; over Complex Terrain – Representing the Ochsenkopf
Mountain Tall Tower, Atmospheric Chemistry and Physics, 11, 7445–7464, doi: 10.5194/
acp-11-7445-2011, 2011.
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