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Abstract
Strong gravitational lensing at the galaxy scale is a valuable tool for various applications in
astrophysics and cosmology. Some of the primary uses of galaxy-scale lensing are to study
elliptical galaxies’ mass structure and evolution, constrain the stellar initial mass function,
and measure cosmological parameters. Since the discovery of the first galaxy-scale lens
in the 1980s, this field has made significant advancements in data quality and modeling
techniques. In this review, we describe the most common methods for modeling lensing ob-
servables, especially imaging data, as they are the most accessible and informative source
of lensing observables. We then summarize the primary findings from the literature on the
astrophysical and cosmological applications of galaxy-scale lenses. We also discuss the cur-
rent limitations of the data and methodologies and provide an outlook on the expected im-
provements in both areas in the near future.

Keywords Gravitational lensing: strong · Galaxies: elliptical and lenticular, cD · Galaxies:
structure · Galaxies: evolution · Cosmological parameters

1 Introduction

This review article discusses applications of galaxy-scale strong lenses to study the proper-
ties of the deflector galaxies, that is, the central lensing galaxies. These have so far typically
been massive elliptical galaxies at 0.1 � z � 1 and strong lensing has been chiefly applied
to study their internal structure and composition. However, a large sample of strong lenses
with deflectors other than massive ellipticals is expected to be discovered in this decade from
the upcoming deep sky surveys. We can also gain important insights into the formation and
evolution of the deflectors by comparing their structural properties (e.g., the logarithmic
slope of the density profile and the dark matter fraction) across cosmic times. Furthermore,
in this review article, we present cosmological applications of the galaxy-scale lenses that
do not require time delay information – that is, measuring cosmological parameters such as
the matter density parameter �m and the dark energy equation-of-state parameter wde. Cos-
mological application involving the time delay measurements, that is, measuring primarily
the Hubble constant, is reviewed by Birrer et al. (2024). Additionally, Vegetti et al. (2023)
review the application of galaxy-scale lensing to study sub-galactic structures of dark matter.
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Fig. 1 Examples of galaxy-scale lenses with different types of background sources. These are false color
images created from multi-band HST imaging, and in some cases, also combined with the Chandra X-ray
data (RX J1131−1231) and the Keck Observatory IR imaging (iPTF16geu). The first column shows two
lenses with background galaxies without any resolved point source (Bolton et al. 2006; Courbin et al. 2012).
The second column shows two lensed quasar systems (Suyu et al. 2013; Shajib et al. 2020). The third column
shows two lensed supernovae (Goobar et al. 2017; Pierel et al. 2023). The white bar in each panel represents
1′′ . Image credits: NASA, ESA, A. Bolton, the SLACS team, Chandra, A. J. Shajib, W. M. Keck Observatory,
T. Li, and J. Pierel

In this introductory section, we provide a brief description of the lensing phenomenol-
ogy (Sect. 1.1) and discuss the advantages of strong-lensing observables in comparison with
other probes of galaxy mass, such as stellar dynamics (Sect. 1.2). The remainder of this
review article is organized as follows. In Sect. 2, we highlight the significant historical re-
sults involving galaxy-scale lenses and introduce several prominent lens samples. In Sect. 3,
we describe the strong-lensing observables and their modeling and analysis methods. We
discuss the application of galaxy-scale strong lensing to study galaxy properties and evo-
lution in Sect. 4 and to constrain cosmological parameters in Sect. 5. Next, in Sect. 6, we
discuss open issues – both in technical aspects and scientific questions – and provide future
outlooks. We conclude the review article in Sect. 7.

1.1 Brief Description of Lensing Phenomenology at the Galaxy-Scale

The background extended source in a galaxy-scale strong lens can be lensed into multi-
ple arcs or a complete Einstein ring. Multiple point images will also appear if there is a
point source within the background galaxy, for example, an active galactic nucleus (AGN)
or quasar, or a supernova (see Fig. 1). The former type of system is called galaxy–galaxy
lenses. In contrast, the latter is usually referred to as ‘quads’ (for the case of four detected
point images) or ‘doubles’ (for the case of two detected point images). The different man-
ifestations of strong lenses – the appearance of arcs or a full Einstein ring, or the number
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of point images – depend on the position of the source with respect to the lens caustics (as
introduced in Saha et al. 2024). Strong lensing of point sources can provide three types of
observables: image positions, image magnification ratios, and time delays between the im-
ages. It follows from the lensing theory that all three are properties of the Fermat potential
or the arrival-time surface. Images form at the local extrema – minima, saddle points, and
maxima – of this potential. Magnification is inversely proportional to the determinant of
the Fermat potential’s Jacobian matrix. Lastly, time delays are the differences in the Fermat
potential at the image locations (for a detailed explanation, see Saha et al. 2024).

However, not all of these observables are available for every lens. Image positions are
almost always observable for point-source lens systems. Image flux ratios, while also always
observable, can only be turned into actual magnifications when the intrinsic source flux is
known. However, interpreting these magnifications during modeling requires extra care, as
they can be affected by more complex features in the galaxy-scale mass distribution, for
example, baryonic disks (Hsueh et al. 2016, 2017), microlensing by individual stars and
planets in the lensing galaxy (see Vernardos et al. 2024), intermediate-mass-scale structures
like dark matter subhalos (see Vegetti et al. 2023), or dust extinction by the lens galaxy (e.g.,
Motta et al. 2002; Mediavilla et al. 2005). Time delays can be obtained only for variable
point sources, like quasars, supernovae, and, in the future, gravitational waves and fast radio
bursts (see Birrer et al. 2024). Measuring time delays can be a difficult task, especially for
quasars, which require long-term monitoring spanning from a few seasons to years (e.g.,
Eigenbrod et al. 2005; Bonvin et al. 2016; Millon et al. 2020).

The above description of point-source lensing must be slightly modified for extended
sources comparable in size to the lens caustics. Instead of point-like image positions, the
light from such a source is spread into an extended area in the image plane and then further
smeared by the point spread function. As a result, it is hard to know a priori how the ob-
served flux of the multiple images of the source on the lens plane traces back to the same
location on the source plane. Therefore, even if the actual source brightness is known, a lens
model is required to compute the magnification field (i.e., the Jacobian of the lens potential)
across the lens plane. Due to their size, extended sources are not variable on time scales
relevant for lensing. Thus, time delays are not observable without a variable point source.
Note that extended arcs from the point source’s host galaxy are also usually present for a
lens system that includes a point source. Therefore, we can constrain the lens model by
simultaneously utilizing the lensed arcs’ flux distribution and the point-image positions.

1.2 Unique Advantages of Lensing as a Probe of Galaxy Structure

Other than lensing, the only commonly used probe of the mass distribution in galaxies is
kinematics, that is, the velocity dispersion or streaming motions of stars, gas, or globular
clusters. For this to be fully informative of the mass distribution, however, spatially resolved
measurements are necessary (Cappellari 2016), which is often limited to nearby galaxies
at z ≤ 0.5 due to the sizeable observational cost, or due to the smaller size on the sky of
objects at higher redshifts. Using individual stars’ motions, for example, from Gaia, to map
a galaxy’s mass is only limited to our Milky Way (e.g., Nitschai et al. 2020). Thus, an
aperture-integrated velocity dispersion measurement (from either long-slit or integral field
spectroscopy) is the only possible dynamical observable for galaxies other than ours. How-
ever, strong-lensing observables are obtained from high-resolution imaging data, which are
much more informative than the dynamical observables for galaxies beyond the local Uni-
verse (z � 0.03, e.g., Smith et al. 2015). This is especially advantageous for studying the lens
galaxies since the lensing signal does not depend on the surface brightness of the galaxy be-
ing studied, unlike stellar kinematics, but on the combination of the lens galaxy mass and
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the source brightness. Strong lensing can provide ∼1–2% constraints on the mass enclosed
within the Einstein radius from imaging data alone. To obtain a similarly precise mass con-
straint from dynamical observations at high redshift, either integration times longer by a
factor O(10) are needed on current facilities, or we must wait for better quality adaptive
optics systems planned for future extremely large telescopes.

Furthermore, the dynamical observables have their own intrinsic degeneracies, that is,
the mass–anisotropy degeneracy (e.g., Treu and Koopmans 2002). There is an important
complementarity between lensing and dynamical observables, which can be used to break
their corresponding degeneracies (e.g., Courteau et al. 2014). Finally, gravitational lensing
responds to both baryonic and dark matter without any assumptions on their dynamical state,
regardless of whether it is in equilibrium or not.

2 Historical Background

This section provides a historical note on the initial discoveries of galaxy-scale strong lenses
(Sect. 2.1). Then, in Sect. 2.2, we briefly introduce several prominent samples of galaxy-
scale lenses that have contributed to the major science applications described in Sect. 4 and
Sect. 5. Additional references can be found in the review by Treu (2010).

2.1 Initial Discoveries of Strong Lensing Systems

The first strong lens, the double quasar 0957+561A, B, was discovered in 1979 by Walsh
et al. (1979). The system consists of two images of the quasar separated by 5 .′′7. The au-
thors first offered a ‘conventional’ interpretation that the two images are different, individual
quasars that happen to be close to each other and share the same physical characteristics.
Since no gravitational lens was known before that, their less conventional view was that
the two are multiple images of the same source. Subsequent work showed that the lensing
hypothesis was correct. For example, the structure of the radio jets emanating from the two
images of the quasar is consistent with them being mirror imaged, as one would expect for
a minimum and a saddle-point image (Gorenstein et al. 1988; Garrett et al. 1994). The dis-
covery of the first quadruply imaged quasar, PG 1115+080, was announced the following
year (Weymann et al. 1980). It was initially called a ‘triple’ because the second arriving
minimum and its neighboring saddle point were too close to be resolved. These two lenses’
discoveries opened up a new field in astrophysics: observations of multiply-imaged, ‘strong’
gravitational lenses. Discoveries of other types of lensed sources followed: for example, the
first dust-obscured Seyfert 2 AGN, IRAS F10214+4724, was detected in the infrared (IR),
and later identified as being lensed (Eisenhardt et al. 1996; Lehar and Broadhurst 1996).

The increasing number of detections of such lensed systems spurred a lens modeling
effort. The initial studies that used more detailed models beyond a point-like lens mass
appeared in the early 1980s (Young et al. 1980, 1981b,a), and already recognized “that there
are several plausible ways to reproduce the observations”, foreshadowing the importance of
lens model degeneracies. The role of the lens mass granularity due to individual stars in the
lensing galaxy was also recognized very early on (Chang and Refsdal 1979; Young 1981)
and later grew into the rich sub-field of extragalactic stellar microlensing (see Vernardos
et al. 2024 for a review).
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2.2 Prominent Samples of Galaxy-Scale Lenses

In this subsection, we briefly introduce some of the most prominent samples of galaxy-scale
lenses that had an impact on the science applications presented in Sect. 4 and Sect. 5. Note
that this is not a complete list of all the discovered galaxy-scale lenses. The specifics of lens
searching and discovery to build samples like these are reviewed by Lemon et al. (2024),
which we refer the reader to for recent developments in the search methods and discoveries.

2.2.1 MG-VLA Survey-Based Samples

The first systematic search for strongly lensed systems at radio wavelengths took place in the
eighties within the MIT–Greenbank–Very Large Array (MG-VLA) survey (Lawrence et al.
1986). This survey discovered a few famous radio-loud lensed quasars among thousands of
radio sources scrutinized with high resolution by the Very Large Array (VLA). The Jodrell
Bank–VLA Astromtric Survey (JVAS; Patnaik et al. 1992; King et al. 1996), and its suc-
cessor, the Cosmic Lens All Sky Survey (CLASS; Myers et al. 1995) was the largest survey
carried out for a long time. This survey targeted the whole northern sky (0◦ < Dec < 75◦) for
multiple images (separated by 0 .′′3 < �θ < 6 .′′0) among flat spectrum radio sources brighter
than 30 mJy. CLASS discovered 22 new systems, among which twelve are doubles, nine are
quads, and one displays six images (Browne et al. 2003).

2.2.2 The CASTLES Sample

The CfA-Arizona Space Telescope LEns Survey (CASTLES1) is a follow-up Hubble Space
Telescope (HST) imaging survey of ∼100 galaxy-scale lenses2 known at the time, some
from previous surveys such as CLASS (Muñoz et al. 1998) and others from serendipity or
targeted surveys (for details, see Lemon et al. 2024). This survey collected the first uni-
form ensemble of high-resolution images of known galaxy-scale lens systems, including
both galaxy–quasar and galaxy–galaxy lenses. An account of early systematic lens searches,
which generally unveiled small samples of less than six systems, can be found in Claeskens
and Surdej (2002).

2.2.3 Samples of Lensed Sub-Mm Galaxies

Lens searches in the sub-mm have proved to be efficient in finding hundreds of lensed dusty
star-forming galaxies at high redshift (z ∼ 1–4) with high purity in the candidate sample,
using the sharp cutoff in the luminosity function for these galaxies (see Lemon et al. 2024).
The initial samples detected using this technique came from the Herschel Astrophysical
Terahertz Large Area Survey (HATLAS) and the Herschel Multi-tiered Extragalactic Survey
(HerMES; Negrello et al. 2010, 2017). Since these samples of lenses are source-selected, the
selection function of the lens galaxies is less affected than for lens-selected samples, thus
providing an advantageous avenue to study galaxy properties (e.g., Dye et al. 2014, 2018;
Amvrosiadis et al. 2018; Maresca et al. 2022).

1https://lweb.cfa.harvard.edu/castles/.
2There are a handful cluster-scale lenses included in this sample as well.

https://lweb.cfa.harvard.edu/castles/
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2.2.4 SDSS-Based Samples

The Sloan Lens ACS (SLACS) survey discovered 85 galaxy–galaxy lenses from the Sloan
Digital Sky Survey (SDSS) spectroscopic data by identifying multiple redshifts in the fiber
(with 3′′ diameter) spectra. The SLACS survey also followed these systems up with multi-
band HST imaging (Bolton et al. 2006; Auger et al. 2009). The sample was expanded with
40 new systems with smaller deflector masses by the SLACS for the Masses (S4TM) sample
(Shu et al. 2015). In addition to galaxy–galaxy lenses, the SDSS Quasar Lens Search (SQLS)
discovered a sample of 28 galaxy–quasar lenses using SDSS multicolor imaging data (Oguri
et al. 2006). More galaxy–quasar lens systems were discovered from joint SDSS and UKIRT
Infrared Deep Sky Survey (UKIDSS) data by the Major UKIDSS–SDSS Cosmic Lens Sur-
vey (MUSCLES; Jackson et al. 2012).

2.2.5 CFHTLS-Based Samples

The Strong Lensing Legacy Survey (SL2S; Gavazzi et al. 2012) discovered a sample
of ∼35 galaxy–galaxy lenses from the Canada–France–Hawaii Telescope Legacy Survey
(CFHTLS) data. Some newer lens samples have also been discovered from this survey (More
et al. 2016a; Paraficz et al. 2016).

2.2.6 BOSS-Based Samples

The Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) dis-
covered ∼30 galaxy–galaxy systems from the Baryon Oscillation Spectroscopic Survey
(BOSS) and obtained HST imaging for them (Brownstein et al. 2012). This survey was later
expanded into the BELLS for the GALaxy-Lyα EmitteR sYstems (BELLS GALLERY) sur-
vey, where the source galaxies are specifically Lyα emitters (Shu et al. 2016). A sample of
13 strongly lensed quasars has also been discovered from the BOSS data (More et al. 2016b).

2.2.7 Other Samples and Ongoing Efforts from Recent Surveys

Numerous large-area sky surveys have recently discovered several other lens samples. The
STRong-Lensing Insights into the Dark Energy Survey (STRIDES) collaboration has dis-
covered ∼30 quadruply lensed quasar systems from the Dark Energy Survey (DES) data
– often in combination with data from other sky surveys – and obtained multi-band HST
imaging of them in IR, optical, and ultra-violet (UV) bands (Shajib et al. 2019; Schmidt
et al. 2023). Many galaxy–galaxy lens candidates have also been identified in the DES data
(Jacobs et al. 2019b,a; Rojas et al. 2021; Tran et al. 2022). In addition to the DES, surveys
such as the Canada–France Imaging Survey (CFIS), Gaia, the Hyper Suprime-Cam (HSC)
survey, the Kilo Degree Survey (KiDS), and the Panoramic Survey Telescope and Rapid Re-
sponse System (Pan-STARRS) have provided a plethora of newly discovered galaxy-scale
strong lenses (e.g., Petrillo et al. 2017, 2019; Agnello et al. 2018; Krone-Martins et al. 2018;
Delchambre et al. 2018; Lemon et al. 2018, 2020; Cañameras et al. 2021; Savary et al. 2022;
Li et al. 2021; Lemon et al. 2022; Wong et al. 2022). Most of these samples still contain
candidate lenses and require spectroscopic confirmation (by measuring the redshifts) and
high-resolution imaging (to perform lens modeling) for the science applications described
in Sect. 4 and Sect. 5. See Lemon et al. (2024) for a detailed discussion of the recent and
ongoing efforts.
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3 Observables and Analysis Methods

This section describes the strong-lensing observables (Sect. 3.1) and the analysis tech-
niques to constrain galaxy properties from them. We describe the lens modeling methods
in Sect. 3.2 and the commonly used models in Sect. 3.3. We outline the Bayesian hierar-
chical framework in Sect. 3.4, which allows inferring population characteristics of galaxies
from a sample of lenses. Lastly, non-lensing observables most commonly combined with
strong lensing ones are presented in Sect. 3.5.

3.1 Lensing Observables

The two types of lensing observables for galaxy-scale lenses are imaging of the lensing
system (Sect. 3.1.1) and the time delay between a pair of images from a point source
(Sect. 3.1.2).

3.1.1 Imaging of the Lens System

The most common and informative lensing observables result from imaging data with angu-
lar resolution much better than the Einstein radius. An extended source can be lensed into
clearly identifiable arcs that can form partial or complete Einstein rings (see Fig. 1). The
conjugate points on the arcs, that is, locations that are traced back to the same location in
the source plane, can be used to simultaneously constrain a lens model (through its deflec-
tion angles and magnification) and reconstruct the surface brightness of the source that is a
priori unknown. Although simple models can be constrained from any image that displays
lensing features with sufficient signal-to-noise ratio, high-resolution imaging from space-
or ground-based telescopes offers many more observational constraints (i.e., conjugate pix-
els). This is crucial for exploring more sophisticated models, which are required for precise
science applications (e.g., see Sect. 4 and Sect. 5).

If the background source contains a point-like emitting region – for example, a quasar or
a supernova – the positions of its multiple images (i.e., conjugate points) can be extracted
from the data and used as constraints for a lens model. Although the simple addition of
two or four conjugate points may initially seem insignificant compared to the hundreds of
pixels that correspond to the extended source, the flux contained in the corresponding pix-
els may be brighter than the entire host galaxy, for example, in the case of an AGN, and
their positions can be constrained with sub-pixel accuracy (e.g., Shajib et al. 2019; Schmidt
et al. 2023). Hence, these conjugate points have a strong effect on the resulting model and
must be treated separately. In addition to the astrometry of the point-like images, their mag-
nification ratio (or flux ratio) can be used as an observational constraint. However, image
magnifications are susceptible to micro- and milli-lensing, dust extinction,3 and the effect
of higher order moments in the mass distribution of the lens usually attributed to the com-
plex, non-linear physics of baryons, for example, galactic disks and bars (Hsueh et al. 2016,
2017). Therefore, many lensing analyses involving systems with such point-like sources
choose not to use magnification ratios as constraints (e.g., Shajib et al. 2019). However, sup-
pose the microlensing and dust extinction effects can be incorporated and quantified within
a lens model. In that case, any residual flux ratio anomaly would signal a departure from
the smooth macro-model for the deflector galaxy and thus could indicate the presence of
sub-galactic dark matter structures within the galaxy-scale halo (e.g., Mao and Schneider

3Lensed arcs from extended sources are also vulnerable to dust extinction.
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1998; Nierenberg et al. 2017; Gilman et al. 2020). Such detection of dark substructures can
provide important insights into the nature of the dark matter, as described in Vegetti et al.
(2023).

Lens modeling by simultaneously fitting the imaging data in multiple bands (from ra-
dio wavelengths to UV) has become commonly employed in the literature when such data
are available (e.g., Dye et al. 2014; Oldham and Auger 2018; Shajib et al. 2019; Young
et al. 2022; Tan et al. 2024). Such multi-band modeling has the advantage of adding con-
straints in regions of the images that may be poorly detected in some wavelength ranges
and deblending the lensing galaxy from the images and arcs. The main drawback is the in-
crease in model complexity due to the wavelength dependence of the lens galaxy and source
morphology. However, such multi-band lens modeling is expected to be ubiquitous in the
upcoming decade, with multi-band data being more available thanks to the current and up-
coming facilities such as the JWST and the Vera Rubin Observatory (Shajib et al. 2024).
Several automated modeling pipelines (for both single-band and multi-band data) are being
developed to tackle the computational aspect of modeling very large lens samples (Oguri
and Marshall 2010; Collett 2015) to be discovered by the Rubin Observatory, Euclid, and
the Roman Space Telescope (e.g., Chan et al. 2015; Nightingale et al. 2018; Shajib et al.
2021; Etherington et al. 2022; Schmidt et al. 2023; Tan et al. 2024).

3.1.2 Time Delay

If the background source is a variable point source, for example, a quasar or a supernova,
the delay between the arrival times of photons at its multiple different images can be mea-
sured through long-term monitoring that spans from a few months to decades (e.g., Eigen-
brod et al. 2005; Bonvin et al. 2016; Millon et al. 2020). The time delays are variant under
the well-known mass-sheet degeneracy (MSD) in lensing, unlike the imaging observables
(Falco et al. 1985; Schneider and Sluse 2014). Thus, they can be combined with the imaging
observables to break the MSD when constraining the potential of the lensing galaxy. How-
ever, such a combination of these observables requires a fiducial cosmological model since
the time delays depend on the cosmology, particularly the Hubble constant. A more detailed
discussion on the measurement of time delays is provided in Birrer et al. (2024).

3.2 Lens Modeling Methods

Lens modeling is the process of constraining properties of the lens galaxy and the source
from the lensing observables. Traditional methods are based on reconstructing the source
light and lens potential to fit the data under some assumptions, such as regularization, and
are described in Sect. 3.2.1. More recently, machine learning methods are being developed
for these purposes, which we present in Sect. 3.2.2. It is beyond the scope of this review to
provide a beginner’s guide to modeling galaxy-scale lenses, but we refer the reader to Saha
et al. (2024) for an introduction to lens modeling. Readers interested in the science applica-
tions without needing a technical discussion on lens modeling and analysis techniques may
go directly to Sect. 4 and refer back to the rest of this Sect. 3 as needed.

3.2.1 Likelihood-Based Inference

Such methods require a likelihood function that leads to an optimized model that can repro-
duce an observed multiply-imaged system down to the noise level. We note that whereas an
optimized forward model aims to reproduce the data to the noise level, it is often difficult
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to achieve that in practice, often owing to the simplifying assumptions made in the model.
As a result, fine-tuning the model complexity is commonly required through trial-and-error
to meet the accuracy requirement for a given science case (e.g., Shajib et al. 2019; Schmidt
et al. 2023). In general, the lens model consists of three main components: the background
source’s flux distribution, the mass distribution in the lensing galaxy (or galaxies), and the
flux distribution in the lensing galaxy (or galaxies). The likelihood function that measures
the goodness-of-fit of the model to the data can be defined as

L(d | m) ∝ exp

[
−1

2
(d − m)T �−1

d (d − m)

]
, (1)

where d is the vector of pixel values in the data and

m ≡ m(ξmass, ξ source, ξ light) (2)

is the model-computed flux in the data pixels. Here, ξmass is the set of model parameters
defining the lens mass distribution, ξ source is the set of model parameters defining the source’s
flux distribution, ξ light is the set of model parameters defining the lens galaxy’s flux distri-
bution, and �d is the covariance matrix of the data. Some studies choose to subtract the
lens galaxy’s flux distribution from the imaging data before lens modeling (e.g., Bolton
et al. 2008b). Given that the lens flux is loosely related to the lensing phenomenon only
through mass-follows-light arguments that are not strictly required, we omit it in the follow-
ing discussion for brevity. This likelihood function can be extended in a Bayesian frame-
work to include prior (or regularization) terms on the source (Warren and Dye 2003; Treu
and Koopmans 2004; Koopmans 2005), or used to compute the Bayesian evidence (Suyu
et al. 2006; Shajib et al. 2020; Vernardos and Koopmans 2022) and perform model compar-
isons.

When the lensed arcs from an extended source are resolved, each pixel is a constraint for
the lens model. Given a deflection field α(θ), which depends on the lens mass distribution
through ξmass, the lens equation

β(θ) = θ − α(θ) (3)

can be used to map any position θ on the image plane to the corresponding position β on
the source plane (for a detailed explanation of the strong lensing formalism, see Schneider
et al. 1992, Meneghetti 2021, or Saha et al. 2024). We can then easily compute the lensed
flux at any location on the image plane as

I (θ) = S[β(θ)], (4)

where S is the light distribution of the source that depends on ξ source, and we use the fact
that lensing conserves surface brightness. The dependence of I (θ) on the mass through
β(θ) is almost always non-linear, which means that we cannot directly (i.e., through a linear
inversion) solve Eq. (3) to obtain the true parameters ξmass, even when S (and equivalently
the values of ξsource) is perfectly known.

In practice, S is an unknown that must be solved simultaneously with the lens potential
and requires special attention. The most straightforward choice for it is an analytic func-
tion, for example, a Sérsic profile (Sérsic 1968), whose parameters are treated in the same
forward-modeling way as for the lens potential. However, several more advanced techniques
have been developed over the years that allow a free-form reconstruction of the source, each
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Fig. 2 First panel: False-color image of the system SDSS J0946+1006 combining three HST filters (Sonnen-
feld et al. 2012). Second panel: HST image in the F814W filter of the system with the galaxy light subtracted.
This system has lensed arcs from multiple source galaxies at different redshifts, which are grouped with solid
and dashed contours. Third panel: Model of the lensed arc from only the brightest source. Fourth panel:
Corresponding source reconstructed on an adaptive grid using every data pixel and curvature regularization
(for the analysis of the data, see Chap. 4 of Bayer 2021 and for the modeling method, see Vernardos and
Koopmans 2022)

with its advantages and disadvantages. The semi-linear inversion technique of Warren and
Dye (2003) uses a regular grid of pixels to approximate the source brightness. Although the
degrees of freedom are much higher in this case, the use of regularization or prior terms of
a specific form can greatly facilitate obtaining the best-fit solution. If a prior is used with
quadrature terms of the source pixel brightness values, then the derivative of the posterior
probability function4 can be obtained analytically given ξmass. As a result, the source recon-
struction turns into a linear inversion problem for a given set of non-linear parameters within
{ξmass, ξ source}, where ξ source now refers only to non-linear parameters of the source that are
not solved through the linear inversion.

Typical choices of source regularization are gradient and curvature that impose smooth-
ness on the source solution through its derivatives (a standard approach in this kind of prob-
lem, e.g., Press et al. 1992). Alternatively, Vegetti et al. (2014) and Nightingale et al. (2018)
use adaptive regularization, which changes the degree of smoothing based on the source
brightness, and both studies discuss that this scheme is vital for reconstructing compact
sources. Other choices include a covariance kernel prior, which is based on observations of
the galaxy brightness power spectrum and thus a more physically justifiable choice (Vernar-
dos and Koopmans 2022), or a multi-scale regularization through the use of sparsity con-
straints on a wavelet representation of the source (Galan et al. 2021). Choosing a different
basis to represent the source can in itself significantly reduce the number of degrees of free-
dom while still having enough flexibility to represent complex light profiles across different
scales (Birrer et al. 2015; Tagore and Jackson 2016). This can be similarly achieved by re-
constructing the source on an irregular, adaptive grid that can have increased resolution in
the most magnified areas of the source, that is, near the caustics (Vegetti and Koopmans
2009; Nightingale and Dye 2015; Vernardos and Koopmans 2022). Figure 2 illustrates an
example of lens modeling based on high-resolution HST imaging of a lensing system with
a bright, extended source component. The source is reconstructed on an adaptive grid using
curvature regularization (Chap. 4 of Bayer 2021).

If there is a point source within the extended source galaxy, then the positions of its
point-like images provide additional constraints on the mass model as conjugate points. One
approach to model the point-like source is to include the location of its multiple images as
free parameters and then require the mass model to trace them back to the same location

4This is also referred to as the penalty or loss function.
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Fig. 3 Lens modeling of a galaxy-scale lens system – here, the lensed quasar WGD J2038−4008. First panel:
The false-color image of the system from the DES giy-bands, where only the point images are resolved
(Agnello et al. 2018). Second panel: Illustration of a lens model based only on the quasar image positions
(red points; Agnello et al. 2018). The blue point shows the center of the lensing galaxy, and the yellow lines
trace the saddle-point contours on the arrival-time surface. Third panel: The false-color image of the system
from 3-band HST imaging (in F160W, F814W, and F475X filters), where the lensed arcs from the quasar host
galaxy can be seen in greater detail. Fourth panel: The pixel-level model of the HST imaging from Shajib
et al. (2022). The white bars represent 1′′

on the source plane through the lens equation. Alternatively, the point-source location can
be free, and the predicted image positions must match the observed ones. In practice, the
choice between the two approaches is based on computational and sub-grid effect arguments
(see Keeton 2001b, for a more detailed presentation on the topic). Figure 3 illustrates an
example of lens modeling based on high-resolution HST imaging of a lensing system with
both a point-like and an extended source component, that is, a quasar and its host galaxy.
In this case, the model for the extended host galaxy assumes an analytic Sérsic profile and
an additional free-form component described by a basis set of shapelets (Birrer et al. 2015;
Shajib et al. 2022).

3.2.2 Machine-Learning Based Parameter Extraction

Recently, machine learning (ML) based methods have been developed to extract lensing
parameters – for example, the Einstein radius, power-law index, ellipticity, and shear pa-
rameters – from the imaging data (e.g., Hezaveh et al. 2017; Morningstar et al. 2019;
Adam et al. 2022; Schuldt et al. 2023). Some studies also explored reconstructing the lens
mass and source flux distributions using machine learning algorithms (e.g., Chianese et al.
2020; Karchev et al. 2022; Mishra-Sharma and Yang 2022; Biggio et al. 2023). In these
approaches, a machine learning algorithm – usually a neural network – is trained using
synthetic data since real examples of lens systems are not adequate in number for such
data-intensive training. This leads to the critical caveat that the mass density profile in the
simulated galaxies is based on empirical priors (e.g., Hezaveh et al. 2017) or cosmological
simulations (e.g., Adam et al. 2022). Thus, the inferred parameters are prior-dependent – ei-
ther empirical or physical – in a similar manner that the forward modeling approach depends
on the adopted mass model and the associated priors.

Although ML-based inferences have yet to demonstrate their potential in science ap-
plications with real data, they are essential for quickly extracting lensing parameters with
minimum human supervision. This is crucial for modeling huge samples of lenses like those
expected from several large surveys upcoming in the 2020s (e.g., Park et al. 2021; Wagner-
Carena et al. 2021). For such large datasets, the traditional forward modeling techniques
would be unfeasible due to either computational or human time restrictions. Finally, ML-
based inference provides a direct and fast way to constrain quantities of interest that can be
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otherwise too cumbersome to infer from the data through a traditional approach, for exam-
ple, detecting individual or populations of dark subhalos or constraining the subhalo-mass
function (Brehmer et al. 2019; Diaz Rivero and Dvorkin 2020; Coogan et al. 2020, 2022;
Ostdiek et al. 2022a,b; Vernardos et al. 2020; Wagner-Carena et al. 2021; Zhang et al. 2022;
Anau Montel et al. 2023). Note that this particular science application is discussed in detail
in Vegetti et al. (2023).

3.3 Lens Mass Models

Lens mass models can vary in complexity and eventually in the number of free parameters,
reflecting that the mass distribution in galaxies is a non-trivial problem for which methodolo-
gies and algorithms are still evolving. Although it is possible to extract lensing information
with free-form models and directly connect them to galaxy properties of interest (see Saha
et al. 2024), lens modeling with simple parametrization has been the most common practice
in the literature (e.g., Ritondale et al. 2019; Schmidt et al. 2023). We briefly introduce some
commonly used models with simple parametrization in Sect. 3.3.1, discuss the degeneracies
that impact them in Sect. 3.3.2, and describe free-form models in Sect. 3.3.3.

3.3.1 Simply Parametrized Mass Models

Keeton (2001a) provides a large catalog of simply parametrized models, which includes
the commonly used ones such as the singular isothermal sphere or ellipsoid (SIS or SIE;
Kormann et al. 1994), the pseudo-isothermal elliptical mass distribution (PIEMD; Kassiola
and Kovner 1993), the softened power-law elliptical mass distribution (SPEMD; Barkana
1998), and the Navarro–Frenk–White (NFW; Navarro et al. 1996, 1997) profile. Defining
the ellipticity in the potential makes lensing computation very efficient, even for complex
radial profiles, since all the lensing quantities can be obtained either from the potential itself
(e.g., for the time delay) or through numerical differentiation of the potential (e.g., for the
deflection, convergence, or magnification; Kovner 1987; Golse and Kneib 2002). However,
moderately elliptical potentials (e.g., with axis ratio q � 0.6) can lead to unphysical shapes
in the convergence (Kassiola and Kovner 1993) and also introduce implicit azimuthal varia-
tion or ellipticity gradient in the convergence (Gomer et al. 2023). For simply parametrized
profiles with ellipticity defined in the convergence, computing deflection angle becomes
computationally expensive without an analytical solution due to needing a 2D numerical
integration. Among such elliptical convergence profiles, Tessore and Metcalf (2015) pro-
vide an analytical solution for the power-law radial form. Alternative parameterizations of
the elliptical NFW convergence profile have also been devised (Oguri 2021; Heyrovský and
Karamazov 2024). Shajib (2019) provides a computationally efficient general solution for
any radial form using a superposition of elliptical Gaussian components (i.e., the multi-
Gaussian expansion; Emsellem et al. 1994; van de Ven et al. 2010).

On top of such a simply parametrized profile describing the primary lens mass distribu-
tion, it is also often necessary to include a constant shear field (often shortened as XS) lens-
ing potential to accurately model the distortions in the lensed arcs or the Einstein ring. These
additional distortions can arise from nearby perturbers and large-scale structures (Keeton
et al. 1997) or the additional angular structure in the central lensing galaxy or galaxies (Witt
1996; Hilbert et al. 2007; Gomer and Williams 2018, 2021; Barrera et al. 2021; Van de Vy-
vere et al. 2022a,b; Etherington et al. 2024). This constant shear field is commonly referred
to as ‘external shear’ in the literature, pointing to the former of the two origins mentioned
above. However, we recommend using the term ‘residual shear’ instead as a more general
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terminology. The magnitude of residual shear commonly exceeds 0.1, which is difficult to
explain if this shear originates solely from the line-of-sight structures. Until the mid-2010s,
the SIE+XS model has been the most popular choice to model large samples of galaxy-
scale lenses (e.g., Bolton et al. 2008a; Sonnenfeld et al. 2013), adequate for the science
application requirements at the time. Although simple SIE models can sufficiently constrain
the Einstein radius, obtaining other important properties, such as the radial slope of the mass
profile, requires models with additional degrees of freedom. Improved data quality and anal-
ysis techniques have allowed the use of such models (e.g., Ritondale et al. 2019; Shajib et al.
2021).

Simply parametrized lens models with larger degrees of freedom, for example, a super-
position of a stellar component with a constant or varying mass-to-light ratio and a dark
matter component usually described by the NFW profile, have been adopted by some stud-
ies (e.g., Treu et al. 2010; Sonnenfeld et al. 2015; Oldham and Auger 2018; Shajib et al.
2021). Although necessary for the addressed science questions, such mass profiles with
more free parameters amplify the impact of degeneracies inherent to lensing. It is thus often
necessary to constrain these additional parameters by incorporating non-strong-lensing ob-
servables such as stellar kinematics and weak lensing, or by incorporating informative priors
(e.g., Sonnenfeld 2018; Shajib et al. 2021). We note that Sonnenfeld (2018) and Shajib et al.
(2021) combined strong-lensing information with stellar kinematics or weak lensing using
‘summary observables’, such as the Einstein radius or the reduced slope ξrad (see Sect. 3.3.2
for definition), instead of simultaneously fitting the abovementioned complex model to the
full lensing information in the imaging data.

While the additional degrees of freedom beyond the simple SIE model focus on the radial
profile of the lens in most cases, azimuthal structures such as disky-ness, boxiness, ellipticity
gradients, or isodensity twists may leave noticeable imprints in the lensed images. For point-
like sources, the image flux ratios are the most susceptible to perturbations (Möller et al.
2003; Keeton et al. 2003, 2005). In contrast, for extended sources, the imprint is generally
more subtle and detectable only from high-resolution imaging data (Van de Vyvere et al.
2022a,b). Fortunately, most of those structures arise from baryonic physics and may also be
detectable in the luminosity profile of the lens (Van de Vyvere et al. 2022b).

3.3.2 Common Degeneracies in Simple Parametric Modeling

The degeneracies in lens modeling – both intrinsic in the data and stemming from the
parametrization scheme – are discussed in Saha et al. (2024). Here, we summarize the com-
mon degeneracies that largely impact simply parametrized lens models for the convenience
of the readers.

The MSD, which is intrinsic to imaging observables in lensing, originates from the mass-
sheet transform (MST, Falco et al. 1985; Saha 2000)

κ → κ ′ = λκ + 1 − λ, (5)

where λ is a constant. This equation implies a source position transformation (e.g., Schnei-
der and Sluse 2014), where the unknown source position is altered as

β → β ′ = λβ. (6)

A more general but approximate degeneracy happens when λ is not a constant anymore but
depends on the position, that is, λ ≡ λ(θ) (Unruh et al. 2017; Wertz et al. 2018).
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Most simply parametrized mass profiles artificially limit the MSD. For example, this is
easily demonstrable for the power-law mass model, as the MST of a power law is mathemat-
ically not a power law anymore. Although MST-invariant quantities exist that the imaging
observables can constrain (e.g., Wagner 2017; Wagner and Tessore 2018), commonly em-
ployed mass models are not parametrized based on those quantities. The standard practice
in the literature to assume simply parametrized models, such as the power law, is usually
validated on numerous non-lensing constraints demonstrating that the power-law model is a
‘good’ approximation for elliptical galaxy mass profiles (e.g., Thomas et al. 2007; Tortora
et al. 2014; Bellstedt et al. 2018). The model-independent radial quantities constrained by
the imaging data are the Einstein radius θE and the MST-invariant ‘reduced slope’ defined
as

ξrad ∝ θEα′′(θE)

1 − κ(θE)
, (7)

where α′′ is the second derivative of the deflection angle (see Eq. 42 of Birrer 2021 for the
full definition of ξrad, also Kochanek 2021). For a power-law convergence profile κ(θ) ∝
θ−γPL+1, this quantity becomes ξrad = γPL − 2. As a result, the choice of a SIE+XS lens
model fixes ξrad = 0 and only extracts θE from the imaging data.

Degeneracies in lens modeling can also arise from particular parametrizations of the
lens model. One such example is the shear–ellipticity degeneracy, as the total shear can be
redistributed between the ‘internal’ shear, arising from the ellipticity of the central deflector,
and the external shear (Kassiola and Kovner 1993). Specifically, a SIE+XS model can be
modeled with only an SIE model that has a quadrupole moment equaling 1/3rd of the shear
(An 2005). This degeneracy is particularly apparent when modeling with point-like image
positions as the only constraints (Witt 1996).

3.3.3 Free-Form Models

In the most commonly used lens models, the main focus is on capturing the radial shape
of the mass profile, while any azimuthal structure beyond an elliptical shape with residual
shear is of secondary importance. Real galaxies can have more complicated mass profiles,
with higher order moments present, such as disky-ness, boxiness, or bar- or disk-like com-
ponents (e.g., Trotter et al. 2000; Claeskens et al. 2006; Hsueh et al. 2017; Frigo et al.
2019), radial dependence of the ellipticity or the orientation of the isodensity contours (i.e.,
ellipticity gradients, twists, or lopsidedness, e.g., Hao et al. 2006; Nightingale et al. 2019;
Barrera et al. 2021), or even features that do not fit into a simple parametric description,
such as merger products that are not yet completely relaxed and populations of substruc-
tures (e.g., satellite subhalos or perturbers along the line of sight). Detecting such deviations
from the simple parametric profiles depends on numerous factors, such as their alignment
with the smooth potential (Van de Vyvere et al. 2022b), the complexity of the brightness
profile of the source (Vernardos and Koopmans 2022), the signal-to-noise ratio, etc. How-
ever, multipole components in the mass potential beyond the combined effect of ellipticity
and residual shear have been recently detected in very-long-baseline interferometric obser-
vations of a strong lens (Powell et al. 2022). Although not accounting for such structures
can bias the mass model by up to several percent – which is mostly acceptable except for
time-delay cosmography (see Birrer et al. 2024) and for detecting dark matter substructure
(see Vegetti et al. 2023) – their detection holds valuable information on the formation history
and evolution of galaxies.
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To this extent, free-form techniques have been developed that either entirely dismiss any
parametric mass component and employ a grid of mass pixels to describe the lens potential
(Saha and Williams 1997), or retain a parametric model as a first-order smooth component
and combine it with a similar pixel grid that now focuses specifically on capturing higher or-
der deviations (Koopmans 2005; Suyu et al. 2010). In both cases, regularization assumptions
or priors on the free-form pixel grid are necessary to obtain a solution and to prevent the ap-
pearance of unphysical mass distributions. Existing techniques are based on forward models
or extensions of the semi-linear inversion technique (Vernardos and Koopmans 2022).

The specific form of the regularization priors plays an important role in the quality of
the obtained solutions. It has been shown that purely mathematically motivated priors (e.g.,
curvature) can lead to biased potentials as opposed to more physically driven ones, based on
the observed light properties of real galaxies (e.g., Vernardos and Koopmans 2022). Galan
et al. (2022) proposed a wavelet-based regularization technique that finds solutions that sat-
isfy sparsity constraints. Biggio et al. (2023) completely replaced the pixel grid with a neural
network. These approaches allow the use of purely data-driven regularization that is the most
compatible with the data (without computing and comparing the Bayesian evidence). It re-
mains to be seen how well these new and promising techniques can perform on real data and
robustly recover deviations from smooth, parametric models that encode galaxy evolution.

One way to allow the prior to be less informative for free-form models is to marginalize
over an ensemble of solutions. Such ensembles were first introduced for free-form models
made up of mass tiles or pixels (Williams and Saha 2000; Saha and Williams 2004; Coles
et al. 2014). In these and related works, the mass distribution is required to be non-negative
and centrally concentrated in a broad sense. Within these prior conditions, models that cor-
rectly reproduce the observed positions of point-like image features are randomly sampled
to form the ensemble of solutions. This ensemble of solutions is then effectively the pos-
terior of the model parameters, which include all the mass pixel values, and the posteriors
of model-predicted quantities can also be obtained from this ensemble (e.g., Williams and
Saha 2000). The ensemble can be further filtered according to how well the whole image
or the pixels on the lensed arcs from the extended source can be fitted (e.g., Denzel et al.
2021b).

Free-form models naturally allow a broad range of mass profile shapes, both radially and
azimuthally, thus exploring the degenerate space of the mass profile shapes. The same effect
can be obtained with simply parametrized models by combining posteriors from models
with different parametric forms, albeit to the limited extent allowed by the variety of the
adopted parametrizations (e.g., Suyu et al. 2014; Birrer et al. 2019; Shajib et al. 2022).

3.4 Bayesian Hierarchical Framework

The Bayesian hierarchical framework can be used to constrain the population properties
from a sample of strong lenses (e.g., Sonnenfeld et al. 2015). This framework also allows
one to incorporate a selection function of the lensing galaxies and generalize the sample
properties to the population of all galaxies that are of the same type as the lensing ones (e.g.,
Sonnenfeld et al. 2019). Within the hierarchical analysis, there are two levels of parameters:
hyper-parameters that dictate the distribution of the parent population of the lens galaxies
and parameters pertaining to individual lens galaxies sampled from the parent population.
The hierarchical framework connects the population-level hyper-parameters to the observed
data through the individual-galaxy-level parameters. According to the Bayes’ theorem, the
posterior probability distribution of the hyper-parameters u is given by

p(u | D) ∝ p(D | u) p(u), (8)
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where D is the dataset, p(D | u) is the likelihood, and p(u) is the prior. For model parame-
ters wi pertaining to individual galaxies, the above equation can be expressed as

p(u | D) ∝ p(u)
∏

i

∫
dwi p(Di | wi) p(wi | u), (9)

where Di is the data from to the i-th individual lens galaxy. This approach can infer any
property at the population level with the associated mean and scatter values. See, for exam-
ple, Sonnenfeld and Cautun (2021) for a detailed presentation on the hierarchical framework
with specific examples of hyper-parameters u.

3.5 Incorporating Non-strong-Lensing Observables

Incorporating non-strong-lensing observables can be used to break the degeneracies in
strong lensing analysis. For example, stellar kinematics data can be used to break the MSD
(e.g., Romanowsky and Kochanek 1999; Treu and Koopmans 2002, 2004; Shajib et al. 2018;
Birrer et al. 2020; Shajib et al. 2021; Tan et al. 2024), whereas spectroscopic stellar popula-
tion analysis (e.g., Spiniello et al. 2011), weak lensing (e.g., Gavazzi et al. 2007; Sonnenfeld
et al. 2018; Shajib et al. 2021), and microlensing (e.g., Schechter et al. 2014; Oguri et al.
2014) information can help mitigate the degeneracy between the stellar and dark matter
distributions. Here, we briefly describe combining strong lensing with stellar kinematics
(Sect. 3.5.1) and weak lensing (Sect. 3.5.2).

3.5.1 Combining Stellar Kinematics with Strong Lensing

Imaging observables probe the 2D mass distribution of the lens projected on the plane of
the sky, whereas stellar kinematics probe its full 3D mass distribution. Thus, a combination
of the two helps break the MSD to robustly constrain the mass distribution in galaxies.
Although elliptical galaxies are triaxial, assuming spherical symmetry has been a standard
practice for the case of a single aperture-integrated stellar velocity dispersion measurements
(see Sonnenfeld et al. 2012, for a discussion on the impact of this assumption). Then, the
stellar velocity dispersion is obtained by solving the spherical Jeans equation

d
(
l(r) σ 2

r

)
dr

+ 2βani(r) l(r) σ 2
r

r
= −l(r)

d

dr
. (10)

Here, l(r) is the 3D luminosity density of the stars, σr is the intrinsic radial velocity disper-
sion, and βani(r) is the anisotropy parameter relating σr with the tangential velocity disper-
sion σt given by

βani(r) ≡ 1 − σ 2
t

σ 2
r

. (11)

By solving the Jeans equation, the line-of-sight velocity dispersion, which is the kinematic
observable, is obtained as

σ 2
los(R) = 2G

I (R)

∫ ∞

R

Kβ

( r

R

) l(r) M(r)

r
dr (12)

(Mamon and Łokas 2005). Here, M(r) is the 3D enclosed mass within radius r . The function
Kβ(u) depends on the parameterization of β(r) (see Mamon and Łokas 2005 for specific
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forms of Kβ(u) corresponding to different β(r)). Thus, the observed velocity dispersion in
Eq. (12) can be written as a function of the lens model parameters as

σ 2
los = Ds

Dds
c2 J (ξmass, ξ light, βani, λ), (13)

where ξmass are the deflector’s mass model parameters, ξ light are the deflector’s light model
parameters (Birrer et al. 2016). In this form, the function J is independent of cosmology. It
only depends on the lens model parameters {ξmass, ξ light}, the anisotropy profile βani(r), and
the MST parameter λ. All the cosmological dependence of σlos is contained in the distance
ratio Ds/Dds. To reproduce the observed velocity dispersion integrated within an aperture,
the computed luminosity-weighted velocity dispersion needs to be blurred with the PSF P
as

σ 2
ap =

∫
ap

[
I (R) σ 2

los(R)
] ∗P R dRdθ∫

ap I (R) ∗P R dRdθ
, (14)

where the ∗ symbol denotes the convolution operation. To obtain analytic solutions for spe-
cific choices of mass, light, and anisotropy profiles, see Koopmans (2006) for the case of
power-law mass and light profiles with constant anisotropy, and Suyu et al. (2010) for the
case with power-law mass profile, the Hernquist light profile (Hernquist 1990), and isotropic
stellar orbits.

The constraints from the velocity dispersion measurement can be folded in the lens model
posterior with a multiplicative likelihood term

Lkin ∝ exp

⎡
⎣− (σ obs

ap − σ model
ap )2

2σ 2
σ obs

ap

⎤
⎦ , (15)

where σσ obs
ap

is the uncertainty in the observed velocity dispersion σ obs
ap . Whereas the imaging

observables from strong lensing cannot constrain the MST parameter λ, the stellar velocity
dispersion constrains λ through the likelihood Lkin (see Birrer et al. 2024, for a detailed
discussion within a hierarchical Bayesian framework).

Although integrated velocity dispersion from long-slit spectra is the most commonly used
kinematic observable in strong lensing studies, a few studies have also incorporated spatially
resolved velocity dispersion, mainly from integral field unit (IFU) spectra (e.g., Barnabè and
Koopmans 2007; Barnabè et al. 2011; Czoske et al. 2012; Spiniello et al. 2015).

3.5.2 Combining Weak Lensing with Strong Lensing

Weak lensing measures the excess shear quantity (��) from tidal distortions of galaxies
far away (�10 arcsec) from the central lensing galaxy. Thus, weak lensing provides in-
formation on the mass distribution of the lensing galaxy’s outer region, that is, where the
dark matter halo dominates. In contrast, strong-lensing observables provide information on
the enclosed mass within the Einstein radius. Still, there remains a degeneracy between
the luminous and dark matter fractions within the total enclosed mass. If a specific pro-
file is assumed for the dark matter distribution, weak lensing data can break this degener-
acy between luminous and dark component normalizations (Sonnenfeld 2018; Shajib et al.
2021).
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The weak lensing information is often convenient or appropriate to be incorporated
within the hierarchical framework, although there are examples of such combination with-
out using a hierarchical framework (e.g., Gavazzi et al. 2007). Since the weak lensing signal
from one single lensing galaxy does not usually have enough constraining power on the dark
matter normalization, it is often required to stack weak lensing signals from a large sample
of elliptical galaxies, which are not-necessarily lensing galaxies. If it is justified to assume
that this large sample of elliptical galaxies and the lens galaxy sample under consideration
are subsamples of the same parent population, then the weak lensing observables Dweak and
the strong-lensing observables Dstrong can be jointly considered in the posterior probability
function of the population hyper-parameters u as

p(u | Dstrong,Dweak) ∝ p(Dstrong | u) p(Dweak | u) p(u). (16)

Here, the strong lensing likelihood p(Dstrong | u) can then be expanded using the single
system likelihoods similar to the product term in Eq. (9). Since from Bayes’ theorem, we
have

p(Dweak | u) p(u) ∝ p(u | Dweak), (17)

it is also valid for numerical convenience to first obtain the posterior of u from weak lensing
observables only and then fold this posterior as the prior of u in the hierarchical analysis
with only strong-lensing data.

4 Applications in Galaxy Properties and Evolution

This section describes what we can learn about galaxy structure and evolution using the lens-
ing galaxy properties. Since strong-lensing galaxies are typically massive ellipticals, most
of the strong-lensing studies in the field relate to this type of galaxy (Sect. 4.1–Sect. 4.3).
However, we briefly discuss strong lensing by spiral galaxies at the end of this section in
Sect. 4.4.

4.1 Galaxy Mass Density Profile

All galaxies are believed to form and grow inside their dark matter halos. Thus, a massive
galaxy’s total mass density profile comprises two components: the baryonic matter distri-
bution, which includes stars and gas, and the dark matter distribution. As seen from the
comparison of the observed galaxy luminosity function and the distribution of simulated
dark matter halos (i.e., abundance matching, see Moster et al. 2010), the stellar-mass frac-
tion decreases with mass, for the mass range of typical lensing galaxies. This is attributed
to AGN feedback and is evident from simple comparisons of the stellar and total mass in
lensing galaxies (Auger et al. 2009; Küng et al. 2018).

A power-law model ρ(r) ∝ r−γpl close to the isothermal case (i.e., γpl ∼ 2) has been
found to be sufficient to describe several lensing and non-lensing observables to the noise
level; for example, from strong lensing only or in combination with stellar dynamics
(Kochanek 1995; Treu and Koopmans 2004; Dye and Warren 2005; Koopmans et al. 2006,
2009; Barnabè et al. 2009; Auger et al. 2010b; Dutton and Treu 2014; Ritondale et al.
2019; Powell et al. 2022; Tan et al. 2024), from the combination of strong and weak lens-
ing (Gavazzi et al. 2007), from stellar dynamics only (Bertin and Stiavelli 1993; Gerhard
et al. 2001; Thomas et al. 2007; Tortora et al. 2014; Cappellari et al. 2015; Bellstedt et al.
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Fig. 4 Examples of 3D mass distribution in dark matter and stars (i.e., baryons) in lensing elliptical galaxies
(Shajib et al. 2021). The false-color image created from the HST imaging of each system is illustrated in
the inset (image credit: NASA/ESA, A. Bolton, and the SLACS team). Shajib et al. (2021) combined this HST
imaging data with the stellar kinematics and weak lensing information to decouple the stellar (teal) and dark
matter (grey) components of the total mass density profile (red). Only five examples are illustrated here out of
the 23 analyzed lenses from the SLACS sample. The vertical dotted and dashed lines mark the Einstein radius
θE and the half-light or effective radius Reff, respectively. In most cases, the total density profile is close to
the power-law profile, with occasional deviations appearing near the center or far outside the Einstein radius

2018; Derkenne et al. 2021), and from X-ray luminosity (Humphrey and Buote 2010). This
phenomenon – that the total mass profile in ellipticals approximately follows the power law,
whereas neither the baryonic nor the dark matter component individually follows the power
law – is referred to as the ‘bulge–halo conspiracy’ (Treu and Koopmans 2004), similar to
the ‘disk–halo conspiracy’ in spiral galaxies (van Albada and Sancisi 1986). Figure 4 il-
lustrates the dark and luminous components constrained by combining kinematic and weak
lensing information with strong lensing for five SLACS lens galaxies (Shajib et al. 2021).
In most cases, the total density profile is very close to a power-law form, with deviations
only being prominent far from the half-light radius. Galaxy formation simulations suggest
that the close-to-isothermal nature of the total density profile originates from rearranging
the mass distribution through collisionless accretion in gas-poor mergers (Johansson et al.
2009; Remus et al. 2013).

Analysis of the SLACS lenses finds the mean logarithmic slope 〈γpl〉 = 2.08 ± 0.03 with
an intrinsic scatter of 0.16±0.02 from a sample of 85 galaxy–galaxy lenses (Koopmans et al.
2009; Auger et al. 2010b). The median redshift of the SLACS lenses is 〈zSLACS〉  0.19. The
SIE lens model was adopted in this analysis to constrain θE from the imaging data. Then,
the power-law index γpl was obtained from the stellar velocity dispersion measured by the
SDSS. Shajib et al. (2021) re-analyzed 23 systems from the SLACS sample with a power-
law model instead of the SIE model to obtain the mean logarithmic slope 〈γpl〉 = 2.08±0.03
with an intrinsic scatter of 0.13 ± 0.02. Ritondale et al. (2019) analyzed 17 galaxy–galaxy
lens systems from the BELLS GALLERY sample with a power-law mass model to find the
average logarithmic slope 〈γpl〉 = 2.00 ± 0.01. The mean redshift of the BELLS GALLERY
sample is approximately 〈zBG〉  0.5.

Project Dinos (Tan et al. 2024) reanalyzed multi-band HST imaging for a sample of
∼50 lenses from the SLACS and SL2S samples and then combined the lensing constraints
with the stellar kinematics to directly constrain any potential deviation from the power-
law profile, where the deviation is parametrized with the internal MST parameter λint after
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Fig. 5 The shape of the mean 3D total mass profile for the lens galaxies from the SLACS and SL2S samples
constrained by Tan et al. (2024, cf. Fig. 11 therein) from a joint lensing–dynamics analysis. The orange line
shows the population mean with the shaded region representing the 68% (1σ ) credible region. The dashed
black line traces the fiducial power-law mass distribution. The vertical grey shaded region shows the 1σ range
of the Einstein radius distribution of the sample. For the dynamical modeling, these authors adopted a spatially
constant stellar anisotropy profile, consistent with the spatially resolved velocity dispersion measurements of
local elliptical galaxies (see references therein). The 3D mass density profile ρ(r) along the vertical axis is
normalized at a reference radius and thus has no units in this illustration. The population mean of the mass
density profile is consistent with the power-law model within 1σ

correcting for the line-of-sight effects (i.e., the external convergence). The ‘internal’ MST is
referred to as such to differentiate it from the effect of the external convergence that acts as
an ‘external’ mass sheet. These authors find the power-law model is consistent with both the
lensing and kinematic observables within 1σ for the baseline choice of spatially constant
anisotropy profile that is informed by exquisite IFU kinematics of local elliptical galaxies
(Fig. 5).

The surface mass in elliptical galaxies constrained from strong lensing can explain the
origin of the so-called tilt of the fundamental plane, that is, the tight correlation between the
effective radius, the effective surface brightness, and the central velocity dispersion (Ciotti
et al. 1996). If the surface mass is used instead of the surface brightness, then the resulting
mass plane (in place of the fundamental plane) is not tilted (Bolton et al. 2008a). This result
implies that the tilt of the fundamental plane stems from the increase in the dark matter
fraction with increasing velocity dispersion or dynamical mass (Auger et al. 2009).

In summary, the total mass profile in galaxies seems to be well described by a power
law. However, there is also a recent indication of a potential departure from the power
law suggested by the non-correlation between the logarithmic slopes from lensing-only and
lensing–dynamics analyses (Etherington et al. 2023). The implications of this finding for the
individual baryonic and dark matter components are discussed separately below.

4.1.1 Luminous (Baryonic) Mass Profile

In recent years, spatially resolved spectroscopic surveys of nearby ellipticals using IFUs and
high-resolution HST imaging have considerably advanced our understanding of the structure
and evolution of these galaxies (Cappellari 2016). Such detailed studies of intermediate
redshift galaxies (z ∼ 0.2 − 0.7) using direct observations are impossible. However, the
mass of galaxies acting as strong lenses at these redshifts can be mapped out in detail,
thereby providing critical information about the progenitors of present-day galaxies and
their evolution.

In the last decade, imaging and kinematic data have led to a revision of galaxy classifi-
cation. The modern analyses classify ellipticals into fast and slow rotators, and those with
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and without central cores, resulting in four classes (Cappellari 2016; Krajnović et al. 2020).
Massive ellipticals (M � 1011M�) in the local Universe tend to have small cores with size
0.02–0.50 kpc (Krajnović et al. 2020), that is, much smaller than the Einstein radius of typ-
ical lenses. In contrast, less massive ones appear to have cuspy central light profiles. Cores
are believed to result from in-spiraling super-massive black hole (SMBH) binaries, which
transfer their angular momentum outward to stars and leave a flatter density core at the cen-
ter. The population of massive elliptical galaxies is also more likely to be composed of slow
rotators, being also morphologically rounder than the lower mass fast rotator counter-part
(e.g., Weijmans et al. 2014; van de Sande et al. 2017).

Although it is well known that the baryons and the dark matter do not follow the same
radial profile, it is unknown a priori whether they have the same angular structure or not.
Strong lensing allows us to compare the azimuthal distributions of the light and the total
mass distributions, thus detecting any possible difference between the angular structures of
the dark matter and the baryons. Several studies report a strong correlation in the elliptic-
ity between the matter and light distributions (e.g., Koopmans 2006; Gavazzi et al. 2012;
Sluse et al. 2012; Kostrzewa-Rutkowska et al. 2014). In contrast, some other studies only
report weak or no correlation (e.g., Keeton et al. 1998; Ferreras et al. 2008; Rusu et al.
2016; Shajib et al. 2019, 2021). Some differences can be attributed to data quality, modeling
procedure, or selection effects (Shajib et al. 2021). The major axes are usually well aligned
(with position angle difference �10◦) between the mass and light distributions (e.g., Keeton
et al. 1998; Kochanek 2022; Koopmans 2006; Treu et al. 2009; Sluse et al. 2012; Bruderer
et al. 2016; Shajib et al. 2019, 2021). The cases where the major axes of the mass and light
do not align within ∼10◦ also generally have large residual shear. These findings suggest
that stellar orbits highly misaligned with the potential can only be sustained in non-isolated
galaxies (indicated by the large residual shear if interpreted as originating from the pres-
ence of nearby galaxies), which is consistent with what is found in simulations (Heiligman
and Schwarzschild 1979; Martinet and de Zeeuw 1988; Adams et al. 2007; Debattista et al.
2015). Although the stellar initial mass function (IMF) pertains to the luminous structure,
we present the strong lensing results on the stellar IMF separately in Sect. 4.2.

4.1.2 Dark Matter Profile

Numerical simulations show that the dark matter halos and the baryonic mass within them
initially follow the NFW profile before star formation begins. However, the baryonic gas
has to cool down and fall inward for star formation to begin. The contraction in the baryonic
matter deepens the gravitational potential. Thus, the dark matter distribution also contracts
in response, for which the adiabatic contraction scenario can work reasonably well (Blumen-
thal et al. 1986; Cautun et al. 2020). In the process of adiabatic contraction of a spherical
mass distribution, the initial radius ri of a dark matter particle and its final radius rf is related
as

ri Mi(ri) = rf Mf(rf), (18)

where M(r) is the enclosed 3D mass within radius r (Blumenthal et al. 1986). However,
numerical simulations find that dark matter does not fully respond to the baryonic infall
according to the theoretical model of Blumenthal et al. (1986) (e.g., Gnedin et al. 2004;
Abadi et al. 2010). Dutton et al. (2007) prescribe a formalism defining a halo response
parameter ν to adjust the degree of contraction (i.e., the response to the baryonic infall) as

ri ≡ �−ν(rf) rf, (19)
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Fig. 6 Results on the dark matter distribution from joint lensing–dynamics analyses. Left-hand panel: the
probability density function for the sample mean of the dark matter inner logarithmic slope 〈γin〉. This result
was obtained from a hierarchical analysis performed on the lensing–dynamics data for 12 strong lenses.
The probability distribution shows a bimodality, where one mode is consistent with the adiabatic contraction
scenario (i.e., γin ≈ 2) and the other mode is consistent with an expanded halo (i.e., γin ≈ 0). Right-hand
panel: the probability density function of the sample mean of the halo response parameter 〈ν〉 obtained
from a SLACS subsample of 23 lenses (Shajib et al. 2021). This result is consistent with no contraction or
expansion from the regular NFW profile (i.e., ν = 0 marked by the vertical dashed line). Although these two
results disagree, potential systematics stemming from different parametrizations of the adiabatic contraction
or the stellar anisotropy profile are yet to be ruled out as the source of this discrepancy

where �(rf) ≡ rf/ri is the contraction factor. In this formalism, ν = 0 corresponds to no
contraction, and ν = 1 corresponds to fully responsive contraction according to the model
of Blumenthal et al. (1986). The simulations of Gnedin et al. (2004) point to ν ∼ 0.8, and
those of Abadi et al. (2010) to ν ∼ 0.4 (Dutton and Treu 2014).

Dye and Warren (2005) constrained the dark matter profile based on lensing analysis
of one lens system and found the inner slope of the dark matter halo to be consistent with
the NFW profile. Several studies have combined additional information, for example, stellar
kinematics and weak lensing, with the strong-lensing data to decompose the dark matter and
baryonic components from the total density profile constrained by strong lensing. Dutton
and Treu (2014) adopted multiple dark matter contraction models with fixed ν to values
between −0.5 and 1. These authors find that ν = 0, that is, no contraction, best matches the
data from the SLACS sample. Shajib et al. (2021) allowed for a fully variable ν parameter
within −0.5 and 1 in their dark matter model. These authors find the average contraction in
their sample to be 〈ν〉 = −0.03+0.04

−0.05, which is consistent with no contraction and rules out
the contraction results from simulations with high statistical significance (Fig. 6 right-hand
panel). In contrast, Oldham and Auger (2018) find a cuspier inner logarithmic slope than
the NFW profile for the majority of their sample of 12 lens systems, with a smaller subset
having shallower ones, pointing to the impact of the environment in the evolution of these
galaxies (Fig. 6 left-hand panel). However, the potential systematic dependence for all of the
above results on modeling choices – for example, dark matter profile and anisotropy profile
parameterizations – is yet to be investigated thoroughly.

4.2 Stellar Initial Mass Function

When combined with ancillary data, strong lensing provides a method to infer the stellar
mass-to-light ratio (M�/L; Treu et al. 2010), which can then be related to the low-mass
end of the stellar IMF slope in the lensing galaxies (for a review, see Smith 2020). This
is mainly because low-mass stars (M� < 0.5M�) contribute only by a few percent to the
integrated light in the optical, but they give a much larger contribution to the mass (Conroy
and van Dokkum 2012).
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As described in Sect. 4.1, the total mass distribution in the lensing galaxy can be de-
composed into the stellar and dark components by combining lensing and dynamical ob-
servables. Thus, the total stellar mass MLD

� can be obtained. An independent method to get
the stellar mass MSPS

� of the galaxy is the stellar population synthesis (SPS) method applied
on the lens galaxy’s photometric or spectroscopic data (Spiniello et al. 2011, 2012). The
MSPS

� /L computed via SPS analysis depends on the choice of the IMF slope. In particu-
lar, a bottom-heavier IMF implies a larger MSPS

� /L because dwarf stars contribute more to
the mass than light. Hence, the mismatch parameter, αIMF ≡ MLD

� /MSPS
� , can be used to in-

fer the lightness or heaviness of the IMF (Treu et al. 2010). For example, if a light IMF –
such as the Chabrier IMF (Chabrier 2003) – is adopted in the SPS method, then αIMF ∼ 1
would point to the Chabrier IMF being consistent with the lensing and dynamical observ-
ables. However, αIMF ∼ 2 would indicate that the IMF in the lens galaxies is bottom-heavier
(i.e., characterized by a larger number of dwarf stars), with a slope more similar to that of a
Salpeter IMF (Salpeter 1955), or even steeper. Note that MLD

� may depend on lens modeling
assumptions, such as the choice of dark matter density profile, the stellar mass-to-light ratio
being spatially constant or varying, and the assumed anisotropy profile of the stellar orbits
in the dynamical modeling (e.g., see the discussions in Sonnenfeld et al. 2018, 2019).

Although the IMF slope and the low-mass cutoff are degenerate with respect to the lens-
ing data, both can be constrained when combined with dynamics and stellar population anal-
ysis. Barnabè et al. (2013) show this by studying two strong lenses from the X-Shooter Lens
Survey (Spiniello et al. 2011) for which both HST imaging (for precise lens modeling) and
X-Shooter spectra (for stellar population analysis) are available. Chromatic, microlensing-
induced flux anomalies in a galaxy–quasar strong lens can also be used to constrain the
stellar IMF (Schechter et al. 2014). This technique is described in Vernardos et al. (2024),
which discusses the theory and applications of microlensing.

Whereas the IMF within the Milky Way is light – that is, consistent with the Chabrier
IMF regardless of the stellar population age and environment (Chabrier 2003; Bastian et al.
2010) – the majority of strong lensing studies on elliptical galaxies report consistency with
a heavier IMF (e.g., Spiniello et al. 2011; Sonnenfeld et al. 2012; Oldham and Auger 2018).
We note, however, that the stellar IMF is degenerate with the choice of the dark matter den-
sity profile in most of these studies (Auger et al. 2010a). For instance, the SLACS analysis
– by combining lensing and dynamics – finds the IMF in elliptical galaxies at mean redshift
〈z〉 ∼ 0.2 to be consistent with the Salpeter IMF, that is, αIMF ∼ 2 (see Fig. 7; Treu et al.
2010, also, Grillo et al. 2009). This result is reproduced with more flexible models for the
same SLACS systems or a subset of them (Auger et al. 2010b; Shajib et al. 2021). This is
also in agreement with the more general findings, based on dynamics or SPS analysis only,
that the IMF is bottom-heavier for more massive galaxies in general (Fig. 7; Cappellari et al.
2012; La Barbera et al. 2013; Spiniello et al. 2014).The general picture is that the low-mass
end of the IMF might not be universal across all galaxies, as generally assumed in the last
thirty years. However, a consensus on the physical mechanisms responsible for its variation
has not yet been reached. According to theoretical work (e.g., Hopkins 2013; Chabrier et al.
2014), high density, temperature, and turbulence of the gas are key parameters that drive the
fragmentation of molecular clouds. Higher density and temperature make the fragmentation
easier, forming more dwarf stars, that is, a bottom-heavier IMF.

In contrast with the studies mentioned above on massive, local elliptical galaxies, Son-
nenfeld et al. (2019) find log10 αIMF = −0.04 ± 0.11 with respect to the Chabrier IMF in
the SPS method for a sample of strong lensing galaxies at z ∼ 0.6, which is in tension with
Shetty and Cappellari (2014) that reports consistency with a Salpeter IMF for a galaxy at
z ∼ 1 from a dynamical analysis. However, allowing spatial gradients in the M�/L can alle-
viate this tension (Sonnenfeld et al. 2018, 2019). Indeed, a radial gradient in the M�/L, or
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Fig. 7 Measurements of the stellar IMF from various probes. The pink shaded region traces the 1σ intrinsic
scatter of the fitted relation from dynamical constraints of the ATLAS3D sample (Cappellari et al. 2013;
McDermid et al. 2014). The grey points are based on joint lensing–dynamics analysis for a subsample of the
SLACS lenses (Posacki et al. 2015). The orange points are lensing-only measurements from a sample of low-
redshift (z = 0.031–0.066) lenses; 3 from the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS)
and one discovered from a search on the publicly available MUSE data (Smith et al. 2015; Collier et al. 2018).
The green points show the fully spectroscopy-based measurements for a sample of 34 elliptical galaxies from
Conroy and van Dokkum (2012). The two horizontal dashed lines mark the values expected for Salpeter and
Chabrier IMFs. The solid black line illustrates the dependency of the IMF on the velocity dispersion, fitted
by Posacki et al. (2015) using the ATLAS3D and the SLACS samples

equivalently a radially varying IMF, has been reported by studies based on the SPS method
applied on local massive ellipticals (Martín-Navarro et al. 2015b; van Dokkum et al. 2017;
Sarzi et al. 2018; Barbosa et al. 2021a,b). These authors find that the central region within
∼2 kpc has a heavy IMF (even super-Salpeter), and the IMF in the outer regions gradually
becomes light (i.e., Milky-Way-like). The current belief is that the IMF is bottom-heavy for
stars formed very early in cosmic time via a quick and violent SF burst. These stars usually
form a ‘red nugget’ (z ∼ 2, Damjanov et al. 2011; Oldham et al. 2017): an ultra-compact
red-and-dead massive core. Then, with a second and more time-extended phase, red nuggets
merge, interact with other structures in the Universe, and accrete gas. This process causes a
growth in size up to a factor of ∼5, and only slightly in mass, transforming them into giant
local, massive ellipticals. Depending on the merger history of each single galaxy, the red
nugget can remain almost untouched in the innermost region, dominating the light there.
In this case, this region would have a bottom-heavy IMF. This seems to be the case for
NGC 3311, the central galaxy in the Hydra cluster (Barbosa et al. 2021a), M87 (Sarzi et al.
2018), and many other very massive low-z elliptical galaxies. However, the red nugget can
also be destroyed or contaminated by accreted or lately formed stars. In that case, one would
measure a Milky-Way-like IMF, which is the characteristic for stars formed later on and
through more time-extended star formation channels. This ‘two-phase formation scenario’
(Naab et al. 2009) is also supported by the discovery of ‘relic galaxies’ (Trujillo et al. 2014;
Spiniello et al. 2021), the local counterparts of red nuggets that somehow wholly missed the
size-growth and evolved passively and undisturbed across cosmic time. The IMF for these
peculiar and rare objects has been measured to be steep everywhere up to at least one ef-
fective radius (Ferré-Mateu et al. 2017). Finally, simulations have lately shown that not all
elliptical galaxies formed via this two-phase formation scenario (e.g., Pulsoni et al. 2021),
although this becomes more and more common with increasing stellar mass.
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The finding of the Salpeter IMF from a combination of lensing and dynamics in the
near-by Universe is consistent with this scenario, as strong-lensing information is sensitive
to the galaxy’s inner region (typically �6 kpc). However, at higher redshift, lensing probes
larger and larger regions, which explains the results presented in Sonnenfeld et al. (2019). A
radially decreasing M�/L also explains or alleviates the reported tension between lensing-
based studies themselves (Sonnenfeld et al. 2018, 2019; Shajib et al. 2021).

Furthermore, studies of few local massive lenses for which the Einstein radius is much
smaller than the effective radius, and hence where the stellar mass dominates the lensing
inference, indicate that bottom-heavy IMFs are excluded by lensing (Ferreras et al. 2010;
Smith et al. 2015; Leier et al. 2016). Allowing for a variable cut-off on the low-mass end
of the IMF can reconcile the M�/L measurement from strong lensing of Smith et al. (2015)
with the IMF-sensitive absorption line measurements of Conroy and van Dokkum (2012).
Still, the discrepancy with other lensing–dynamics measurements remains.

In conclusion, the currently preferred scenario sees the majority of massive galaxies hav-
ing a bottom-heavy IMF in their innermost region, where the pristine stellar population
dominates that formed at z > 2 through a star formation burst, while stars in outskirt are
distributed by a Milky-Way-like IMF. However, depending on the single galaxy’s detailed
merger tree and cosmic evolution, the IMF can differ from system to system.

In the future, IFU-based stellar kinematics and population analysis of strong lensing
galaxies in combination with lensing constraints can shed light on the presence or absence
of IMF variations and spatial gradients in ellipticals at intermediate redshifts. However, to
properly track any evolution in the IMF properties of elliptical galaxies across redshift, it
would be essential to mitigate systematic impacts through a uniform choice of models and
to account for selection differences between samples.

4.3 Constraints on the Very Central Densities and SMBH Mass from Central Images

Gravitational lensing theory predicts that the number of multiple images must always be odd.
In systems with three (or five) images, two (or four) are formed roughly at the Einstein radius
from the lens center, which is � 2′′ for galaxies. The odd 3rd (or 5th) image is formed very
near the center of the lens. It is always demagnified, usually significantly, and superimposed
on the light of the lensing galaxy, making it hard to detect. Since the demagnification of the
central image depends on the central density profile, the detections (or the lack thereof) of
the central image can constrain or put an upper limit (or lower limit) on the steepness of
the inner density profile or the SMBH mass (e.g., Winn et al. 2004), with the degeneracy
between the two broken with stellar light distribution informing the stellar mass profile (e.g.,
Wong et al. 2015; Tamura et al. 2015).

Most existing searches for central images of strongly lensed quasars (given that they are
much brighter sources) rely on optical, or radio wavelengths. The radio wavelengths are
most favorable as the lensing galaxy is generally transparent in that range, but these inves-
tigations are limited by the fact that quasars are usually radio-quiet. Out of ∼200 doubles
discovered to date, only two have observed central images where the lens is a single galaxy:5

PMN J1632−0033, with the central image demagnified by a factor of 0.004 or 6 magnitudes
compared to the brightest image (Winn et al. 2004), and PKS 1830−211, with the central
image demagnified by a factor of 0.007 or 5.4 magnitudes (Muller et al. 2020). No reliable
detection exists of the ∼50 known quads with a single lensing galaxy. Upper limits have
also been placed. For example, Quinn et al. (2016) place an upper limit of ∼ 10−4 on the

5There are at least five cases of central images where the lens has two or more main lensing galaxies.
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magnification of the central image with respect to the brightest visible image in the double
B1030+074.

Upper limits on the flux of the central image have also been placed at X-ray wavelengths
for several quads and doubles. The stacking of X-ray monitoring data allows effective ex-
posures of several hundreds of kilo-seconds without any contamination from the lens. How-
ever, the data are still too shallow to strongly constrain the lens galaxy’s inner density pro-
file. One of the deepest upper limits has been achieved for HE 0435−1123 (e.g., Chen et al.
2012; Guerras et al. 2017).

Detection of central images, or the lack thereof, has been used to place constraints on the
central mass density of the lensing galaxies and the mass of the central SMBH (Mao et al.
2001; Rusin and Ma 2001; Wong et al. 2015; Tamura et al. 2015; Quinn et al. 2016; Perera
et al. 2023). Even without a central image detected, a lensed image that is sufficiently close
to the center can be used to measure the SMBH mass. For example, such an SMBH mass
(MSMBH = 3.27±2.12×1010 M�; 3σ confidence limit) was measured using the image at ∼1
kpc distance from the center in Abel 1201 (zlens = 0.169), providing the first lensing-based
measurement of an SMBH mass with limits placed on both sides (Nightingale et al. 2023).
Additionally, Millon et al. (2023) demonstrated the usefulness of strong lensing by a quasar
(SDSS J0919+2720, shown in Fig. 1) to measure its host galaxy mass to robustly probe
the SMBH–host mass relation, where the SMBH mass was measured through conventional
methods based on spectroscopic data.

For other kinds of SMBHs, prospects for detecting binary SMBHs due to their lensing
effects are discussed in Li et al. (2012), Hezaveh et al. (2015). Free-floating SMBHs, which
could be of primordial origin or formed through co-evolution with their previous host galax-
ies, can be detected through the kinks they produce on razor-thin arcs with sub-mas width
and resolved in radio observations (Banik et al. 2019). The detection (or the lack thereof) of
such free-floating SMBHs can place constraints (or upper limits) on their mass density and
fractional contribution to the dark matter.

4.4 Spiral Galaxies

Due to their lower mass and presence of a disk, spiral galaxies have a substantially lower
lensing cross-section than elliptical ones (Keeton and Kochanek 1998). Only a handful of
spiral galaxies lensing quasars have been discovered to date. The most well-known and the
first example of such a system is the Einstein Cross (2237+0305), which is lensed by the
bulge of a nearby spiral galaxy (Huchra et al. 1985). Targeted searches for galaxies lensed
by a spiral have been carried out, allowing the discovery of several dozens of systems (Treu
et al. 2011, and reference therein). Complications in studying those systems arise from the
dust and the disk mass component. Correcting for the reddening by dust is needed to model
extended lensed images, which rely on conserving the surface brightness between the lens
and the source plane. On the other hand, the disk component yields strong discontinuities
in the gravitational potential and needs to be explicitly modeled using, for example, an
exponential mass density profile. Whereas disk-like features can yield flux anomalies in
lensed quasars (Hsueh et al. 2016, 2017; Gilman et al. 2017), they can be disentangled from
the dust using multi-band data (Möller et al. 2003). Once these ingredients are accounted for,
the combination of kinematics and lensing information can be used to break the degeneracy
– that exists in dynamical studies alone – between the disk and halo components (Maller
et al. 2000; Dutton et al. 2011; Suyu et al. 2012).
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5 Applications in Cosmology

In this section, we present applications of galaxy-scale lens systems to measure cosmologi-
cal parameters without using time-delay information. Measurement of the Hubble constant
(H0) and other cosmological parameters based on the time delays are discussed in detail in
Birrer et al. (2024).

Here, we briefly establish some necessary definitions for use in this section. More de-
tailed explanations of the cosmological connection with strong lensing formalism are given
in Saha et al. (2024). The angular diameter distance between two objects at redshifts z1 and
z2 (with z1 < z2) for a flat universe is given by

Dang(z1, z2) = c

H0(1 + z2)

∫ z2

z1

dz′

E(z′)
, (20)

where E(z) ≡ H(z)/H0 is the dimensionless Friedman equation given by

E(z) =
√

�m(1 + z)3 + �r(1 + z)4 + �de(1 + z)3(1+wde). (21)

Here, �m, �r, and �de represent the matter, radiation, and dark energy density parame-
ters, respectively, at z = 0. The parameter wde is the equation-of-state parameter of the dark
energy given by wde ≡ pde/ρdec

2, where pde and ρde denote the pressure and density of
the dark energy, respectively. In the �CDM model, wde = −1 is assumed, that is, the dark
energy density stays constant through cosmic time. The wCDM model is one natural exten-
sion of the �CDM model, where wde �= −1 is allowed; however, wde < −1/3 should still
be satisfied to reproduce an accelerated Universe.

In the following subsections, we discuss methods to estimate cosmological parameters
(primarily, �m, �de, and wde) using multiple-source-plane lenses (Sect. 5.1), using the stellar
kinematics of strong lenses (Sect. 5.2), and using galaxy–galaxy lensing statistics (Sect. 5.3).

5.1 Utilizing Multiple Sources at Different Redshifts

Strong lens systems with multiple sources (i.e., compound lenses) at different redshifts can
be used as cosmographic probes. Currently, only a tiny sample of galaxy-scale compound
lenses are known (e.g., Lewis et al. 2002; Gavazzi et al. 2008; Collett and Smith 2020), but
at the HST snapshot depth they are expected to occur in about 1% of galaxy-scale strong
lenses (Gavazzi et al. 2008). Indeed, if one were to stare deeply at any single plane lens,
other sources would almost inevitably be discovered, as is spectacularly demonstrated by
the discovery of a third source (a z ≈ 6 Lyman-α emitter) behind the Jackpot lens in deep
Multi Unit Spectroscopic Explorer (MUSE) data from the Very Large Telescope (Collett
and Smith 2020). Forthcoming surveys are expected to discover O(1000) compound lenses.

Since the Einstein radius is a function of the lens mass and the cosmological distances,
the ratio of Einstein radii in a compound lens with sources at two or more redshifts is inde-
pendent of the mass (Gavazzi et al. 2008; Collett et al. 2012). In practice, the method also
requires a complete understanding of the lens density profile and additional lensing by the
source galaxies and other perturbing masses along the line of sight.

For a two-source-plane system with one primary lens, the lens equation can be written as

y = x − β12αd(x),

z = x − αd(x) − αs1 (x − β12αd(x)) ,
(22)
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Fig. 8 Cosmological parameters constrained from the compound lens system SDSS J0946+1006 (shown in
Fig. 2). The 68% and 95% credible regions on the �m–wde plane from this compound plane system are
shown in orange (Collett and Auger 2014). The black dashed and dotted contours illustrate the forecasted
68% and 95% credible regions, respectively, for a sample of 87 compound lenses to be discovered by the
Rubin Observatory LSST (Sharma et al. 2023). The purple and emerald contours are the constraints from
the DES Type Ia supernovae sample (DES Collaboration 2024) and the CMB (Planck Collaboration 2020),
respectively, illustrating the complementarity of compound lenses to these probes

where x are positions on the image plane, y and z are the unlensed positions of the first
and second source, respectively, αd is the deflection caused by the primary lens, αs1 is the
deflection caused by the closer of the two sources, and βij is the cosmological scaling factor

βij = DijDs

DjDis
. (23)

For realistic redshifts and cosmologies, βij is sensitive to the matter density parameter �m

and the equation-of-state parameter wde but has no dependence on the Hubble constant H0.
Amongst galaxy-scale compound lenses, only the Jackpot lens (Gavazzi et al. 2008),

shown in Fig. 2, has been used to precisely constrain cosmology since this system has a
favorable redshift configuration – other compound lenses have multiple sources at similar
redshifts, thus having β ≈ 1 regardless of the cosmology. Collett and Auger (2014) mod-
eled the HST imaging performing a pixellated reconstruction of both sources to make a
1.1% measurement on β−1. Converting this into constraints on the dark energy, this single
compound lens with a cosmic microwave background (CMB) prior from Planck Collabo-
ration (2014) constrains wde to 0.2 precision. With hundreds of compound lenses expected
in the Rubin Observatory Legacy Survey of Space and Time (LSST) and the Euclid sur-
veys, constraints on both wde and its redshift derivative are expected to be comparable with
established cosmological probes (Fig. 8; Sharma et al. 2023).

5.2 Utilizing Stellar Kinematics of Single Source Lenses

The enclosed projected mass inside the Einstein radius is independent of the mass profile
(Schneider et al. 1992). Similarly, the speeds of the stars within a galaxy are sensitive to the
total mass enclosed within their orbits. Whilst we cannot measure the speeds of individual
stars in a lens, we can measure the velocity dispersion of the ensemble. For an SIS lens with
stars on isotropic orbits, these two quantities are related by

θE = 4π
(σlos

c

)2 Dds

Ds
, (24)
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where σlos is the velocity dispersion of the deflector. Ofek et al. (2003) estimated that devi-
ations from isothermality and orbital isotropy can cause the observed velocity dispersion to
differ from Eq. (24) by up to 20%.

Equation (24) becomes far more complicated if the density profile is not isothermal or
the orbits of the stars are not isotropic, but the fundamental relationship remains that one
can constrain the distance ratio dobs ≡ Dds/Ds using the observed Einstein radius θE and
observed velocity dispersion. Thus, a sample of single-source lenses with measured σlos

can be used to estimate cosmological parameters (Grillo et al. 2008) by maximizing the
likelihood function

L (� | D) ∝ exp

[
−1

2

NSL∑
i=1

[
d th

i (zd, zs;�) − dobs
i (θE,i , σlos,i )

]2

(δdobs
i )2

]
, (25)

where � is a set consisting of the free parameters in the assumed cosmological model and
the free parameters that describe the density profile and anisotropy profile of the lenses, D is
the data, NSL is the number of lens systems, and δdobs

i is the uncertainty of each dobs
i , which

depends on the σlos,i and θE,i uncertainties.
Similar to the multiple-source lens systems described in Sect. 5.1, this method is also

independent of H0. If the cosmological parameters and the lens population parameters are
inferred simultaneously for a large sample of lenses (e.g., Nlens ∼10 000) discovered by
the Rubin Observatory LSST and Euclid, it will be possible to achieve very competitive
precision with other probes such as Type Ia supernovae and the CMB (Li et al. 2024).

The primary systematics in this method can potentially arise from these assumptions: (i)
the measured θE is independent of the choice of the lens mass profile (e.g., Cao et al. 2015),
and (ii) the measured line-of-sight velocity dispersion is equal to that for an SIS profile.
Recent modeling methods provide robust θE measurement within a few percent regardless
of the mass profile choice (Birrer 2021). Treu et al. (2006) argue that σlos  σSIS for the lens
elliptical galaxies with velocity dispersion in the range 200–300 km s−1. These results are
further confirmed by analyzing other samples (Bolton et al. 2006; Auger et al. 2010b).

Ultimately, the only way to move forward with lensing and dynamics as a precision
cosmological probe is to simultaneously infer the astrophysical parameters of the lens popu-
lation and the cosmological parameters. By building up a sample of many lenses it should be
possible to investigate how the Einstein radius grows with source redshift regardless of the
underlying density profile of strong lenses. Exploiting the fact that lenses at the same redshift
can be expected to be somewhat self-similar, Li et al. (2024) showed that with 10 000 lenses,
it is possible to disentangle lens population properties and cosmological parameters. These
authors assumed that lenses have the same intrinsic scatter as Auger et al. (2010b) found for
the SLACS lenses. The method is fundamentally limited by how self-similar lenses are, and
if their properties evolve with redshift.

5.3 Utilizing Galaxy–Galaxy Lensing Statistics

The statistics of strong lensing were initially expected to be powerful for probing the cos-
mological parameters (Fukugita et al. 1990). At the most basic level, matter clusters can
collapse to the densities required to form strong lenses, whereas the cosmological constant
does not cluster and cannot form lenses. Therefore, it was expected that lensing rates should
be suppressed for larger values of ��. Further information is contained in the Einstein ra-
dius distribution and the lens and source redshift distributions. In practice, this topic has
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Fig. 9 Impact of strong lensing selection function, estimated by Sonnenfeld et al. (2023), on various galaxy
properties: from left to right, stellar mass M� , halo mass Mh, IMF mismatch parameter αIMF with αIMF = 1
corresponding to the Chabrier IMF, and the dark matter’s inner logarithmic slope γin. The grey dashed line
shows the distribution of the general population of galaxies. The blue and red lines show the distributions of
galaxy–galaxy strong lenses with θE > 0 .′′5 and θE > 1′′ , respectively. Strong lenses are expectedly biased
toward more massive galaxies. The mean IMF mismatch parameter in strong lensing galaxies is biased by
10% from the general population, and the mean inner logarithmic slope is biased by 5%

fallen out of fashion due to the cosmological sensitivity being overwhelmed by astrophys-
ical uncertainties of the unlensed source population, the lens discovery selection function,
and the lensing properties of typical galaxies (e.g., Mitchell et al. 2005; Chae 2010).

6 Open Problems and Future Outlook

In this section, we discuss the current open problems that are expected to be tackled in
this decade: the selection function (Sect. 6.1), the self-similarity assumption (Sect. 6.2),
degeneracies in strong-lensing (Sect. 6.3) and non-strong-lensing observables (Sect. 6.4),
and comparison with galaxy simulations (Sect. 6.5). We also provide future outlooks on
these issues whenever appropriate.

6.1 Selection Function

Although strong lensing is a powerful probe to study galaxy properties, the lensing phe-
nomenon is a rare occurrence requiring a serendipitous alignment of two line-of-sight ob-
jects separated by a large cosmological distance. Thus, samples of strong lensing galaxies
inherently occupy a tiny fraction of the population of all galaxies. When strong lensing stud-
ies aim to infer properties of the general population of galaxies based on such a small frac-
tion of galaxies, the lens sample’s selection function must be considered. The strong lensing
samples are inherently biased towards lensing galaxies that are more massive and concen-
trated (Mandelbaum et al. 2009; Sonnenfeld et al. 2023). Although triaxial galaxies with the
major axis more aligned along the line of sight also have larger lensing cross-sections, inter-
estingly for a given mass and shape, the effect of viewing angle does not affect the selection
function when averaged over (Mandelbaum et al. 2009, we note that this study only consid-
ered point sources). Sonnenfeld et al. (2023) estimate that the mean of the IMF mismatch
parameter αIMF measured from a sample of lens galaxies is only biased by 10% and the
mean of the inner slope of the dark matter by 5% (Fig. 9). These bias levels are dependent
on the completeness in the Einstein radius distribution of the lens sample but independent
of the source properties, with the galaxy–galaxy lenses and galaxy–quasar lenses having the
same levels of bias.
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The lens samples to date often had highly complex selection functions, largely due to the
selection or discovery procedure being highly tuned to maximize the number of discovered
systems. As a result, treatment of selection function on actual lens samples has been rare
except for a handful of studies (Arneson et al. 2012; Sonnenfeld et al. 2015, 2019). For the
ideal case of a known selection function, Sonnenfeld (2022) provides the formally correct
solution to account for selection effects in the lens samples. However, several technical
challenges still remain to implement this formal solution on real samples, for example, the
requirement to well characterize the lens-detection efficiency of the survey and also the
efficiency in obtaining follow-up spectroscopy if that was taken into account for sample
selection. The treatment of the selection effect with parametric functions by Sonnenfeld et al.
(2019) can be considered as an approximation to this formal solution. To keep the selection
function easily treatable, it can be advisable to pre-emptively mitigate the complexity of the
selection procedure. Alternatively, it can be possible to form a subsample of lens systems
that has a well-characterized selection function from a much larger sample of discovered
systems, for example, those discovered by current and future surveys such as the Euclid, the
Rubin Observatory LSST, and the Roman Space Telescope (Collett 2015; Sonnenfeld 2022).

6.2 Assumption of Self-Similarity

When hierarchically inferring population properties of lenses by combining multiple strong
lensing systems (Sect. 3.4), it is crucial to describe and quantify potential differences be-
tween subsets of the considered sample for accurate population-level inference. Differences
in the population may arise from the sample selection due to search criteria and techniques
(Sect. 6.1) or intrinsic differences in the sources. Such differences in secondary selection
might impact and bias population-level constraints when assuming that two different sam-
ples can be described with an identical underlying population. For example, Birrer et al.
(2020) present a hierarchical analysis under the assumptions that the same population level
parameters describe the SLACS and the Time-Delay COSMOgraphy (TDCOSMO) lenses to
constrain the mass density profiles of the time-delay lenses better. There are different ways
to mitigate such assumptions. The first is to select a purified sample of lenses as self-similar
as possible when performing hierarchical analyses, also suggested in Sect. 6.1. However,
although the currently small number of known lenses will increase through future surveys
and enable this approach, it is still unclear in which parameter space these lenses can be
considered self-similar and whether there are important latent variables to consider. The
second way is to model and describe differences between populations on a first-principle
level, folding in differential selection effects and other aspects into the analysis (as stated in
Sect. 6.1).

6.3 Degeneracies in Strong-Lensing Observables

The lensing data’s ability to constrain the lens’s radial structure, particularly in disentangling
dark and luminous mass components, strongly depends on the data quality. As discussed in
Saha et al. (2024), the modeling of point-source astrometry primarily encodes information
on the lens’s quadrupole moment. Still, it provides limited constraints on the monopole
(the total mass). This, however, does not mean that any monopole model combined with a
quadrupole component will accurately reproduce a set of lensed image positions. For some
choice of the monopole, extreme or unphysical values of the quadrupole may be required,
naturally excluding some mathematically correct solutions. This explains why, for example,
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a single-component, constant mass-to-light ratio model generally yields large shear ampli-
tudes to reproduce the observed astrometry of lensed systems to high accuracy (e.g., Sluse
et al. 2012).

While extended lensed images may provide detailed azimuthal information and allow
one to constrain the ratio of radial magnifications at different galactocentric distances, their
effective constraint on the density profile remains sensitive to the MSD (e.g., Sonnenfeld
2018). While the MSD provides mathematically large leverage to modify the results, its
impact may remain in practice generally small, with a typical change on the total density
profile that may not exceed a few tens percent. The prior on the mass profile (i.e., choice
of mass distribution families or a free-form model with some regularization) may further
limit the impact of degeneracies. One may, however, need to be careful when choosing
a mass distribution, as a model that is too rigid compared to the true mass density may
yield biased posteriors or underestimated parameter uncertainties (e.g., Sonnenfeld 2018;
Kochanek 2021). Finally, it is important to note that point images with measured time delays
limit the impact of degeneracies in lensing-only observables for an assumed cosmology
(Saha and Williams 2001; Kochanek 2002).

6.4 Degeneracies in Non-strong-Lensing Observables

The modeling of stellar kinematics data requires an assumption on the anisotropy profile of
stellar orbits. Integrated velocity dispersions obtained from single-slit spectra cannot con-
strain the anisotropy profile, which leads to the so-called mass–anisotropy degeneracy (Treu
and Koopmans 2002) — typically adopted anisotropy profiles are either isotropic or the
Osipkov–Merritt profile (Osipkov 1979; Merritt 1985a,b). Whereas the isotropy assumption
does not entail any free parameter, the Osipkov–Merritt profile depends on a scale radius.
Due to the mass–anisotropy degeneracy, the posterior of the anisotropy scale radius is dom-
inated by the adopted prior (e.g., Shajib et al. 2018). Particular choices of the anisotropy
profile and the associated prior may lead to systematic differences between studies involv-
ing strong lensing and kinematics data. For example, Sonnenfeld et al. (2018) find the ex-
istence of a mass-to-light ratio gradient in the SLACS lenses assuming isotropic orbits,
whereas Shajib et al. (2021) find consistency with a constant mass-to-light ratio assuming
the Osipkov–Merritt anisotropy profile for a subsample of SLACS. Additionally, the un-
known 3D structures of the mass distribution and the tracer distribution are also potential
sources of systematics (Cappellari 2008).

Spatially resolved velocity dispersion measurements can better constrain the anisotropy
profile by breaking the mass–anisotropy degeneracy. However, spatially resolved kinematics
data from IFU spectroscopy are more expensive than an integrated measurement from long-
slit spectroscopy. Thus, usage of such data in lensing studies has been limited (see van de
Ven et al. 2010; Barnabè et al. 2011; Shajib et al. 2023, for example of IFU data being
combined with strong lensing).

6.5 Comparison with Galaxy Simulations

The past decade has seen significant progress in understanding galaxies’ structure and for-
mation. Within the �CDM paradigm, there is general agreement regarding the gravitational
aspect of galaxy formation. The ‘gastrophysics’ is less well understood and requires subgrid
models to simulate, but still, the galaxies formed in simulations like Illustris (Vogelsberger
et al. 2014), FIRE (Hopkins et al. 2014), EAGLE (Crain et al. 2015), IllustrisTNG (Nel-
son et al. 2019) are much more credible than previous generations of simulated galaxies.
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There are also equilibrium galaxy models, including stars, gas, and dark matter, of which
the AGAMA (Vasiliev 2019) simulations are arguably the most sophisticated.

Despite the great advances in the fidelity of the simulations, there have been discrepan-
cies between the simulated predictions and the observed properties of galaxies. In particular,
simulations have not been successful yet in reproducing the observed distributions of the log-
arithmic slope γpl and the dark matter fraction fdm simultaneously. A no-feedback or weak
feedback prescription was required in some of the simulations to reproduce the γpl distribu-
tion, which, however, led to underestimating fdm compared to the observations due to over-
estimating the star formation efficiency (e.g., Naab et al. 2007; Duffy et al. 2010; Johansson
et al. 2009). Similarly, matching the fdm distribution required strong feedback prescriptions,
but these produce too shallow γpl compared to the observed distribution. More recently, the
IllustrisTNG simulation reproduced a fdm–γpl distribution that is consistent with the strong
lensing observations if the stellar IMF corresponds to the Salpeter IMF (Wang et al. 2020;
Shajib et al. 2021). In contrast, Mukherjee et al. (2022), find that the EAGLE and SLACS
fdm–γpl distributions agree while using a Chabrier IMF, supporting the important role played
by feedback and sub-grid physics in reproducing this relation.

Furthermore, there has been an apparent tension in the redshift evolution of the logarith-
mic slope γpl between observations and simulations. Strong lensing observations report a
steepening of γpl with decreasing redshift at z < 1 (Ruff et al. 2011; Sonnenfeld et al. 2013).
Such a steepening would require dissipative processes through wet mergers along the evo-
lutionary track of elliptical galaxies. Simulations instead find no evidence for redshift evo-
lution of γpl below z = 1, or a slightly shallowing trend in γpl with decreasing redshift (see
Fig. 10; Xu et al. 2017; Remus et al. 2017; Wang et al. 2020). Strong lensing selection effects
could be a potential source of this discrepancy (Sonnenfeld et al. 2015). Moreover, this ten-
sion vanishes if the same strong lensing analysis is applied to the simulated galaxies from
Illustris and Magneticum to extract γpl by combining lensing and kinematic information
(Xu et al. 2017; Remus et al. 2017). Therefore, the modeling systematics in the joint anal-
ysis of lensing and dynamical observables cannot be ruled out as another potential source
of the above tension. For an example of modeling systematic, if the true mass distribution
in lensing elliptical galaxies is not an accurate power law, then lensed images are formed
at different galactocentric radii as the lens and source redshifts vary (for a relevant test of
systematic, see Gomer et al. 2022). In that case, minor deviations from the adopted power-
law model may mimic an (absence of) evolution of the galaxy’s total density profile with
redshift. To account for this effect, Dutton and Treu (2014) suggest using a mass-weighted
slope.

An alternative approach to compare observed galaxy properties to theoretical models is
the semi-empirical one adopted by Shankar et al. (2017, 2018). These authors find their
semi-empirical model for massive elliptical galaxies to be consistent with un-contracted
NFW halos and the Salpeter IMF, corroborating with the majority of the previous literature
(see Sect. 4.1.2 and Sect. 4.2). These authors also investigate the redshift dependence of
the logarithmic slope γpl mentioned above and find that a redshift dependence of the Sérsic
index is necessary to explain it. In contrast, the selection function does not contribute to
producing the redshift-dependent trend in γpl.

The specific importance of various baryonic processes in the evolution of ellipticals is
still an open question. The simulations would require further fine-tuning to consistently re-
produce all of their observable properties. However, modeling systematics and the selection
function must be appropriately considered for accurate comparison between simulations and
observations. The first results from a statistical framework jointly considering simulations
and observations to infer the galaxy evolution scenario indicate that AGN feedback is essen-
tial (Denzel et al. 2021a), but application to a large sample of lenses is required.
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Fig. 10 Comparison of measured logarithmic slopes γpl of the total density profile at different redshifts
between lensing-only measurements (orange points), lensing–dynamics measurements (purple points), dy-
namical measurements (emerald points), and the IllustrisTNG simulation (grey shaded region; Wang et al.
2020). The lensing-only measurements are from the SLACS, SL2S, and BELLS samples (Tan et al. 2024).
The lensing–dynamics measurements are from the SLACS and SL2S samples (Auger et al. 2010b; Sonnen-
feld et al. 2013). The dynamical measurements are from the ATLAS3D, the Frontier Fields, and the Middle
Ages Galaxy Properties with Integral field spectroscopy (MAGPI) surveys (Poci et al. 2017; Derkenne et al.
2021, 2023). The horizontal dotted line traces γpl = 2, the isothermal case

An additional usage of simulated galaxies is to take them as the deflector galaxies in
synthesizing strong-lensing observables for testing and validating the assumptions made in
the simply parametrized mass models (e.g., Enzi et al. 2020; Ding et al. 2021a). These in-
vestigations often find the simple power-law parametrization to be inadequate to accurately
describe the data (e.g., He et al. 2023). However, numerical inadequacies in synthesizing
the strong-lensing observables can also potentially hamper such investigations (Van de Vy-
vere et al. 2020). Alternatively, simply parametrized lens models can also be tested based on
independent empirical observations, for example, using high-resolution imaging of nearby
ellipticals (Gilman et al. 2017), or using dynamical models from highly resolved IFU spec-
troscopy of ellipticals (e.g., Cao et al. 2022; Poci and Smith 2022). In the future, exquisite
high-resolution imaging from the JWST or extremely large telescopes, or advanced dynami-
cal models, such as Schwarzschild models (extending the original method of Schwarzschild
1979), will provide powerful means to carry out these important validation tests.

7 Concluding Remarks

In this review article, we have provided a review of the applications of galaxy-scale strong
lensing in astrophysics and cosmology. Inevitably, some special sub-topics within the field
of galaxy-scale strong lensing have evolved into proper research fields, having acquired
a methodology and literature extensive enough to warrant a dedicated review. These are:
detecting dark matter substructures and linking their properties to the dark matter particle,
and measuring H0 and other cosmological parameters through time delays, examined in
Vegetti et al. (2023) and Birrer et al. (2024), respectively.

We started with a brief historical overview in Sect. 2. Then, in Sect. 3, we have discussed
both strong-lensing and complementary non-strong-lensing observables and methodologies
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to model and extract meaningful results from such data. The most available and informative
data for galaxy-scale strong lenses come from imaging. We reviewed the most common
modeling methods found in the literature to model such data and constrain galaxy properties
from lensed arcs, and in some cases with the inclusion of multiple images of a point-like
source. Next, we reviewed the main scientific results from the literature on the astrophysics
of galaxies in Sect. 4 and on cosmology in Sect. 5. We then discussed the currently open
questions and provided future outlooks in Sect. 6.

The open questions presented in Sect. 6 provide exciting opportunities for the near fu-
ture. Several large-area sky surveys – namely the Rubin, Euclid, and Roman observatories –
will discover thousands of new galaxy-scale lensing systems. These treasure troves of data
will provide the necessary statistical power to shed light on the open questions on galaxy
evolution and cosmology.
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