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ABSTRACT

Challenges inherent to high-resolution and high signal-to-noise data as well as model degeneracies can cause systematic biases in
analyses of strong lens systems. In the past decade, the number of lens modeling methods has significantly increased, from purely
analytical methods, to pixelated and non-parametric ones, or ones based on deep learning. We embraced this diversity by selecting
different software packages and use them to blindly model independently simulated Hubble Space Telescope (HST) imaging data.
To overcome the difficulties arising from using different codes and conventions, we used the COde-independent Organized LEns
STandard (COOLEST) to store, compare, and release all models in a self-consistent and human-readable manner. From an ensemble
of six modeling methods, we studied the recovery of the lens potential parameters and properties of the reconstructed source. In
particular, we simulated and inferred parameters of an elliptical power-law mass distribution embedded in a shear field for the lens,
while each modeling method reconstructs the source differently. We find that, overall, both lens and source properties are recovered
reasonably well, but systematic biases arise in all methods. Interestingly, we do not observe that a single method is significantly
more accurate than others, and the amount of bias largely depends on the specific lens or source property of interest. By combining
posterior distributions from individual methods using equal weights, the maximal systematic biases on lens model parameters inferred
from individual models are reduced by a factor of 5.4 on average. We investigated a selection of modeling effects that partly explain
the observed biases, such as the cuspy nature of the background source and the accuracy of the point spread function. This work
introduces, for the first time, a generic framework to compare and ease the combination of models obtained from different codes and
methods, which will be key to retain accuracy in future strong lensing analyses.

Key words. methods: data analysis – methods: statistical – galaxies: elliptical and lenticular, cD – galaxies: structure –
cosmological parameters – cosmology: observations

1. Introduction

Understanding the evolutionary path of galaxies over cosmic
times continues to be a major challenge in astrophysics. In this
context, strong gravitational lensing enables the observation of
galaxies lying at different redshifts in a single observation, mak-
ing it an inescapable tool to constrain galaxy evolution models.
Strong gravitational lensing arises when a foreground distant
galaxy – the lens, or deflector – is coincidentally aligned with
a more distant background galaxy – the source – causing the
appearance of multiple and magnified images of the latter. The
typical redshift range for lens galaxies lies between zd ∼ 0.2
and 1.5, while source galaxies are often found between redshifts
zs ∼ 1 and 4 (Oguri & Marshall 2010; Collett 2015), such that
strong lensing systems can display a wide variety of galaxy mor-
phologies and evolutionary stages.

Besides galaxy evolution studies, strong lensing has sev-
eral important applications in cosmology. As it is dictated by
the total mass of galaxies, one can use this effect to put con-
? Corresponding author; aymeric.galan@gmail.com

straints on their dark matter halo. In particular, strong lens-
ing data enables the separation of the baryonic and dark com-
ponents of galaxies (e.g., Suyu et al. 2012; Shajib et al. 2021),
and the detection of dark matter subhalos and other invisi-
ble masses along the line of sight (e.g., Vegetti et al. 2010;
Sengül et al. 2022; Nightingale et al. 2024). When combined
with time-varying sources, strong lenses can also be used to
measure cosmological parameters, including the Hubble con-
stant (H0 e.g., Wong et al. 2020; Birrer et al. 2020; Kelly et al.
2023) and density parameters (e.g., with multiplane lensing sys-
tems, Collett & Auger 2014). All these applications rely heavily
on a precise characterization of both the azimuthal and radial
mass profiles of lens galaxies.

The central step when analyzing strong lensing data is lens
modeling. The goal of this step is to model both the mass
and light distribution of the lens galaxy, while simultaneously
reconstructing an unlensed version of the source galaxy. Lens
modeling is a challenging task because inverting the lens-
ing effect is an ill-posed problem, in particular due to known
degeneracies between the lens mass distribution and the source
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morphology. For example, the infamous mass-sheet degeneracy
(MSD, Falco et al. 1985; Schneider & Sluse 2013), a mathemat-
ically exact degeneracy between the lens mass density and the
source scaling, has been studied both theoretically and practi-
cally (e.g., Birrer et al. 2016; Unruh et al. 2017; Wagner 2018;
Gomer & Williams 2020; Cao et al. 2022) and can be miti-
gated using complementary data sets (e.g., Birrer et al. 2020;
Yıldırım et al. 2023; Khadka et al. 2024). In the past twenty
years, many different lens modeling techniques, ranging from
analytical to pixelated techniques and neural networks, have
been developed and successfully applied to real images (e.g.,
Warren & Dye 2003; Suyu et al. 2006; Vegetti & Koopmans
2009; Birrer et al. 2016; Nightingale et al. 2018; Galan et al.
2024). In general, these techniques have been developed with
specific lensing systems, data sets, and science goals in mind,
and then have been extended to cover more use cases. Con-
sequently, it is crucial to assess how these different methods
compare to each other, and if their combination is warranted to
improve the robustness of lensing analyses. Such a comparison
enables the quantification of possible systematic biases. Addi-
tionally, if several methods lead to consistent results, those can
be combined together, improving the overall accuracy.

So far, lens modeling comparison analyses have been rare.
For cluster-scale systems, a prominent work has been initiated
by Meneghetti et al. (2017) by performing an extensive compar-
ison of several modeling approaches on both simulated and real
Hubble Frontier Fields clusters. However, there have not been
comparable efforts for galaxy-scale strong lens systems. While
some works have reanalyzed archival data with alternative mod-
eling software packages (e.g., Birrer et al. 2016; Shajib et al.
2021), it is only recently that more quantitative comparisons
between different methods have been reported (Shajib et al.
2022; Etherington et al. 2022). The Time Delay Lens Modeling
Challenge (TDLMC) compared the output of different modeling
and inference strategies, but focusing only on the recovery of
H0 (Ding et al. 2021). Different lens modeling codes have been
compared in Lefor & Futamase (2015) and Pascale et al. (2024),
although using point-like multiple images rather than extended
gravitational arcs as constraints. Finally, recent works from
Schuldt et al. (2023a) and Gawade et al. (2024) compared neural
network predictions with more classical approaches, although on
with ground-based imaging data.

Our goal here is to analyze imaging data similar to those
obtained with the Hubble Space Telescope (HST) with differ-
ent modeling and inference techniques, and study the recovery
of a given set of lens parameters while reconstructing the lensed
source in different ways. To our knowledge, this is the first time a
systematic and self-consistent comparison between a large num-
ber (six) of state-of-the-art galaxy-scale lens modeling meth-
ods has been conducted. In order to maintain this novel kind of
analysis tractable, we have restricted the assumptions regarding
the description of the lens mass distribution and properties of
the data, although remaining reasonably realistic. In particular,
we limit our scope to the commonly used power-law elliptical
mass distribution embedded in a shear field. This description
of the lens deflection field has proven to be a minimal but
efficient prescription for modeling the observed strong lensing
effect caused by large elliptical galaxies (e.g., Koopmans et al.
2006; Suyu et al. 2013; Millon et al. 2020; Shajib et al. 2021;
Etherington et al. 2022; Tan et al. 2024, to cite only a few),
although the simplicity of this model has known limitations
(Sonnenfeld 2018; Gomer & Williams 2021; Cao et al. 2022;
Etherington et al. 2024; Ruan & Keeton 2023). We also note that
recent analyses of strong lenses found evidence for multipolar

deviations to the elliptical power-law profile, but a higher reso-
lution than HST is warranted for robust detection (Powell et al.
2022; Stacey et al. 2024). While most lensing analyses focus on
the properties of the galaxies acting as lenses, the morphology
of the lensed galaxies also hold important information about
galaxy formation and evolution. Current high-resolution images
of strong lenses such as those from HST showcase highly struc-
tured lensed sources (e.g., Bolton et al. 2006; Garvin et al. 2022;
Wang et al. 2022). Consequently, it is also crucial to assess the
ability of lens modeling codes to recover the morphology of
extended lensed sources.

We first selected different lens modeling software pack-
ages and modeling methods that are well suited to model high-
resolution and high signal-to-noise (S/N) data. Since each soft-
ware package typically follows different parameter definitions
and model conventions, it is not possible to directly compare
the modeling results. We overcame this challenge by using
the COde-independent Organized LEns STandard (Coolest,
Galan et al. 2023), an open-source standard that enables storage,
sharing, and analysis of all lens modeling products in a uniform
manner, regardless of the modeling code originally used to per-
form the lens modeling tasks. Included in this standard is an
analysis interface allowing us to compute important quantities
(e.g., effective radii and profile slopes) and visualize lens mod-
eling results. We have extensively used Coolest in this work,
both for releasing the models and data, as well as performing the
analysis of the results and generating the figures.

The paper is organized as follows. In Sect. 2 we briefly recall
the strong lensing formalism we follow. In Sect. 3, we present
the different lens modeling methods, in particular their common-
alities and differences. We explain how the data was simulated
using an independent software in Sect. 4, and the standardized
comparison and analysis framework is introduced in Sect. 5. The
modeling results after unblinding are visualized and described in
Sect. 6, followed by an exploration of possible sources of sys-
tematics in Sect. 7. In Sect. 8 we discuss our results and place
them in a broader context, and Sect. 9 concludes our work.

2. Formalism of strong gravitational lensing

We give for completeness a brief overview of the mathemati-
cal formalism to describe strong lensing data and models. More
background details can be found in recent reviews such as
Vegetti et al. (2023), Shajib (2024), Saha et al. (2024).

The main strong lensing observables are the positions and
intensities of multiply lensed images of features in a back-
ground sources. These features can either be unresolved (i.e.,
point sources) or spatially extended. In the latter case, the lensed
source appears as several arcs or as an Einstein ring surround-
ing the lens object and typically covering many pixels in high-
resolution imaging data. We call the (observable) plane of the
sky where lensed images appear the “image plane”, that we place
at the redshift zd of the foreground lens, also called the main
deflector. Observed features in the image plane are localized with
a two-dimensional angular position vector, θ. For conciseness,
we interchangeably use the standard Cartesian coordinates (x, y)
to describe a position, θ, in the image plane. Each feature in the
lensed images has a corresponding (unobservable) angular posi-
tion, β, in the “source plane” placed at the redshift of the back-
ground object, zs.

The central equation in gravitational lensing is the lens equa-
tion, which gives the relationship between β and θ:

β = θ − ∇ψ(θ) , (1)
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where ∇ψ ≡ α is the deflection field originating from the lens
potential, ψ, the latter being a rescaled and projected version of
the underlying three-dimensional gravitational potential of the
lens galaxy. Usually, a more physically relevant quantity is the
projected mass density of the lens, characterized by the so-called
lens convergence, κ (dimensionless), obtained with a combina-
tion of second derivatives of the lens potential:

κ =
1
2
∇2ψ . (2)

As it will be useful for the discussion (Sect. 8.4), we also
recall the formula of the Fermat potential, mostly relevant for
time-varying sources. The Fermat potential, Φi, and the Fermat
potential difference, ∆Φi j, between a pair of lensed images i and
j, are defined as

Φ(θi) =

(
θi − β

)2

2
+ ψ(θi) , (3)

∆Φi j ≡ Φ(θi) − Φ(θ j) , (4)

where θi and θ j are the positions of images i and j, respectively.
In this work, we consider parametrized forms for the lens

mass distribution, while the surface brightness of the lensed
galaxy is described following a variety of techniques. We give
more details about the modeling of these different components
in Sect. 3.

3. Lens modeling methods and assumptions

We have considered an ensemble of “modeling methods” that
each differ on two aspects: modeling assumptions and inference
techniques. For instance, modeling assumptions are typically
specific choices of model components (mass and light profiles,
fixed or not), regularization strategies for pixelated models and
necessary hyper-parameters. Inference techniques are typically
minimization and sampling algorithms to obtain best-fit param-
eters and estimate their posterior distributions, or sequences of
distinct steps (e.g., preliminary coarse and fast model fits) to con-
verge to the best-fit solution.

In practice, a given lens modeling software package can be
considered as a modeling method, as specific choices regard-
ing the code structure, model types and optimization tech-
niques have been made throughout its development. For this
work, we selected a subset of software packages that are
sufficiently different to be considered as distinct modeling
methods: Lenstronomy (Birrer & Amara 2018; Birrer et al.
2021), the Very Knotty Lenser (Vkl, Vernardos & Koopmans
2022), Herculens (Galan et al. 2022, 2024) and Qlens (Minor
et al., in prep.). Other software packages used in several
published analyses so far are Glee (Suyu & Halkola 2010;
Suyu et al. 2012), PyAutoLens (Nightingale & Dye 2015;
Nightingale et al. 2018, 2021), Glafic (Oguri 2010) and meth-
ods from Vegetti & Koopmans (2009, and subsequent works).
However, for practical reasons we only use the first set of meth-
ods, which already form a representative sample of the various
modeling methods that are currently available, from fully ana-
lytical to pixelated models, with or without adaptive grids. Such
methods are referred to as classical methods, in contrast to deep
learning methods that we do not consider in this work (e.g.,
Schuldt et al. 2023b; Adam et al. 2023; Gentile et al. 2023, for
some recent works), as these would require additional assump-
tions regarding training sets and network architectures beyond
our scope. Nevertheless, we encourage future works to conduct

self-consistent comparison analyses similar to ours, that involve
both classical and deep learning methods (see e.g., Schuldt et al.
2023a).

This remaining of this section presents the general modeling
strategy we adopt throughout this work. We first describe model-
ing assumptions that are common to all methods, then give more
details regarding each of these modeling methods, and finally
mention extra choices that are left free to the modelers.

3.1. Common modeling aspects

Throughout this work, we reasonably assume that the noise in
the imaging data, d, follows a Gaussian distribution with covari-
ance matrix, Cd. In this setting, we can write the negative log-
probability of the data likelihood as

− log L
(
η
)

=
1
2

[
m(η) − d

]>
C−1

d

[
m(η) − d

]
+ log

(
2π

√
det Cd

)
, (5)

where m is the predicted image (i.e., the model) and η repre-
sents a generic vector of model parameters. We note that Cd
is assumed to be diagonal with contributions from both back-
ground noise and photon noise. In other words, we follow the
widely used assumption that the noise is uncorrelated and nor-
mally distributed. With simulated data, we have access to the
true matrix Cd. As in this work we do not explore the effects of
inaccurate assumptions regarding noise characteristics, we give
to the modelers the true matrix Cd and use it in all lens models.

While the likelihood term in Eq. (5) is common to all models
considered here, specific modeling assumptions such as morpho-
logical properties of the source galaxy are encoded as additional
priors. Such priors priors can either be explicitly incorporated
in the inference via a regularization term written as the nega-
tive of the log-prior − logP, or they can be implicitly defined
through a choice of parametrization such as an analytical func-
tions. Summing the log-likelihood and log-prior terms gives the
full penalty or loss function, L, which is directly proportional to
the log-posterior and minimized during the inference of model
parameters:

L
(
η
)

= − logL
(
η
)
− logP

(
η
)
. (6)

Modeling methods generally describe the lensing of photons
from the source by casting the lens equation into a lensing oper-
ator, L, which depends on the lens potential parameters that we
denote by ηψ. This operator acts on a model of the source, s,
described by parameters, ηs, which can be either analytical, pix-
elated or a representation in function basis set, as per

m(η) ≡ m(ηψ, ηs) = R B L(ηψ) s(ηs) . (7)

so that we get a model image, m, that has the same pixel size
as the data, after possible downsampling by the operator R and
blurring by the operator B. The latter incorporates the effect of
the point spread function (PSF) of the instrument and seeing con-
ditions. This PSF is assumed to be known with the same spa-
tial sampling as the data and available to all modelers. As stated
in Sect. 3.6, no constraints are imposed to modelers regarding
optional supersampling of ray-tracing and convolution opera-
tions. The light distribution of the lens galaxy is not modeled
because we assume that the lens light has been perfectly sub-
tracted from the data beforehand.
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For modeling the lens mass distribution of the lensing
galaxy – alternatively, its lens potential – we consider the com-
monly used power-law elliptical mass distribution (PEMD) with
an additional shear field component. This shear component has
been commonly referred to as “external” shear as it captures the
net effect masses external to the lens along the line of sight;
we use this wording within the scope of our work but it does
not necessarily holds true when modeling real systems (see e.g.,
Etherington et al. 2024).

The assumption of a PEMD with external shear is common
to all modeling methods, namely all modelers use the same lens
potential parameter vector ηψ. The convergence of the PEMD is
described by (Barkana 1998; Tessore & Metcalf 2015):

κPEMD(x, y) =
3 − γ

2

 θE√
qmx2 + y2/qm

γ−1

(8)

where γ is the logarithmic power-law slope (γ = 2 corresponding
to an isothermal profile), qm is the axis ratio and the coordinate
system (x, y) has been rotated by a position angle φm around the
lens center (x0, y0). The lens potential generated by an external
shear can be easily expressed in polar coordinates with the fol-
lowing formula (e.g., Etherington et al. 2024):

ψext(x, y) ≡ ψext(r, φ) =
r2

2
γext cos

[
2
(
φ − φext

)]
, (9)

where γext is the strength of the external shear, and φext its posi-
tion angle. We note that Eqs. (8) and (9) follow the parameters
conventions used in the Coolest (see Sect. 5 and the online
documentation for other conventions1).

We note that the loss function of Eq. (6) has a non-linear
response to lens mass parameters, ηψ. However, the set of source
parameters, ηs, can formally be split into linear (light profile
amplitudes) and non-linear parameters. This property is explic-
itly exploited by some of the modeling methods we use in this
work.

The modeling methods considered in this work thus mainly
differ in the assumptions regarding the light distribution of the
source, s(ηs), which we summarize in Table 1 and describe in
more detail in the next subsections.

3.2. Smooth modeling with Sérsic and shapelets

We used a modeling method implemented in the multipur-
pose Lenstronomy package. We followed the baseline model
presented in Sect. 3.1, and which consists of a PEMD plus
external shear for the lens. The source was modeled with a
Sérsic profile, to which were added shapelets basis functions,
which are capture additional complexity of the source light dis-
tribution. We implemented this modeling strategy using ver-
sion 1.11.3 of the multi-purpose open-source software package
Lenstronomy (Birrer & Amara 2018; Birrer et al. 2021). This
tool, regularly enhanced with new user-contributed capabilities,
provides a large family of lens mass distribution and light pro-
files. We refer the reader to Birrer et al. (2015) for a formal
description of the shapelets model in the context of lens mod-
eling.

The procedure used in Lenstronomy to derive the pos-
terior distribution on the parameters is sequential. The opti-
mal linear parameters are found through matrix inversion, given

1 https://coolest.readthedocs.io/en/latest/
conventions.html

values of non-linear parameters. First, a suitable region in non-
linear parameter space that minimizes the loss function defined
in Eq. (6) is found via a Particle Swarm Optimization algo-
rithm (PSO, Kennedy & Eberhart 2002). Second, the parameters
space is sampled using a Monte-Carlo Markov Chain (MCMC).
The parameters of the optimal model found previously are ran-
domly perturbed, and used to start the chain. We use the MCMC
sampler emcee, which is the most used so far among the
Lenstronomy user community (Foreman-Mackey et al. 2013).
In this work, as it is also a common practice, the model inves-
tigated during the optimization step is a simplified version of
the final model, retaining only the main model components that
enable to reproduce the largest fraction of the data pixel val-
ues. Components that yield small changes of the loss function,
such as the source shapelets, are added only during the MCMC
sampling. This hierarchy in the significance of model parame-
ters, while not explicitly formalized in the code, is similar to the
methodology developed by several automatized lens modeling
efforts (e.g., Etherington et al. 2022; Ertl et al. 2023; Tan et al.
2024). We give more technical details regarding this method in
Appendix B.1.

3.3. Adaptive grid source modeling

If one assumes that the free parameters of the source are its
brightness values cast on a grid of pixels s (instead of being
defined from a continuous analytical profile), then the likeli-
hood of Eq. (5) becomes a quadratic function of s. The benefit of
such quadratic functions is that their derivative can be calculated
analytically and have a unique minimum (Warren & Dye 2003).
However, with just the likelihood term this leads to an ill-posed
problem and the addition of a (quadratic) regularization term is
required, which has the following generic form:

− logP(λ, g, s) =
1
2
λsT C−1

s (g)s , (10)

where Cs is some covariance kernel of the source as a func-
tion of parameters, g. In this form, the source parameters can
be obtained analytically from ∇sL = 0 once the lens parame-
ters, ηψ, regularization strength, λ, and covariance parameters,
g, are given. This approach is referred to as semi-linear inver-
sion. In comparison with forward methods, which may treat
more source parameters as non-linear parameters, there are only
a few additional parameters that require sampling, λ and g (usu-
ally corresponding to just one or two parameters). The linear
source parameters, in other words the pixel brightness values,
are obtained using matrix inversion.

A key assumption in such inverse problems is the choice
of regularization, which can be interpreted in a Bayesian way
as a prior imposed on the source. Traditionally, one may
choose to impose smoothness to the solution through its deriva-
tives, where the matrix C−1

s is constructed from the numer-
ical derivative coefficients computed on the pixelated grid
(Warren & Dye 2003; Suyu et al. 2006; Vegetti & Koopmans
2009). Alternatively, more physically motivated covariance ker-
nels obtained from real galaxy brightness distributions have
been shown to perform better and lead to less biased results
(Vernardos & Koopmans 2022). A quite generic such example
is the Matérn kernel that has the following analytic form:

C(ri j|l, ν) =
21−ν

Γ(ν)

 ri j
√

2ν
l

ν Kν

 ri j
√

2ν
l

 , (11)

where ri j is the distance between any two source pixels and
ν, l correspond to the non-linear parameters g (the latter can be
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Table 1. Labels used to identify the six modeling methods of this work.

Modeling method label Description Corresponding source modeling technique

Sérsic+Shapelets Sect. 3.2 Concentric elliptical Sérsic profile and shapelets basis functions
Adaptive+Matérn Sect. 3.3 Adaptive Voronoi grid, regularized with a Matérn kernel
Cluster+Exp Sect. 3.3 Clustered adaptive Voronoi grid, regularized with an exponential kernel
Cluster+Exp+Lumweight Sect. 3.3 Similar to Cluster+Exp with regularization weighted by source luminosity
Sparsity+Wavelets Sect. 3.4 Cartesian grid, regularized with sparsity in wavelets space and non-negativity constraints
Correlated Field Sect. 3.5 Cartesian grid with Gaussian processes, regularized with a parametric power-spectrum

Notes. These modeling methods mainly differ in their source modeling techniques, but share other differences (see Sect. 3 for details).

interpreted as a correlation length). The type of regularization
can be objectively chosen based on the Bayesian evidence.

Another feature employed in semi-linear inversion imple-
mentations is the use of adaptive, non-regular grids for the
source. This is because smaller regions in the source plane can
contribute a higher fraction of the total flux, especially in the
regions of high magnification near caustics, hence higher res-
olution is required. Using a high resolution fixed regular grid
will lead to more computationally demanding matrix inversions,
but adapting the resolution to the lensing magnification (which
is a function of the lens model parameters η) will increase
the resolution in those regions of the source plane where it is
needed without adding more degrees of freedom. Such adap-
tive grids can be constructed simply by tracing a subset of
the data pixels back to the source (Vegetti & Koopmans 2009;
Vernardos & Koopmans 2022) and using them as grid vertices.
A more sophisticated way of constructing the adaptive grid, pio-
neered by Nightingale & Dye (2015), is to split each pixel into
N × N subpixels, ray-trace the subpixels to the source plane,
and then use a k-means clustering algorithm to determine the
location of the source grid vertices. The latter approach has the
advantage of minimizing aliasing effects, at the cost of additional
overhead due to the clustering algorithm.

The regularization of an adaptive grid may be extended to
allow for greater fluctuations in surface brightness in the inner
regions of the source with high S/N, while keeping the outer
regions of the source relatively smooth. Luminosity-weighted
regularization has been explored by Nightingale et al. (2018) in
the context of gradient regularization. In this work, we explored
luminosity-weighted covariance kernels to achieve a similar
effect. To implement this, we define the luminosity-weighted
kernel as:

Ci j,lum = Ci jWiW j, (12)

with the weighting function Wi given by:

Wi = exp
[
−ρ (1 − si,0/smax)

]
, (13)

where ρ is a free parameter to be varied, si,0 is an approximate
surface brightness of the i-th pixel before luminosity weighting,
and smax is the maximum surface brightness of all the source pix-
els. Pixel values si,0 can be taken from the best-fit model of a pre-
vious fit altogether, or it can be estimated during each likelihood
evaluation by doing an inversion without luminosity weighting
first; here, we adopted the latter approach. The advantage of the
form given in Eq. (12) is that it ensures that the kernel remains
positive-definite, which is critical given the quadratic form of the
regularization term. Although more sophisticated forms of the
weighting function Wi are possible, we only explored the single
parameter function given by Eq. (13) in this work.

Here, we used two implementations of the semi-linear
inversion technique, Vkl (Vernardos & Koopmans 2022) and
Qlens (Minor et al., in prep.), which can handle different
regularization schemes and recipes for constructing the adap-
tive source-pixel grid. In the Vkl modeling run, which we
label Adaptive+Matérn, a Matérn kernel will be used for reg-
ularization without supersampling of the image plane; whereas
in the Qlens modeling runs, an exponential kernel will be
used (equivalent to Matérn with ν = 0.5), image plane super-
sampling with k-means clustering will be used to construct
the adaptive source grid, and models without and with lumi-
nosity weighted regularization will be used (Cluster+Exp and
Cluster+Exp+Lumweight, respectively). Both implementations
use Nested Sampling (as implemented by the MultiNest algo-
rithm, Feroz et al. 2009) to sample the parameter space and con-
verge to the maximum a posteriori solution, in addition to calcu-
lating the Bayesian evidence. We outline the specific modeling
choices that are considered as three different source modeling
techniques in Sects B.2 and B.3.

3.4. Multi-scale regularization with wavelets

Regularization does not necessarily have to be quadratic so that it
can lead to a linear solution for the source. A non-linear example
is the method by Joseph et al. (2019), Galan et al. (2021) that is
based on sparsity constraints in the wavelet domain. We refer
to this regularization as a multi-scale regularization (and use
“ms” as subscripts in the corresponding equations). We briefly
describe the method here, but refer the reader to the original
papers for the full mathematical treatment.

Given the vector representation of the source expressed on a
regular (non-adaptive) pixelated grid, the regularization term to
be minimized (i.e., the second term in Eq. (6)) is:

−logP(η, s, λms) = λms
∥∥∥Wms(ηψ, ηs) �Φ

> s
∥∥∥

1 + i≥0(s) , (14)

where λms is a global (scalar) regularization parameter,Φ> is the
wavelet transform operator that transforms s into its wavelets
coefficients, and Wms is a matrix that scales the regularization
strength for each these coefficients. Operations ‖·‖1 and � refer to
the `1 norm and element-wise product, respectively. The second
term in Eq. (14) is a non-negativity constraint on the source since
we reconstruct surface brightness values. The operator Φ> rep-
resents an hybrid wavelet transform composed of all scales from
of the starlet transform (Starck et al. 2007) and the first scale of
the Battle-Lemarié wavelet transform (for more details see e.g.,
Lanusse et al. 2016; Galan et al. 2022). The matrix elements of
Wms are computed by propagating the data noise from the source
plane to the wavelet domain (hence the dependence on ηψ, ηs),
allowing us to attach a clear meaning to the global regulariza-
tion strength λms, interpreted as the statistical significance of the
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regularized source model and given in units of the noise (e.g.,
λms = 3σ).

We dynamically adapt the extent of the source plane regular
grid based on the lens mass by defining the annular region in
image plane (the “arc mask”) within which the pixelated source
light is evaluated. This adaptive scheme ensures that the effective
source pixel size covers the same angular scale of the source for
any realization of the mass model2. This treatment is different
from the fixed source plane grid used in Galan et al. (2021), and
provides more stability when optimizing lens mass models with
a free density slope.

We used the strong lens modeling code
Herculens (Galan et al. 2022) that implements the multi-
scale regularization strategy described in Eq. (14) using
JAX (Bradbury et al. 2018), such that the full model can
be pre-compiled and is differentiable. We used the proba-
bilistic programming library NumPyro (Phan et al. 2019;
Bingham et al. 2019) to implement prior distributions and
constraints on model parameters, and to perform the inference
of posterior distributions. Additional technical details regarding
the Sparsity+Wavelets models are given in Appendix B.4.

3.5. Non-parametric Gaussian processes

Finally, we applied a recently introduced source reconstruction
method that relies on Gaussian processes and information field
theory (IFT Enßlin 2019). The first applications of Gaussian pro-
cesses for modeling strongly lensed sources are the recent works
of Karchev et al. (2022), Rüstig et al. (2024) and Galan et al.
(2024), but we describe below the main principles for complete-
ness. In the IFT framework, such Gaussian processes are often
referred to as correlated fields, which is the term we use in the
remaining.

We use IFT to represent the source light distribution as a two-
dimensional non-negative correlated field. Such a field is based
on two main components: (1) an analytical parametrization of its
power spectrum (mainly its amplitude and slope) that accounts
for correlated structures in the source; (2) a discretization onto a
regular square grid, with elements following standardized Gaus-
sian distributions (we call the latter an excitation field). More
formally, we describe the source field, s, as

s = exp
[
F−1(A0 � ξ

)
+ δ

]
, (15)

where A0 is a zero-mode spectral field generated from the
parametrized power spectrum, ξ is the excitation field, and �
is the point-wise multiplication. The resulting field in harmonic
space is then transformed to real space by applying the inverse
Fourier transform operator, F−1, to which a constant offset, δ,
is added. Finally, we take the exponential of the resulting field
to enforce the positivity of source pixel values, since they repre-
sent surface brightness. We note that no extra regularization term
is added to the loss function, as Eq. (15) describes a generative
model that already incorporates smoothness conditions through
its power spectrum.

We use the Python library Nifty3 (Selig et al. 2013;
Steininger et al. 2019; Arras et al. 2019) to implement the above
field model and variational inference samplers to get the joint
posterior distribution over the parameter space. As in Galan et al.

2 We note that a similar strategy is used in the Glee modeling code to
adapt the extent of the source plane regular grid (Suyu & Halkola 2010;
Suyu et al. 2012).
3 https://gitlab.mpcdf.mpg.de/ift/nifty

(2024), we use the JAX interface of Nifty (nifty.re,
Edenhofer et al. 2024) and combine it with Herculens to eval-
uate the forward model (Eq. (7)). For further technical details
regarding the Correlated field model, see Appendix B.5.

3.6. Additional choices left to the modelers

There are some additional choices that are left to the modelers. In
particular, they are free to choose if and how they mask out some
regions in the imaging data and exclude those from the data like-
lihood evaluation. Similarly, super-sampling of the coordinates
grid when performing ray-tracing evaluations and surface bright-
ness convolutions with the PSF are optional. Modelers are free
to run variations in their fiducial models, varying, for example,
hyper-parameters, random number generator seeds, or inference
algorithms. This may allow for robustness tests, and any even-
tual marginalization over families of models leading to a joint
posterior distribution as the final result.

4. Independent simulation of imaging data

We produced a simulated mock system to model with all meth-
ods presented above and compare the results. We simulated the
mock using Molet4 (Vernardos 2022), a simulator code that is
independent of any of the codes used to fit the mock. The sim-
ulated mock is constructed using a power-law mass profile with
external shear and a relatively structured source, as is expected
from most lensed galaxies. The true source used in the simula-
tion is kept hidden (blind) from the modelers, as well as all other
input parameters.

For the source, we used an HST image of the galaxy
NGC 1084 that was previously used for simulated lenses in the
context of the TDLMC (Ding et al. 2021). This source is a local
galaxy with a detailed structure that is resolved without any
prominent PSF spikes, which could introduce nonphysical fea-
tures if lensed. We further avoided introducing unphysical fea-
tures in the resulting lensed source due to edge effects (e.g., sky
background) in the cutout that we used by forcing the values in
the source pixels to decay exponentially to zero away from the
brightness peak.

The simulated lensing data is then created by providing the
mass model and source to Molet, which performs ray-tracing
on a high-resolution grid, convolution with the PSF, downsam-
pling, and adding noise to the final mock observation. We use a
simulated HST PSF using TinyTim (Krist et al. 2011) based on
the WFPC2 instrument with the F814W filter (we do not con-
sider the more recent WFC3 instrument as TinyTim does not
support it). Since ray-tracing is performed on a 10 times higher
resolution grid compared to the final data, we use a simulated
PSF at that resolution for more accurate surface brightness con-
volutions (although modelers are given a PSF at the data reso-
lution, as is mentioned in Sect. 3.1). Our settings for the noise
correspond to 2200 s of exposure in the chosen instrument setup.
The angular size of the source cutout is set to 4 arcsec, and we
scale its total flux such that it has an apparent (unlensed) AB
magnitude of 23.2, which is in the range of observed source
galaxies from the Sloan Lens ACS Survey (SLACS) sample
(Bolton et al. 2006; Newton et al. 2011). We show in the top left
panel of Fig. 1 the simulated lens image, while the bottom row
shows the supersampled and data-resolution PSFs (only the lat-
ter is provided to the modelers).

4 https://github.com/gvernard/molet
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Fig. 1. Simulated HST imaging data used for the blind lens modeling
experiment (see Sect. 4 for details). The top left panel shows a zoom-
in cutout of the data. The top right panels shows the true (unlensed)
source surface brightness. The bottom left panel shows the true PSF ker-
nel downscaled to the data resolution (and given to the modelers). The
bottom right panel shows normalized residuals in image plane obtained
with a too simplistic source model (a single Sérsic profile).

We note that the lensed source galaxy and the data S/N are
such that a simple source model is not able to fit the data. We
visualize this in the top right panel of Fig. 1, which shows nor-
malized residuals between the data and a model based on a single
Sérsic profile for the source. Such residuals are strong evidence
for the necessity of more flexible source models as the ones we
employ in this work (described in Sect. 3).

In Appendix A we give useful details about a previous ver-
sion of the mock we attempted to model, for which we detected
issues related to the input source light distribution. In a nutshell,
the original source did not have an accurate background subtrac-
tion and displayed sharp edges (visually unnoticeable after lens-
ing the addition of noise), which led to biases in the lens models.
For this reason, a second mock with different input parameters
and source light had to be re-created (and the subsequent mod-
eling re-done).

5. Standardized comparison framework

Our work relies on several collections of modeling methods and
software packages, that we systematically apply on the same
data. These codes have been developed following different con-
ventions (e.g., angles, units, profile definitions), are written in
different programming languages (e.g., Python, C++), and dif-
fer in their final modeling products. Therefore, we must ensure
that we can both simulate and model strong lensing data in a
consistent way, in order to mitigate problems arising from the
heterogeneous collection of methods we consider.

We used the recently released strong gravitational lensing
standard Coolest (for COde-independent Organized LEnsing
STandard) as a framework unifying the different components of
our analysis5. Below we briefly describe Coolest and its spe-
cific features that we used in this work, but refer the reader

5 Coolest is an open source Python package publicly available at
https://github.com/aymgal/COOLEST. We used the released ver-
sion 0.1.9.

to Galan et al. (2023) and the online documentation6 for more
details.

The foundation of Coolest is a set of conventions to serve
as a reference point for modeling assumptions and codes, for
example, coordinate systems, units and profile definitions. Given
these conventions, any lens model – together with the data being
modeled and other modeling components such as the PSF – can
be concisely described in a single file following the JSON for-
mat. We refer to the latter as a Coolest template file, which
we use both to describe an instance of a strong lens to be simu-
lated and to store lens modeling results (e.g., best-fit parameters
and uncertainties). This standard way of storing lens modeling
information allows us to straightforwardly compare any model-
ing results to each other as well as to an existing groundtruth (in
the case of simulated data). In practice, it requires each modeling
or simulation code to have an interface with Coolest to create
or update such template files7. Lastly, we use the analysis fea-
tures of Coolest to read the content of template files, compute
key lensing quantities, and produce comparison plots. In particu-
lar, we use this interface to plot all lens models side-by-side and
compare them to the groundtruth, compute morphological fea-
tures of reconstructed source galaxies, and plot joint posterior
distributions over the parameter space.

6. Results from blind modeling with six methods

After agreeing on the properties of the simulated data (instru-
mental setup, S/N, type of mass model), one of the authors
(M.G.) first simulated the imaging data with a first soft-
ware (Sect. 4). The rest of the authors proceeded with the
blind modeling of the data, whose results are presented here.
The modeling workload was split between different model-
ers: L.V.V. (Sérsic+Shapelets models), G.V. (Adaptive+Matérn
model), Q.M. (Cluster+Exp and Cluster+Exp+Lumweight mod-
els) and A.G. (Sparsity+Wavelets and Correlated Field models).
In total, we used four distinct software packages and six differ-
ent modeling methods. Each modeler was free to perform their
analysis to the best of their judgment. Once confident that no
significant improvements to the models could be made by further
fine-tuning, the modelers converted their results to the Coolest
format (Sect. 5) and submitted them to A.G. (this may have
been a single or a marginalization of model instances). During
the simulation and the subsequent modeling phase, there was
minimum amount of information shared between the authors.
In particular, the shared information between the simulating
author and the modelers was restricted to the only data pix-
els, the corresponding noise map as well as the data-resolution
PSF. Afterwards, the modelers did not share their lens model-
ing results before all authors agree to do so. Keeping this part
of the analysis blind ensured unbiased and independent models.
Unblinding took place when M.G. also submitted the true model,
and the final figures presented in this section were produced.
The specific steps necessary to obtain these models, as well as
their estimated computation times, are detailed in Appendix B.
All models along with the simulated data products are publicly
available8.

6 https://coolest.readthedocs.io
7 This task is made easier by using the dedicated Coolest Python
interface.
8 https://github.com/aymgal/LensSourceDegeneracy_
public. Upon acceptance of the manuscript, analysis and visualization
notebooks will also be released.
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6.1. Overall fit to the imaging data

We show in Fig. 2 all the six models that have been blindly sub-
mitted, in direct comparison with the true model from the simu-
lation. We compare side-to-side the image model, relative error
on the convergence, model normalized residuals (in unit of the
noise), and the reconstructed sources. The reconstructed sources
should be directly compared to the top right panel of Fig. 1.
The residuals show clear improvements over the residuals shown
in the bottom right panel of Fig. 1 with a too simplistic source
model. We also quote the reduced chi-square value χ2

ν computed
within the likelihood mask chosen by the modeler, in order to
quantitatively compare the quality of fits. The largest χ2

ν value is
1.06 while the lowest value is 0.88, and four models have a χ2

ν
below unity which indicate slight overfitting. In several models,
residuals at the ∼3σ level remain where the arcs are the bright-
est (multiple images of the bright, cuspy central region of the
source). We note that overall, all models fit the imaging data to
very close to noise level.

While the Sérsic+Shapelets model captures less small-scale
structures in the source compared to other models, the resulting
fit in the image plane still achieves noise-level residuals (except
maybe for a few pixels in the outskirts of the lensed source).
Finer structures in the source like spiral arms and star form-
ing regions are overall better modeled by semi-linear inversion
methods, than by the wavelets and the correlated field.

The second column of Fig. 2 shows the relative error in the
lens convergence, throughout the field-of-view. Offsets in the
lens centroid and in the ellipticity are visible, although strongest
errors remain at the very center of the lens. At the position of the
multiple images (roughly traced by the critical lines), the relative
error in convergence remains below 5%.

6.2. Recovery of source properties

To visualize better which source features are captured by the
models, we show in Fig. 3, maps of source plane residuals
computed as the difference between the true and reconstructed
sources. Far from the optical axis, models are not well con-
strained by the data and significantly deviates from the true light
distribution; thus, we darken these areas for better visualization.
Pixelated models defined on irregular grids capture similarly
well most of the spiral features as well as star forming region
located in the left spiral arm. The center of the source galaxy
seems to be retrieved equally well by all models, despite the per-
sistent image plane residuals (see Fig. 2).

We show in Fig. 4 the recovery of several properties of the
source galaxy: the two-point correlation function, the effective
radius and the axis ratio. Bottom parts of each panel show the
relative error computed as (truth − model)/truth (i.e., negative
values are over-estimates). We measure these properties within a
square field of view of size 2′′.2, after projecting (using bi-cubic
interpolation) each source model on a regular grid with 10 times
higher resolution than the data. As is shown in Fig. 2, such a field
of view contains the entire flux of the source galaxy.

The left panel of Fig. 4 shows the two-point correlation
function ξ(r), which gives the azimuthally averaged correla-
tion between the source intensity at two positions in source
plane, as a function of their angular separation. All reconstructed
sources exhibit two-point correlations close to the one of the
input galaxy. Over all the models, the maximum error remains
small, except for some models for which it exceeds 15% error
on two-point correlations on arcsecond scales. We note that the
Sérsic+Shapelets model under-estimates two-point correlations

at all scales, while other models over-estimate these correla-
tions. The Cluster+Exp+Lumweight reaches minimal error on
the smallest scales (.0′′.4), which shows that the more detailed
reconstruction obtained with this model, visible in Fig. 2, is
accurate over these small spatial scales.

We investigate the recovery of the size of the source galaxy
through its effective radius, reff , which we define as the radius
that encloses half of the total light within a circular aperture of
radius 2′′.2. The middle panel of Fig. 4 shows reff and its rel-
ative error with respect to the true value for all source mod-
els. The effective radius is well recovered by all models with
a maximum error of 2.5%. In addition we observe a tendency
to over-estimate the effective radius, as only the Cluster+Exp
model slightly under-estimates it, which is also the model with
the lowest error. However, a better quantification of these errors
should involve posterior distributions over the source models,
which we do explore in this work. A first order uncertainty quan-
tification can be obtained through the scatter among the different
models, shown as the shaded gray area in Fig. 4. Given this scat-
ter, the average source half-light radius remains lies close to 1σ
from the true value.

Over the different source models considered here, none
explicitly parametrizes the ellipticity of the source galaxy, in
particular its axis ratio. Therefore, we use central moments of
source model images (projected onto the same coordinates), in
order to empirically measure an axis ratio qs. More specifically,
we compute the second order central moments of the source
image, and use its eigenvalues to estimate the major and minor
axes, from which we obtain the axis ratio qs. The rightmost panel
of Fig. 4 shows the resulting values, along with the true value
measured on the true source image. The relative error is over-
all larger than for the effective radius although it remains below
6%. Taking the mean over the ensemble of modeling methods
lies very close to the true value, within the 1σ scatter among the
models.

Figure 5 shows the histogram of source pixel intensities for
each model, compared to the true intensities (after interpolation,
i.e., rightmost column of Fig. 2). Interestingly, we clearly see
that the Sérsic+Shapelets and Cluster+Exp+Lumweight models
reach higher intensity values. This is expected for the former
(Sérsic+Shapelets) as the Sérsic profile diverges (with a best-
fit Sérsic index ≈ 1.6) in its center and thus can predict large
flux values. The luminosity-weighted regularization of the latter
(Cluster+Exp+Lumweight) is behaving similarly by decreasing
the regularization strength in regions with high observed flux.
Consequently, these two models are best at capturing the three
most magnified images of the source (see third column of Fig. 2).
We also note from Fig. 5 that some of the models exhibit slightly
negative values, as those are not penalized in their underlying
prior, although these value are not statistically significant when
compared to the noise level, and located mainly on the outskirts
of the reconstructed source.

6.3. Recovery of lens properties

We investigate the different constraints on the mass distribution
of our simulated strong lens system obtained from the differ-
ent modeling methods. Already on Fig. 3, showing the predicted
tangential caustics, we can visualize slight differences among
the models. The predicted caustics have different sizes and posi-
tions, overall slightly larger than the true caustics. These differ-
ences correlate with the corresponding biases we discuss below.
In particular, larger predicted density slopes are responsible for
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Fig. 2. Comparison between all blindly submitted models of the data shown in Fig. 1. The leftmost area gives the labels associated with each
modeling method (see also Table 1), as well as their associated color used for the subsequent figures of this paper. First column: Image model.
Second column: Relative difference between the true and modeled convergence maps, with the predicted tangential critical line shown as a black
line. Third column: Normalized model residuals, with associated reduced chi-squared χ2

ν indicated in the bottom left. The white areas are outside
the likelihood mask chosen by the modelers and are thus excluded during modeling. Fourth column: reconstructed source models, all interpolated
onto the same (regular) high-resolution grid to ease visual comparison. The predicted tangential caustic is also indicated as a white line. Last
column, first panel: True source as in Fig. 1, to ease comparison with the models. Last column, remaining panels: Reconstructed source models
on their original discretization grid, which can be regular or irregular, when applicable (the Sérsic+Shapelets model is not defined on a grid). All
panels have been generated using Coolest routines from the standardized storage of each model.

increasing the caustic size, and lens ellipticity and position off-
sets both impact the position and orientation of the astroid.

To quantitatively compare the constraints on lens potential
parameters among the six models, we show in Fig. 6 the joint

posterior distributions for all mass model parameters, as well as
true values from the data. Overall we find that the posterior dis-
tributions are within ∼3σ from the truth. The parameter with the
smallest scatter relative to the posterior width is the logarithmic
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Fig. 3. Source plane residuals between the true source and the models
shown in the fourth row of Fig. 2. Away from the center, the true source
intensity is close to zero and models are less accurate, thus these areas
are darkened for better visualization. Caustics from the best-fit (solid
lines) and true (dashed lines) lens models are shown as well. Within the
caustics, all models overall recover the source structure.

density slope γ. While all models are slightly biased towards val-
ues larger than the true value by approximately 2%, they are all
compatible with it at .1σ. Such a low scatter in the slope may
be perhaps surprising, as it has been shown that the density slope
may differ significantly between models (e.g., Etherington et al.
2022; Tan et al. 2024). However, we are in a regime where both
the data and all models are parametrized by a single power-law
density profile, hence the data is by construction a realization of
the true model (modulo our inexact knowledge of the PSF and
different numerics settings). Besides the density slope, the Ein-
stein radius, θE, also has low scatter among the models, which is
expected as it is the primary quantity constrained by strong lens-
ing observables. Models whose median values are further away
from the truth also tend to have broader posteriors (larger uncer-
tainties), which contribute to reduce the systematic bias (see also
Fig. 7 below). The remaining mass model parameters all show
visible scatter around the true values, while no systematic shift
can be associated with a specific modeling method or model
parameter.

From the full joint distributions over lens potential param-
eters, we investigate further the difference in uncertainties
between the models. In Fig. 7 we plot posterior standard devi-
ations for four parameters, θE, γ, q, and γext. As is expected

from imaging lensing data, the uncertainty on θE is the small-
est, with a relative precision on the order of 0.1%. For compari-
son, the relative precision on the mass density slope γ is around
1.2%, and around to 1.5% for the lens axis ratio q (the rela-
tive error for γext is inconclusive since it is close to zero). We
notice that models with largest dynamic ranges (see Sect. 6.2)
in their reconstructed source (Cluster+Exp+Lumweight) have
smaller uncertainties on lens potential parameters. This trend
is particularly clear for θE, γ, q (first column in Fig. 7). Over
the parameters shown in Fig. 7, the difference in uncertainties
between the models remains relatively small, and amounts to a
factor of approximately 1.6 between the least and most precise
models.

Ensemble models – namely, the combination of the posteri-
ors of multiple models – can help improve modeling accuracy
by correcting for the observed systematic biases of individual
models. Depending on the assumptions about the original
individual models, in particular regarding their statistical
independence, there exist different approaches to combine their
posteriors together. Here we follow a conservative approach and
simply combine individual posteriors with equal weights. We
show with dash-dotted black lines and contours in Fig. 6 the
resulting combined posteriors. We find that these combined dis-
tributions are all within 1σ from the true values, except for the
lens center along the x direction which is at 1.7σ. The marginal-
ized statistics of the combined posterior are reported in the last
row of Table 2 and compared to the simple average and standard
deviation among individual models.

We quantify the improvement in systematic bias between
individual models and the combined model. In the fourth row
of Table 2, we list the largest bias (in units of standard deviation)
that arises among the six lens models, for each lens potential
parameter. As already seen in Fig. 6, the most biased parameters
appear to be the coordinates of the center of the power-law pro-
file, (x0, y0), while the least biased is the density slope γ. As a
comparison, the last row of Table 2 lists the corresponding bias
values of the combined posterior, showing as expected a substan-
tial decrease for all mass model parameters. We discuss further
these results in Sect. 8.

6.4. Correlations between the recovery of lens and source
properties

Having in hand multiple lens models of the same data, we have
the opportunity to explore how the accuracy of inferred lens and
source properties correlate among the models. In particular, it
is interesting to understand if certain biases observed in lens
potential model parameters have an origin in biases in the recon-
structed source light distribution, and vice versa. If such correla-
tions exist, they could be used to design better parametrizations
to jointly model the lens and source components that specifically
break these degeneracies. Such degeneracies may also be broken
using non-lensing observations to further improve the accuracy
of inferred lens and source properties (e.g., stellar kinematics of
the source galaxy to place complementary constraints on its mor-
phology). We emphasize that such correlations may be system-
and data-dependent, which would warrant additional analyses
complementary to ours.

We show in Figs. C.1–C.3 a series of scatter plots that corre-
late the relative error on lens potential parameters with the rela-
tive error on a given source property. We compute uncertainties
on lens potential parameters from their posterior standard devia-
tion. As we do not have such posterior distributions for all source
models, we assume a fiducial uncertainty based on the Corre-
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Fig. 5. Histogram of pixel intensities for each reconstructed source
shown in Fig. 2. Some models allow for slightly negative intensities,
while some can capture very high intensity and compact source fea-
tures.

lated Field model, for which we have posterior samples (see
Sect. 3.5).

To quantify possible correlations, we compute the biweight
mid-correlation coefficient r, indicated on each panel in
Figs. C.1–C.3. The uncertainty on r is estimated by drawing
1000 random samples from bivariate uncorrelated Gaussian dis-
tributions centered on each data point. Based on the biweight
mid-correlation coefficients, the largest (anti) correlation arises
between the x-coordinate of the lens centroid x0 and the axis
ratio of the source qs, with r = −1.0 ± 0.2. On the other hand,
the strongest absence of correlation is seen between the exter-
nal shear strength γext, and the total source magnitude ms, with
r = 0.1± 0.2. We discuss and interpret the observed correlations
in Sect. 8.

7. Investigating sources of systematics

While a thorough investigation of all possible sources of system-
atics is beyond the scope of this study, we nevertheless attempt
to assess the impact of some key modeling assumptions and data
properties. The results of this effort will be useful in guiding
future in-depth investigations. Specifically, we explore the role

of the knowledge of the lens position, the presence of small-
scale high-contrast regions (cusps, or point-like features) in the
light profile of the source galaxy, and imperfect knowledge of
the PSF.

7.1. Intrinsic source morphology

The spiral galaxy light profile that was used as the lensed source
in producing the mock data presented in Sect. 4, has a promi-
nent bright spot its center. The best-fit Sérsic index from the
Sérsic+Shapelets model is approximately 1.6, indicative of a
cuspy radial profile. This feature, which we shall refer to as
the source cusp in the following paragraphs, consists of only
a handful of pixels (<20) that contain a significant amount of
light (∼5%). This region is clearly hard to model, as is shown
by the reconstructions in the last two columns of Fig. 2, where
only two models are able to capture it (Sérsic+Shapelets and
Cluster+Exp+Lumweight). The remaining models fail to do so
and leave behind characteristic residual flux at the data pixels
where this compact region is multiply imaged.

Driven by this observation, we argue that this cusp is closer
to a point-like flux component than to an extended source. Some
algorithms, like the plain semi-linear inversion (even on an adap-
tive grid), have been explicitly designed to model the latter and
are known to have a poor performance with the former. This
can be understood in terms of the regularization, which tries to
impose smoothness on the source and inevitably suppresses such
cusps. In Fig. 5, we see that only a few source pixels with the
highest flux (>0.3), corresponding to the central cusp, are con-
siderably extending the dynamic range of the source light pro-
file. The two aforementioned models that successfully model the
cusp have a similar dynamic range, while the rest of the models
fall short, barely reaching a flux of 0.3.

Here, we examine in more details how the performance
of the model with the lowest brightness range (smoothest),
Adaptive+Matérn, is affected by the prominence of the cusp. We
select the central bright region with flux >0.3 and reduce the
flux9 in each pixel by 50 and 95%, creating two new mocks that

9 The noise map that is used as the covariance matrix in Eq. (5) is also
changed accordingly.
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we then model with exactly the same setup as the model shown
in Fig. 2. The resulting (true) source and model residuals are
shown in Fig. 8, while Fig. 9 shows the posterior distributions
of the lens potential parameters. It can be seen that the more we
suppress the cusp the better the model; that is, we get less resid-
ual flux and less biased parameters.

We conclude that a plain semi-linear inversion approach
is much better suited for modeling smoother sources, without
cuspy, point-like features in their light profile. A regularization
scheme imposed just by Eq. (10) leads to reconstructions that
are too smooth, and additional constraints, like the luminosity-

weighted scheme presented in Sect. 3.3, give better results. The
cuspy nature of the source can thus explain, at least partially, the
systematic errors in lens potential parameters, in particular for
the case of the Adaptive+Matérn model.

7.2. Supersampling and inexact PSF model

We have seen in the previous section that a cuspy source can lead
to biases in the lens potential parameters even in models that fit
the central cusp well, in particular the Cluster+Exp+Lumweight
model which achieved noise-level residuals. We now investigate
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the mass density slope are central quantities to many analyses, while the
lens axis ratio and external shear are known to share degeneracies.

whether using a supersampled PSF can further eliminate this
bias. We implement PSF supersampling in two different ways:
first, by interpolating in the pixel-level PSF (which is often
implemented in practice when point sources are present in a
lensed source); and second, by using the original supersampled
PSF that was used to produce the mock data. Although the orig-
inal PSF corresponds to a supersampling factor of 10 (i.e., each
pixel is split into 10×10 subpixels), this would be much too com-
putationally expensive to employ directly. We therefore choose
a supersampling factor of f = 5 and downsample the original
PSF with f = 10 accordingly; this is what we shall refer to as
the “true supersampled PSF.” In the first model, we use bicubic
interpolation in the pixel-level PSF to generate our interpolated
f = 5 supersampled PSF.

We first check whether PSF supersampling can eliminate
bias in models without a luminosity-weighted regularization,
by applying the above supersampling procedure with the “true
supersampled PSF” to the Cluster+Exp model. The resulting
posteriors are plotted as the dot-dashed green curves in Fig. 10.
In this case we find a similar bias in the lens parameters as in
the case where no supersampling is performed, which is perhaps
explained by the fact that the best-fit model produces similar
residuals in the regions where the lensed images are brightest.
This is due to the fact that the reconstructed source is not signif-
icantly better resolved without the luminosity-weighted regular-
ization prior; the regularization strength is too high to allow for
a cuspy source in the central high-intensity region of the source.

Next, we apply PSF supersampling to the corre-
sponding model with luminosity-weighted regularization
(Cluster+Exp+Lumweight). The results are shown as the red
curves in Fig. 10, with the solid red curve showing the original
luminosity-weighted model (i.e., same as Fig. 6) and the dashed
and dot-dashed curves showing the models with supersampled
PSF and “true supersampled PSF”, respectively. Note that both
supersampled models have significantly reduced bias compared
to the original luminosity-weighted model that did not use PSF
supersampling. Some bias is still present in the lens model
parameters for the interpolated PSF model, particularly in the
slope γ and φext parameters, whereas in the “true PSF” model,

bias is largely eliminated in all lens parameters except for the
center coordinates. In addition, the parameter uncertainties are
significantly reduced when the true PSF is used. The essential
difference can be seen by comparing the two supersampled
PSF’s directly in Fig. 11, where the interpolated PSF is quite
poorly resolved. We conclude that for sufficiently cuspy sources
such as this one, supersampling can significantly reduce bias in
the lens model parameters, but may not entirely eliminate bias
in the lens parameters if one generates a supersampled PSF by
interpolating in the observed pixel-level PSF.

It is interesting that without a luminosity-weighted source
prior, the lens center coordinates are more accurately recov-
ered (regardless of whether supersampling is used), despite
all the other lens parameters being significantly biased. The
Sérsic+Shapelet model produced a similar bias in the lens cen-
ter coordinates as the luminosity-weighted models did, which
is noteworthy since these are the only models that were able to
reproduce the central cusp in the source well. While it is unclear
exactly why this is the case, in real applications this may be ame-
liorated by the fact that the foreground lens light can furnish a
prior in the lens center coordinates. Aside from this caveat, the
bias in these parameters is at least somewhat reduced by super-
sampling with the true rather than interpolated PSF. We con-
clude that when fitting cuspy lensed sources, PSF supersampling
can significantly reduce parameter biases only if it is accompa-
nied by a regularization scheme (e.g., luminosity-weighted) that
allows the source pixels to have steeper variations in the central
bright region of the source galaxy where PSF supersampling is
of the greatest benefit.

8. Discussion

8.1. Quantifying model complexity and its impact on
posterior uncertainties

In lens modeling there is inherently a trade-off between model
complexity and tractability of the final inference. On the one
hand, a more complex model – namely with more model param-
eters, or degrees of freedom – is likely to provide a better fit to
the data (commonly measured as a smaller χ2 value) with the
risk of over-fitting. On the other hand, a simpler model is usu-
ally faster to optimize and often leads to a more robust inference
(lower risk of local minima and multi-modal posteriors) but may
not fit the data well. Moreover, models with different complexity
can still fit the same data seemingly equally well; in such a case,
one typically invokes the principle of Occam’s razor, and prefer
the one being the least complex a priori (which, when feasible,
takes the form of the Bayesian evidence or other proxys such as
the Bayesian information criterion).

In our work, as is described in Sect. 3, one of the main differ-
ences between the modeling methods we consider is the way the
source galaxy is reconstructed. In the past, several works focused
on consistently comparing a set of lens models with different
source reconstruction techniques developed under the same gen-
eral formalism (i.e., the semi-linear inversion formalism, see
Sect. 3.3, and Warren & Dye 2003), but differing in their regu-
larization terms (e.g., Suyu et al. 2006; Tagore & Keeton 2014).
Unfortunately, in the present work, there is no clear way to quan-
titatively and unambiguously rank the complexity of the source
models considered here, given their fundamental differences in
terms of mathematical formalism and underlying assumptions
about the morphology of galaxies. One possibility would be to
count their number of degrees of freedom, but this quantity is not
readily accessible for all models. In regularized pixelated source
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Table 2. Posterior statistics of source and lens properties inferred from the six lens models shown in Fig. 1.

Quantity reff [′′] (†) qs
(†) ms [mag] θE [′′] γ qm φm x0 [′′] y0 [′′] γext φext [◦]

Truth 0.481 0.66 23.2 1.550 2.040 0.82 −10.0 0.040 0.050 0.030 15.0
µmodels 0.487 0.67 23.1 1.551 2.066 0.80 −9.9 0.034 0.047 0.033 13.9
σmodels 0.004 0.02 0.04 0.001 0.009 0.03 2.3 0.005 0.004 0.002 4.6
Max. bias (††) × × × 1.7σ 1.6σ −3.3σ 2.3σ −5.5σ −3.7σ 2.7σ 2.2σ

Combined × × × 1.55+0.002
−0.002 2.07+0.03

−0.02 0.80+0.03
−0.03 −10.5+1.4

−2.6 0.033+0.004
−0.004 0.046+0.004

−0.005 0.032+0.003
−0.003 13.8+3.3

−4.5

Bias (††) × × × 0.3σ 1.2σ −0.6σ −0.2σ −1.6σ −0.9σ 0.7σ −0.3σ

Notes. In the second and third row µmodel and σmodel show the average and standard deviation of the posterior means of all models, respectively.
The fourth row gives the maximal bias among all models for each lens potential parameter. The two last rows correspond to the combined posterior
distribution shown in black in Fig. 6. (†)The source properties correspond to best-fit models, whereas lens properties relate to the corresponding
marginalized posterior distributions shown in Fig. 6 (individual and combined models). Note that we do not provide combined estimates for the
source properties as we do not have formal posterior distributions not uncertainty estimations for all source models. (††)The maximum bias among
all models is based on the difference between the mean posterior value and the true value, in units of the posterior standard deviation (negative
and positive biases correspond to under- or over-estimates, respectively). The last row of the table shows the corresponding bias value from the
combined posterior distribution.
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Fig. 8. Model residuals from the Adaptive+Matérn model and central
region of the true source (top row, as in Fig. 2). Suppressing the flux
in the central most bright pixels (>0.3 in Fig. 5) by 50 and 95% (mid-
dle and bottom rows), creating new mocks, and modeling them with the
same setup, leads to improved residuals. The plain semi-linear inver-
sion technique using just a regularization of the form given in Eq. (10)
cannot adequately capture point-like, cuspy features in the source light
profile. More advanced schemes, like a luminosity-weighted regulariza-
tion scheme (see Sect. 3.3), perform better in this case.

models, the effective number of degrees of freedom is lower than
them total number of source pixels, as regularization correlates
source pixels over different spatial scales (e.g., Suyu et al. 2006;
Nightingale & Dye 2015). As a concrete example, the regular-
ization based on sparsity and wavelets do not allow one to unam-
biguously estimate the number of degrees of freedom, because
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Fig. 9. Posterior distributions of the lens potential parameters for the
three models shown in Fig. 8. The fourth model (bottom in the legend)
corresponds to a model of the original mock after including a point
source component in the source model. When the cuspy central region
of the source is suppressed from the data, or if a point source feature
is added in the source model, the resulting distributions are less biased
and shift closer to the true values.

such regularization imposes sparsity simultaneously over vari-
ous spatial scales.

Nevertheless, our ensemble of six models allow us to quali-
tatively discuss how differences in model complexity can affect
the resulting inference. In Sect. 6.3 we compare the blindly sub-
mitted posterior distributions, and notice some differences in the
inferred parameters uncertainties (in terms of the posterior stan-
dard deviation). Based solely on the reconstructed sources (see
Fig. 2), the model that displays the least complex features is
Sérsic+Shapelets. Oppositely, one of the models that capture the
most complex features is Cluster+Exp+Lumweight. One may
naively expect the Cluster+Exp+Lumweight model to be more
affected by issues related to over-fitting and local minima, as it is
defined on a locally fine grid and has more flexibility compared
to the Sérsic+Shapelets. In case of over-fitting, the uncertainties
on model parameters can be significantly under-estimated, partly
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Fig. 10. Posterior distributions of lens potential parameters obtained
with models exploring the role of the PSF. The dash-dotted green
line distributions correspond to the Cluster+Exp model (i.e., simi-
lar to the green model in Fig. 6) using the true supersampled PSF
used for simulating the data (top left panel of Fig. 11). The solid
red line distributions are showing, for reference, the blindly submit-
ted model Cluster+Exp+Lumweight (i.e., the same model as in Fig. 6).
The dash-dotted and dotted red distributions, also obtained with the
Cluster+Exp+Lumweight model, use a supersampled (interpolated)
version of the data-resolution PSF (bottom left panel in Fig. 11) or the
true supersampled PSF, respectively. The main result of this compari-
son is that biases in lens model parameters are most reduced only with
a combination of a more accurate PSF and a model that can capture
magnified cuspy features in the source.

due to discretization biases that artificially narrows the likeli-
hood profile (e.g., Nightingale & Dye 2015; Etherington et al.
2022). Interestingly, while Cluster+Exp+Lumweight indeed
lead to overall small uncertainties on lens potential parameters
(compared to other models, see Fig. 7), we see that they do
not significantly differ from the Sérsic+Shapelets model. There-
fore, while we observe variations among the models regarding
their posterior uncertainties (up to a factor of ∼1.6), these vari-
ations are not solely driven by differences in model complex-
ity. This result also highlights the difficulty in measuring the
complexity of model simply based on the modeling assumptions
and forms of regularization, or on the visual impression of the
reconstructed source. However, this kind of analysis offers direc-
tions to explore for better understanding the origin of systematic
biases in lens potential parameters.

8.2. Model degeneracies between the lens and the source

As is presented in Sect. 6.4, we observed correlations between
the level of recovery (the relative error) of lens and source
properties. In particular, we find a correlation between the lens
power-law slope γ and the source effective reff , with corre-
lation coefficient r = 0.9 ± 0.4, namely a positive correla-
tion with a statistical significance of 2.3σ. It is well-known
that correlations between the source scale and the mass density
profile of the lens can arise, which are often seen as a mani-
festation of the MSD (Falco et al. 1985). The MSD originates
from the mass sheet transformation (MST), and its consequence
is as follows: the addition or subtraction of a infinitely thin mass
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Fig. 11. Comparison between the different PSF kernels used in this work
(each panel shows a zoom on the central 2′′.5 of the PSF kernel). The
top left panel shows the original true PSF used for simulating the data,
while the top right panel shows the PSF given to the modelers (same
as in Fig. 1). The bottom left panel shows the bicubic-interpolated (5
times supersampled) PSF used in the model shown with dotted lines in
Fig. 10, and the bottom right panel shows the relative difference with the
true PSF. Except for the bottom right panel, all color scales are arbitrary
and chosen to help the visual comparison between the PSF kernels.

sheet from a power-law mass density profile changes, to first
order, the slope of the density profile at the Einstein radius (e.g.,
Schneider & Sluse 2013; Blum et al. 2020; Birrer et al. 2020),
while rescaling the source proportionally. A positive mass sheet
locally increases the density slope, which in turns induces an
increase in the source size through the MSD. This effect has
also been empirically explored in Birrer et al. (2016) by using
the explicit scale encoded in a source model based on shapelets.
The positive correlation we find between the biases in γ and reff

may thus be the signature of the MSD: all the lens models we
consider infer slightly too large density slopes and source effec-
tive radii.

There is a general trend of correlations between source light
shape and lens mass shape that we observe in our results. For
instance, we note correlations between the recovery of qs and qm
or φext, reff , and anti-correlations with φ and the lens centroid.
We also observe strong correlations between the error on qs and
that of the lens centroid. These correlations are more challenging
to unambiguously interpret compared to those associated with
the MST. We argue that they may be related to the source posi-
tion transformation (SPT) outlined in Schneider & Sluse (2014)
and further developed in Unruh et al. (2017). The latter work
effectively shows that transformation of the source profile can
be compensated by changes in ellipticity and radial profile of the
lens mass distribution. The biases that we observe in our models
may be manifestations of this transformation and qualitatively
match the expectation for a SPT. Because the SPT leads to an
approximate degeneracy (unlike the MSD), it is expected to be
broken with higher quality data. It may therefore be interesting
to see how these correlations change with higher S/N data or
even noise-free mock data.

More generally, approaches that are independent of a spe-
cific choice of mass model offer a complementary route to
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further study the interplay between lens and source structure.
As reviewed in Wagner (2019, and references therein), instead
of the direct modeling of imaging data pixels, a careful extrac-
tion of specific lensing observables can provide constraints onto
local lens properties, without assuming global functional form of
the lens potential. While such an approach is scale-independent
by construction – it does not rely on a priori assumptions on
the nature of the lensing object (isolated galaxy, cluster mem-
ber, etc.) – it requires the ability to unambiguously extract
lensing features like well-defined multiple images, their shape
and orientation, or individual clumps within lensed arcs (e.g.,
Wagner et al. 2018). In galaxy-scale strong lenses such as the
simulated one of Fig. 1, the observed images take the form of
relatively smooth highly distorted arcs (i.e., rings), for which
it is error-prone to attempt extracting local features of multiply
imaged regions of the source without performing full lens mod-
eling (Galan et al. 2024). Nevertheless, the local lensing formal-
ism can be expanded to lensed arcs with globally smooth surface
brightness, as developed in Birrer (2021). Such an approach is
well-suited to make use of the multiple elongated arcs observed
around massive galaxy clusters, as a way to locally correct the
global mass model (e.g., Yang et al. 2020).

8.3. Combining methods to mitigate systematic biases

We quantify the scatter associated with the choice of modeling
method in Table 2, which records the mean and scatter of rele-
vant source light and lens mass quantities among all the mod-
els. Although dependent on the type of data considered in this
work, these numbers provide an estimation of systematic errors
that one can expect from modeling imaging data with differ-
ent methods. The systematic errors we quote here can be inter-
preted as lower bounds to those of a real-case scenario, since we
placed ourselves in an idealized setting – no contamination by
the lens light and perfect knowledge of noise properties and mass
model family – which removes a subset of the known sources of
biases or degeneracies. Ideally, the addition of such complicating
factors may broaden the posterior distributions from individual
models, thus making them statistically compatible (underlying
systematic biases would then be unnoticeable). However, more
realistically, the scatter between models is likely to increase as a
consequence of more complex models potentially subject to dif-
ferent sources of biases. Performing similar analyses as the one
presented here to a wider variety of strong lensing data (differ-
ent resolution, S/N, lensing configuration, nature of the source,
etc.) will help understand the generalization of our results. For
this purpose, the framework we have developed should help and
encourage the multiplication of such analyses on both simulated
and real data sets.

As we show in Fig. 6 and Table 2, combining together the
results from an ensemble of methods using uniform weights
removes the observed biases. While individual methods display
systematic errors in different parameters – and not necessarily
always for the same parameters and in the same directions – it is
reassuring that overall, we do not observe a significant residual
offset after combination. Only for the mass density slope (γ) one
can observe a global trend towards larger values. We quantify
in Table 2 the bias reduction between the biases from individual
models and the one from the combined model. Among the eight
mass model parameters, we find that an average bias reduction
of 5.4, which is a substantial improvement on inferences from
individual models alone. This result is reassuring and shows that
analyzing a given data set using independent modeling methods
is an efficient way to mitigate systematic errors.

In this work, we conservatively assumed equal weights when
combining individual methods. This is similar to the recent work
of Wong et al. (2024), where the authors combined measure-
ments of H0 obtained from by modeling the same lensed quasar
with two different modeling codes, assuming equal weights.
Nevertheless, we note that other approaches exist. The least con-
servative approach would be to multiply individual posteriors
together, which is equivalent to assume that all methods are inde-
pendent from each other and do not share systematic errors. The
six modeling methods are only partially independent, as some of
the models were performed by the same modelers using the same
modeling code (see Appendix B) albeit with different source
reconstruction techniques. Additionally, we modeled a single
imaging data realization of our simulated strong lens, which
further introduces some degree of statistical dependence. The
most Bayesian approach would be to combine individual mod-
els based on their Bayesian evidence. However, for reasons we
detailed in Sect. 8.1, objectively ranking models obtained from
methods based on fundamentally different assumptions is still an
unresolved issue. Nonetheless, better quantifying how different
strong lens modeling methods perform on identical or similar
datasets with respect to their complexity will be important to
design better statistical combination procedures.

Beyond the accuracy improvement of a combined posterior
distribution over the lens model parameters, the comparison of
multiple models – and if possible, truly independent models – is
extremely valuable for detecting unknown sources of systemat-
ics, updating our current modeling assumptions and techniques
and testing additional models with different levels of complex-
ity. Similarly, in source plane, comparing the morphology of dif-
ferent versions of the unlensed object (which is never directly
observable) is necessarily valuable for straightening the confi-
dence in a given feature, which in turn improves the robustness
of its interpretation. Moreover, different models may predict dif-
ferent observables that may otherwise be overlooked, enabling
the potential detection of anomalous lens systems (such as miss-
ing images, Ertl et al. 2024) or anticipate the detection of addi-
tional images unobserved in current observations (e.g., similar
to the geometric confirmation of multiple images in cluster-scale
lenses, Diego et al. 2023).

8.4. Extrapolating to time-delay applications

As lens modeling is a key ingredient in time-delay cosmography
applications, one may be interested in the propagation of our
results to the recovery of the Fermat potential difference (defined
in Eq. (4)). The Fermat potential difference between two images
i and j is proportional to the time delay measured if the source
is varying in time. Such a source can be a quasar centered on
its host galaxy and orders of magnitude brighter than the lensed
arcs, or supernova (SN) which can appear almost anywhere in its
host and fades away after the explosion, leaving behind only the
arcs as in our simulated data.

We show in Fig. 12 the Fermat potential differences for three
hypothetical pairs of lensed images. While the simulated data
we analyze in this work (Fig. 1) mimics the case of a lensed
SN that faded away, we assume for simplicity that its location in
source plane coincides with its host galaxy (although one could
also proceed similarly for any other source position that leads to
at least two lensed images). We label the lensed images ABCD,
order them by ascending Fermat potential (i.e., Φ(θA) is the low-
est) and consider the three independent pairs i j ∈ {AB,AC,AD}.
In addition to the posterior mass parameters uncertainties,
we add in quadrature an additional uncertainty to mimic the
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0.10 0.08 0.06 0.04 0.02
AB

0.12 0.10 0.08 0.06 0.04
AC

0.32 0.28 0.24 0.20
AD

Truth (+ astrometric scatter)
Sérsic+Shapelets
Adaptive+Matérn
Cluster+Exp
Cluster+Exp+Lumweight
Sparsity+Wavelets
Correlated Field
Combined

Fig. 12. Fermat potential differences evaluated at image positions of a
multiply point source located at the center of the source galaxy. Given
that the modeled data (Fig. 1) does not contain the multiply imaged
point source, this can be seen as an intermediate scenario between that
of a lensed quasar (i.e., centered on its host) and a lensed SN (i.e., has
faded away).

limited astrometric precision (for details, see Birrer & Treu
2019), assuming a conservative precision of 10 mas in image
plane. The shaded gray area in each panels of Fig. 12 around the
true values isolates the typical contribution of the astrometric
scatter term, which is in our case small compared to the uncer-
tainties modeling the extended lensed source. As is expected
from the constraints on mass profile parameters (Fig. 6), we
observe a similar scatter around the true values among the
models.

Interestingly, we do not observe a clear correlation between
model biases on individual lens potential parameters and their
resulting biases on Fermat potential differences. For example,
the Sparsity+Wavelets model, which display slight biases on
some source properties and lens potential parameters (e.g., the
lens position), give Fermat potential posteriors well-centered
on the expected values. While a robust generalization of these
results require further work (e.g., on a larger sample of sim-
ulations), the general trend we previously found still remains:
the combination of individual posteriors assuming equal weights
results in posteriors that are free of biases. These combined dis-
tributions are shown with dash-dotted black lines in Fig. 12,
and encapsulate well the Fermat potential difference values.
This further gives motivation for time delay cosmography anal-
yses to compare and combine lens models together, in partic-
ular those obtained using independent modeling methods (see
e.g., Shajib et al. 2022; Kelly et al. 2023). In a follow-up paper,
we shall explore the dependency of systematic lens modeling
errors on the source plane position of the time-delay background
object.

8.5. Application to real data sets

For the purpose of demonstration, we focus on simulated imag-
ing data, but the framework and ideas we present is intended
to be applied to real data. The COOLEST standard, which pro-
vides a common ground to express lens models from different
origins, already supports real data and their corresponding mod-

els (see e.g., Galan et al. 2024). Moreover, extending the stan-
dard to other types of models (for both the lens and the source) is
straightforward. One complication for applying the same frame-
work presented here to real data arises from the human time and
computation time required to apply multiple codes and methods
to a given data set (see also Appendix B).

Although COOLEST significantly reduces the burden to
express a lens model in a format that can be readily compared
to other models, the acquisition of combined posterior distribu-
tions over lens model parameters still requires that at least two
distinct lens models are in hand. Here we model the same data
using four software packages and six modeling methods, which
is likely unrealistic in most real scenarios, especially given the
large amount of lenses that are still to be modeled (e.g., in the
archival HST data, see Garvin et al. 2022) and that will be dis-
covered in the near future (e.g., Collett 2015). Nevertheless, it
is reasonable to assume that it is feasible to apply two or three
methods to the same data (not necessarily within the same anal-
ysis), since the amount of lens modeling experts naturally grow
over time and inference methods are becoming less and less time
consuming. Deep learning methods, which we do not explore
in the present work, offer promising avenues to accelerate the
overall procedure either by proposing preliminary models to be
refined with classical methods, or providing additional posterior
distributions for final combination, at a negligible cost (ignoring
the training phases).

When modeling real data, the chosen mass model
parametrization is only an approximation of the true mass dis-
tribution. Extending the present analysis to account for differ-
ences between the truth and the model is obviously conceivable.
However, it is important to note that such an extension inher-
ently requires key assumptions in order to properly define “how
different” is the truth compared to the model. A concrete exam-
ple is the work of Gomer et al. (2022, Sect. 3.2) who simulated
a population of SLACS-like strong lenses following a compos-
ite (baryons + dark matter) mass model, for which they had to
assume a series of additional assumptions (ellipticity, halo scale
radius, etc.), which they subsequently modeled with a power-law
profile radially modified with a mass sheet parameter. Cao et al.
(2022, Sect. 2.4) simulated strong lenses with mass distribu-
tion based on stellar kinematics models and performed modeling
using single power-law profiles with shear. Van de Vyvere et al.
(2022) quantified the biases caused by a lack of freedom along
the azimuthal direction, when the true mass distribution contains
multipoles or ellipticity gradients. The Rung 3 of the TDLMC,
although focused on the recovery of H0 instead of mass model
parameters, has been a blind experiment where independent
teams modeled lenses extracted from cosmological simulations
(Ding et al. 2021). On real and simulated systems, the Time-
Delay Cosmography collaboration (Millon et al. 2020) system-
atically uses both power-law and composite mass model families
and marginalizes over the resulting posteriors, which are fur-
ther constrained along the radial direction with stellar kine-
matics information (e.g., Shajib et al. 2022). Given the diver-
sity of deviations to the commonly assumed sheared power-law
elliptical mass profile in real galaxies – such as truncations
(e.g., Limousin et al. 2007, in dense environments), cores (e.g.,
Collett et al. 2017) or multipoles (e.g., Stacey et al. 2024) – the
generalization of the above-cited results to all strong lens sys-
tems is still unclear. It is possible that for a given real system, a
set of dedicated simulations based on a set of likely mass mod-
els, followed by lens modeling as for the real data, may be the
best way to properly quantify systematic errors caused by the
choices of mass model.
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9. Conclusion

We have conducted a fully blind modeling experiment on strong
lensing data simulated with a dedicated software package by one
author, while four other authors used four independent software
packages to model it. In total, six modeling methods – which
differ in their source reconstruction techniques and inference
pipelines – have been applied on that same data. We have made
a series of simplifying assumptions to keep this novel kind of
analysis tractable, in particular regarding the lens light, the mass
model parametrization and the noise properties. In contrast, the
true PSF, lens parameters and source morphology were hidden
and the optimization and inference strategies left free to the mod-
elers. We used the lensing standard COOLEST to overcome the
challenges that arise when comparing results obtained with dif-
ferent modeling codes. The resulting image and source plane
models, as well as model residuals are given in Fig. 2, and con-
straints on lens potential parameters are shown in Fig. 6. Below
we summarize our main results:

– While no modeling method resulted in strong statistical
biases systematically for all lens and source properties, we
observed a measurable scatter among the models. Strongest
biases arise for the lens centroid, while the mass den-
sity slope at Einstein radius is only mildly biased with a
small inter-model scatter. We also observe differences in the
dynamic range of the reconstructed source intensities.

– Combining results from different modeling techniques
enables to mitigate systematic uncertainties arising for
individual models. For the particular data we consider, the
systematic error on lens potential parameters is reduced
by a factor 5 on average. The reason is that models tend to
scatter around the true parameters values but stay statistically
compatible, such that the combined posterior distributions
effectively broaden and include the true values. This results
also holds regarding the Fermat potential differences between
hypothetical lensed images of a point source component,
which is relevant for time delay cosmography applica-
tions. While the amount of bias reduction is evidently
data-dependent, we argue that model combination is gener-
ally beneficial to remove some biases from strong lensing
analyses.

– Towards the goal of better understanding the origin of model
biases, we used our ensemble of models to investigate possible
correlations between lens and source properties. We observed
correlations between errors on lens potential parameters (e.g.,
the mass density slope) and on the morphology of the source
(e.g., the effective radius or axis ratio). We argue that such cor-
relations can be manifestations of the well-known mass-sheet
transformation (MST), but also more generally of the source-
position transformation (SPT). Better handling these degen-
eracies in current and future modeling methods will be key to
further minimize model biases.

– We investigated how certain model assumptions affect the
recovery of lens potential parameters. In particular, we
explore (1) how the cuspy nature of the lensed galaxy can
lead to systematic errors if the source model is not flexible
enough to capture large intensity variations, and (2) how the
accuracy of the PSF (the true PSF being unavailable to the
modelers) plays a role even for extended source modeling.
We find that both an accurately sampled PSF and a source
model with large dynamic range (e.g., using a luminosity-
weighted source prior) are warranted to reconstruct cuspy
lensed sources while minimizing systematic errors on lens
potential parameters.

Over the past years, numerous lens modeling methods have
been proposed and implemented in different software packages.
Here, we selected a subset of those with the goal of using them
together, instead of only opposing them. Typically, we refrain
from explicitly ranking the modeling methods, which would
only be meaningful over an extremely large sample of strong
lenses with different data quality and modeling assumptions to
ensure proper generalization. In a real-case scenario, we do not
have access to the truth; therefore, combining the results from
different methods is a pragmatic and efficient way to detect
and mitigate systematic errors. As is shown, for example, in
Suyu et al. (2006) by testing three types of source regulariza-
tions, there exists an inherent dependence on the data properties,
the lens configuration and the (unobservable) intrinsic source
morphology, such that it is unlikely that a single source recon-
struction method gives unbiased results in all cases. Our work
strengthens this idea and goes further by combining a large col-
lection of models, while investigating their specific effects on
inferred parameters. Moreover, we purposefully allowed some
level of freedom for the modelers (e.g., masks, PSF, posterior
marginalization, etc.), such that our work also illustrates the role
of specific modelers’ choices. These choices play a role in the
observed scatter between models, and can be marginalized over
by combining the methods together.

As stated in the introduction, we have not used lens mod-
eling methods based on deep learning, as those would require
many additional assumptions, in particular regarding their train-
ing phase. Nevertheless, the comparison framework presented
here is very general and does not depend on the nature (classi-
cal, deep learning, etc.) of the underlying methods. Therefore,
we encourage future studies to complement and combine clas-
sical methods with those based on deep learning, as the lat-
ter have clear advantages such as fast computation time after
training and a large flexibility through different network archi-
tectures. Examples of using neural networks to complement
classical techniques have been proposed in Maresca et al. (2021)
and Pearson et al. (2021). Our publicly released simulated data
and lens modeling products can be directly used to test and
improve such deep learning (or any other) approaches.

The framework and ideas presented here is designed to be
applied on real data sets and expanded beyond our initial sim-
plifying assumptions. In particular, the role of the lens sur-
face brightness model should be investigated further (see e.g.,
Nightingale et al. 2024, in the context of subhalo detection).
Similarly, the standard assumptions of uncorrelated Gaussian
noise used in lens modeling analyses should be re-assessed (e.g.,
recent JWST imaging data show strongly correlated noise pat-
terns, see Rigby et al. 2023) to ensure that analyses of the many
future observations of strong lenses remain fully accurate.
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Old simulated data Old input source Example source model

Fig. A.1. Old simulated lensing data based on another source galaxy.
For that mock the source image background was insufficiently sub-
tracted, which left a faint imprints in the data after being lensed. While
unnoticeable to the eye in the data (left panel), the square boundaries of
the source are clearly noticeable in the input source (middle panel) and
even on the reconstructed source (right panel, using a correlated field
model as an example). These artificial boundaries led to biases in lens
potential parameters and source size. Note that a logarithmic scale is
used in all panels.

Appendix A: Realistic source surface brightness in
mock data

The mock data shown in Fig. 1 is not the first mock we built
for this work. Initially, an other prescription for the background
source was used, which caused large biases on many model
parameters, which was noticed only after unblinding. Therefore,
it was decided to repeat the entire procedure—namely, the data
simulation and blind submissions of models from independent
modelers—which lead to the mock used throughout this work.
As it can be beneficial to some readers, we give more details
about the old mock data below and why it caused large parame-
ters biases.

We show in the left panel of Fig. A.1 the old simulated data.
For the source, shown in the middle panel, we used a B fil-
ter image of M31 available through the ESO Online Digitized
Sky Survey. This image was selected because a local galaxy has
high-detail resolved structure with negligible PSF spikes, which
could introduce nonphysical features if lensed. After ray-tracing
and the addition of noise, the data visually resembles to genuine
lensing data, despite the input source boundaries being visible
at some locations. Therefore, any potential issue related to these
boundaries could not be detected before modeling the data.

After the blind modeling stage, it was noticed by the model-
ers that their reconstructed source models were displaying strong
boxy features surrounding the ellipsoidal shape of the source
galaxy. Among the six models, the Sparsity+Wavelets model
was strongly affected by the square and boxy nature of the
source, for which an extremely low resolution grid was system-
atically preferred as it represented better these sharp boundaries.
This artificial bias towards a low resolution grid (i.e., few source
pixels) was in turn strongly biasing the lens potential parameters,
in particular the mass density slope due to its degeneracy with
the source size (through this MST). The right panel of Fig. A.1
shows, as an example, the Correlated Field model of that source,
which also displays a boxy shape. After comparing the differ-
ent models together, the mass density slope was found to be
biased in almost all models. After extensive checks, the origin
of these biases was attributed to the sharp boundaries and large
background flux of the input source. The source used in the new
simulated data (shown in Fig. 1) was carefully processed, which
solved these issues.

Appendix B: Technical modeling details

This section gives technical details on the specific choices made
by modelers to analyze the simulated data. We complement it
with Table B.1 which gives the approximate computation time
necessary to obtain the various models used in this work.

B.1. Sérsic+Shapelets

For the analytical model using Lenstronomy (Sect. 3.2), a
4.5′′-radius circular mask around the lens is used. The source
light is composed of a single elliptical Sérsic profile. Shapelets
components are added sequentially to that profile. The signifi-
cance of those components to the model is evaluated by calcu-
lating the Bayesian Information Criterion (BIC), which balances
the likelihood with the number of parameters following:

BIC = npar ln(ndata) − 2 ln L(η̃) , (B.1)

where npar is the number of parameter, ndata is the number of data
points (i.e., data pixels used as constraints), and L(η̃) is the loss
function evaluated at the best fit position (Eq. 6). For this specific
mock, the BIC favors a maximum order of shapelets nmax = 5
(Table B.2).

The point spread function (PSF) is treated in Lenstronomy
as follows. The surface brightness of the lensing system, which is
simulated at each iteration, can be sampled on a grid with higher
resolution than the observed image before being averaged to the
data resolution. If the modeled surface brightness is supersam-
pled, the user can perform the PSF convolution on the finer grid.
In that case, a supersampled PSF is calculated by interpolation,
and an iterative process allowing for perturbation of individual
PSF pixels, ensures that the downsampling of the supersampled
PSF recovers the input PSF. We elected a supersampling factor
of 5 and performed the PSF convolution on the supersampled
grid.

B.2. Adaptive+Matérn

We begin with the broadest possible range of the lens poten-
tial parameters of the model (see Eqs. 8 and 9), except for the
slope, which we fix to isothermal, and the Einstein radius, whose
range is fixed by rough estimation of the radius of the Einstein
ring from the data. The former serves simply to speed up the
calculation, while the latter is required to avoid over- or under-
focused, non-physical solutions. The main choices at this first-
pass stage are the type of regularization and the resolution of the
adaptive grid. For the regularization we choose curvature, which
has only one free parameter, the regularization strength λ, and a
fixed covariance matrix Cs (see Eq. 10). The adaptive grid is cre-
ated simply by using the deflected positions of every third pixel
of the data image in the x and y directions. We create a custom
mask that we use in all of our subsequent models, and we do not
perform any supersampling of the PSF. This setup is very fast to
run, taking only a few minutes on a standard multi-core laptop.

After this first pass, we switch to using the Matérn kernel
regularization given in Eq. 11, which has 3 free parameters, and
increase the resolution of our adaptive grid by using every sec-
ond pixel in both directions in the data image to construct it.
Based on our first crude model, we restrict each lens potential
parameter to about 20 per cent of its full range, centered roughly
on the bulk of the posterior probability. This model takes about
an hour to run on a standard multi-core laptop.

Finally, we further restrict the parameters to 10 per cent of
their full range and run a final model with the same regulariza-
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Table B.1. Computation times for the six modeling methods, including best-fit optimization and posterior distribution sampling.

Modeling method label Software package Involved steps Longest instance Total Hardware configuration

Sérsic+Shapelets Lenstronomy PSO + MCMC 17 hours 38 hours Intel Core i7 CPU (2 cores)
Adaptive+Matérn Vkl Nested sampling 4 days 4.2 days Intel Xeon Platinum 8260 CPU (96 cores)
Cluster+Exp Qlens Nested sampling 1.5 hours 1.5 hours Intel Xeon Platinum 8160 CPU (192 cores)
Cluster+Exp+Lumweight Qlens Nested sampling 2 hours 2 hours Intel Xeon Platinum 8160 CPU (192 cores)
Sparsity+Wavelets Herculens Grad. descent + SVI 6 minutes 3.4 hours NVIDIA A10 GPU
Correlated Field Herculens Grad. descent + geoVI 45 minutes 4.5 hours NVIDIA A10 GPU

Notes. Some of the final models were obtained by combining several model instances, so we quote the runtime for a single instance (the most
expensive) in addition to the total runtime (assuming single instances were not performed in parallel). For additional details and software package
references, see Sect. 3 and Appendix B.

Table B.2. Comparison of best-fit log-likelihood (ln L(η̃)) and corre-
sponding BIC values (Eqs. 6 and B.1) considering different maximum
order of the shapelets basis set nmax for the Sérsic+Shapelets modeling
method (and correspinding number of parameters npar). The number of
data pixels is 6376 used to constrain the model (within a circular mask
of 4′′.5 radius).

nmax npar ln L(η̃) BIC
3 28 -3581.4 7408.0
4 33 -3562.8 7414.7
5 39 -3485.1 7311.9
6 46 -3502.2 7407.1
7 54 -3434.2 7341.4

tion but even higher resolution; that is, shooting back every pixel
in the data image to create the adaptive grid. We combine the
last two models, which differ only in the resolution of the recon-
structed source (although the first served to initialize the second
in order to save on computations), by merging their posterior
samples in such a way that the probability mass of each one is
the same independently of its actual size.

B.3. Cluster+Exp and Cluster+Exp+Lumweight

In Qlens, the image plane is supersampled by splitting each
image pixel into 3×3 subpixels; each subpixel is ray-traced to the
source plane, and the source grid is generated using a k-means
clustering algorithm exactly as is done in Nightingale et al.
(2018), but with each ray-traced point receiving equal weight.
We choose the number of source pixels to be equal to half the
number of image pixels within the mask. The surface brightness
of each ray-traced subpixel is determined by interpolating in the
three source pixels whose Delaunay triangle the ray-traced point
is in (or closest to); the surface brightness for all the subpixels
within a given image pixel are then averaged to obtain the sur-
face brightness for the image pixel. The pixel surface brightness
values obtained this way are then convolved with the pixel-level
PSF (note that although we are supersampling the image plane,
we do not supersample the PSF here; the effect of PSF super-
sampling will be explored in Section 7.2). The regularization is
performed using an exponential kernel (equivalent to a Matérn
kernel with ν = 1/2).

To encourage convergence, we make use of two additional
priors on the source: first, there is a prior that discourages pro-
ducing lensed images outside the mask. We accomplish this by
temporarily unmasking after the source pixels are solved for,
generating the lensed images without a mask, and imposing a

steep penalty if surface brightness is found outside the mask
whose value is greater than 0.2 times the maximum surface
brightness of the images. Second, we place a prior on the num-
ber of lensed images produced. This is accomplished by creating
a Cartesian grid in the source plane and finding the overlap area
of all the ray-traced image pixels for each Cartesian grid cell; by
dividing the total overlap area by the area of each grid cell, we
obtain the number of images produced by that cell. We can then
take the average number of images over all the cells. We impose
a steep penalty if the average number of images if less than 1.5.
This discourages solutions that are not multiply imaged, where
the source looks identical to the observed configuration of lensed
images. With these priors in place, we can obtain a good solution
with a single nested sampling run, provided the parameter priors
are broad enough.

The Cluster+Exp+Lumweight model uses all of the methods
described above, but in addition it uses a luminosity-weighted
regularization, as is described in Sect. 3.3. Thus we include the
additional parameter ρ (Eq. 13), which controls the steepness of
the luminosity weighting, as an additional nonlinear parameter
to be varied.

B.4. Sparsity+Wavelets

Before modeling the source on a regular grid with multi-scale
regularization, we start with an approximate lens mass model
obtained by modeling the source with a single Sérsic profile.
Since at this stage of the modeling process the mass model
may be rather inaccurate, using spatially varying regulariza-
tion weights (Wms in Eq. 14) could bias the source reconstruc-
tion. Therefore we approximate the weights by their median
value within each wavelet decomposition scale (i.e., we use
spatially uniform weights within each frequency range). We
set the global regularization strength λms = 3σ for the first
wavelet scale (highest frequency features), and λms = 1σ for
the remaining scales. We choose a lower threshold for low
frequency features as advocated in various works relying on
similar multi-scale regularization strategies (e.g., Lanusse et al.
2016; Peel et al. 2017; Galan et al. 2022), since high frequen-
cies are more impacted by the presence of noise in the
data.

We obtain a first approximate model of the pixelated source
by jointly optimizing all parameters except for the fixed lens
center, and we impose a strong isothermal prior (i.e., γ ∼
N(2, 10−3)) on the mass density slope to avoid introducing
degeneracies early in the modeling sequence. We use the gradi-
ent descent optimizer AdaBelief (Zhuang et al. 2020) imple-
mented in the Optax (Hessel et al. 2020) library to obtain
best-fit parameters. We then re-optimize model parameters by
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re-computing regularization weights and releasing priors on the
lens center and density slope.

The last step is to estimate the posterior distribution of lens
mass parameters while further refining the source model. At this
stage, the lens model is very close to the best-fit model so we do
not rely anymore on the approximation of uniform regulariza-
tion weights per wavelet scale, and properly propagate the noise
to source plane. These more accurate regularization weights
significantly help eliminating remaining artifacts located on the
outskirts of the source galaxy, when the data is the least con-
straining. The resulting χ2 being below unity, we further boost
the regularization strength of high-frequencies (for this partic-
ular data, by 5σ) in order to obtain a χ2 of the order of unity.
We note that the precise value of this boost does not signifi-
cantly impact the final posterior distribution as we marginalize
over many model variations. In particular, we vary the number
of source pixels from 80×80 to 160×160 pixels with steps of 5.
We also run the same ensemble of models by globally increasing
the regularization strength by 1σ. In total, we consider 34 model
variations.

The joint posterior distribution for lens mass parameters is
estimated using stochastic variational inference (SVI, see review
by Blei et al. 2016), which directly makes use of known gradi-
ent of the loss function. SVI is also less computationally expen-
sive than other sampling methods such as Markov Chain Monte
Carlo or Hamiltonian Monte Carlo, which allows us to run a
larger number of model variations. Since in this work, we are
mainly interested in the joint posterior distribution of the lens
mass parameters which are not expected to exhibit strongly non-
Gaussian correlations11, we find that a multi-variate Gaussian
distribution is a sufficient surrogate posterior model. However,
we acknowledge that SVI can underestimate uncertainties (as in
Gu et al. 2022), a limitation that we address by marginalizing
over the 34 model variations assuming equal weights. In addi-
tion to the full posterior distributions and first-order posterior
statistics, we save in Coolest format a point-estimate model,
that corresponds to the mean model as obtained from SVI, with
1202 pixels and fiducial regularization strength.

B.5. Correlated Field

Similar to the strategy used with the multi-scale source model,
we first model the imaging data with a single Sérsic source
profile, which we then replace with the correlated field model
defined in Eq. 15. For our baseline model, we set the shape of the
Gaussian excitation field to 902 = 8′100 pixels. The field power
spectrum is modeled as power law parametrized with an ampli-
tude and a slope. These two parameters are themselves sampled
from a log-normal distribution, described in turn by a mean and
scale parameters. The additive offset in real space is modeled by
a single scalar (initialized to the mean flux values from the Sérsic
model), whereas variations in this offset are sampled from a log-
normal distribution with additional mean and scale parameters.
Lens potential model parameters (PEMD and external shear) are
sampled from Gaussian distribution, for which we check that the
prior widths are large enough. We optimize the full model—lens
mass parameters and source field parameters—using the set of
minimizers and samplers implemented in Nifty. More specif-
ically, we converge to the maximum a posteriori solution and
estimate the joint posterior distribution using metric-Gaussian
variational inference (MGVI, Knollmüller & Enßlin 2019).

11 This assumption is validated with the correlated field model by using
more flexible SVI methods (see Sect. B.5).

We ran several variations of the above fiducial models. In
particular, we increased the field resolution to 1202 = 14′400
pixels, alter the sampler random seeds, initialized the model
with a worst lens model (obtained from a different Sérsic
source model), and used geometric variational inference (geoVI,
Frank et al. 2021) instead of MGVI. All these model variations
result in almost identical posterior distributions for lens mass
parameters and consistent source models. Nevertheless, we con-
servatively marginalize over these models with equal weights.
For the point-estimate parameters, we set those to the mean val-
ues of the VI samples of the model with the most resolved source
(i.e., 1202 pixels), although the fiducial model is virtually indis-
tinguishable.

Appendix C: Correlations between lens and source
properties

Given the six independent models we gather in this work, we
can investigate of the errors on the lens and source properties
of interest correlate with each other. In other, we are interested
in signs of degeneracies between the lens and source properties,
that can be revealed over the ensemble of models. We show in
Figs. C.1, C.2 and C.3 a series of plots that correlate all lens
potential parameters with the three main source properties we
investigate (reff , qs and ms respectively). These results are pre-
sented and discussed in the main text, in particular in Sect. 6.4
and Sect. 8.2.

A87, page 22 of 24



Galan, A., et al.: A&A, 692, A87 (2024)

0.02 0.00 0.02 0.04
reff/reff, target 1

0.002

0.000

0.002

E/
E,

ta
rg

et
1 r = 0.4 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.00

0.01

0.02

0.03

/
,t

ar
ge

t
1

r = 0.9 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.10

0.05

0.00

0.05

q m
/q

m
,t

ar
ge

t
1 r = 0.6 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.5

0.0

0.5

/
,t

ar
ge

t
1

r = 0.7 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.6

0.4

0.2

0.0

0.2

x 0
/x

0,
ta

rg
et

1 r = 0.6 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.2

0.0

0.2

y 0
/y

0,
ta

rg
et

1 r = 0.3 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

0.1

0.0

0.1

0.2

0.3

ex
t/

ex
t,

ta
rg

et
1 r = 0.4 ± 0.4

0.02 0.00 0.02 0.04
reff/reff, target 1

1.0

0.5

0.0

0.5

1.0

ex
t/

ex
t,

ta
rg

et
1 r = 0.6 ± 0.4

Fig. C.1. Relative error with respect to the true values. x axis: source effective radius, y axis: mass model parameters. The legend markers and
colors are the same as in Fig. 4. In the top right part of each panel, the biweight mid-correlation r is indicated (0 means no correlation).
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Fig. C.2. Relative error with respect to the true values. x axis: source axis ratio (estimated from central moments), y axis: mass model parameters.
The legend markers and colors are the same as in Fig. 4. In the top right part of each panel, the biweight mid-correlation r is indicated (0 means
no correlation).
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Fig. C.3. Relative error with respect to the true values. x axis: source total magnitude, y axis: mass model parameters. The legend markers and
colors are the same as in Fig. 4. In the top right part of each panel, the biweight mid-correlation r is indicated (0 means no correlation).
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