
A Lagrangian heuristic algorithm for the
time-dependent combined network design and routing

problem

Bernard Fortz Enrico Gorgone
Département d’Informatique,

Université Libre de Bruxelles,

Brussels, Belgium,

{bernard.fortz, egorgone}@ulb.ac.be

Dimitri Papadimitriou
Nokia Bell Labs,

Antwerp, Belgium,

dimitri.papadimitriou@nokia-bell-labs.com

November 9, 2016

Abstract

During the planning of communication networks, the routing decision process
(distributed and online) often remains decoupled from the network design process,
i.e., resource installation and allocation planning process (centralized and offline).
To reconcile both processes and take into account demand variability, we generalize
the capacitated multi-commodity fixed charge network design class of problems
by including different types of fixed costs (installation and maintenance costs) and
variable costs (routing costs) but also variable traffic demands over multiple periods.
However, conventional integer programming methods can typically solve only small
to medium size instances of this problem.

Two major difficulties are encountered when using commercial solvers to solve
the associated mixed integer programs: (i) problems are large scale and even solving
the linear relaxation of the problem can be challenging; and (ii) the solver hardly
find good feasible solutions for medium to large scale instances. As an alternative,
we propose a Lagrangian approach for computing a lower bound by relaxing the flow
conservation constraints such that the Lagrangian subproblem itself decomposes by
node. Though this approach yields one subproblem per network node, solving the
Lagrangian dual by means of the bundle method remains a complex computational
tasks. However, it always provides a lower bound on the optimal solution. Moreover,
based on this relaxation, we propose a Lagrangian heuristic that makes the approach
more robust than a black-box usage of a MIP solver.
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Figure 1: An example of a network for a single period and two destination-based routing
trees

Keywords: Telecommunications networks, Network design, Routing, Lagrangian
decomposition, Multi-commodity fixed-charge network design, Mixed Integer Pro-
gramming.

1 Introduction
In today’s communication networks, distributed control functions such as routing, are
driven by path quality properties (such as cost and bandwidth delay product) but also
their adaptation cost and convergence time. However, the design of the routing function
(and associated routing protocol procedures) remains driven by their consumption of
processing capacity and memory available locally at each node. Henceforth, the routing
decision process (distributed and online) remains also decoupled from the network design
process, i.e., resource installation and allocation planning process (centralized and offline).

The conventional model to formulate such problem assumes that routing decisions
can be performed without informing the capacity optimization problem (link resource
installation and (modular) allocation). These decisions are modeled in terms of capacity
allocation per link but without accounting for the routing state creation and maintenance
cost. This formulation is thus often extended by assuming that the routing optimization
process can additionally inform the capacity installation and allocation process about its
utility. The latter then adjusts the allocated capacity on each link and may decide to
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add new links (between node pairs not previously connected). This method has been
applied for instance to various combined network design and traffic engineering problems
including IP over Multi-Protocol Label Switching - Traffic Engineering (MPLS-TE) and
IP over optical/wavelength switching layer. However, such formulation does not account
for i) the cost associated to the creation of a routing adjacency once the corresponding
link is added, ii) the cost of link maintenance during the lifetime of the corresponding
routing adjacency, and iii) the routing cost function which remains independent of the
link occupancy.

For these reasons, we study in this paper an extension of the multi-commodity capaci-
tated fixed charge network design (MCND) problem introduced by [9, 10, 17] which deals
with the simultaneous optimization of capacity installation cost and traffic flow routing
cost. In the MCND problem, a fixed cost is incurred for opening a link and a linear
routing cost is paid for sending traffic flow over an edge (or arc). The routing decision
must be performed such that traffic flows remain bounded by the installed capacities.
In [25], we generalized this problem over multiple time periods using an increasing con-
vex routing cost function which takes into account congestion (number of routing paths
per edge) and delay (routing path length). A compact Mixed Integer Linear Program
(MILP) formulation for this problem is developed based on the aggregation of traffic
flows following the per destination routing decision process underlying packet networks
(as illustrated in Figure 1). However, the resolution with realistic topologies and traffic
demands becomes rapidly intractable with state-of-the-art solvers due to the weak linear
programming bound of the proposed MILP formulation. An extended formulation where
traffic flows are disaggregated by source-destination pairs, while keeping the requirement
of destination-based routing decisions has been studied in [26].

In general, direct formulations for determining optimal routing decisions obeying var-
ious protocol rules are complex to solve. Indeed, integer programming methods can
typically solve only small to medium size instances as reported in [1]. To circumvent
this problem, [10] among others have successfully applied the Lagrangian relaxation
technique to compute efficient large-scale instances of the MCND problem. Indeed, by
relaxing the linking constraints, the Lagrangian relaxation method can be applied to the
base (aggregated) and extended (disaggregated) formulation in order to provide stronger
lower bounds. Moreover, the suitable choice of the complicating constraints yields a
Lagrangian subproblem decomposable by node, in line with the objective of obtaining
a decomposition of the original optimization problem which preserves the distributed
nature of the routing decision process.

Multi-commodity fixed charge network design problems are extremely challenging to
solve. This complexity arises because even the simple continuous versions usually contain
a huge number of variables and constraints, which makes them very hard to solve with
standard approaches. Indeed, specialized algorithms are required [7, 16] and the use
of parallel architectures could be necessary [6]. The complexity becomes even higher if
integer variables are present in the models to represent logical decisions. The resulting
mathematical model is a MILP with multi-commodity network flow structure.

The model considered in this paper extends the MCND problem by including differ-
ent types of fixed costs (installation and maintenance costs) and variable costs (routing
costs). In addition, time dependent demands are taken into account and the network is
designed for more than one time period. We propose a Lagrangian relaxation approach
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for computing a lower bound, and a Lagrangian heuristic for obtaining good feasible solu-
tions. For this purpose, we relax the flow conservation equations such that the Lagrangian
subproblem can be decomposed by node. We remark that compared to what happens in
the standard Fixed Charge Network Design problem, the Lagrangian subproblem is not
a knapsack problem. Unfortunately, this yields a Lagrangian subproblem that is not so
easy to solve. However, the approach is more robust than using CPLEX as a black-box
MIP solver, as the Lagrangian relaxation always returns a lower bound and provides a
feasible solution for many instances where CPLEX fails.

The remainder of this paper is structured as follows. Section 2 documents prior and
related work together with motivating arguments. We describe our optimization model
in Section 3. We present in the next section the numerical resolution method used for
this application. In Section 5, we report the computational results and analyze them.
Finally, Section 6 concludes this paper together with directions for future research work.

2 Prior and Related Work
In this section, we review the prior work related to computational methods for the com-
bined capacitated FCND and routing optimization problem further referred hereafter to
as the generalized MCND problem. Indeed, for the reasons explained in the introduc-
tion, the base MCND problem appears as a particular case of the model developed in
this paper. However, compared to its generalized version, the conventional MCND prob-
lem is only defined over a single time period and the cost function does not take into
account congestion (number of routing paths per edge) and delay (routing path length)
phenomena.

2.1 Spatial Decomposition

One successful method to overcome the computational limits when solving large instances
of the MCND problem consists in solving the formulation with a decomposition method.
The driving concept behind such methods is to decompose the master (combined) problem
into subproblems such that each subproblem involves only local decisions to be performed
by the node computing online the routing decisions. The Benders decomposition [3]
method developed for linear optimization problems relies on the ideas of partition and
delayed constraint generation. This method decomposes the initial problem into two
simpler problems: the first problem, called master problem, solves a relaxed version of
the original problem and obtains values for a subset of the original variables and the
associated constraints. The second problem, called auxiliary problem (or subproblem),
obtains the values for the remaining variables while keeping the variables obtained in
the master problem fixed, and uses these to generate cuts for the master problem. The
master and auxiliary problems are solved iteratively until no more cuts can be generated.
The conjunction of the variables found in the last master and subproblem iteration is the
solution to the original formulation. The structure of MCND problems presents a logical
decomposition for the Benders method: the values of integer variables representing the
installation of the links are given by the solution of the master problem while the contin-
uous variables representing the actual flows are kept in the subproblem for the tentative
network obtained in the master problem. In other terms, at each iteration the master
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solution gives a tentative network for which the subproblem finds the optimal solution.
Due to the need to solve the master and the auxiliary problems several times, the Benders
decomposition method is applicable if these problems can be solved efficiently, i.e., when
it is much easier to solve the decomposed problems than the original one. Moreover, espe-
cially for the subproblem, it is sometimes possible to proceed with further decomposition
(by flow, by period, etc.), resulting in even more efficient methods. Costa [8] provides
a detailed survey on Benders decomposition methods applied to problems that can be
formulated as network design problems.

Hence, the Benders decomposition [3] could be thought as a competitive method for
the optimization problem at hand. The structure of MCND problems presents a priori
a logical decomposition for the Benders method: the integer variables representing the
installation of the links are solved in the master problem while the continuous variables
representing the actual flows are kept in the subproblem for the tentative network ob-
tained in the master problem. In other terms, at each iteration the master solution gives
a tentative network for which the subproblem finds the optimal solution. The caveat
being that decomposing the Benders master problem per individual node (to take into
account the distributed nature of the routing process) is not directly possible for the gen-
eralized MCND problem considered in this paper. In [25], we anticipated to decompose
the original problem by keeping the link installation, link maintenance, and routing de-
cision change variables in the master problem while projecting out the routing decisions.
However, this approach does not allow to perform a canonical Benders decomposition as
the capacity constraints link the different subproblems altogether. In other terms, the
nodal decomposition dimension of the routing decision process prevents the effective use
of canonical Benders decomposition.

2.2 Temporal Decomposition

Several computational methods rely on primal decomposition. Temporal decomposition
methods such as the rolling horizon technique [21] have been successfully applied to
solve combined planning and distribution problems over multiple periods (both short-
and long-term) in transportation and logistics [30, 5], energy supply chain, production
planning, etc. All these problems involve execution scenarios where the future is not
known in advance. This method is thus worthwhile considering for the problem at hand
since we aim at solving our optimization problem over a large number of time periods.
It consists of dividing the generalized MCND problem into multiple subproblems to be
solved over a limited number of periods and reuse the solution produced at one (set
of) periods to the next. The goal is to decrease the computational time while limiting
the degradation of the solution compared to the one produced by the exact method
performing over the entire set of periods. The basic idea is indeed to iteratively consider
only a small part of the time steps, called the planning horizon of pH periods, and find
an optimal solution for this reduced planning problem. With this solution at hand,
a specified number of time steps are fixed, and then the planning horizon is shifted
equally by pH periods. Moreover, this method shows properties that are well suited for
combined capacity installation, maintenance and routing decisions that must be designed
by accounting for the uncertainty introduced by varying traffic demands (thus varying
link capacity availability) and link ageing effects that impose periodic updates.
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In [27] we propose to resolve this computationally challenging problem by means of
the rolling horizon heuristic with the objective to decrease the computational time while
degrading as less as possible the quality of the solution. The resulting improvements
enable to progressively overcome the computational limits encountered when solving such
problem, in particular, when the network size and number of periods increase. The
improvements provided by the rolling horizon heuristic can be further exploited to account
for different patterns of failures that may affect installed arcs over time.

2.3 Lagrangian Decomposition and Related Objectives

As stated in the introduction, one of the most promising techniques to solve the base
MCND problem is the Lagrangian relaxation [22, 10, 6]. By relaxing the linking con-
straints, the Lagrangian relaxation method can be applied to the MNCD problem in
order to provide stronger lower bounds. Moreover, with a suitable choice of the compli-
cating constraints (by dualizing the flow constraints), this method offers the possibility
to decompose the Lagrangian subproblem per network node inline with the objective of
obtaining a decomposition of the original optimization problem which preserves the dis-
tributed nature of the routing decisions. For instance, [10] have successfully applied the
Lagrangian relaxation technique to efficiently solve large-scale instances of the MCND
problem.

In solving the MCND problem, Crainic et al. [10] showed that the bundle methods have
two main advantages compared to subgradient approaches: i) their increased complexity
is most often compensated by faster convergence (than subgradient methods) towards
optimal value of the Lagrangian dual, ii) they require usually fewer parameters to adjust
and are less sensitive to these parameters than subgradient methods; hence, more robust.
On the other hand, the bundle method requires, at each iteration, the minimization of a
polyhedral function which corresponds to solve a linear problem, called master problem,
in order to obtain the new iterate, following the proximal Bundle method [19, 2]. For
numerical reasons, the master problem must be “stabilized” [15]. Moreover, exploiting
the properties of the specific problem [18] leads to a “structured” master that usually
also provides a better numerical behaviour. To circumvent some of these limits, new
sub-gradient methods have also been proposed recently like deflected, projected [11] and
primal-dual approaches [23]. In particular, the latter minimizes the gain in parameter
adjustment provided by the bundle methods; however, the bundle methods still converge
much faster as they use much more detailed piece-wise linear model of the objective
function. These arguments justify (a priori) the choice of the bundle method following
in this paper that is well suited to our formulation of the Lagrangian dual.

The fundamental objective of this is paper is to extend the Lagrangian decomposition
method to the generalized MCND problem. Reaching this objective requires however
to address several challenges because the Lagrangian subproblem is not structured as
a knapsack problem; hence, it becomes much harder to solve. First, we propose a La-
grangian relaxation approach for computing a lower bound. Next as obtaining good
feasible solutions for medium to large scale instances remains indeed challenging; we pro-
pose a Lagrangian heuristic with computationally provable performance. Finally, though
we compute a lower bound by relaxing the flow conservation constraints such that the
Lagrangian approach yields one subproblem per network node, solving the Lagrangian
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Figure 2: Piecewise linear cost function

dual by means of the bundle method remains a complex computational tasks. From this
perspective our objective is to show that the proposed Lagrangian heuristic makes the
approach more robust compared to out-of-shelve MIP solvers.

3 The Optimization Model
The problem we study in this paper can be described as follows. Given a directed network
G = (V,A), where V is the set of nodes and A is the set of links, we must satisfy the
demands of each pair of nodes s, t ∈ V over a set of periods p ∈ P = {1, . . . , P}. Each
triplet origin-destination-period (s, t, p) has an associated demand Dp(s, t) that must flow
between s and t at period p. To simplify the notation, we also assume Dp(s, s) = 0. Each
arc (i, j) in the network can only be used in period p if it is newly installed at period p,
in which case an installation cost cij is paid, or if it was already used in period p − 1,
in which case a maintenance cost mij (with mij < cij) is paid. Each arc (i, j) has also a
nominal capacity κij.

The routing of demands is performed as follows: for each potential destination, a
next-hop selection is performed at a given node. This allows to maintain a reasonably
sized routing table in each router, in the line of what shortest path routing protocols do
[1, 4, 29], but with some additional flexibility as we don’t impose that the path created
here are compatible with a (given or computed) distance matrix.

Furthermore, a routing cost for each arc (i, j) and each period p is defined as an
increasing piecewise linear convex function of its utilization, inspired by [13]. Given the
load lpij on arc (i, j) resulting from the routing decisions in a given period p, the routing
cost associated to (i, j) at period p has the form

φ(κij, l
p
ij) = max

r=1 ...,R
{θrlpij − τrκij},

where θr and τr (r ∈ {1, . . . , R}) define the slopes and independent terms of the segments
composing φ. The cost function used in our experiments is illustrated in Figure 2.

The problem consists in minimizing the sum of all costs, while satisfying demand
requirements and capacity constraints. The cost of a solution to the optimization problem
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combines the sum of (i) installation costs cij, (ii) maintenance costs mij, and (iii) routing
costs φ(κij, l

p
ij).

This problem is a relaxation of the problem presented in [25] as we do not consider
here the additional constraint limiting the number of allowed routing changes over the
time horizon.

A first formulation for the problem (similar to [25]) uses the following set of variables:

• ypij: binary variable indicating if arc (i, j) should be newly opened or re-opened at
period p;

• zpij: binary variable indicating if arc (i, j) should be maintained at period p;

• xtpij : binary variable indicating if node j is the next hop for node i to destination t
at period p.

• f tp
ij : continuous variable indicating the amount of flow on arc (i, j) destined to t at
period p.

• φp
ij: continuous variable representing the piecewise linear routing cost on arc (i, j)

at period t.

The problem can then be formulated as:

(AF) min
∑
p∈P

∑
(i,j)∈A

(
cijy

p
ij +mijz

p
ij + φp

ij

)
(1a)

s.t.
∑

j:(i,j)∈A
f tp
ij −

∑
j:(j,i)∈A

f tp
ji = Dp(i, t)

i, t ∈ V, i 6= t, p ∈ P (1b)∑
j:(j,i)∈A

f tp
jt =

∑
s∈V

Dp(s, t) t ∈ V, p ∈ P (1c)

xtpij ≤ ypij + zpij (i, j) ∈ A, t ∈ V, p ∈ P (1d)
ypij + zpij ≤ 1 (i, j) ∈ A, t ∈ V, p ∈ P (1e)

zpij ≤ yp−1ij + zp−1ij (i, j) ∈ A, p ∈ P , p ≥ 2 (1f)
z1ij = 0 (i, j) ∈ A (1g)

f tp
ij ≤ Ctp

ij x
tp
ij (i, j) ∈ A, t ∈ V, p ∈ P (1h)∑

t∈V
f tp
ij ≤ Cp

ij(y
p
ij + zpij) (i, j) ∈ A, p ∈ P (1i)∑

j:(i,j)∈A
xtpij = 1 i, t ∈ V, i 6= t, p ∈ P (1j)

φp
ij ≥ θr

∑
s,t∈V

f stp
ij − τrκij r ∈ R, (i, j) ∈ A (1k)

xtpij ∈ {0, 1} (i, j) ∈ A, t ∈ V, p ∈ P (1l)
ypij, z

p
ij ∈ {0, 1} (i, j) ∈ A, p ∈ P (1m)

f tp
ij ≥ 0 (i, j) ∈ A, t ∈ V, p ∈ P (1n)
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The first term of the objective function (1a) corresponds to the installation cost, the
second one to the maintenance cost and the last one to the piecewise linear routing cost.
Constraints (1b) and (1c) are flow conservation constraints that ensure that the demand
flow requirement given by matrix Dp is routed at period p. Constraints (1d) ensure that
an arc can be used for routing at period p only if it is installed or maintained open at
period p, while (1e) impose that an arc is not both installed and maintained during the
same period. Next, (1f) ensure that an arc can be maintained only if it was open during
the previous period, and we assume no arc was open before the first period starts (1g).
Constraints (1h) state that flow can be sent on an arc for a given destination at a given
period only if the arc is in the routing table, where Ctp

ij = min
(
κij,

∑
s∈V D

p(s, t)
)
is a

tight upper bound on the flow on arc (i, j) destined to t at period p. Similarly, constraints
(1i) ensure that flow is sent only on opened arcs, and that the capacity of the arcs are
not exceeded, where Cp

ij = min
(
κij,

∑
s,t∈V D

p(s, t)
)
is a tight upper bound on the total

load on arc (i, j) at period p. Finally, equalities (1j) impose that exactly one next-hop
is chosen for each node, towards each destination, at each period, and (1k) model the
piecewise linear routing costs.

Note that in this formulation, flow variables and flow conservation constraints are
aggregated per destination. We call this model the Aggregated Formulation (AF). As
shown in [25], a stronger lower bound can be obtained by disaggregating the flows by
source, i.e. defining new flow variables f stp

ij representing the amount of flow on arc (i, j)
from source s to destination t at period p. To simplify the notation, we define a deficit
vector dstpi , i ∈ V , indicating the net amount of flow required by the node: nodes with
negative deficit are sources, nodes with positive deficits are sinks, and nodes with zero
deficits are transshipment, i.e. dstpi = Dp(s, t) if i = s, dstpi = −Dp(s, t) if i = t, and
dstpi = 0 otherwise. Moreover, we implicitly consider that f ssp

ij = 0, and we can tighten
the capacity bounds by defining Cstp

ij = min (κij, D
p(s, t)).

The Disaggregated formulation (DF) can then be written as:

9



(DF) min
∑
p∈P

∑
(i,j)∈A

(
cijy

p
ij +mijz

p
ij + φp

ij

)
(2a)

s.t.
∑

j:(i,j)∈A
f stp
ij −

∑
j:(j,i)∈A

f stp
ji = dstpi i, s, t ∈ V, p ∈ P (2b)

xtpij ≤ ypij + zpij (i, j) ∈ A, t ∈ V, p ∈ P (2c)
ypij + zpij ≤ 1 (i, j) ∈ A, t ∈ V, p ∈ P (2d)

zpij ≤ yp−1ij + zp−1ij (i, j) ∈ A, p ∈ P , p ≥ 2 (2e)
z1ij = 0 (i, j) ∈ A (2f)

f stp
ij ≤ Cstp

ij x
tp
ij (i, j) ∈ A, s, t ∈ V, p ∈ P (2g)∑

s,t∈V
f stp
ij ≤ Cp

ij(y
p
ij + zpij) (i, j) ∈ A, p ∈ P (2h)∑

j:(i,j)∈A
xtpij = 1 i, t ∈ V, i 6= t, p ∈ P (2i)

φp
ij ≥ θr

∑
s,t∈V

f stp
ij − τrκij r ∈ R, (i, j) ∈ A (2j)

xtpij ∈ {0, 1} (i, j) ∈ A, t ∈ V, p ∈ P (2k)
ypij, z

p
ij ∈ {0, 1} (i, j) ∈ A, p ∈ P (2l)

f stp
ij ≥ 0 (i, j) ∈ A, s, t ∈ V, p ∈ P (2m)

Despite the better lower bounds provided by (DF), the drawback of this formulation
is its very large dimension, as the number of variables and the number of constraints are
multiplied by O(|V |) when compared to (AF). As reported in [25], (DF) becomes quickly
untractable for state-of-the-art MIP solvers. This motivates us for the development of a
Lagrangian decomposition algorithm.

4 The Algorithm
The main novelty of our approach relies in the design of a Lagrangian heuristic suitable for
both (DF) and (AF) within a non-smooth algorithm together with an iterative resolution
procedure. The Lagrangian relaxation problem is solved by means of the bundle method
(BM) [19] which aims at overcoming the slow convergence and instability of the Cutting
Plane algorithm [20]. A preliminary version of the resolution procedure is documented in
[28]. The bundle method is extended in this paper with a Lagrangian heuristic to produce
a feasible solution. In our numerical experiments in Section 5, we use this extended
method to solve the Lagrangian dual of both (DF) and (AF) described in Section 4.1.

4.1 Lagrangian Relaxation

The Lagrangian relaxation [22, 10, 6] of a general mixed integer problem consists in taking
the set of complicating constraints of this problem into the objective function multiplied
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by a vector of weights (the Lagrange multipliers). The corresponding Lagrangian dual
problem is solved iteratively by seeking for the optimal multipliers of the relaxed con-
straints. Lagrangian relaxation requires the reformulation of the model as a much larger
problem, which sometimes provides a better bound. Because of its huge size, dynamic
generation of the model is required. This technique leads to the solution of a non-smooth
convex problem.

There are a plenty of strategies to decompose the problem by relaxing some groups
of constraints. Following the idea coming from Network Design problems (see, e.g., [10]),
(AF) and (DF) are relaxed respectively by dualizing the group of flow constraints (1b) and
(2b) in such a way that the corresponding Lagrangian subproblem can be decomposed
by node i ∈ V . In principle, we could decompose more than that but worsening the
complexity of the Master problem.

We first describe the Lagrangian relaxation of (DF). Let νstpi be the dual variable
(multiplier) of the flow constraint (2b) associated to node i, source s, destination t and
period p. It follows that the Lagrangian function associated to ν has the form:

ξDF (ν) = min
∑
p∈P

∑
(i,j)∈A

(
cijy

p
ij +mijz

p
ij + φp

ij

)
(3a)

+
∑
p∈P

∑
s,t∈V

∑
(i,j)∈A

(
νstpi − νstpj

)
f stp
ij (3b)

+
∑
p∈P

∑
s,t∈V

(νstpt − νstps )Dp(s, t) (3c)

s.t. (2c) - (2m)
(3d)

where the objective function is linearized by introducing the variables φp
ij, (i, j) ∈ A, p ∈

P .
The Lagrangian dual of the original problem consists in maximizing the function

ξDF (ν) over the whole space R|V |3×P , that is:

max
{
ξDF (ν) : ν ∈ R|V |3×P

}
. (4)

Note that the term (3c) involving the demands Dp(s, t) is linear in ν. We define

ξ0DF (ν) =
∑
p∈P

∑
s,t∈V

(νstpt − νstps )Dp(s, t),

and the remaining Lagrangian subproblem can be decomposed in |V | subproblems ξiDF (ν),
i ∈ V , defined as:
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ξiDF (ν) =

min
∑
p∈P

∑
j:(i,j)∈A

(
cijy

p
ij +mijz

p
ij + φp

ij +
∑
s,t∈V

(
νstpi − νstpj

)
f stp
ij

)
(5a)

s.t. φp
ij ≥ θr

∑
s,t∈V

f stp
ij + τrκij j : (i, j) ∈ A, p ∈ P , r ∈ R (5b)

xtpij ≤ ypij + zpij j : (i, j) ∈ A, t ∈ V, p ∈ P (5c)
ypij + zpij ≤ 1 j : (i, j) ∈ A, p ∈ P (5d)

zpij ≤ yp−1ij + zp−1ij j : (i, j) ∈ A, p ∈ P , p ≥ 2 (5e)
z1ij = 0 j : (i, j) ∈ A (5f)

f stp
ij ≤ Cstp

ij x
tp
ij j : (i, j) ∈ A, s, t ∈ V, p ∈ P (5g)∑

t,s∈V
f stp
ij ≤ Cp

ij(y
p
ij + zpij) j : (i, j) ∈ A, p ∈ P (5h)∑

j:(i,j)∈A
xtpij = 1 t ∈ V, i 6= t, p ∈ P (5i)

xtpij ∈ {0, 1} j : (i, j) ∈ A, t ∈ V, p ∈ P (5j)
ypij, z

p
ij ∈ {0, 1} j : (i, j) ∈ A, p ∈ P (5k)

f stp
ij ≥ 0 j : (i, j) ∈ A, s, t ∈ V, p ∈ P (5l)

Consequently, the Lagrangian function ξDF (ν) can be rewritten as the following sum
of functions:

ξDF (ν) = ξ0DF (ν) +
∑
i∈V

ξiDF (ν). (6)

A similar approach leads to the Lagrangian relaxation of (AF). Let νtpi be the dual
variable of flow constraints (1b) with respect to node i, destination t and period p for
i 6= t and νtpt the dual variable of (1c). The Lagrangian function has the following form:

ξAF (ν) = min
∑
p∈P

∑
(i,j)∈A

(
cijy

p
ij +mijz

p
ij + φp

ij

)
(7a)

+
∑
p∈P

∑
t∈V

∑
(i,j)∈A

(
νtpi − νtpj

)
f tp
ij (7b)

+
∑
p∈P

∑
s,t∈V

(νtpt − νtps )Dp(s, t) (7c)

s.t. (2c) - (2m) (7d)

φp
ij ≥ θr

∑
t∈V

f tp
ij − τrκij r ∈ R, (i, j) ∈ A (7e)

The Lagrangian dual of (AF) is then

max
{
ξAF (ν) : ν ∈ R|V |2×P

}
. (8)

12



and can then be decomposed along the same lines as the one of (DF).
Observe that the integrality property does not hold for these Lagrangian duals. From

a theoretical standpoint, this means that the Lagrangian approach can provide a better
lower bound than the continuous relaxation could do. In practice however, our empirical
experiments show that the gain is usually not significant, and solving exactly (3) and
(7) as MILPs is computationally challenging. Hence, in our numerical experiments, we
assume that (3) and (7) are linear programs by relaxing the integrality constraints.

One of the major challenges in solving the Lagrangian duals (4) and (8) is their non-
smooth nature. For such problems, Bundle methods [15, 19] have been shown to be very
effective.

Let us assume we want to maximize a dual function ξ(ν), ξ being either ξAF or ξDF .
Bundle methods work by constructing a polyhedral model ξB approximating ξ, and solve
the stabilized master problem

ψt(ν̄) = sup
{
ξB(ν̄ + d) + ∆t(d) : d ∈ Rn

}
(9)

where ν̄ is the current dual solution and ∆t is a stabilizing term. The polyhedral model
is iteratively refined by adding cutting planes based on the current solution of (9). We
refer to [15] for a complete description of the method.

4.2 Lagrangian Heuristic

Both (DF) and (AF) are hard to solve with general-purpose MILP solvers, and the
difficulty increases significantly with the number of network nodes and time periods.
One of the main challenges is that MILP solvers have difficulties in finding good primal
solutions. In this subsection, we present a Lagrangian Heuristic (LH) based on the
ideas that (i) removing linking design constraints (1f) and (2e) make (AF) and (DF)
decomposable by period; and (ii) using the Lagrangian dual values obtained from the
relaxations presented above could guide the search towards a better solution by recovering
some part of the connection between periods.

The heuristic works by replacing the variables ypij and z
p
ij by “unified” design variables

hpij, representing if the link (i, j) is opened at period p, but ignoring if it is newly opened
or just maintained from the previous period. The problem can then be solved for each
period independently with an adequate cost dpij associated to hpij variables.

The problem for period p, H(p), derived from (AF) can then be formulated as follows:
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(H(p)) min
∑

(i,j)∈A

(
dpijh

p
ij + φp

ij +
∑
t∈V

(
νtpi − νtpj

)
f tp
ij

)
(10a)

s.t. φp
ij ≥ θr

∑
t∈V

f tp
ij − τrκij r ∈ R, (ij) ∈ A (10b)∑

j:(i,j)∈A
f tp
ij −

∑
j:(j,i)∈A

f tp
ji = Dp(i, t) i, t ∈ V, i 6= t (10c)

∑
j:(j,i)∈A

f tp
jt =

∑
∈V

Dp(s, t) t ∈ V (10d)

xtpij ≤ hpij (i, j) ∈ A, t ∈ V (10e)

f tp
ij ≤ Ctp

ij x
tp
ij (i, j) ∈ A, t ∈ V (10f)∑

t∈V
f tp
ij ≤ Cp

ijh
p
ij (i, j) ∈ A (10g)∑

j:(i,j)∈A
xtpij = 1 i, t ∈ V, i 6= t (10h)

xtpij ∈ {0, 1} (i, j) ∈ A, t ∈ V (10i)
hpij ∈ {0, 1} (i, j) ∈ A (10j)

f tp
ij ≥ 0 (i, j) ∈ A, s, t ∈ V (10k)

where νtpi , i, t ∈ V are the Lagrangian multipliers obtained from the Lagrangian relax-
ation.

The heuristic constructs a solution (x̄, ȳ, z̄, f̄) to (AP) as follows. The decomposed
problem is first solved for period p = 1 with dpij = cij, as a consequence of (1g). Given
an optimal solution (h∗, x∗, f ∗) to H(1), the heuristic solution is built for the first period
by setting x̄t1ij = x∗t1ij , ȳ1ij = h∗1ij , z̄1ij = 0 and f̄ t1

ij = f ∗t1ij for all (i, j) ∈ A and t ∈ V .
The construction then iterates over the next periods. Given a partial solution com-

puted up to period p − 1, H(p) is solved by setting, for each (i, j) ∈ A, dpij = mij if
ȳp−1ij + z̄p−1ij = 1 (i.e. the arc was opened at the previous period) and dpij = cij otherwise.
Given an optimal solution (h∗, x∗, f ∗) to H(p), the heuristic solution is built for period
p by setting x̄tpij = x∗tpij , ȳpij = 0 and z̄pij = h∗pij if ȳp−1ij + z̄p−1ij = 1, ȳpij = h∗pij and z̄pij = 0

otherwise, and f̄ tp
ij = f ∗tpij for all (i, j) ∈ A and t ∈ V .

A similar approach can be used with the linear relaxation of (DF), replacing the
objective function in H(p) by:

∑
(i,j)∈A

(
dpijh

p
ij + φp

ij +
∑
s,t∈V

(
νstpi − νstpj

)
f tp
ij /|V |

)

The problem H(p) has a structure similar to the standard Fixed-Charge Multicom-
modity Capacitated Network Design Problem [17] but the problem remains challenging
because of routing constraints (10h) and the piecewise objective function φp

ij.
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4.3 Computational aspects

The performance of our algorithm depends on several strategic issues. We first review
how to initialize the dual multipliers, then we describe how the Lagrangian heuristic
interacts with the Bundle method. Finally, we point out how the primal solutions can
help strengthening the polyhedral approximation of the Lagrangian dual.

4.3.1 Warm start

The initialization of the dual multipliers is a fundamental issue. Let us first consider
(AF). The objective is to find a point ν̄ whose value ξAF (ν̄) is not too far from the
optimum of ξAF , in order to limit the number of iterations required to converge.

Given that (AF) contains a classical linear multi-commodity flow as a subproblem, it
is logical to consider that the dual variables of this subproblem could be a good starting
point. To this aim, we solve a restricted version of (AF) that involves only the flow
variables f tp

ij , ignoring the design variables and considering all arcs as open, i.e.

(WS) min
∑
p∈P

∑
(i,j)∈A

φ

(
κij,

∑
t∈V

f tp
ij

)
(11a)

s.t.
∑

j:(i,j)∈A
f tp
ij −

∑
j:(j,i)∈A

f tp
ji = Dp(i, t) i, t ∈ V, i 6= t, p ∈ P (11b)

∑
j:(j,i)∈A

f tp
jt =

∑
∈V

Dp(s, t) t ∈ V, p ∈ P (11c)

f tp
ij ≤ Ctp

ij (i, j) ∈ A, t ∈ V, p ∈ P (11d)∑
t∈V

f tp
ij ≤ Cp

ij (i, j) ∈ A, p ∈ P (11e)

f tp
ij ≥ 0 (i, j) ∈ A, s, t ∈ V, p ∈ P (11f)

The dual variables of flow equations (11b) represent a “good” starting point for the La-
grangian approach.

For (DF), instead of solving a problem similar to (11), we reuse the best solution
ν∗tpi , i, t ∈ V, p ∈ P , found for the Lagrangian dual of the (AF). To initialize BM when
applied to ξDF , we adopt the following formula:

ν̄tpsi = ν∗tpi , i, s, t ∈ V, p ∈ P . (12)

The numerical experiments confirmed that the objective functions has the same value,
i.e. ξDF (ν̄) = ξAF (ν∗).

4.3.2 Stabilization and stopping criteria

The stabilization term employed in (9) is the quadratic one, i.e. ∆t(d) = − 1
2t
‖ d ‖2,

because it leads to a fast convergence rate. Morever, a specialized quadratic solver is
available [14] in the framework we use (see Section 5), that can be directly applied to
solve the stabilized master.
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Given a scaling factor t∗ and the final (relative) accuracy ε > 0, BM stops when

t∗

2
‖ζ∗‖22 + α∗ ≤ εmax{1, ξ(ν̄)} (13)

holds, where ζ∗ and α∗ are, respectively, the aggregated supergradient and the aggregated
linearization error (see, e.g., [15]).

4.3.3 Interaction between BM and LH

The solution obtained by the Lagrangian heuristic depends on the dual multipliers ob-
tained by the Bundle method. A good trade-off must be found between time spent for
finding a good lower bound (i.e. time used in iterations of BM) and time spent for finding
primal solutions with LH. At the extremities of the spectrum, we could choose to run
LH only once with the best dual multipliers obtained with BM, or to run LH at each
iteration of BM. Both options are quite ineffective: the first approach only produces a
single feasible solution that can be of very bad quality, while the second approach only
allows to perform a very small number of BM iterations and spends a large part of the
computational time to solve (10), leading to a very poor lower bound.

As a compromise, we call LH at a decreasing rate, very often at the beginning to
quickly find feasible solutions, then less frequently to give more time to BM to improve
the lower bound. We first set a maximum total running time tM . Lagrangian dual values
for (AF) are computed using the warm start procedure described above. Then, BM is
applied to ξAF for a predefined time tAF (� tM). The initial phase stops when either
(13) is satisfied or the time limit tAF is reached.

In the remaining time, the algorithm attempts to improve the lower bound, i.e., BM
is applied to ξDF . Dual values are initialized with (12), then BM is executed for a given
time tB. After this phase, LH is applied, with a maximum running time of tH for each
period. Then, the procedure iterates between BM and LH, increasing by tB the time
allowed for BM at each iteration. The procedure stops when (13) is satisfied or tM is
reached.

Figure 3 describes the work flow of our method, where νAF and νDF denote the
Lagrangian multipliers νtpsi and νtpi , for i, s, t ∈ V, p ∈ P , respectively, of the Lagrangian
relaxation of (DF) and (AF). BM is summarized in the upper part of the figure, while
LH is shown in the lower part. Note that LH needs the Lagrangian multipliers νAF ( or
νDF ) from BM to set up the costs of the objective function of (H(p)), p ∈ P . The best
(lower) bound provided by BM is denoted BB, and the upper bound given by the best
integer solution provided by LH is denoted BI.

4.3.4 Exploiting Feasible Solutions

The information gained from primal solutions obtained with LH can be used to improve
the convergence of BM. The best solution found by LH provides an upper bound u on
the value of the Lagrangian dual. The polyhedral approximation of the Lagrangian dual
can be improved by adding the cut

ξB(ν̄ + d) ≤ u
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Figure 3: Work flow of the Algorithm
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to the master problem (9), as suggested in [18]. We have observed that adding such a
cut to the master problem reduces the execution time by an order of magnitude for our
specific problem.

4.3.5 Aggregated vs Disaggregated master

We solve the aggregated master problem with the Bundle method. It has been shown
in [18] that the disaggregated master problem should work better when the Lagrangian
dual can be formulated as a sum of functions, as it is in this application. Unfortunately,
the number |V | of subproblems for all our instances is relatively small. Because of the
small size of the set of nodes, the information accumulated in the disaggregated mas-
ter problem is insufficient to yield the optimality in few iterations. On the other hand,
all this information makes the disaggregated master problem difficult to solve. Con-
sequently, the bundle method presents a large number of iterations and each iteration
requires a big computational effort. This observation was computationally confirmed by
our experiments reported in [28], which justify the choice of using the aggregated master
problem.

5 Numerical experiments
In all our experiments, CPLEX 12.5.1 was used to solve the MILPs involved in the
algorithm, i.e., the Lagrangian subproblems (3) and (7), the heuristic problems LH(p)
(10) and the restricted problem used for the initialization of the dual multipliers (11). We
must stress that we did not solve (3) and (7) but their linear relaxations. We have tried
to switch to their integer versions in the last iterations of BM but without any significant
improvement of the lower bound.

The Lagrangian dual was solved using an implementation of BM available in a general-
purpose C++ non-smooth optimization code developed by A. Frangioni and already
successfully used in other applications [10, 18].

The algorithm has been compiled with GNU g++ 4.4.5 (with the -O3 optimization
option) and ran single-threaded on a server with multiple Opteron 6174 processors (12
cores, 2.2 GHz), each with with 32 GB of RAM, under a i686 GNU/Linux operating
system.

Our algorithm has been evaluated on a set of network topologies extracted from the
SNDlib library [24]. This library provides a repository of several topologies together with
their link capacities, link costs, and traffic demands. The following topologies have been
considered (in alphabetical order): cost-266, france, germany50, giul39, india35, nobel-eu,
norway, pioro40, polska, sun, zib54. We focused on medium to large size networks that
make the problem very challenging for MILP solvers.

For each of these topologies, instances with 5, 10 and 15 periods were generated.
Demand matrices were generated as described in [26]. For all the experiments, we used
the following time limits: tM = 36000s, tAF = 100s and tH = |V |.|A|

5
s. The required

accuracy ε of BM was set to 1e − 4 when applied to ξAF and to 1e − 6 when applied to
ξDF . Only in a few cases the accuracy of the solution of ξDF is reached because increasing
the time tH penalizes the execution time of BM in favor of LH. However, we are more
interested in finding a better primal solution. The performance of LH strongly depends
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AF-CPLEX DF-CPLEX BM / LH
Network |V | |A| BB BI BB BI BB BI
polska 12 36 8.97% 8.97% 8.97% 8.97% 0.00% 11.86%
france 25 90 0.65% 3.12% 1.39% 2.74% 0.00% 5.35%

norway 27 102 0.28% 7.99% 0.58% 97.29% 0.00% 10.13%
sun 27 204 -1.17% 25.74% 1.91% 6.95% -0.02% 10.35%

nobel-eu 28 82 4.63% 18.34% 3.36% —– -0.09% 14.60%
india35 35 160 -4.80% 32.42% 0.15% —– -0.01% 20.05%
cost-266 37 114 -0.26% 6.28% 0.00% 7.11% -0.04% 1.75%
giul39 (*) 39 334 -1.27% —– —– —– 0.00% 1.44%
pioro40 40 178 12.78% —– 0.00% —– -0.03% 23.65%

germany50 50 176 5.64% —– 0.00% —– -1.76% 52.96%
zib54 54 162 -0.37% 14.77% 0.00% —– -12.34% 3.23%

Table 1: Numerical results for instances with 5 periods

on appropriate tuning of tH . On the one hand, a small value of tH may yield a primal
solution of low quality because the execution of the solver of (10) could be stopped too
soon. On the other hand, a fine-tuned value of tH may allow to find several good primal
solutions. We noted that the chosen value of tH must take in account the dimension of the
network. We observed that tH = |V |.|A|

5
s allows to obtain good enough primal solutions

for small instances and relatively good solutions for the largest ones.
To position the results obtained with the methods proposed for solving (DF) or (AF),

we compare our algorithm with CPLEX. The optimality accuracy of CPLEX was set to
1e-6 as well. We have tested all the available methods in CPLEX (Automatic, Primal,
Dual, Barrier), and ultimately we have selected the Barrier algorithm as the one offering
the best performance for solving the MILP problems (AF) and (DF) and their linear
relaxation. We observed that the Barrier algorithm significantly outperformed the default
Automatic setting in which CPLEX chooses the algorithm.

Results are reported for P = 5, 10 and 15, respectively, in Tables 1 to 3. The tables
report the gaps with respect to the Linear Relaxation (LR) solution of (DF) found with
the Barrier algorithm of CPLEX. Columns AF-CPLEX and DF-CPLEX report the re-
sults obtained by solving (AF) and (DF) with the Barrier algorithm of CPLEX, also with
a maximum running time of 36000s. The results of our method are reported in column
BM / LH. For each approach, we report the gap between the Best Bound (BB) and LR as
well as the gap between the Best Integer (BI) and LR. The best lower bounds and primal
solutions found are emphasized in bold. Unfortunately, CPLEX is not able to solve LR
for giul39 with 5, 10 and 15 periods, and pioro40, germany50 and zib54 with 15 periods.
For those instances (marked with a star in the tables), the gap is computed with respect
to the best bound obtained by BM. Finally, we do not report the execution time because
the methods did not stop before 36000s, except for polska with 5 periods, using CPLEX
and for polska and france with 5 periods, using BM.

Several observations can be drawn out of these numerical results:

• Only one instance (polska for 5 periods) could be solved to optimality (both with
AF-CPLEX and DF-CPLEX). This confirms how challenging these instances are.
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AF-CPLEX DF-CPLEX BM / LH
Network |V | |A| BB BI BB BI BB BI
polska 12 36 3.91% 4.86% 3.85% 4.76% 0.00% 8.22%
france 25 90 0.35% 1.00% 0.86% 0.86% -0.01% 10.28%

norway 27 102 -0.97% —– 0.00% —– -0.02% 14.51%
sun 27 204 -3.17% —– 0.01% —– -0.02% 14.09%

nobel-eu 28 82 4.68% 49.16% 2.99% —– -0.22% 16.01%
india35 35 160 -3.99% —– 0.01% —– -4.35% 20.04%
cost-266 37 114 -1.51% —– 0.00% —– -0.07% 3.89%
giul39 (*) 39 334 3.37% —– —– —– 0.00% —–
pioro40 40 178 5.69% —– 0.00% —– -2.14% 19.84%

germany50 50 176 0.03% —– 0.00% —– -6.42% —–
zib54 54 162 -1.13% —– 0.00% —– -24.03% 3.12%

Table 2: Numerical results for instances with 10 periods

AF-CPLEX DF-CPLEX BM / LH
Network |V | |A| BB BI BB BI BB BI
polska 12 36 2.33% 4.12% 2.55% 4.09% 0.00% 6.86%
france 25 90 0.28% 0.28% 0.28% 0.28% -0.01% 7.52%

norway 27 102 -2.49% —– 0.00% —– -0.03% 33.89%
sun 27 204 -2.79% —– 0.00% 42.90% -0.03% 18.59%

nobel-eu 28 82 2.05% 41.36% 3.79% —– -1.19% 20.21%
india35 35 160 -3.40% —– 0.00% —– -5.81% 20.78%
cost-266 37 114 -2.29% —– 0.00% —– -0.14% 8.76%
giul39 (*) 39 334 3.06% —– —– —– 0.00% —–

pioro40 (*) 40 178 3.25% —– —– —– 0.00% —–
germany50 (*) 50 176 6.57% —– —– —– 0.00% —–

zib54 (*) 54 162 37.78% —– —– —– 0.00% 45.49%

Table 3: Numerical results for instances with 15 periods
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• As the number of periods increases, the quality of the results decreases for both
CPLEX and BM/LH but the latter is still able to find a feasible solution except
for giul39 and germany50 when P = 10 and giul39, pioro40 and germany50 when
P = 15.

• As the number of nodes increases (and for any number of periods), the quality
of the best feasible solution produced by the CPLEX solver decreases compared
to BM/LH until reaching the situation where only BM/LH is able to produce a
solution (though their quality deteriorates as the number of periods increases, see
below).

• Concerning the lower bounds, the results are more contrasted. The best bound
produced by DF-CPLEX partially confirm the better lower bounds provided by
(DF) in particular for P = 5 but as the size of the instances increases (due to
the number of nodes and/or periods), its performance compared to AF-CPLEX
decreases, because linear programs become much larger and time consuming to
solve; this trend is striking for P = 15, where even the linear relaxation of (DF)
could not be computed within the time limit. For this number of periods, a global
trend nevertheless appears, for small-size instances (1,2) AF-CPLEX is the best
method though close to the two others, for medium-size instances (3,4,5,6,7) DF-
CPLEX yields the best lower bound and BM/LH the best feasible solution, and
for large-scale instances (8,9,10), AF-CPLEX is still able to provide the best lower
bound (compared to the two others) whereas left without any feasible solution. The
latter observation shows the possibility to further improve the BM/LH method to
obtain the same trend as the one observed when P = 10 for which the BM/LH
is clearly the winner (beside for small instances 1 and 2). A possible explanation
stems from the deviation induced byH(p) which performs per-period given a partial
solution computed up to period p− 1.

In the above experiments, we have used a particular piecewise function whose deriva-
tive has the following form:

φ′(κij, l
p
ij) =



1 if 0 ≤ lpij/κij ≤ 0.3

3 if 0.3 ≤ lpij/κij ≤ 0.6

10 if 0.6 ≤ lpij/κij ≤ 0.7

100 if 0.7 ≤ lpij/κij ≤ 0.8

500 if 0.8 ≤ lpij/κij ≤ 0.9

5000 if 0.9 ≤ lpij/κij

In order to measure the impact of the number of pieces on the difficulty of the problem,
we also performed additional experiments described below. We present below the results
obtained for instances france, germany50, nobel-eu, norway, polska, sun with 5 periods
for three different forms of the piecewise function φ: φ1, φ2 and φ3. For function φ1, we
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keep the number of breakpoints unmodified while changing the values; its derivative is

φ′1(κij, l
p
ij) =



5 if 0 ≤ lpij/κij ≤ 0.1

10 if 0.1 ≤ lpij/κij ≤ 0.3

50 if 0.3 ≤ lpij/κij ≤ 0.5

100 if 0.5 ≤ lpij/κij ≤ 0.7

500 if 0.7 ≤ lpij/κij ≤ 0.9

1000 if 0.9 ≤ lpij/κij

For φ2, we consider a higher number of breakpoints. The derivative of the function φ2 is
given below:

φ′2(κij, l
p
ij) =



0.1 if 0 ≤ lpij/κij ≤ 0.20

0.2 if 0.20 ≤ lpij/κij ≤ 0.30

0.5 if 0.30 ≤ lpij/κij ≤ 0.35

1 if 0.35 ≤ lpij/κij ≤ 0.40

2 if 0.40 ≤ lpij/κij ≤ 0.45

5 if 0.45 ≤ lpij/κij ≤ 0.50

10 if 0.50 ≤ lpij/κij ≤ 0.55

20 if 0.55 ≤ lpij/κij ≤ 0.60

50 if 0.60 ≤ lpij/κij ≤ 0.65

100 if 0.65 ≤ lpij/κij ≤ 0.70

200 if 0.70 ≤ lpij/κij ≤ 0.75

500 if 0.75 ≤ lpij/κij ≤ 0.80

1000 if 0.80 ≤ lpij/κij ≤ 0.85

2000 if 0.85 ≤ lpij/κij ≤ 0.90

5000 if 0.90 ≤ lpij/κij

For the last one, φ3, we approximate the routing cost by means of the linear function:

φ3(κij, l
p
ij) = 100 lpij .

We report the results with CPLEX for solving the MILP problems (AF) and (DF),
respectively in Tables 4 and 5, and with BM / LH for solving (DF) in Tables 6. For each
φi, i = 1, . . . , 4, we give the gap between the Best Bound (BB) and LR as well as the gap
between the Best Integer (BI) and LR. For φ3 we report also the execution time in the
column Time.

The main conclusion from these experiments is that CPLEX struggles a lot to solve
the problem when the number of pieces increases. On the contrary, our heuristic is able
to provide a feasible solution in each case and lower bounds close to the linear relaxation
of AF.

6 Conclusion
This paper presents a Lagrangian relaxation approach to solve a multi-commodity capac-
itated fixed charge network design problem with variable traffic demands over multiple
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AF-CPLEX φ1 AF-CPLEX φ2 AF-CPLEX φ3 AF-CPLEX φ0

Network |V | |A| BB BI BB BI Time BB BI BB BI
polska 12 36 6.03% 6.48% 28.61% 29.60% 1 0.01% 0.01% 8.97% 8.97%
france 25 90 0.00% 0.00% 1.55% 4.58% 7 0.00% 0.00% 0.65% 3.12%

norway 27 102 21.21% 88.62% 3.34% 3.34% 36000 -0.83% 12.27% 0.28% 7.99%
sun 27 204 0.26% 8.93% 0.12% 7.28% 3134 0.00% 0.00% -1.17% 25.74%

nobel-eu 28 82 15.19% 37.34% 7.07% 33.52% 36000 0.21% 9.06% 4.63% 18.34%
germany50 50 176 25.52% —– 16.98% —– 36000 -4.28% 28.26% 5.64% —–

Table 4: Numerical results of (AF), changing φ

DF-CPLEX φ1 DF-CPLEX φ2 DF-CPLEX φ3 DF-CPLEX φ0

Network |V | |A| BB BI BB BI Time BB BI BB BI
polska 12 36 5.88% 6.48% 29.27% 29.60% 1 0.01% 0.01% 8.97% 8.97%
france 25 90 0.00% 0.00% 2.22% 4.10% 12 0.00% 0.00% 1.39% 2.74%

norway 27 102 —– —– 0.06% —–. 36000 0.80% 8.75% 0.58% 97.29%
sun 27 204 1.21% 2.97% 1.31% 6.00% 39 0.00% 0.00% 1.91% 6.95%

nobel-eu 28 82 5.56% —– 4.90% —– 36000 1.35% 6.22% 3.36% —–
germany50 50 176 —– —– —– —– 36000 0.01% —– 0.00% —–

Table 5: Numerical results of (DF), changing φ

BM / LH φ1 BM / LH φ2 BM / LH φ3 BM / LH φ0

Network |V | |A| BB BI BB BI Time BB BI BB BI
polska 12 36 0.00% 7.54% 0.00% 31.01% 16 0.00% 0.02% 0.00% 11.86%
france 25 90 0.00% 0.12% 0.00% 4.78% 98 0.00% 0.05% 0.00% 5.35%

norway 27 102 0.00% 99.02% -0.01% 12.22%. 36000 0.00% 8.91% 0.00% 10.13%
sun 27 204 -0.03% 3.68% -0.02% 7.94% 140 0.00% 0.30% -0.02% 10.35%

nobel-eu 28 82 -0.12% 22.45% -0.07% 26.45% 36000 -0.02% 5.12% -0.09% 14.60%
germany50 50 176 -1.12% 33.45% -2.01% 48.96% 36000 -0.01% 19.11% -1.76% 52.96%

Table 6: Numerical results of BM / LH, changing φ
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time periods and including routing decisions. This practical problem is computationally
challenging since it aims at considering several tasks at once. In fact, the MILP problem
is even difficult testing reasonable instances as already reported in [26].

We show how to construct a feasible solution to the problem by exploiting the La-
grangian multipliers. The method is able to find feasible solutions faster than CPLEX,
and in many cases CPLEX is not even able to find a single feasible solution. For some
very large instances, the Lagrangian heuristic also fails at finding a primal solution.

One major difficulty in solving large instances is that the heuristic currently relies on
solving the problem for one period, which is already challenging by itself. Improvements
could be obtained by focusing on fast and efficient heuristics for solving the single period
problem. Another difficulty arises from the combination of routing constraints and the
piecewise objective function. Recent results by Fortz et al. [12] on problems with similar
constraints could be integrated in our formulations to strengthen the lower bounds.
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