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A B S T R A C T

Traditional methods like high-performance liquid chromatography (HPLC) and gas chromatography-mass
spectrometry (GC-MS) are widely used in food analysis but often face limitations in detecting trace contami-
nants at ultra-low levels or in complex matrices. This review highlights recent breakthroughs in food analysis
technologies that deliver unprecedented sensitivity and accuracy for consumers’ health protection. Among these
advances, Wide Line Surface-Enhanced Raman scattering (WL-SERS) has delivered a tenfold increase in sensi-
tivity, enabling the detection of contaminants like melamine in raw milk at concentrations far below conven-
tional thresholds. Mass spectrometry imaging (MSI), particularly matrix-assisted laser desorption/ionization
(MALDI-MSI), has made significant progress in spatial resolution, allowing for precise mapping of food con-
stituents and contaminants. Additionally, two-dimensional liquid chromatography (2D-LC) and multidimen-
sional gas chromatography have evolved rapidly, achieving detection as low as 1 ppb in complex food systems.
Innovative sensor technologies, such as the Dpyt near-infrared (NIR) fluorescent probe and electro-
chemiluminescence (ECL) aptasensors, offer rapid and highly sensitive detection, effectively complementing
traditional methods. Furthermore, the integration of artificial intelligence (AI) and machine learning (ML) has
revolutionized food quality assessment, with models like convolutional neural networks (CNNs) reaching up to
99.85% accuracy in identifying adulterants. Despite these advancements, challenges such as high operational
costs, sensor stability and AI’s computational demands remain. This review highlights the integration of
advanced spectroscopy, AI-driven analysis, and novel sensor technologies, outlining future strategies such as
miniaturization, nanomaterial innovations, and standardized protocols. These approaches present transformative
pathways for improving the precision, efficiency, and accessibility of food safety and quality management, ul-
timately enhancing public health protection.

1. Introduction

Food safety and quality control are essential elements of the food
industry, directly impacting public health by reducing food-borne ill-
nesses and maintaining the integrity of food products (Liu et al., 2024a).
The complexity of modern food supply chains is underscored by the fact
that food-borne pathogens are responsible for 31 major illnesses

identified in safety reviews (Gallo et al., 2020). Moreover, the World
Health Organization reports that food-borne illnesses caused by
contaminated food affect 600 million people annually, leading to 420,
000 deaths (Akinsemolu & Onyeaka, 2024). Additionally, food fraud, a
$30 billion global issue, undermines consumer trust and disrupts market
stability (Sharma et al., 2024). Notably, over 70% of consumers express
concerns about food safety, placing immense pressure on food
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processing companies, which face increasingly stringent international
regulations (Handford et al., 2016). Consequently, stricter regulatory
frameworks now impose severe penalties and product recalls for
non-compliance. Implementing Hazard Analysis and Critical Control
Points (HACCP) strategies is essential for mitigating contamination risks
and safe food consumption (Ngure et al., 2024). Furthermore, progres-
sive approaches, including metabolomics, are becoming vital in
comprehensive food safety strategies (Mphaga et al., 2024). These de-
velopments highlight the critical need for advanced technologies to
enhance food safety practices’ efficacy.

Over recent decades, food analysis technologies have evolved
significantly, transitioning from basic manual methods to sophisticated
technological innovations. Initially, early techniques such as visual in-
spections and simple chemical reactions, offered limited accuracy
(Nowak et al., 2021). However, the introduction of instrumental
methods like spectrophotometry and chromatography marked a signif-
icant shift, allowing for faster and more reliable analysis of food com-
ponents (Hansen et al., 2024). The latter half of the 20th century
witnessed breakthroughs with gas chromatography (GC) and
high-performance liquid chromatography (HPLC), which offered un-
precedented precision in separating and identifying substances
(Beecher, 2024). These foundational technologies laid the groundwork
for modern advancements, including nuclear magnetic resonance
(NMR) spectroscopy, mass spectrometry and inductively coupled
plasma (ICP) spectrometry that enable the detection of trace compounds
and bioactive substances with remarkable sensitivity and specificity
(Ncube et al., 2024). The shift from these conventional techniques to
more advanced solutions has set the stage for further technological
integration to address complex food safety challenges.

Among these advancements, biosensors play a crucial role in
enhancing smart food traceability systems and improving food safety
and security. These devices provide rapid, sensitive, and cost-effective
detection of contaminants and pathogens throughout the food supply
chain. Recent innovations include nanotechnology-driven, ultra-sensi-
tive sensors capable of detecting contaminants at concentrations as low
as 0.1 ppb (Eş & Khaneghah, 2024). Additionally, biosensors that merge
biological recognition elements with electronic systems facilitate
real-time monitoring with high specificity. This integration allows for
better detection accuracy and quicker responses to contamination risks.
For example, the development of a gold nanoparticle-based lateral flow
biosensor enables visual detection of Phytophthora infestans with a
detection limit of 0.1 pg/μL of genomic DNA in under 2 h (Meliana et al.,
2024). Such advancements help reduce the risk of foodborne illnesses
significantly. Adding to these advancements, He et al. (He et al., 2024)
introduced a gDNAzyme-enhanced Clostridium butyricum Argonaute
(CbAgo) detection technique for amplification-free, multiplexed path-
ogen detection. This method identifies E. coli, Salmonella, and S. aureus
at concentrations below 80 CFU/mL within 2 h, enhancing efficiency,
quality control, and reducing the likelihood of outbreaks. Fluorescent
nanosensors based on carbon dots have further advanced the field by
providing affordable and highly sensitive solutions for food quality as-
sessments (Luo et al., 2020). These nanosensors are capable of detecting
trace quantities of contaminants and are integrated into portable de-
vices, allowing for on-site testing and making food safety monitoring
more efficient (Ouyang et al., 2023). Such advancements enhance the
reliability and reach of biosensor technology in real-world applications,
reinforcing the importance of rapid and precise food safety practices.

The application of Artificial Intelligence (AI) and Machine Learning
(ML) in food quality control has reshaped the industry by enhancing
precision in data analysis and monitoring throughout production (Raju
et al., 2024). These technologies employ machine learning algorithms to
analyze large datasets and detect patterns, boosting the accuracy of food
quality detection to above 90% (Saha & Manickavasagan, 2021).
Computer vision, powered by deep learning, allows detailed defect
detection and product classification based on attributes such as size,
color, and shape (Chhetri, 2024). Hyperspectral imaging has also proven

effective, detecting chemical compositions and spoilage at the molecular
level, while IoT-enabled sensors provide real-time data on crucial pa-
rameters like temperature and humidity for immediate intervention
(Chhetri, 2024). Electronic nose (e-nose) technology has demonstrated
high effectiveness in quality inspection, achieving classification accu-
racies of up to 96% for distinguishing between fresh and overripe fruit,
such as mangoes (Ali et al., 2020). The combination of biosensors with
AI/ML technology further amplifies their capabilities, enhancing food
safety monitoring. The DRAGON platform, as introduced by Wen et al.
(Wen et al., 2024), integrates mesophilic Argonaute (CbAgo)-driven
reactions with polydisperse microdroplet reactors and machine learning
for rapid and sensitive detection of pathogens. This platform, achieving
detection limits of 1–2 CFU/mL and completion in less than 45 min,
leverages a random forest regression (RFR) model for improved detec-
tion accuracy using dual-parameter inputs like microdroplet area and
fluorescence intensity. This hybrid approach ensures a strong correla-
tion between predicted and actual concentrations (R2 = 0.9922),
exemplifying how combining biosensor technology with AI/ML fosters
efficient, reliable pathogen detection.

Beyond the integration of biosensors and AI/ML, other innovative
methods have also contributed significantly to enhancing food safety
and quality monitoring. Hyperspectral imaging, for example, has
become so sensitive that even pesticide residues as low as 0.01 mg/kg
can be detected (Sindhu & Manickavasagan, 2023). These techniques
allow real-time analysis without destruction, accelerating quality con-
trol processes and broadening the range of quality assurance procedures.
Micro-needle technology is another major advance in maintaining food
quality (Faraji Rad, 2023). It allows non-destructive and minimally
invasive sampling, leading to faster sample collection and improved
contaminants analysis, thereby aiding in meeting regulatory re-
quirements. The detection of water contaminants represents another
challenge, as most current methods do not process the sensitivity
required by regulations. Regulatory thresholds set by the EPA and the
EU are generally in the low ppt range, yet many methods detect only at
high levels, around 10 ppm (Ateia et al., 2024). Moreover, the lack of
standardized procedures and performance measurements across in-
stitutions exacerbates the issue, leading to poor reproducibility and
inter-laboratory efficiency (Bayen et al., 2024). Addressing these chal-
lenges requires standardizing performance metrics and certifying new
technologies to foster broader acceptance and consistency in food safety
practices. Such measures can improve uniformity across practices and
facilitate the widespread adoption of advanced methods that elevate
food safety protocols.

This review critically evaluates recent advancements by integrating
spectroscopic, chromatographic, and nanotechnology-based techniques,
while exploring the use of AI to enhance biosensor functionality. Unlike
prior reviews, which often separate traditional and emerging technolo-
gies or neglect sustainability, this work presents a comprehensive
analysis with a clear emphasis on novelty. It highlights sustainable
practices that maintain high accuracy while minimizing environmental
impact. By detailing the novel synergistic effects of AI and machine
learning on biosensor technologies, this review provides fresh insights
into improving detection speed and sensitivity. Additionally, it identifies
critical research gaps, such as the need for eco-friendly solutions and
standardized metrics, to inspire future innovations in food analysis. This
dual focus on technological novelty and sustainability positions the
work as a significant contribution, setting a foundation for robust and
forward-thinking approaches to food safety.

2. Advances in food analysis techniques

2.1. Cutting-edge developments in spectroscopic techniques

The significant advancements in spectroscopic techniques have
become essential for specific applications, such as food analysis, to
enhance the speed and sensitivity of molecular detection. The Wide Line
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Surface-Enhanced Raman scattering (WL-SERS) microscope is a key
innovation, illustrated in Fig. 1A(a). This advanced device’s laser beam
delivery system functions in various modes, including wide line (WL)
illumination (Fig. 1A(b)) and point focus (Ilchenko et al., 2020). The WL
mode, in particular, boosts detection efficiency and accelerates data
collection by spreading the laser light over larger areas (Fig. 1A(c)). The
WL-SERS demonstrated a remarkable 43-fold increase in signal-to-noise
ratio (SNR) and 10-fold LoD enhancement in the limit of detection (LoD)
when detecting melamine in raw milk (Fig. 1A(d, e)) compared to the
conventional point-focus mode. Furthermore, this system detected
p-coumaric acid (pHCA) in ethanol liquid at concentrations as low as 10
μM (Fig. 1 A(f, g)), underscoring the enhanced sensitivity provided by
WL-SERS in food safety applications (Ilchenko et al., 2020).

In comparison, combining various spectroscopic techniques has
proven effective in improving detection systems. For example, inte-
grating Near-Infrared (NIR) spectroscopy with fluorescence spectros-
copy resulted in a high correlation coefficient (R2) of 0.9742 and a low
Root Mean Square Error of Prediction (RMSEP) of 8.02 mg/g for
quantifying protein and starch in bean flour. This combination suc-
cessfully determined protein and starch contents at 19.47% and 85.77%,
respectively (Li et al., 2023b). Similarly, combining Raman spectroscopy
with NIR enhanced classification accuracy, achieving 96. 6% accuracy
in detecting Corylus avellana L. (Guo et al., 2024b). These findings
demonstrate how combining techniques can increase the precision and
reliability of food analysis. Further comparisons reveal that the inte-
gration of Laser-Induced Breakdown Spectroscopy (LIBS) with image
analysis significantly improved detection capabilities. This combined
approach increased the R2 by 0.1 and decreased the Root Mean Square
Error (RMSE) by approximately 0.05 in predicting potassium (K),
magnesium (Mg) and phosphorus (P) in bean seeds. The trueness values
for K, Mg, and P ranged from 89 to 124%, 82–125% and 73–128%,
respectively (Gamela et al., 2020). In contrast, using E-noses combined
with spectroscopic techniques for meat quality control yielded an
RMSEP of 3.2, an R2 of 0.920 and a P-value of 0.039 mg/100 g, with a
Relative Prediction Deviation (RPD) of 3.59 (Liu et al., 2022).

For trace element detection, Inductively Coupled Plasma (ICP)
techniques such as ICP-OES and ICP-MS stand out. ICP-OES can detect
elements like zinc (Zn) and copper (Cu) at limits as low as 0.1–10 μg/L,
maintaining an average RSD below 5% for reproducibility (Zhou et al.,
2024b). ICP-MS is even more sensitive, with a detection limit of 0.001
μg/L (1 ng/L) for toxic elements such as lead (Pb) and cadmium (Cd).
This technique has been employed to identify Pb and Cd in chicken meat
at concentrations as low as 0.01 μg/kg (An et al., 2024). Another recent
work on microplastic detection by Huang et al. (Huang et al., 2023)
showcases an integration of holography and polarimetry for microscopy
using a single lens. This method records 3D holograms and captures
polarization characteristics, such as the Degree of Linear Polarization
(DoLP) and Angle of Polarization (AoP), which are less sensitive to
scattering. As shown in Fig. 1B, while traditional images can produce
distorted images in pure water and milk dispersions, the combined im-
aging system significantly enhances image contrast and microplastic
detection, even in high-turbidity environments (Huang et al., 2023).
This innovation is particularly beneficial for environmental monitoring
and food safety analysis, where the precise detection of contaminants is
crucial. While ICP techniques offer unmatched sensitivity, Atomic Ab-
sorption Spectroscopy (AAS) also shows high accuracy, detecting Cad-
mium (Cd) and mercury (Hg) in food at limits of 0.02–0.04 ng/g, with
correlation coefficients above 0.998% and recovery rates of between
85.0% and 111.9% (Jia et al., 2024). However, AAS’s sample prepara-
tion can be time-consuming, potentially affecting reproducibility and
consistency.

In contrast, UV visible spectroscopy remains a valuable tool for
detecting contaminants due to its ability to measure light absorption.
For instance, cyanide detection using anthraquinone derivatives ach-
ieved LOD of 29.48 μM (7.67 ppm), presenting a blue colour for on-site
testing. Nanoparticle enhancements have further boosted UV–visible

spectroscopy’s sensitivity, such as in the detection of staphylococcal
enterotoxin A (SEA) with an LOD of 0.2 nM (0.006 ppm) (Rodriguez
et al., 2020). Fluorescence-based organoleptic tests like the DEM-H2S
probe for hydrogen sulfide (H2S) detection in food samples also showed
significant promise (Fig. 1C(a)). This probe changes from yellow to red
upon exposure to H2S showing a positive response towards spoilage and
shifts fluorescence from weak orange to red (Fig. 1C(b, c)), highlighting
its specificity and effectiveness for monitoring spoilage in raw meat
(Chen et al., 2024a). In summary, advancements in spectroscopic tech-
niques have significantly enhanced food safety analysis through
increased sensitivity and faster detection. The integration of multiple
methods, such as NIR with fluorescence or LIBS with image analysis, has
been particularly effective in improving accuracy and reliability. How-
ever, challenges such as the complexity of method integration and the
labour-intensive sample preparation required by techniques like AAS
underscore the need for ongoing innovation to further streamline and
optimize these technologies for practical applications.

2.2. Breakthroughs in mass spectrometry and imaging techniques

Mass spectrometry (MS) plays a pivotal role in food science due to its
high sensitivity and specificity in detecting toxins and analyzing com-
plex food matrices. Techniques such as HPLC-MS/MS and UHPLC-MS/
MS stand out for their ability to identify contaminants at very low
concentrations, such as ng/mL (Pandey et al., 2023). For example,
aflatoxin B1 can be detected in blood at levels as low as 0.05 ng/mL and
ochratoxin A in coffee and tea at 0.30 ng/mL, highlighting the robust
sensitivity provided by these methods (Ahuja et al., 2023). This level of
detection contrasts with recovery rates for other food contaminants,
where variability remains a challenge. Ji et al. (Ji et al., 2023) reported
recovery rates for mycotoxins in fruits and vegetables ranging from 73%
to 120%, with repeatability under 12.9%, illustrating that even
advanced techniques face hurdles in matrix effects.

To expand on MS capabilities, Kokesch-Himmelreich et al.
(Kokesch-Himmelreich et al., 2022) showcased how mass spectrometry
imaging (MSI) can visualize the spatial distribution of food components,
offering a more comprehensive analysis. Fig. 1A demonstrated the
complementary distributions of a water-soluble disaccharide ([M +

Na]+, m/z 365.10544) and fat-soluble cholesterol ([M-H2O + H]+, m/z
369.35158). The red marks in Fig. 2A(a) correspond to the disaccharide,
while the blue marks in Fig. 2A(b) depict cholesterol, enhancing the
understanding of their nutritional values. Compared to traditional MS,
which primarily quantifies compounds, MSI adds a layer of spatial data,
allowing researchers to observe compound distribution at ppm precision
(e.g., 0.68 ppm for disaccharides and 0.62 ppm for cholesterol). Addi-
tionally, the visualization of phosphatidylcholine (PC(36:4), [M+ Na]+,
m/z 804.55138) across the entire tissue in green (Fig. 2A(c)) further
demonstrates MSI’s capability in mapping ubiquitous compounds within
the food matrix (Kokesch-Himmelreich et al., 2022).

In contrast, Kim et al. (Kim et al., 2017) addressed the challenges of
sample preparation in MSI. Their findings emphasized that the strip
support method better-preserved sample integrity compared to the thaw
mount method, leading to more accurate spatial distributions of analyte
ions such as choline (m/z 104.12) and phosphocholine (m/z 184.09) are
shown in Fig. 2B. This comparison shows that while MSI provides
powerful visualization, sample preparation methods significantly
impact the accuracy of results, an area that requires ongoing refinement.
When considering advanced MS technologies, the use of
High-Resolution Mass Spectrometry (HRMS) and tandem MS/MS en-
hances detection capabilities. For instance, Romero-Sánchez et al.
(Romero-Sánchez et al., 2022) reported higher recovery rates
(92–111%) for aflatoxin in blood with detection limits as low as 0.05
and 0.2 ng/mL. This contrasts with the variable recovery and repeat-
ability seen in matrix-rich environments (Ji et al., 2023), demonstrating
how refined MS techniques like HRMS provide more consistent results.

Further applications of MSI illustrate its multifaceted role in food
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analysis, from quality control to authentication. Zhan et al. (Zhan et al.,
2021) successfully used MALDI-TOF/TOF MSI to identify isomeric di-
saccharides in onion bulbs, detecting them at ppm levels. Maslov et al.
(Maslov et al., 2019), applied MALDI-MSI to visualize peptide concen-
trations in dry-cured ham, which was essential for tracking proteolysis
during meat processing. These studies highlight MSI’s advantage in
mapping molecular distribution, setting it apart from simpler quantifi-
cation methods offered by traditional MS. Zhao et al. (Zhao et al., 2021)
demonstrated MSI’s capability in detecting contaminants, such as
visualizing and quantifying gossypol in cottonseeds up to 20 μg/g.
Comparatively, Goto-Inoue et al. (Goto-Inoue et al., 2019) focused on
food authentication, identifying lipid markers in wild versus farmed fish
at concentrations of 2–5 μg/g. Fig. 2C shows different metabolite pat-
terns in wild and farmed red sea bream, where farmed fish had signifi-
cantly higher levels of anserine and carnitine (p < 0.01 and p < 0.05,
respectively). These studies reveal MSI’s role in highlighting metabolic
differences influenced by diet, which aids in authenticating food
sources.

In summary, advancements in mass spectrometry and imaging
techniques have significantly improved the detection and analysis of
food contaminants, with innovations like MSI providing detailed spatial
distributions that traditional MS cannot achieve. While HRMS and tan-
dem MS/MS have enhanced sensitivity and recovery rates, the impact of
matrix effects and the need for refined sample preparation inMSI remain
challenges. The continued development of these technologies will be
essential for advancing food safety and authentication, as they provide
comprehensive, reliable, and spatially resolved data crucial for modern
food science.

2.3. Insights into recent chromatography technique developments

Recent developments in chromatography, such as two-dimensional
liquid chromatography (2D-LC), miniaturized LC and high-resolution
mass spectrometry (HRMS), have significantly enhanced analytical ca-
pabilities across various disciplines (Pirok et al., 2018). These tech-
niques share the common objective of improving sensitivity, resolution
and data quality but differ in their specific applications, efficiency, and
operational demands. The development of 2D-LC has greatly advanced
the ability to separate complex mixtures. For example, Cacciola et al.
(Cacciola et al., 2020) demonstrated 2D-LC’s ability to detect contami-
nants like monuron in red wine at limits as low as 0.5 μg/L. This superior
separation efficiency is critical when traditional one-dimensional
methods struggle to distinguish analytes in complex matrices. Howev-
er, the complexity of 2D-LC systems introduces challenges, such as po-
tential peak overlap if conditions are not precisely optimized (Mahmoud
& Zhang, 2024). This contrasts with the relatively simpler imple-
mentation of other methods but highlights the significant benefits in
terms of resolution.

In a similar vein of enhancing analytical performance, Miniaturized
Liquid Chromatography (Miniaturized LC) offers substantial improve-
ments in resolution while also addressing sustainability concerns. Fer-
rero et al. (Ferrero et al., 2019) showcased how columns with diameters
as small as 50 μm, packed with sub-2 μm particles, can achieve up to
300,000 theoretical plates per meter. While both 2D-LC and miniatur-
ized LC focus on achieving high separation efficiency, miniaturized LC
emphasizes reducing solvent and sample consumption. This

miniaturization presents an advantage in terms of environmental impact
and cost savings but comes with the trade-off of requiring meticulous
management of void volume to maintain sensitivity (Huertas-Pérez
et al., 2024). Thus, although both techniques excel in resolution, 2D-LC
is better suited for complex sample analysis, while minimizing void
volume (V₀), especially in the capillary column connection (Fig. 3A)
offers a more resource-efficient approach.

HRMS, especially when integrated with UHPLC, takes sensitivity to
new heights. Medina et al. (Medina et al., 2021) highlighted HRMS’s
ability to detect trace mycotoxins at concentrations as low as 0.001
ng/mL, a level of sensitivity that surpasses conventional methods.
Similarly, Du et al. (Du et al., 2018) demonstrated HRMS’s efficacy in
cereal analysis, reaching detection limits of 0.0013 mg/kg. Compared to
2D-LC and miniaturized LC, HRMS offers unparalleled mass accuracy
and the ability to identify analytes with high precision, often exceeding
100,000 resolution points (Li et al., 2021). However, this precision
comes at a cost, as HRMS systems are expensive and require extensive
calibration and maintenance. In this regard, while 2D-LC and minia-
turized LC excel in separation capabilities, HRMS stands out for its
precision in mass analysis, making it indispensable for applications
requiring exact mass measurements.

Multidimensional gas chromatography (MDGC) provides another
layer of advancement, especially for volatile compound analysis. Nol-
vachai et al. (Nolvachai et al., 2020) highlighted MDGC’s strength by
identifying 128 volatile compounds in Portuguese bread, compared to
only 26 compounds detected using the traditional GC− MS (Fig. 3B(a)).
This level of detail is comparable to the intricate separations achieved
with 2D-LC but is tailored for gas-phase analyses. Fig. 3B(b, c) illustrates
how MDGC provided a detailed aroma profile, highlighting components
like 2-furanmethanol and maltol, which contribute to the bread’s
creamy and caramel notes. Further, the analysis of peaches using
super-resolved GC × GC, shown in Fig. 3C(a) revealed 177 compounds
correlated to the fruit’s quality. The curve-fitting approach used in
Fig. 3C(b) ensured retention time accuracy, with %RSD values for the
first retention time (1tR) ranging from 0.003 to 0.066% and for the 2tR
from 0.305 to 0.551%. Fig. 3C(c) presents centroid representations of
the peaks by their positions in the 2D plane, while Fig. 3C(d) shows the
deconvolution of coeluted peaks into three distinct peaks. In addition,
Fig. 3C(e) demonstrates how MDGC uncovered the presence of minor
components like 2-butanol, which were previously masked by larger
peaks, emphasizing the technique’s sensitivity and power in food anal-
ysis. The MDGC technology, for example, has exhibited an improved
sensitivity feature. Compared to 2D-LC, MDGC specializes in separating
volatile analytes, showcasing exceptional sensitivity for applications
like detecting benzene at 0.5 ppb and formaldehyde at 1 ppb (Pua et al.,
2023).

In summary, recent developments in chromatography have signifi-
cantly enhanced the precision and efficiency of analytical methods.
While 2D-LC and Miniaturized LC focus on high-resolution separation,
the former excels in handling complex mixtures, and the latter empha-
sizes sustainability. HRMS stands out for its unparalleled mass accuracy
and sensitivity but requires extensive resources to maintain. Meanwhile,
MDGC offers exceptional performance for volatile compound analysis,
highlighting its importance for applications in food quality and safety.
Each technique has its advantages and limitations, emphasizing the need
for strategic selection based on specific analytical requirements.

Fig. 1. (A) Detection of pHCA using different illumination modes: (a,e) Mapping algorithms illustrated under point and white light (WL) laser illumination; (b,f)
Surface-enhanced Raman scattering (SERS) maps of pHCA at the 1604 cm− 1 peak position for point and WL laser illumination; (c,g) SERS spectra of pHCA at various
concentrations on Au nanopillars, measured under point and WL illumination modes; (d,h) Zoomed-in spectra of pHCA at a concentration of 10 μm, obtained under
point and WL illumination modes. SERS spectra were collected under identical conditions: laser irradiance of 0.2 mW/μm2, wavelength 785 nm, exposure time 0.2 s,
using a 10 × magnification microscope objective. (B) Degradation of image quality due to scattering and absorption effects in aqueous environments: Holographic
and polarimetric images of MP particles shown in (a) pure water and (b) milk solution. (C) Colourimetric and fluorescence changes observed in DEM-H2S-loaded test
strips exposed to H2S produced during spoilage of pork, shrimp, and egg: Changes monitored at 0 and 48 h under sunlight (a) and UV light (b) in the refrigerated
conditions; changes monitored at 0, 12, 24, and 48 h under sunlight (c) and UV light (d) at room temperature. Edited with permission from (Chen et al., 2024a;
Huang et al., 2023; Ilchenko et al., 2020). Copyright Wiley© 2020 and ACS© 2023; 2024.
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3. AI-enhanced food detection and sensor technologies

Ensuring food safety and quality has become increasingly complex
due to the rapid evolution of contaminants and the global scale of food
production. Traditional detection methods, while effective, often face
limitations in speed, precision, and scalability. Recent technological
advancements have paved the way for innovative approaches that
integrate artificial intelligence (AI) and advanced sensor technologies to
overcome these challenges. These tools not only enhance the detection
of contaminants but also provide real-time monitoring, improving the
overall reliability of food safety processes. By leveraging the capabilities
of AI, the detection, analysis, and response times can be significantly
reduced, ultimately protecting public health more efficiently.

3.1. Next-generation sensors for food safety and quality control

Recent advancements in sensor technology have significantly
enhanced the detection of contaminants and the monitoring of food
quality. For example, the near-infrared (NIR) fluorescent probe Dpyt can
rapidly detect bisulfite and organic amines, with observable colour
changes within just 5 s (Niu et al., 2024). In the context of salmon
freshness monitoring, Dpyt was able to identify spoilage at 45 h,
providing a visual indication when total volatile basic nitrogen (TVB-N)
reached 30.33 mg/100 g (Zhong et al., 2024). This speed and accuracy
in detecting spoilage are comparable to the ECL aptasensors developed
by Li. et al. (Li et al., 2023a), which demonstrated high sensitivity and
specificity for pollutants like kanamycin (KAN) in milk with a limit of
detection of 0.43 pM and Vibrio parahaemolyticus (VP) in artificial
seawater with an LOD of 1.0 CFU/mL. Both technologies enable
real-time monitoring; however, Dpyt provides a quick visual response,
whereas ECL aptasensors focus on precise molecular-level detection.

Enhancing this field further, 3D-printed biodegradable hydrogel
composite sensors were developed for spoilage monitoring in meat and
fish. These sensors, crafted to be pH-responsive and effective across a
range from 2 to 13, offer sustainability through their flexibility and
biodegradability (Popoola et al., 2024). On the other hand, a dual-mode
fluorometric-colorimetric sensor for formaldehyde detection achieves
low LODs (0.623 μM and 0.791 μM) and delivers high recovery rates,
making it suitable for accurate, on-site formaldehyde analysis (Chen
et al., 2024c). Both sensor types emphasize practical application in food
safety, but the former stands out for its eco-friendly design, while the
latter provides dual detection for increased accuracy.

Incorporating AI into sensor technology, a portable fibre optic fluo-
rescence detection system was created, employing a Radial Basis Func-
tion Neural Network (RBFNN) to achieve 100% accuracy in detecting
pathogens like ASFV and Salmonella, even in fluctuating environmental
conditions (Guo et al., 2025). In contrast, a nitrogen-doped Ti3C2Tx
sensor was optimized for real-time monitoring of ammonia, a spoilage
marker, with high sensitivity across a range of 100 ppb to 100 ppm (Fan
et al., 2024a). The AI-enhanced system excels in adaptive pathogen
detection, while the nanomaterial-based sensor is geared towards sen-
sitive monitoring of spoilage gases, demonstrating complementary
strengths in the food safety landscape.

Significant progress has also been made with biosensors, including
SAzyme-based designs that demonstrate exceptional sensitivity for food

safety and nutritional evaluations (Wu et al., 2024). These biosensors
detect analytes like glucose (LOD of 1.2 μM), ascorbic acid (LOD of
0.297 μM), and organophosphates (LOD of 0.87 ng/mL). Additionally, a
sensor array can distinguish food preservatives at concentrations as low
as 0.4 μM. Comparatively, NIR-II absorption-based biosensors specialize
in enzyme-specific monitoring, quantifying myrosinase activity in
broccoli with a high degree of precision (18.50 ± 1.58 mU/mg) (Qiao
et al., 2023). Another notable advancement is the XDS probe, a
red-emitting fluorescent probe formed from a coumarin derivative and
rhodanic-CN, selectively responds to hydrogen sulfide (H2S) (Fig. 4A).
This probe accurately identifies H2S in natural water and beer samples,
with detection ranges from 48.13 to 63.13 μM and recovery rates from
98.25 to 105.22% (Shang et al., 2023). The XDS sensor also provides
“naked-eye” monitoring of H2S during food spoilage, with brightness
changes over time indicating H2S release rates, making it a practical tool
for spoilage detection in real-world scenarios (Liu et al., 2024b).

Further advancements involving material-based sensors such as
metal-organic frameworks (MOFs) and covalent organic frameworks
(COFs) have enhanced contaminant detection capabilities. For example,
MIL-101(Cr) MOFs can adsorb up to 593 mg/g of lead ions (Li et al.,
2018), while TpPa-1COFs have an LOD of 0.02 μg/L for pesticides
(Wang et al., 2023). The Ag@ZIF-8 core/shell heterostructure nano-
wires exhibited remarkable SERS detection capabilities for contami-
nants like thiram and melamine. These necklace-like nanowires, shown
in Fig. 4B(a), were synthesized through a simple two-step process that
enhanced SERS performance (Fig. 4B(b-i)). The SERS signals for thiram
(DTF) were quantifiable at 10− 7 M with an enhancement factor (EF) of
~1.9× 107, while melamine (TTA) detection at 10− 6 M had an EF of ~1.
3 × 106, as confirmed by SERS spectra in Fig. 4B(j and k). These
nanowires demonstrated practical applications, such as detecting DTF
residues on the surface of apple peels (Cheng et al., 2021). In addition,
the amino-functionalized Al-MOF (NH2-MIL-53(Al)) nanosensor
demonstrated effective fluorescent detection of tetracyclines (TCs) in
milk, with fluorescence-quenching efficiencies of 57% for doxycycline
(DOX), 69% for tetracycline (TET), and 89% for oxytetracycline (OTC)
(Li et al., 2019b).

In summary, next-generation sensors have transformed food safety
and quality control through rapid, sensitive, and environmentally
conscious technologies. While AI-enhanced and nanomaterial-based
sensors offer precise and adaptive detection capabilities, biodegrad-
able hydrogel sensors emphasize sustainability. The integration of
advanced materials, such as MOFs and COFs, has expanded the scope of
contaminant detection, underscoring the field’s evolution towards real-
time, practical solutions. These technologies collectively represent a
critical advancement in ensuring food safety and quality, providing
diverse and powerful tools for modern food analysis. Table 1 offers a
comprehensive overview of these advanced sensor methods and their
various applications.

3.2. Boosting food chemistry with artificial intelligence and machine
learning

The integration of artificial intelligence (AI) and machine learning
(ML) is revolutionizing food chemistry, enhancing data processing and
prediction capabilities (Yi et al., 2024). For example, AI-based

Fig. 2. (A). MS imaging of components in carrot species and veal sausage: A: Orange carrot: Composite of optical image and single ion image of beta-Carotene ([M]+,
m/z 536.43765, displayed in orange), with a pixel resolution of 50 μm. B: Purple carrot: Composite of optical image and single ion image of Cyanidin ([M]+, m/z
287.05501, shown in purple), with a pixel resolution of 80 μm. C: Optical image alongside RGB MS image displaying three components in veal sausage: Disaccharide
([M +Na] +, m/z 365.10544, represented in red), PC(36:4) ([M + Na]+, m/z 804.55138, shown in green), and cholesterol ([M-H2O + H]+, m/z 369.35158, depicted
in blue), with a pixel resolution of 20 μm. (B). TOF-SIMS images of corn seed tissue demonstrate the distribution of (a), (e) choline, (b), (f) phosphocholine, (c), (g)
palmitic acid, and (d), (h) PI 34:2, prepared using both the tape support and thaw-mounting techniques (C). Imaging results obtained via matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-MS) showing the distribution of creatinine, anserine, carnitine, and acetyl carnitine in wild and farmed red sea
bream. The red muscle is indicated by dotted outlines. Edited with permission from (Goto-Inoue et al., 2019; Kim et al., 2017; Kokesch-Himmelreich et al., 2022).
Copyright Springer©2017, Elsevier© 2022 and ACS©2019. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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prediction models simplify the analysis of chemical properties and in-
teractions within food matrices, facilitating better predictive accuracy
(Wang et al., 2024). Specifically, machine learning methods have
proven effective in predicting food freshness, potentially extending shelf
life by 30% through better stock management and food quality control
(Ayres et al., 2021). In contrast, data mining and pattern recognition
methods, such as those used in the Internet of Chemical Things (IoCT),
significantly reduce analysis time, especially in contaminant detection
and flavour optimization (Prabhu & Urban, 2020). This highlights AI’s
adaptability; whether it is extending shelf life or ensuring food safety
and quality, these applications cater to diverse food industry needs.

High-accuracy detection of food adulterants further showcases AI’s
potential. Techniques like Support Vector Machines (SVM) and Con-
volutional Neural Networks (CNN) have achieved impressive results
(Nath et al., 2024), with CNN models reaching 99. 85% accuracy in
detecting mutton adulteration (Zhang et al., 2022) and 95% accuracy in
honey classification (Izquierdo et al., 2020). Although the performance
of these models may vary depending on the complexity of the food
matrix, their consistent effectiveness across different applications illus-
trates AI’s reliability in combating food fraud. Beyond laboratory set-
tings, AI is also transforming agricultural practices. For example,
image-processing robots for harvesting ripe strawberries increase pro-
ductivity while reducing labor costs. Compared to more data-driven
applications like quality or adulteration detection, these practical uses
highlight AI’s broader impact, demonstrating its benefits from field
operations to consumer-level applications (Bouguettaya et al., 2022).

The versatility of AI in food chemistry is well illustrated in Fig. 4C,
which analyzes the aroma profile of Brazilian wines. Fig. 4C(a) reveals
distinct chemical profiles that differentiate wine types, identifies key
analytes using Fisher Ratio Analysis (Fig. 4C(b)), and quantifies com-
pound concentrations through peak area comparisons (Fig. 4C(c))
(Trinklein et al., 2023).

Meanwhile, Fig. 4D demonstrates the combination of optical sensor
arrays with machine learning capabilities for detecting and analyzing
food. These sensor arrays are designed to identify a wide range of
chemicals in food substances, generating multiple variables for each
food sample based on their chemical compositions (Peveler, 2024).
Machine learning models, such as Support Vector Machines and artifi-
cial neural networks, analyze the collected data to identify patterns and
categorize the food samples. This analysis provides crucial insights into
food quality, authenticity, and safety, enabling applications from
manufacturing processes to consumer-level use.

A notable advancement in food safety involves the use of silver
nanoparticles (AgNPs) combined with AI, which enhances contaminant
detection down to trace levels. AgNP-based biosensors can achieve
97.6% accuracy in identifying pesticide residues (Tun et al., 2022). In
another application, AI-powered smart packaging reduces food waste by
up to 30% by monitoring freshness in real-time (Barthwal et al., 2024).
While AgNP biosensors prioritize precision in contaminant detection,
smart packaging focuses on real-time shelf-life management, demon-
strating AI’s complementary roles in food safety and waste reduction.
Moreover, hyperspectral imaging combined with deep learning has
shown high effectiveness in detecting food contaminants, with accuracy
rates exceeding 95% for cereals. Models developed to detect deoxy-
nivalenol in wheat achieve 92% sensitivity and 90% specificity, offering
non-invasive, high-accuracy alternatives for quality assessment (Caratti
et al., 2024). Compared to simpler freshness or contaminant analysis

methods, hyperspectral imaging provides a comprehensive,
non-destructive alternative for quality assessment. AI applications
continue to expand, encompassing protein content estimation in cereals,
bacterial identification, strawberry ripeness assessment, and olive oil
categorization, underscoring AI’s widespread influence on food quality
and safety. In summary, AI and ML are revolutionizing food chemistry
through innovations that span predictive modelling, high-accuracy
detection, and practical agricultural applications. The combination of
advanced imaging, sensor technologies, and deep learning models offers
powerful tools for ensuring food safety and optimizing production pro-
cesses. For a comprehensive overview of AI and ML methods, including
their specific applications, advantages, and evaluation criteria, refer to
Table 2.

4. Prospects and obstacles in advanced food analysis

4.1. Critical challenges

Depending on the type of food analysis, various techniques suffer
from significant drawbacks that reduce their overall effectiveness and
credibility. Surface-Enhanced Raman Spectroscopy (SERS) holds sub-
stantial potential but faces several challenges. It is primarily limited by
issues such as sensitivity, variability of the substrate, and matrix inter-
ference, which can be quite complex when analyzing food samples (Jahn
et al., 2017). Wu et al. (Wu et al., 2021) also highlight the limitation
caused by the absence of a standardized Raman spectra database,
making broader applications more difficult. Despite these limitations,
SERS has shown promise in reaching detection limits of 19.87 ng/mL for
chlorpyrifos and 38.4 ng/mL for patulin (Guo et al., 2023), although
challenges remain. Additionally, Raman spectroscopy is hindered by its
inherently weak signal, which accounts for only 10− 6 of the incident
light intensity (Singh & Blümich, 2016). This weak signal complicates
the identification of low-concentration analytes, often exceeding the
detection limit for certain contaminants, which is around 100 ppm.

Additionally, fluorescence interference poses another significant
challenge, causing up to 90% loss of spectral information, which com-
plicates the accurate identification of food components (Xu et al., 2020).
Infrared (IR) spectroscopy, on the other hand, is limited by cancelled
absorption bands, which can lead to a misclassification rate of 20%
within complex food matrices (Fakayode et al., 2020). Furthermore, the
sample preparation required for IR spectroscopy may alter the chemical
structure of food materials, complicating the interpretation of results. In
comparison, Nuclear Magnetic Resonance (NMR) spectroscopy is highly
valued for its ability to provide detailed insights into molecular struc-
tures. However, NMR is hindered by high operational costs and the need
for relatively large sample volumes, making it impractical for routine
use. Each method comes with distinct trade-offs. Fluorescence interfer-
ence impacts data reliability, IR spectroscopy is accessible but prone to
structural misinterpretations, and NMR offers precise structural analysis
but at a cost that limits its widespread application.

With regards to mass spectrometry, the WPMPI-MS holds potential
but has a high detection limit for toxicological standards in serum and
lower sensitivity for detecting heavy metals like cadmium, falling short
of ICP-MS performance (Chu et al., 2024). Additionally, fragmentation
differences complicate the analysis of complex samples (De Vijlder et al.,
2018). The cost of mass spectrometry imaging (MSI) instrumentation,
which often exceeds $500,000, along with the time-consuming sample

Fig. 3. (A). A diagram and image depict the portable MPLC system. (B). (a) A GC × GC–TOFMS chromatogram of broas, highlighting the major components, and (b)
chemometric analysis demonstrating the distinction in volatile profiles between samples made from traditional open-pollinated maize and commercial hybrid maize
varieties. The PCA projection depicts the samples (represented by colourful dots) and the variables (shown in grey). (c) Pie charts show the proportion of chro-
matographic area for each chemical class, with pyrazines accounting for the majority of the variances between samples, indicating off-flavours in the product. (C).
The super-resolved data processing method applied to GC × GC–TOFMS analysis of peach samples. Peaks in the modulated chromatogram, (a) are recognized, and
the centroid approach is used to establish their precise maxima. This allows for the deconvolution of overlapping peaks in the 3D chromatogram of peach samples (d
and e). Edited with permission from (Bento-Silva et al., 2022; Li et al., 2015; Nolvachai et al., 2023, Nolvachai et al., 2020). Copyright Elsevier ©2015, ACS ©2023
and ©2020.
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Fig. 4. (A). A proposed method for recognizing XDS’s interaction with H2S and accurately detecting H2S in real-world samples using a smartphone. (B). (a) Diagram
showing the formation process of Ag@ZIF-8 nanowires and the SERS detection process for target analytes; (b), (c) SEM images displaying necklace-like Ag@ZIF-8
nanowires at various magnifications; (d), (e) High-resolution TEM images of a single Ag@ZIF-8 core/shell nanowire; (f)–(i) Elemental mapping of Ag (red), C (blue),
N (green), and Zn (cyan) from the same region; SERS detection of thiram (j), and melamine (k) at different concentrations in water using necklace-like Ag@ZIF-8
nanowires. (C). (a). Evaluation metrics based on chromatograms divided according to four tiling schemes. (b). Elimination of redundant hits using pinning clustering
algorithms. (c). Use the identified pin locations to delve deeper into the high-fidelity data. (D). Summary of sensing arrays used in food and beverage analysis. Sensing
arrays provide unique advantages for analyzing the sensory profiles of food and drinks in a compact format suitable for packaging or factory floor use. Various arrays
with diverse outputs can be customized for specific applications and interpreted by either a consumer or an operator monitoring a process. These sensors can be
designed for quality control, safety, spoilage detection, or to identify food fraud. Edited with permission from (Li et al., 2019a; Peveler, 2024; Shang et al., 2023;
Trinklein et al., 2023). Copyright Elsevier © 2023, © 2019 and ACS © 2023 and © 2024. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Table 1
Advanced sensor methods for food safety and quality control.

Category Analyte Sample Type Method Limit of Detection Sensitivity Shelf Life Response
Time

Reproducibility Reference

Metals Hg2⁺ Water Label-free SERS-based SiO2@Ag sensor 1 × 10− 8 M Linear range (1 ×

10− 8-1 × 10− 3M)
– – – Lu et al. (2018)

Pb2⁺ Skin toner,
AHC toner

SERS-based AuNPs sensor 0.7 nmol/L Good linear range
(0.002− 0.075 μmol/
L)

– – – Yan et al. (2021)

complex
samples

Spherical nucleic acid fluorescence
probe

86 fM High Long-term
stability
expected

– High (Li et al., 2022)

Cadmium Water Transgenic Zebrafish Biosensor 0.5 ppm 90% 6 months 10 min RSD <5% (Liu et al., 2016)
Milk Whole Cell Biosensor 1.0 μg/L 95% 65 days 15 min RSD <2% Kumar et al. (2017)

Arsenic Water Electrochemical Biosensor 0.0008 ppb 4.91 μA/ppb 1 year 5 min 95% recovery Gao et al. (2013)
Mercury Water Transgenic Zebrafish Biosensor 0.1 ppm 95% 6 months 10 min RSD <5% Fakayode et al. (2024)

Bacteria S. aureus Food
samples

CRISPR/Cas12a with LFA 2 × 101 CFU/mL High Long-term
stability
expected

35 min High (Zhao et al., 2023)

Tap water Electrochemical biosensor based on
SDA

8 CFU/mL High – – RSD ~0.44% and
2.03%

Cai et al. (2021)

E. coli O157 Pond water Electrochemical biosensor 0.1 CFU/mL

0.98

⎛

⎜
⎜
⎝

ΔRct
Rct
CFU
mL

⎞

⎟
⎟
⎠/cm2

– 30 min High
Gangwar et al. (2022)

Food
samples

CRISPR/Cas12a with MOF
immunomagnetic beads

6.5 × 104 CFU/mL High Long-term
stability
expected

– High (Zhao et al., 2023)

Food
samples

Electrochemical biosensor 7 CFU/mL High 94.3% after 30
days at 4 ◦C

– Intra:7.2%; Inter:
5.8%

(Li et al., 2020b)

E. coli Drinking
Water

Electrochemical Method 1 CFU/100 mL 90% 1 year 8 h RSD <5% Chorti et al. (2022)

Spinach
leaves

Electrochemical biosensor 1 CFU/mL High – 6 h High El-Moghazy et al. (2022)

Food Smartphone-based optical biosensor 10 CFU/mL High 6 months 30 min High Yang et al. (2022)
Salmonella
typhimurium

Spiked milk Bio-barcode immunoassay-CRISPR/
Cas12a

Single-digit levels High Long-term
stability
expected

60 min High (Zhao et al., 2023)

Food
samples

Electrochemical biosensor 1–10 nM 103–104 CFU/mL 6 months 30 min - 2
h

85–95% (Silva et al., 2018)

Food
samples

Silver nanoparticles 102 CFU/mL High – 2 h High Mathelié-Guinlet et al.
(2019)

Bacillus Cereus Infant Food DNA-Based Biosensor 10 CFU/g 95% 6 months 30 min RSD <5% Izadi et al. (2016)
Pesticides and
Toxins

Carbaryl Tomato Acetylcholinesterase biosensor 1.9 nmol/L High 30 days – RSD ~2.2% (da Silva et al., 2018)
Malathion Water Amperometric Biosensor 0.1 ppb 85% 6 months 10 min RSD <5% Junior et al. (2021)
Aflatoxin A1 Peanuts TSA-PC sensor 2 pg/mL High – 15 s Intraday CV:

8.23–14.83%
(Chen et al., 2023)

(continued on next page)
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preparation, limits its widespread adoption (Shen et al., 2024). To make
MSI more practical, Spengler (Spengler, 2015) suggest improvements in
ionization techniques and the development of more user-friendly soft-
ware. Two-dimensional liquid chromatography (2D-LC) offers valuable
analytical capabilities but introduces its difficulties, such as sensitivity
loss from analyte dilution at high flow rates. For instance, during red
wine analysis, excessive flow rates diluted trace components, making it
difficult to detect low-concentration contaminants (Cacciola et al.,
2020). Miniaturized LC systems, while promising, still struggle with
technical challenges like elevated back pressure, which can exceed 600
bar (De Vos et al., 2016). Desmet et al. (Desmet et al., 2020) emphasize
the necessity of precise pressure control, as micro-LC columns operating
at 1 μL/min can generate pressures around 400 bar.

In addition, High-Resolution Mass Spectrometry (HRMS) adds
complexity due to matrix effects and intricate sample preparation re-
quirements. Techniques such as QuEChERS and solid-phase extraction
(SPE) help manage matrix effects but increase analytical complexity and
cost (Kanu, 2021). Yu et al. (Yu et al., 2023) note that the vast data
volumes produced by HRMS necessitate advanced software for pro-
cessing, while Chaker et al. (Chaker et al., 2020) highlight the short-
comings of peak area-based quantification. Dusza et al. (Dusza et al.,
2022) suggest that emerging methods for estimating ionization effi-
ciencies are promising, although they remain under development. IoT
sensor networks are becoming increasingly important in food analysis,
but stability, specificity, and long-term reliability are significant chal-
lenges (Luo et al., 2023). Mayer et al. (Mayer & Baeumner, 2019) report
that while 60–70% of sensors achieve the necessary stability and spec-
ificity, around 40% experience significant drift within six months,
leading to data loss. The cost of wearable and point-of-care sensors,
ranging from $100 to $500, is another barrier, especially in
resource-limited settings (Ozturk et al., 2023). Furthermore, the envi-
ronmental impact of disposable sensors is concerning, with electronic
waste projected to increase by 25% by 2023 if proper recycling measures
are not implemented (Valdés et al., 2021). AI andML are revolutionizing
food analysis by increasing speed and accuracy. However, these
methods come with challenges, such as achieving reliable accuracy rates
(Shaikh et al., 2022). Li et al. (Li et al., 2024) note that AI systems may
only reach 70% accuracy in real-world applications, which is lower than
the 85–90% accuracy of traditional methods. The “black box” nature of
AI algorithms complicates their reliability, as the underlying
decision-making processes are often unclear (Quinn et al., 2022).
Additionally, training deep learning models is energy-intensive, making
them unsuitable for low-energy environments. Data variability, remains
a pressing issue, as up to 30% of learning data can be incorrect, further
impacting AI performance (Souza et al., 2020).

In summary, food analysis techniques are evolving rapidly but
continue to face critical challenges. SERS struggles with signal weakness
and fluorescence interference, IR spectroscopy is prone to misclassifi-
cation, and NMR is cost-prohibitive. Mass spectrometry, while powerful,
is limited by high costs and fragmentation issues, while chromatography
techniques grapple with pressure and sensitivity concerns. Even IoT-
based sensors and AI systems have hurdles, including stability, energy
demands, and data reliability. Addressing these challenges is essential
for the continued advancement of food analysis technologies, balancing
precision, cost, and practical applicability.

4.2. Future innovations

Food analysis stands on the cusp of transformative advancements,
driven by the integration of cutting-edge spectroscopic techniques,
innovative biosensing technologies, and the latest developments in
artificial intelligence and machine learning (Meira et al., 2024). These
advancements promise to improve the accuracy and efficiency of food
analysis, which is critical for ensuring the safety and quality of food
products. One of the most promising advancements in the development
of optical biosensors, illustrated in Fig. 5A. These biosensors employTa
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Table 2
Critical evaluation of AI and ML techniques in food detection: Applications and accuracy.

Aspect Technique Application Benefits Examples Performance metrics References

Flavor enhancement
and consumer
preference analysis

Machine Learning Predicting flavor
profiles

Enhanced
understanding of
consumer preferences

Cotton-candy grapes,
specialty tomatoes

Models explained 25%
more variation in
sweetness

Ferrão et al. (2023)

AI-Driven Flavor
Profiling

Enhancing flavor
profiles in food
products

Improved product
development

AI used to develop a new
flavor for a snack brand

Consumer Acceptance:
80–90% positive feedback
Flavor Consistency:
Variability <5%

(Yu et al., 2018)

Machine Learning
Algorithms

Flavor enhancement
in food products

Increased consumer
acceptance

Flavor optimization in
beverages

30% increase in consumer
acceptance

Zeng et al. (2023)

Food quality
assessment and
authenticity
verification

AI Decision-
Making Tools
(PLS-DA)

Quality assessment
and decision-making

Enhances accuracy in
quality classification
and benchmarking

Classification of hazelnut
quality based on aroma
profiles

Successful discrimination
of product qualities

Caratti et al. (2023)

Convolutional
Neural Networks
(CNN)

Identifying species
and quality of food

High accuracy in
classification

Identifying species in
caviar

Accuracy: 95%, F1 Score:
0.93

Al-Habsi et al. (2024)

Convolutional
Neural Networks
(CNN)

Detection of food
spoilage

High accuracy in
image classification

Spoilage detection in
fruits and vegetables

95% accuracy in spoilage
detection

Ge et al. (2023)

Advanced
Computer Vision
(CNN)

Automated
inspection of food
products

Real-time defect
detection and
classification

Using CNNs for visual
inspections of packaged
foods

Defect detection accuracy
improved to 98%

Chotwanvirat et al.
(2024)

Image
Recognition

Visual inspection of
food products

Improved accuracy in
detecting defects

Automated system
detects bruises on fruits

Accuracy: 95%
False Positive Rate: <5%
False Negative Rate: <2%

Feng et al. (2024)

Computer Vision Automated
inspection of food
products

Reduces human error
and increases
efficiency

AI systems inspecting
fruits for quality

Inspection speed: 100
items/min, Defect
detection rate: 95–98%

(Chen et al., 2024b)

Data analysis,
representation,
and model training
in food science

Machine Learning
Algorithms

Analyzing complex
datasets from GC ×

GC results

Facilitates the
identification of
patterns and
correlations in large
datasets

Use of AI for rancidity
level assessment

Median % RE values for
key compounds: octanal
(406), 4-heptanone (646),
γ-hexalactone (69), 2-
heptanol (633.5)

Squara et al. (2023)

Machine Learning Predictive analytics
for food safety risks

Early detection of
potential hazards

Predicting outbreaks
based on historical data

Accuracy: 85–95%,
Precision: 80–90%,
Recall: 75–85%

Charlebois et al.
(2021)

AI Smelling
Machine

Monitoring aroma
blueprints in food
products

Objective evaluation
of aroma profiles;
supports consumer
preference analysis

Development of an expert
system for key-odorants

OAV values visualized in
log10 scale; TGT samples-
maintained aroma
characteristics longer

Squara et al. (2023)

SMILES Notation Encoding chemical
structures for model
training

Facilitates the
representation of
complex chemical
data

Use of SMILES for various
antioxidants

Enhanced model
performance through data
augmentation

Kou et al. (2023)

Data
Augmentation

Enhancing training
datasets for better
model accuracy

Addresses overfitting,
improves model
robustness

Augmenting with
stoichiometric ratios in
SMILES

Increased predictive
accuracy from R2 = 0.01
to R2 = 0.90 with fine-
tuning

(Ayres et al., 2023)

Detection of
pathogens and
contaminants

Biosensors
combined with
ML

Monitoring
foodborne pathogens

Rapid detection,
reduced reagent use

Detection of pathogens in
various food products

98% detection rate for
pathogens

Cui et al. (2020)

Deep Learning Rapid identification
of foodborne
pathogens

Faster response to
contamination risks

Deep learning model
identifies Salmonella in 2
h

Sensitivity: 95–99%
Specificity: 90–98%
Time to Detection: 1–4 h

Garcia-Vozmediano
et al. (2024)

Artificial Neural
Networks (ANN)

Detection of
pathogens in food

Rapid and reliable
detection

Salmonella detection in
poultry

50% reduction in
detection time

Zalnezhad et al.
(2022)

Optical SVM Detection of
antibiotics in milk

High sensitivity and
specificity

Kanamycin, Ampicillin,
Oxytetracycline,
Sulfadimethoxine

Detection accuracy of
95% for multiple
antibiotics

Pérez Santín et al.
(2021)

Machine Learning
Algorithms

Predicting food
safety risks

Improved predictive
accuracy, data-driven
insights

Predictive models for
foodborne disease
outbreaks

92% accuracy in
predicting outbreaks

(Deng et al., 2021)

Automation and real-
time monitoring in
food handling

Deep
Convolutional
Neural Network
(DCNN)

Monitoring meat
freshness

High sensitivity,
integrated detection
system

PAN-NSS color sensor 98.5% accuracy in
freshness prediction

(Guo et al., 2020)

IoT Sensors Real-time
monitoring of food
storage conditions

Ensures optimal
conditions to prevent
spoilage

Smart refrigerators that
monitor temperature

Response time: <1 min,
Data accuracy: 95–99%

Yousefi et al. (2019)

Delta Robots Packaging of fresh
fruits and vegetables

High practicality and
low cost

Delta robots in packaging
lines

Increased packaging
speed by up to 30%

(Liu et al., 2020)

Edge AI Continuous
monitoring of food
storage conditions

Immediate alerts for
temperature or
humidity breaches

IoT sensors monitoring
cold chain logistics

Response time to breaches
reduced to under 5 min

Hernandez-Jaimes
et al. (2023)

(continued on next page)
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highly sensitive optical detection techniques, leveraging a broad surface
area for effective binding, often enhanced with nanoparticles to boost
signal detection (Mat Yeh et al., 2024). This technology is particularly
vital for detecting trace amounts of harmful substances, such as UAV
pork DNA, even in complex, multi-ingredient food matrices. The data
generated by these biosensors can be further processed using AI,
enabling the rapid identification of patterns and anomalies for faster,
more accurate results. Real-time analysis provided by optical biosensors
is crucial for food safety and quality assurance, highlighting the value of
integrating nanotechnology and AI to mitigate safety and authenticity
concerns (Zhou et al., 2024c).

In contrast, SERS is progressing through the development of
aptamer-based sensors and the creation of comprehensive Raman
spectra databases (Hassoun et al., 2024). These advancements aim to
overcome challenges posed by complex food matrices, improving mea-
surement reproducibility and efficiency. SERS benefits from the use of
novel nanomaterials and optimized substrate designs that reduce
interference and enhance measurement precision. While both optical
biosensors and SERS emphasize sensitivity, SERS particularly focuses on
addressing the challenges of reproducibility and data accuracy in intri-
cate sample environments. IRES is also witnessing significant advance-
ments aimed at increasing resolution and refining sample preparation
techniques to maintain food integrity (Xuesong et al., 2024). This is
especially critical for multicomponent samples, where maintaining
precision and reliability is a challenge. IRES focuses on optimizing
spectral clarity, which makes it valuable for detailed chemical

characterization. While SERS and IRES share the goal of enhancing
analytical accuracy, they differ in their primary emphasis: SERS im-
proves reproducibility through advanced nanomaterial designs, whereas
IRES seeks to optimize spectral resolution and sample handling. The
miniaturization of spectroscopic equipment is another crucial area of
innovation, particularly for on-site testing (Dirks & Poole, 2022).
Portable Near-Infrared (NIR) devices, for example, have made signifi-
cant strides but still face limitations, achieving around 85% sensitivity
compared to conventional laboratory instruments (Tang et al., 2020).
This highlights a common challenge across spectroscopic techniques:
balancing portability with analytical precision. Both SERS and NIR are
striving to close the performance gap between field and laboratory
settings, albeit through different strategies, SERS through material ad-
vancements and NIR through device optimization.

On a separate front, machine learning and artificial intelligence are
set to further revolutionize food analysis. Techniques like Convolutional
Neural Networks (CNNs), and MobileNetV3 have shown impressive
classification accuracies of over 95% in various applications (Deng et al.,
2024). These models excel in pattern recognition and provide faster,
more precise analysis. However, challenges such as overfitting and the
need for hyperparameter optimization remain obstacles to achieving
model interpretability and reliability. Innovations in AI-powered food
detection systems are exemplified in Fig. 5B by Fan et al. (Fan et al.,
2024b), where technologies like DCF-YOLOv8s, which use deformable
convolutional layers and CloFormer attention mechanisms, have
enhanced meal identification and recognition. Fig. 5C provides further

Table 2 (continued )

Aspect Technique Application Benefits Examples Performance metrics References

Fuzzy Logic
Systems

Monitoring food
safety standards

Real-time monitoring
and alerts

Monitoring temperature
and humidity in storage

20% reduction in spoilage
incidents

Sonwani et al. (2022)

Bayesian Neural
Network

Evaluating sensory
quality

Incorporates
uncertainty in
predictions

Sensory evaluation of ice
cream flavors

Accuracy: 88%, Sensory
score improvement: 15%

(Yu et al., 2018)

Nutritional and
predictive analysis

Support Vector
Machines (SVM)

Nutrient content
prediction

Efficient processing of
large datasets

Predicting fat and protein
content in dairy

90% prediction accuracy Tan et al. (2019)

Machine Learning Assessing nutritional
content

Enhanced
understanding of food
composition

ML model analyzes
nutrient levels in new
recipes

Nutritional Accuracy:
95%, User Engagement:
70%

Samad et al. (2022)

Deep Learning
Models (Neural
Networks)

Predictive analytics
for food safety

High accuracy in
identifying patterns of
contamination

Using neural networks to
analyze historical
outbreak data

Reduction in foodborne
illness rates by 40%

Tao et al. (2021)

AI Algorithms Forecasting
foodborne illness
outbreaks

Helps in proactive
measures to mitigate
risks

Models predicting E. coli
outbreaks

Prediction accuracy:
80–90%, Time to
intervention: 1–2 days

Zar et al. (2024)

Supply chain
transparency and
traceability

Distributed
Ledger
Technology
(Blockchain AI)

Comprehensive
tracking of food
supply chains

Immutable records
enhance
accountability

Implementing blockchain
for tracking organic
produce

Traceability time reduced
to under 30 min

Menon and Jain
(2021)

Blockchain Tracking food supply
chain

Enhances
transparency and
accountability

Blockchain for tracking
farm-to-table processes

Traceability time: <1 h,
Data integrity: 100%

Kamilaris et al. (2019)

Anomaly
Detection
(Supervised
Learning)

Identifying
fraudulent food
products

Early detection of
fraud and mislabeling

Using supervised
learning to detect
anomalies in food
labeling

Fraud detection accuracy
improved to 95%

Sharma et al. (2024)

Consumer
engagement and
regulatory
compliance

Chatbots and
Virtual Assistants

Providing food
safety information to
consumers

Improves consumer
awareness and
education

Chatbots answering food
safety queries

User satisfaction:
90–95%, Response
accuracy: 85–90%

(Li & Zhang, 2023)

Machine Learning
Algorithms

Dynamic risk
assessment and
forecasting in food
production

Proactive risk
management and
mitigation

AI models predict
contamination risks and
potential recalls based on
environmental data

Risk assessment time
reduced by 60%,
Prediction Accuracy:
85–90%, Response Time:
30–50%

Taiwo et al. (2024)

Natural Language
Processing (NLP)

Analyzes reports and
feedback for food
safety insights

Identifies risks and
provides real-time
insights

Analyzes FDA reports and
social media for food
safety issues.

Compliance rate: 90–95%,
Risk accuracy: 80–90%,
Response: <1 h
Sentiment Accuracy:
85–90%

(Abid et al., 2024;
Zhou et al., 2024a)

Data Mining Ensuring compliance
with food safety
regulations

Streamlined
compliance processes

Data mining identifies
compliance gaps in audits

Compliance Rate: 95%
Audit Efficiency: 40%
reduction in time

Kleboth et al. (2022)
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Fig. 5. (A). The process for developing an optical biosensor that integrates AI and nanoparticles for detecting and classifying DNA and proteins associated with pork
is outlined. (B). A comparison of detection outcomes between the DCF-YOLOv8s model and the YOLOv8s model: images (a1) to (a6) show results detected by the
YOLOv8s model, while images (b1) to (b6) show results detected by the DCF-YOLOv8s model. (C). Grad-CAM comparisons between the proposed DCF-YOLOv8s
model and baseline models: letters a, b, c, and d represent the Non-Newtonian FSM, BM, Non-Newtonian FSISM, and DMM, respectively. Numbers 1, 2, 3, and 4
correspond to the feature maps from the baseline YOLOv8s model’s backbone, the feature maps generated after introducing the CloFormer module to the YOLOv8s
model, the feature maps after incorporating deformable convolution into the YOLOv8s model, and the feature maps from the backbone of the proposed DCF-YOLOv8s
model, respectively. Edited with permission from (Fan et al., 2024b; Mat Yeh et al., 2024). Copyright Elsevier© 2024.
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insights into AI’s role in food quality management, showcasing im-
provements in detection speed and precision. Unlike spectroscopic
techniques, AI models can process vast datasets and integrate multi-
modal inputs, offering comprehensive insights into food safety and
quality. Nevertheless, AI-driven approaches require robust validation to
address issues related to data heterogeneity and model transparency
(Fan et al., 2024b). The integration of AI with spectroscopic techniques,
such as using deep learning models to interpret complex spectral data,
has shown promise in boosting analytical accuracy and efficiency.
However, ensuring model reliability and maintaining interpretability
are critical challenges that need to be addressed. As food analysis
technology evolves, there is an urgent need for standardized methods
and comprehensive spectral databases. Currently, only about 30% of
research groups report adhering to standard protocols (Guo et al., 2021),
underscoring the need for improved collaboration and data-sharing
practices to achieve consistent and reliable results.

Despite the high initial costs of implementing advanced food analysis
technologies, the potential economic benefits are significant. Enhanced
quality control, fewer product recalls, and improved regulatory
compliance are among the advantages (Belianinov et al., 2018). The
global food testing market is expected to reach $20 billion by 2025
(Hassoun et al., 2024), highlighting the economic incentive for
continued investment in these technologies. Although implementation is
resource-intensive, the long-term gains from increased efficiency and
reduced waste often outweigh initial expenditures. Overall, the future of
food analysis will be driven by the convergence of advanced spectro-
scopic techniques and AI/ML innovations. Spectroscopic methods are
evolving to improve sensitivity, resolution, and portability, while AI and
ML are transforming data interpretation and decision-making processes.
Overcoming challenges related to model reliability, device performance,
and standardization will be crucial. Ultimately, these advancements aim
to ensure food safety and quality management, providing actionable,
economically viable insights validated through rigorous testing and
collaborative practices.

5. Conclusion

Recent advancements in food analysis technologies have signifi-
cantly enhanced the ability to detect contaminants and ensure food
quality monitoring with improved speed and sensitivity. Innovations
such as Wide Line Surface-Enhanced Raman Scattering (WL-SERS) and
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have set new
benchmarks in sensitivity, withWL-SERS offering notable advancements

in melamine detection and ICP-MS enabling the detection of toxic ele-
ments like lead at ultralow levels. Chromatographic techniques like two-
dimensional liquid chromatography (2D-LC) and High-Resolution Mass
Spectrometry (HRMS) coupled with Ultra-High-Performance Liquid
Chromatography (UHPLC) have proven effective for analyzing complex
food matrices, although their high cost and complexity remain signifi-
cant barriers to widespread use. Significant progress has also been made
in sensor technology. Near-infrared (NIR) fluorescent probe Dpyt and
electrochemiluminescent (ECL) aptasensors offer rapid and precise
detection capabilities, enhancing real-time food safety monitoring. AI
andmachine learning (ML) have revolutionized food quality assessment,
achieving remarkable accuracy levels, such as over 99.85% in detecting
food adulteration. Despite these advancements, challenges persist. WL-
SERS still struggles with weak signal strength and matrix interference,
while techniques like HRMS and MSI are hindered by expensive
instrumentation and complex sample preparation. Furthermore, 2D-LC
systems face issues related to high back pressure and sensitivity loss,
while sensor technologies require improvements in stability and
affordability. AI and ML models demand extensive datasets and
computational power, and the lack of transparency in AI decision-
making processes remains a concern. The future of food analysis will
likely depend on the strategic integration of spectroscopy, sensor tech-
nologies, and AI/ML systems. Enhancing sensor stability, reducing costs,
and improving the interpretability of AI models will be crucial. Minia-
turization and standardization of devices are expected to play a key role
in making these technologies more accessible and operationally effi-
cient. As advancements continue, a coordinated effort to address these
challenges will be essential to further enhance the reliability and
effectiveness of food safety and quality control methods.
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Nomenclature

WL-SERS Wide Line Surface-Enhanced Raman Scattering
LIBS Laser-Induced Breakdown Spectroscopy
ICP-OES Inductively Coupled Plasma- optical emission spectrometry
MSI Mass Spectrometry Imaging
WPMPI-MS Wide-Pore Matrix-Protected Ionization Mass Spectrometry
MALDI-TOF/TOF Matrix-Assisted Laser Desorption/Ionization - Time of Flight/Time of Flight
LC-ESI-MS/MS Liquid Chromatography - Electrospray Ionization - Tandem Mass Spectrometry
2D-LC Two-Dimensional Liquid Chromatography
MDGC Multidimensional Gas Chromatography
NIR Near-Infrared
ECL Electrochemiluminescence
LOD Limits of Detection
SNR signal-to-noise ratio
RMSEP Root Mean Square Error of Prediction
RSD Relative Standard Deviations
DoLP Degree of Linear Polarization
TVB-N Total Volatile Basic Nitrogen
AI Artificial Intelligence
ML Machine Learning
CNN Convolutional Neural Networks
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(continued )

IoCT Internet of Chemical Things
SVM Support Vector Machines
NLP Natural Language Processing
FRA Fisher Ratio Analysis
PLS-DA Partial Least Squares Discriminant Analysis
ANN Artificial Neural Networks

Data availability

Data will be made available on request.

References

Abid, H. M. R., Khan, N., Hussain, A., Anis, Z. B., Nadeem, M., & Khalid, N. (2024).
Quantitative and qualitative approach for accessing and predicting food safety using
various web-based tools. Food Control, 110471.

Adunphatcharaphon, S., Elliott, C. T., Sooksimuang, T., Charlermroj, R.,
Petchkongkaew, A., & Karoonuthaisiri, N. (2022). The evolution of multiplex
detection of mycotoxins using immunoassay platform technologies. Journal of
Hazardous Materials, 432, Article 128706.

Ahuja, V., Singh, A., Paul, D., Dasgupta, D., Urajová, P., Ghosh, S., Singh, R., Sahoo, G.,
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(2023). Recent advances in GC× GC and chemometrics to address emerging
challenges in nontargeted analysis. Analytical Chemistry, 95(1), 264–286.

Tun, W. S. T., Talodthaisong, C., Daduang, S., Daduang, J., Rongchai, K., Patramanon, R.,
& Kulchat, S. (2022). A machine learning colorimetric biosensor based on
acetylcholinesterase and silver nanoparticles for the detection of dichlorvos
pesticides. Materials Chemistry Frontiers, 6(11), 1487–1498.

Valdés, A., Alvarez-Rivera, G., Socas-Rodríguez, B., Herrero, M., Ibanez, E., &
Cifuentes, A. (2021). Foodomics: Analytical opportunities and challenges. Analytical
Chemistry, 94(1), 366–381.

Wang, J., Feng, J., Lian, Y., Sun, X., Wang, M., & Sun, M. (2023). Advances of the
functionalized covalent organic frameworks for sample preparation in food field.
Food Chemistry, 405, Article 134818.

Wang, N., Zang, Z.-H., Sun, B.-B., Li, B., & Tian, J.-L. (2024). Recent advances in
computational prediction of molecular properties in food chemistry. Food Research
International, 114776.

Wen, J., Han, M., Feng, N., Chen, G., Jiang, F., Lin, J., & Chen, Y. (2024). A digital
platform for One-Pot signal enhanced foodborne pathogen detection based on

mesophilic argonaute-driven polydisperse microdroplet reactors and machine
learning. Chemical Engineering Journal, 482, Article 148845.

Wu, Z., Pu, H., & Sun, D.-W. (2021). Fingerprinting and tagging detection of mycotoxins
in agri-food products by surface-enhanced Raman spectroscopy: Principles and
recent applications. Trends in Food Science & Technology, 110, 393–404.

Wu, S., Xia, J., Li, R., Cao, H., & Ye, D. (2024). Perspectives for the role of single-atom
nanozymes in assisting food safety inspection and food nutrition evaluation.
Analytical Chemistry, 96(5), 1813–1824.

Xu, Y., Zhong, P., Jiang, A., Shen, X., Li, X., Xu, Z., Shen, Y., Sun, Y., & Lei, H. (2020).
Raman spectroscopy coupled with chemometrics for food authentication: A review.
TrAC, Trends in Analytical Chemistry, 131, Article 116017.

Xuesong, H., Pu, C., Jingyan, L., Yupeng, X., Dan, L., & Xiaoli, C. (2024). Commentary on
the review articles of spectroscopy technology combined with chemometrics in the
last three years. Applied Spectroscopy Reviews, 59(4), 423–482.

Yan, M., Li, H., Li, M., Cao, X., She, Y., & Chen, Z. (2021). Advances in surface-enhanced
Raman scattering-based aptasensors for food safety detection. Journal of Agricultural
and Food Chemistry, 69(47), 14049–14064.

Yang, T., Luo, Z., Bewal, T., Li, L., Xu, Y., Jafari, S. M., & Lin, X. (2022). When
smartphone enters food safety: A review in on-site analysis for foodborne pathogens
using smartphone-assisted biosensors. Food Chemistry, 394, Article 133534.

Ye, Y., Guo, H., & Sun, X. (2019). Recent progress on cell-based biosensors for analysis of
food safety and quality control. Biosensors and Bioelectronics, 126, 389–404.

Yi, L., Wang, W., Diao, Y., Yi, S., Shang, Y., Ren, D., Ge, K., & Gu, Y. (2024). Recent
advances of artificial intelligence in quantitative analysis of food quality and safety
indicators: A review. TrAC, Trends in Analytical Chemistry, Article 117944.

Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., Filipe, C. D. M., & Didar, T. F. (2019).
Intelligent food packaging: A review of smart sensing technologies for monitoring
food quality. ACS Sensors, 4(4), 808–821.

Yu, P., Low, M. Y., & Zhou, W. (2018). Design of experiments and regression modelling in
food flavour and sensory analysis: A review. Trends in Food Science & Technology, 71,
202–215.

Yu, H., Tai, Q., Yang, C., Gao, M., & Zhang, X. (2023). Technological development of
multidimensional liquid chromatography-mass spectrometry in proteome research.
Journal of Chromatography A, 1700, Article 464048.

Zalnezhad, A., Rahman, A., Nasiri, N., Vafakhah, M., Samali, B., & Ahamed, F. (2022).
Comparing performance of ANN and SVM methods for regional flood frequency
analysis in South-East Australia. Water, 14(20), 3323.

Zar, A., Zar, L., Mohsen, S., Magdi, Y., & Zughaier, S. M. (2024). A comprehensive review
of algorithms developed for rapid pathogen detection and surveillance. In
Surveillance, prevention, and control of infectious diseases: An AI perspective (pp.
23–49). Springer.

Zeng, X., Cao, R., Xi, Y., Li, X., Yu, M., Zhao, J., Cheng, J., & Li, J. (2023). Food flavor
analysis 4.0: A cross-domain application of machine learning. Trends in Food Science
& Technology, 138, 116–125.

Zhan, L., Huang, X., Xue, J., Liu, H., Xiong, C., Wang, J., & Nie, Z. (2021). MALDI-TOF/
TOF tandem mass spectrometry imaging reveals non-uniform distribution of
disaccharide isomers in plant tissues. Food Chemistry, 338, Article 127984.

Zhang, Y., Zheng, M., Zhu, R., & Ma, R. (2022). Adulteration discrimination and analysis
of fresh and frozen-thawed minced adulterated mutton using hyperspectral images
combined with recurrence plot and convolutional neural network.Meat Science, 192,
Article 108900.

Zhao, X., Chen, L., Wongmaneepratip, W., He, Y., Zhao, L., & Yang, H. (2021). Effect of
vacuum impregnated fish gelatin and grape seed extract on moisture state,
microbiota composition, and quality of chilled seabass fillets. Food Chemistry, 354,
Article 129581.

Zhao, Z., Lu, M., Wang, N., Li, Y., Zhao, L., Zhang, Q., Man, S., Ye, S., & Ma, L. (2023).
Nanomaterials-assisted CRISPR/Cas detection for food safety: Advances, challenges
and future prospects. TrAC, Trends in Analytical Chemistry, Article 117269.

Zhong, K., Li, Y., Hu, X., Li, Y., Tang, L., Sun, X., Li, X., Zhang, J., Meng, Y., & Ma, R.
(2024). A colorimetric and NIR fluorescent probe for ultrafast detecting bisulfite and
organic amines and its applications in food, imaging, and monitoring fish freshness.
Food Chemistry, 438, Article 137987.

Zhou, J., Brereton, P., & Campbell, K. (2024a). Progress towards achieving intelligent
food assurance systems. Food Control, 110548.

Zhou, J., Guo, W., Hu, Z., Jin, L., & Hu, S. (2024b). Evaluation of an internal standard-
free laser ablation-ICP-OES method for elemental analysis in solid food samples.
Journal of Food Composition and Analysis, 126, Article 105910.

Zhou, Z., Tian, D., Yang, Y., Cui, H., Li, Y., Ren, S., Han, T., & Gao, Z. (2024c). Machine
learning assisted biosensing technology: An emerging powerful tool for improving
the intelligence of food safety detection. Current Research in Food Science, Article
100679.

Zou, L., Wu, C., Wang, Q., Zhou, J., Su, K., Li, H., Hu, N., & Wang, P. (2015). An
improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-
based impedance biosensor. Biosensors and Bioelectronics, 67, 458–464.

I. Ziani et al. Trends in Food Science & Technology 156 (2025) 104850 

20 

http://refhub.elsevier.com/S0924-2244(24)00526-0/sref140
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref140
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref140
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref141
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref141
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref141
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref141
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref142
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref142
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref142
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref143
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref143
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref143
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref143
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref144
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref144
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref144
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref145
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref145
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref145
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref145
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref146
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref146
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref146
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref147
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref147
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref147
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref148
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref148
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref149
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref149
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref149
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref150
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref150
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref150
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref151
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref151
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref152
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref152
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref152
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref152
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref152
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref153
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref153
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref153
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref154
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref154
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref154
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref155
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref155
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref155
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref156
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref156
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref156
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref157
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref157
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref157
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref158
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref158
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref158
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref159
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref159
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref159
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref159
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref160
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref160
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref160
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref161
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref161
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref161
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref162
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref162
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref162
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref163
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref163
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref163
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref163
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref164
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref164
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref164
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref165
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref165
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref165
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref166
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref166
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref166
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref167
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref167
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref167
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref168
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref168
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref168
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref169
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref169
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref169
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref170
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref170
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref171
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref171
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref171
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref172
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref172
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref172
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref173
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref173
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref173
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref174
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref174
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref174
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref175
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref175
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref175
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref176
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref176
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref176
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref176
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref177
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref177
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref177
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref178
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref178
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref178
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref179
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref179
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref179
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref179
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref180
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref180
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref180
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref180
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref181
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref181
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref181
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref182
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref182
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref182
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref182
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref183
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref183
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref184
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref184
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref184
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref185
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref185
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref185
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref185
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref186
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref186
http://refhub.elsevier.com/S0924-2244(24)00526-0/sref186

	Integrating AI and advanced spectroscopic techniques for precision food safety and quality control
	1 Introduction
	2 Advances in food analysis techniques
	2.1 Cutting-edge developments in spectroscopic techniques
	2.2 Breakthroughs in mass spectrometry and imaging techniques
	2.3 Insights into recent chromatography technique developments

	3 AI-enhanced food detection and sensor technologies
	3.1 Next-generation sensors for food safety and quality control
	3.2 Boosting food chemistry with artificial intelligence and machine learning

	4 Prospects and obstacles in advanced food analysis
	4.1 Critical challenges
	4.2 Future innovations

	5 Conclusion
	Declaration of competing interest
	Acknowledgement
	Nomenclature
	Data availability
	References


