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Abstract: Sub-Saharan Africa, with its hot and humid climate, is a conducive zone for tick prolifera-
tion. These vectors pose a major challenge to both animal and human health in the region. However,
despite the relevance of emerging diseases and evidence of tick-borne disease emergence, very few
studies have been dedicated to investigating zoonotic pathogens transmitted by ticks in this area. To
raise awareness of the risks of tick-borne zoonotic diseases in sub-Saharan Africa, and to define a
direction for future research, this systematic review considers the trends of research on tick-borne bac-
teria, parasites, and viruses from 2012 to 2023, aiming to highlight the circulation of these pathogens in
ticks, cattle, sheep, goats, and humans. For this purpose, three international databases were screened
to select 159 papers fitting designed inclusion criteria and used for qualitative analyses. Analysis
of these studies revealed a high diversity of tick-borne pathogens in sub-Saharan Africa, with a
total of 37 bacterial species, 27 parasite species, and 14 viruses identified. Among these, 27% were
zoonotic pathogens, yet only 11 studies investigated their presence in humans. Furthermore, there is
growing interest in the investigation of bacteria and parasites in both ticks and ruminants. However,
research into viruses is limited and has only received notable interest from 2021 onwards. While
studies on the detection of bacteria, including those of medical interest, have focused on ticks, little
consideration has been given to these vectors in studies of parasites circulation. Regarding the limited
focus on zoonotic pathogens transmitted by ticks, particularly in humans, despite documented cases
of emerging zoonoses and the notable 27% proportion reported, further efforts should be made to
fill these gaps. Future studies should prioritize the investigation of zoonotic pathogens, especially
viruses, which represent the primary emerging threats, by adopting a One Health approach. This
will enhance the understanding of their circulation and impact on both human and animal health. In
addition, more attention should be given to the risk factors/drivers associated to their emergence as
well as the perception of the population at risk of infection from these zoonotic pathogens.

Keywords: sub-Sahara Africa; tick-borne diseases; systematic review; pathogens; research; public
health

1. Introduction

Ticks are hematophagous arthropods found worldwide, from desert areas to polar
regions. Approximately 900 species of tick have been identified, with 700 belonging to
the Ixodidae family (hard ticks) and 200 to the Argasidae family (soft ticks) [1]. Ticks are
primarily ectoparasites of wild vertebrates. However, through contact with wild fauna,
some species have adapted to domestic or livestock animals, particularly cattle and small
ruminants, resulting in a significant economic impact [2]. Rural populations in tropical
areas are most affected due to factors favouring tick proliferation and the extensive livestock
farming system that ensures contact with wildlife and tick dissemination [2,3].
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As exclusive ectoparasites of vertebrates, ticks can become infected while feeding
and transmit a wide variety of bacteria (e.g., spirochetes, Rickettsia), parasites (e.g., Babesia,
Theileria), and viruses (e.g., flaviviruses, nairoviruses) to their host [4]. Moreover, a single
species, depending on its life cycle, can infest a range of hosts during its life cycle, from
wild animals to domestic animals and humans. Thus, ticks play a significant role in species
barrier crossing and are implicated in various animal and zoonotic diseases. They are
responsible for viral infections such as Crimean-Congo haemorrhagic fever, West Nile
fever, Omsk haemorrhagic fever, and Colorado tick fever; bacterial infections such as Q
fever, Lyme disease, relapsing fever borreliosis, as well as animal borrelioses; and protozoal
infections such as theileriosis and babesiosis [1]. The majority of tick-borne infections are
zoonotic, and their incidence and distribution are steadily increasing worldwide [5–7].
In Europe, the incidence of Lyme borreliosis in 2018 was estimated to range from 1 to
365 cases per 100,000 person-years [8]. Meanwhile, in 2022, the United States reported
a total of 62,551 cases of Lyme borreliosis [9]. In addition, several cases of emergence
have been reported. For example, severe fever with thrombocytopenia syndrome has
been identified in China in 2009, and Heartland virus and Bourbon virus in the United
States, respectively, in 2012 and 2014 [10–12]. These emergence cases are added to the
re-emergence and geographical expansion of Crimean-Congo haemorrhagic fever and
tick-borne encephalitis [6,13].

Economic losses associated with tick management and treatment of tick-borne infec-
tions are estimated at nearly USD 20 billion annually in developing countries [14]. In these
parts of the world, besides losses due to reduced milk and meat production, over three
million animals (mostly non-tropical breeds) are reported dead from tick-borne infections
every year [14].

In sub-Saharan Africa (SSA), ticks and the diseases they transmit pose a major chal-
lenge to animal and human health. Indeed, with its climate (hot and humid) favourable to
tick proliferation, this region of Africa harbours a wide variety of ticks species capable of
infesting both animals and humans [15]. In addition, in this region of Africa, the livestock
farming system is generally low-input and based on the exploitation of natural resources
through internal and transboundary transhumance [16,17]. This leads to the exposure of
animals and pastoralists to tick-prone habitats and the dissemination of tick species and
the pathogens they transmit. Additionally, the invasion of new species and the emergence
of the pathogens they transmit have been observed [18]. The most notable is the incidental
introduction of the R. microplus tick, an invasion accompanied by the appearance of several
foci of babesiosis due to B. bovis, of which it is the vector [19].

More than nine genera of tick are found in SSA, with a high burden of different species
of the genera Amblyomma, Hyalomma and Rhipicephalus involved in the epidemiology of
various zoonotic and non-zoonotic diseases such as rickettsiosis, ehrlichiosis, babesiosis,
borreliosis, and anaplasmosis, and viruses including Dugbe virus, Bhanja virus, and
Crimean-Congo haemorrhagic fever virus [20].

Despite the increasing presence of tick species vectors of zoonotic pathogens in
SSA [19,21–25], evidence of the emergence and re-emergence of tick-borne pathogens,
and the circulation of agents responsible for zoonotic diseases, there is still a low research
dynamic on tick-borne zoonotic diseases [26–28]. Through this systematic review, the
research dynamic on the epidemiology of tick-borne diseases (TBDs) in SSA is highlighted
to provide an overview of the circulation of tick-borne pathogenic agents, and to discuss
the implications of these results for public health and future scientific research.

To better understand the interactions related to pathogen circulation in the area, we
will consider prevalence studies conducted on ticks, livestock, and humans from 2012 to
2023. Cattle, sheep, and goats are the three most representative species of livestock in
SSA, collectively accounting for 88% of the total livestock population in the region [29].
These three species will constitute the animal populations in this review. Regarding the
pathogens, we will explore studies on bacteria, parasites, and viruses transmitted by ticks
in each targeted population. Thus, we will exhaustively determine the extent of research
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conducted for the detection of each group of pathogens and compare the research dynamic
between these groups.

Moreover, the efficiency and accessibility of diagnostic techniques are crucial in de-
tecting pathogens. Indeed, due to their effectiveness, evidence of technique mastery, and
widespread use of these techniques in the area, we limit ourselves to studies that have used
molecular techniques, specifically polymerase chain reaction (PCR) and its derivatives. For
its exploratory nature, interest will also be given to papers that have used metagenomics.

2. Materials and Methods
2.1. Research Question and Applied Formula

This review was performed following the PRISMA guideline (Table S1 in Supple-
mentary Materials). The research questions are defined using a Population, Intervention,
Comparison, and Outcome (PICO) approach. More precisely, the target populations are
represented by ticks, cattle, sheep, goats, and humans living in SSA. The chosen diagno-
sis methods were the molecular (PCR and reverse line blotting (RLB)) and the genomic
(metagenomic) tests. Unfortunately, a comparison of the results between these two methods
was not available. The outcome was the presence or absence of tick-borne bacteria, para-
sites, or viruses. Following these PICO components, the following research questions have
been formulated: How does an interest in research on each tick-borne pathogen domains
relate to the target populations in SSA? Which tick pathogen species have been detected in
ticks, cattle, sheep, goats, and humans in SSA? What is the distribution of these pathogens?
Which laboratory test are most often used to detect each class of these pathogens? To
address these questions, three databases, i.e., PubMed, Scopus, and ScienceDirect, were
examined. The following basic search formula was designed and adapted to each database:
(Africa) AND (tick OR human OR cattle OR sheep OR goat) AND (anaplasma OR rickettsia
OR ehrlichia OR coxiella OR wolbachia OR borrelia OR babesia OR theileria OR virus).
The search equation used for each database was constructed to include free-text terms,
keywords (in the title, abstract, or author keywords) and any appropriate subject indexing
(e.g., MeSH in pubMed) (Table 1).

Table 1. Search string used in selected database.

Data Base Search String

PubMed

“africa south of the sahara”[MeSH Terms] AND (“Tick”[Title/Abstract] OR
“Cattle”[Title/Abstract] OR “Goat”[Title/Abstract] OR
“Sheep”[Title/Abstract] OR “Human”[Title/Abstract]) AND
(“anaplasma”[Title/Abstract] OR “rickettsia”[Title/Abstract] OR
“ehrlichia”[Title/Abstract] OR “coxiella”[Title/Abstract] OR
“wolbachia”[Title/Abstract] OR “babesia”[Title/Abstract] OR
“borrelia”[Title/Abstract] OR “theileria”[Title/Abstract] OR
“arboviruses”[MeSH Terms]) AND (2012:2023[pdat])

Scopus

TITLE-ABS-KEY (africa AND NOT (algeria OR egypt OR libya OR morocco
OR tunisia)) AND (tick OR cattle OR sheep OR goat) AND (anaplasma OR
ehrlichia OR rickettsia OR coxiella OR wolbachia OR babesia OR borrelia OR
theileria OR virus OR arbovirus OR “tick-borne virus”)) AND PUBYEAR >
2011 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE, “ar”))

TITLE-ABS-KEY (africa AND NOT (algeria OR egypt OR libya OR morocco
OR tunisia)) AND human AND (anaplasma OR ehrlichia OR rickettsia OR
coxiella OR wolbachia OR babesia OR borrelia OR theileria OR arbovirus OR
“tick-borne virus”)) AND PUBYEAR > 2011 AND PUBYEAR < 2024 AND
(LIMIT-TO (DOCTYPE, “ar”))
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Table 1. Cont.

Data Base Search String

Science Direct

• Year: 2012–2023
• Title, abstract, keywords: africa AND (tick OR human OR cattle OR

sheep OR goat) AND (anaplasma OR rickettsia OR ehrlichia)

• Year: 2012–2023
• Title, abstract, keywords: africa AND (tick OR human OR cattle OR

sheep OR goat) AND (coxiella OR wolbachia OR borrelia)

• Year: 2012–2023
• Title, abstract, keywords: africa AND (tick OR human OR cattle OR

sheep OR goat) AND (babesia OR theileria)

• Year: 2012–2023
• Title, abstract, keywords: africa AND tick (human OR cattle OR sheep

OR goat) AND (virus OR abovirus)

2.2. Eligible Criteria, Article Screening, and Data Extraction

The papers included in this review are restricted to (I) original articles; (II) articles writ-
ten in either English or French; (III) reported cross-sectional studies; (IV) published studies
using ticks or blood collected from humans, cattle, sheep, and goats in SSA; (V) published
studies using PCR or any variant of PCR, RLB, and metagenomic tests; (VI) published
studies aiming to detect the presence or absence of tick-borne bacteria, protozoa, and
viruses in target populations. Papers not based on the PICO components: publications
related to poster sessions, interviews, abstracts, symposia, oral presentations and reviews,
as well as unavailable full texts or abstract-only papers were excluded.

The databases were interrogated from 25 July 2023 to 7 September 2023. Based on the
recent paper of Cossu et al., (2023) [30], which evidenced a high interest in tick pathogens in
Africa from 2012, the results of each database interrogated were filtered to select just those
from 2012 to 2023. The retained references were exported from the databases and imported
in the same file in Zotero manager. In Zotero, firstly, duplications were deleted. Then, based
on the defined eligible criteria, articles were screened by reading their title and abstract to
determine whether they were relevant to the research question. Two independent reviewers
performed this screening step. The full texts of the selected articles were retrieved when
they include data on tick-borne pathogen prevalence and screened with regards to the
eligible criteria.

Six categories of data were extracted: target populations, pathogens, diagnosis tests,
prevalence, sampling, and study design.

2.3. Data Analysis

The Excel raw data containing the data extracted from the articles were imported into
R studio software (version 4.3.3) sourced from Boston, MA, USA, for qualitative analysis.
The relationship between pathogens and variables, such as the number of studies, countries,
and target populations, was assessed using descriptive statistics and illustrated through
tables, bar plots, and choropleth maps. This approach allows for an appreciation of trends
in tick-borne pathogen research, highlights the most frequently reported pathogens in each
target population, identifies the most commonly used diagnostic methods, and depicts the
distribution of these pathogens across SSA.

3. Results
3.1. Overview on Screened Articles and Relevance of Pathogens in Targeted Populations

A total of 2558 potentially relevant articles were found. After removing duplicates,
1937 papers were screened by title and abstract (Figure 1). The 230 remaining references
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after title and abstract screening were subject to full text screening. Based on this selection
process and the defined eligibility criteria, a total of 159 original papers were retained for
the systematic literature review.
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Figure 1. PRISMA flow diagram.

Most studies focus on bacteria (N = 101), then parasites (N = 74) and viruses (N = 18)
(Figure 2). Bacteria were primarily screened in ticks, followed by animals, and then humans.
Parasites were mostly screened in animals, followed by ticks, and then humans. In humans,
bacteria were the most investigated. The proportion of detection for each type of pathogen
in the target populations follows the same trend (Figure 3).



Pathogens 2024, 13, 697 6 of 45

Pathogens 2024, 13, x FOR PEER REVIEW 6 of 50 
 

 

 
Figure 2. Number of studies according to types of pathogens. 

 
Figure 3. Pathogens studies according to target population. Legend: “Screened” refers to the total 
number of studies that investigated the presence of each pathogen, regardless of whether the path-
ogen was detected or not. “Detected” indicates the number of studies in which the pathogen was 
actually detected. 

3.2. Temporal Evolution of the Selected Papers’ Interests 
Figure 4 illustrates the temporal evolution of studies across the target populations, 

highlighting an increasing focus on the detection of bacteria and parasites in animals. Viral 
screenings in animals occurred in both 2021 and 2023. For ticks, research has consistently 
focused on bacteria, with a notable increase in interest for parasites and viruses in 2021. 
Human studies showed no clear trend, with a maximum of two papers each on bacteria 
and viruses and one on parasites. Despite specific tendencies within each target popula-
tion, there has been a general surge in research interest in tick-borne bacteria, parasites, 
and viruses, with bacterial studies leading, followed by those on parasites and viruses 
(Figure 4D). 

 

Figure 2. Number of studies according to types of pathogens.

Pathogens 2024, 13, x FOR PEER REVIEW 6 of 50 
 

 

 
Figure 2. Number of studies according to types of pathogens. 

 
Figure 3. Pathogens studies according to target population. Legend: “Screened” refers to the total 
number of studies that investigated the presence of each pathogen, regardless of whether the path-
ogen was detected or not. “Detected” indicates the number of studies in which the pathogen was 
actually detected. 

3.2. Temporal Evolution of the Selected Papers’ Interests 
Figure 4 illustrates the temporal evolution of studies across the target populations, 

highlighting an increasing focus on the detection of bacteria and parasites in animals. Viral 
screenings in animals occurred in both 2021 and 2023. For ticks, research has consistently 
focused on bacteria, with a notable increase in interest for parasites and viruses in 2021. 
Human studies showed no clear trend, with a maximum of two papers each on bacteria 
and viruses and one on parasites. Despite specific tendencies within each target popula-
tion, there has been a general surge in research interest in tick-borne bacteria, parasites, 
and viruses, with bacterial studies leading, followed by those on parasites and viruses 
(Figure 4D). 

 

Figure 3. Pathogens studies according to target population. Legend: “Screened” refers to the
total number of studies that investigated the presence of each pathogen, regardless of whether the
pathogen was detected or not. “Detected” indicates the number of studies in which the pathogen
was actually detected.

3.2. Temporal Evolution of the Selected Papers’ Interests

Figure 4 illustrates the temporal evolution of studies across the target populations,
highlighting an increasing focus on the detection of bacteria and parasites in animals. Viral
screenings in animals occurred in both 2021 and 2023. For ticks, research has consistently
focused on bacteria, with a notable increase in interest for parasites and viruses in 2021.
Human studies showed no clear trend, with a maximum of two papers each on bacteria
and viruses and one on parasites. Despite specific tendencies within each target popula-
tion, there has been a general surge in research interest in tick-borne bacteria, parasites,
and viruses, with bacterial studies leading, followed by those on parasites and viruses
(Figure 4D).
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3.3. Relationship between Screened and Detected Pathogen Species in Target Populations

Out of the 99 tested, a total of 88 (including confirmed and candidate species) tick-
borne pathogens were detected in humans, cattle, sheep, goats, and their ticks in SSA
(Figure 5). Of the 81 pathogenic species sought in ticks, 74 were found, while 48 out of
59 pathogenic species were detected in animals. However, only 7 out of the 13 pathogenic
species screened from human blood samples were detected. Ticks carried 38 exclusive
pathogens, while 11 were exclusively found in animals, and two were exclusively found in
humans. The three target populations shared four pathogens. However, ticks and animals
shared 36 pathogens, while five pathogens were shared by humans and animals. All of
the pathogens shared by ticks and humans are reported in animals. When comparing the
proportion of detection/screening between ticks and animals and between animals and
humans, using the Bonferroni correction, it was found to be equal with p-values of 0.4 and
0.23, respectively. However, the proportion was found to be different between ticks and
humans, with a p-value of 0.04. In addition, the Spearman correlation coefficient between
screened and detected pathogens was significantly positive in both ticks (0.54) and animals
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(0.92), with p-values of 3.7 × 10−7 and 2.2 × 10−16, respectively. However, this correlation
was not significant in humans (p = 0.32).
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Figure 5. Venn diagram of screened (A) and detected (B) pathogens in animals, ticks, and humans.
Legend: “Screened” refers to the total number of studies that investigated the presence of each
pathogen, regardless of whether the pathogen was detected or not. “Detected” indicates the number
of studies in which the pathogen was actually detected.

3.4. Pathogens Detected According to Populations: Highlighting Tick-Borne Zoonotic Pathogens

In this section, we present the key findings of the systematic review on the microorgan-
isms infecting livestock, ticks, and humans in SSA. To enhance readability while maintain-
ing comprehensive documentation, the references supporting the observations presented in
this chapter have been collated in Table A1. Readers are encouraged to consult the Table A1
and Supplementary File S1 for detailed information on individual studies. For particularly
points, references will be provided directly in the text.

Livestock (i.e., cattle, sheep, and goats), ticks, and humans in SSA are susceptible
to infection by a variety of microorganisms. These microorganisms include 15 species of
Anaplasma and eight species of Ehrlichia from the Anaplasmataceae family; Coxiella burnetii
from the Coxiellaceae family; eight species of Rickettsia and one species of Wolbachia from
the Rickettsiaceae family; and five species of Borrelia. This classification encompasses both
confirmed species and those with candidate status. Additionally, there are 13 species of
Babesia and 15 species of Theileria which are classified as parasites. Fifteen viruses have
been reported, with eight belonging to the Bunyaviridae family, one to the Flaviviridae
family, two to the Nairoviridae family, one to the Peribunyaviridae family, two to the
Poxviridae family, and one to the Togaviridae family. None of the viruses were detected
in humans [31–33], and only one Kaptombes virus (KPTV) was identified in animals. All
of these viruses, except for KPTV, have been reported in ticks, with a high frequency of
Crimean-Congo haemorrhagic fever virus (CCHFV) (six studies).

In animal populations, studies have reported Anaplasma marginale and Ehrlichia rumi-
nantium 31 and 20 times, respectively. Anaplasma centrale (11 studies), Anaplasma platys-Like
(11 studies), and Anaplasma ovis (11 studies) were also frequently reported. Ticks were
most commonly investigated for E. ruminantium (12 studies), A. marginale (10 studies),
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and Ehrlichia canis (six studies) within the Anaplasmatacea family. Hyalomma truncatum,
Rhipicephalus decoloratus, and four species belonging to the genus Amblyomma (A. hebraeum,
A. gema, A. coherence, A. variegatum) have been found to carry E. ruminantium. A. hebraeum,
A. variegatum, Rhipicephalus evertsi, Rhipicephalus sanguineus, and H. truncatum have been
detected carrying E. canis. A. marginale has been reported in two tick genera. In humans,
Anaplasma phagocytophilum was screened and detected by only one study [34].

Among the Anaplasmataceae reported, A. marginale, E. ruminatium, and A. centrale are
the most commonly distributed in SSA countries, with 17, 16, and 14 countries, respectively.
A. ovis, A. Platys-Like, and E. canis are reported to be present in nine, seven, and five
different SSA countries, respectively. Additionally, five zoonotic agents of Anaplasmatacea
have been found in ticks: Anaplasma capra, A. platys-Like (reported in Rhipicephalus ticks),
A. phagocytophylum, Ehrlichia chaffeensis (detected in A. hebraeum), and E. canis. A. capra was
detected in pooled ticks of Rhipicephalus spp. while A. platys-Like was detected in R. evertsi
and Rhipicephalus microplus. A. phagocytophilum has been reported in Amblyomma species
such as A. variegatum, A. coharensis, A. hebraeum, and A. lepidium. A. phagocytophilum has
also been detected in cattle, sheep, and humans. A. platys-Like was found in the all three
animal populations considered. Both E. chaffeensis and E. canis were found in cattle, while
E. canis was also found in goats.

Besides the candidatus species, all known and reported Rickettsiacea are zoonotic.
Rickettsia africae was the most commonly detected. It has been found in ticks from the genera
Amblyomma (A. cohaerens, A. gemma, A. hebraeum, A. lepidum, A. variegatum), Hyalomma (H.
impressum, H. marginatum, H. truncatum), and Rhipicephalus (R. annulatus, R. appendiculatus,
R. decoloratus, R. evertsi, R. microplus, R. sanguineus). In animals, Rickettsia africae and
Rickettsia felis have been found in only one study. Although Rickettsia felis and Rickettsia
bellili have not been sought in ticks, one study has reported their occurrence in humans.
Among Coxiellaceae, C. burnetti, which is known to be zoonotic, was the only species
detected and the most prevalent bacterium studied in humans. It has been reported in
eight countries in SSA. Eleven studies reported its presence in ticks, one in animals, and
two in humans. Borrelia theileri and Borrelia crocidurae (zoonotic) were the known pathogens
of the genus Borrelia that were reported. B. theileri was identified in a pool of Rhipicephalus
geigyi/R. decoloratus collected in Mali and in blood samples from cattle in Cameroon, while
B. crocidurae was only screened and detected in a human sample from Senegal [35].

3.5. Tick Genera and Pathogen Family

Three main tick genera have been studied in SSA for the detection of tick-borne
pathogens (Figure 6): Amblyomma, Hyalomma, and Rhipicephalus (including Boophilus).
Among the tick-borne bacteria, Rickettsiacea was mostly screened in each target tick genus,
followed, respectively, by Anaplasmatatcea, Coxiellacea, and Borreliacea. Except for the
latter, which was most commonly screened in Rhipicephalus, Amblyomma has been better
studied for detecting all pathogen families, followed by Rhipicephalus. Regarding the
parasites, Theileridae was more frequently reported than Babesidae in each tick genus, with
a higher prevalence in Rhipicephalus followed by Hyalomma. In Amblyomma, both parasite
families were equally prevalent. For viruses, Nairoviridae was the most commonly detected,
followed by Bunyaviridae and Flaviviridae. Nairoviridae was detected in four out of eight
studies in Rhipicephalus, four out of six studies in Hyalomma, and two out of six studies in
Amblyomma. Unlike other genera, Flaviviridae was not detected in Amblyomma.
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3.6. Method Used Most to Detect Bacteria, Parasites, and Viruses in the Target Population

Tick-borne pathogens have been detected using various methods (Figure 7). Bacteria
were mostly detected in ticks by quantitative polymerase chain reaction (qPCR), followed
by conventional polymerase chain reaction (cPCR), reverse line blot hybridization assay
(RLB), and cPCR + sequencing. RLB was most preferred to detect parasites, while reverse
transcription polymerase chain reaction (RT-PCR) was reported to detect viruses.

When considering livestock populations, the preferred methods for detecting bacteria
and parasites are cPCR, nested polymerase chain reaction (nPCR), and RLB. Regarding
viruses, high-resolution melting polymerase chain reaction (HRM-PCR) and nested reverse
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transcription polymerase chain reaction (nRT-PCR) were used, but only RT-PCR was able
to detect them. In humans, parasites were screened using cPCR and nPCR, while viruses
were screened using cPCR, qPCR, and RT-PCR.
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Figure 7. Methods used to detect a domain’s pathogens in ticks (A), animals (B), and humans (C).
Legend: This figure represents the number of times each method has been used to detect pathogens
belonging to each pathogen domain (bacteria, parasites, and viruses) in ticks (A), animals (B), and
humans (C). The various methods include the following: cPCR: conventional polymerase chain reac-
tion; cPCR+sequencing: conventional polymerase chain reaction followed by the sequencing of the
positive amplicons; nPCR: nested polymerase chain reaction; nPCR+sequencing: nested polymerase
chain reaction followed by the sequencing of the positive amplicons; qPCR: quantitative polymerase
chain reaction; qPCR+sequencing: quantitative polymerase chain reaction followed by the sequenc-
ing of the positive amplicons; RT_PCR: reverse transcription polymerase chain reaction; nRT_PCR:
nested reverse transcription polymerase chain reaction; RT_PCR+sequencing: reverse transcription
polymerase chain reaction followed by the sequencing of the positive amplicons; RT_qPCR: reverse
transcription quantitative polymerase chain reaction; HRM_PCR: high-resolution melting polymerase
chain reaction; HRM_PCR+sequencing: high-resolution melting polymerase chain reaction followed
by the sequencing of the positive amplicons; LAMP: loop-mediated isothermal amplification; RLB:
reverse line blot hybridization assay; and Metagenomic.
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3.7. Tick-Borne Pathogen Distribution: Focus on Viruses and Zoonotic Bacteria and Parasites

Out of the 78 known pathogens, 22 have been identified as zoonotic. Figures 8 and 9
illustrate their distribution in relation to livestock density.

Ticks were found to harbour 12 zoonotic bacteria and three zoonotic parasites, dis-
tributed in 20 countries, with a higher concentration where livestock density is at least
40,000 animals per square mile. South Africa reported 66.67% of these zoonotic bacteria,
while Ghana, Ivory Coast, and Cameroon reported 5, 4, and 4, respectively. Parasites have
been reported only in Benin, Burkina Faso, Lesotho, and Uganda. The most common
zoonotic bacteria detected in ticks were R. africae (found in 17 countries) and A. platys
(found in seven countries) (Figure 8A).

Livestock from 14 countries were found to be infected with seven different bacteria
and one parasite, Babesia bovis, which was the most common pathogen in 11 out of the
14 countries. The bacteria A. platys and A. phagocytophilum were also commonly found,
reported in six and four countries, respectively. Similar to ticks, these pathogens were
predominantly reported in animals from the western part of the study area, followed by
the eastern part. South Africa was the southernmost country where the pathogens were
reported (Figure 8B).

Only bacteria were detected in humans. A. phagocitophylum, C. burnetii, and R. felis,
which are present in ticks and animals, have also been reported in humans. These pathogens
were reported in humans from South Africa, Tanzania, Ethiopia, and Senegal. B. crocidurae
was the only zoonotic Borrelia species reported and was found exclusively in humans
(Figure 8C).
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Figure 8. Distribution of tick-borne zoonotic bacteria and parasites in ticks (A), animals (B), and
humans (C). Legend: These figures illustrate the geographical distribution and frequency of studies
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reporting the presence of zoonotic bacterial and parasitic agents transmitted by ticks in ticks (A),
animals (B), and humans (C) in sub-Saharan Africa. Each pathogen is represented by a distinct color.
The pie charts superimposed on the different countries indicate the frequency of studies reporting
each pathogen in each country. The underlying map shows the average density of the ruminant
population (cattle, sheep, goats) between 2012 and 2022, based on FAO statistics [36]. The density is
expressed as the number of animals per square mile.

Fourteen different viruses have been reported and distributed in 11 SSA countries
(Figure 9). Eight of them have been identified as zoonotic. Kenya has been reported to host
the most viruses, with a total of seven. No evidence has been found to suggest a relation
between livestock density and the distribution of tick-borne viruses in comparison with
bacteria and parasites.
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Africa. Each virus is represented by a distinct color. The pie charts superimposed on the different
countries indicate the frequency of studies reporting each virus in each country. The underlying
map shows the average density of the ruminant population (cattle, sheep, goats) between 2012 and
2022, based on FAO statistics [36]. The density is expressed as the number of animals per square
mile. The red stars indicate a zoonotic virus; BDTPV: Brown dog tick phlebovirus; BOGV: Bogoria
virus; PERV: Perkerra virus; JMTV: Jingmen tick virus; BPSV: Bovine papular stomatitis virus; PCPV:
Pseudocowpox virus; KPTV: Kaptombes virus; BTV: Balanbala tick virus; BoTV: Bole tick virus.
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4. Discussion
4.1. Tick-Borne Pathogen Research Focus and Implications for Public Health

Tick-borne diseases pose significant threats in tropical areas, particularly in sub-
Saharan Africa (SSA), which is characterized by diverse tick species and the close inter-
connections between human, animal, and wildlife populations [2,37,38]. This systematic
review demonstrates the overriding focus on bacterial pathogens (in contrast to viruses
and parasites) transmitted by ticks in SSA. The differential attention to these pathogen
groups is the product of a complex interplay of factors, such as disease prevalence and
implications for public health needs. Tick-borne diseases (TBDs) resulting from bacteria
are given priority as a public health issue over parasites and viruses, with the exception of
some viruses which primarily affect humans and have recently gained increased attention.
Among the well-documented TBDs in Africa, six are caused by bacteria (including tick-
borne spotted fever, tick-borne relapsing fever, anaplasmosis, ehrlichiosis, bartonelosis, and
Q fever), two by parasites (theileriosis and babesiosis), and two by viruses (Crimean-Congo
hemorrhagic fever and African swine fever) [21,39–42]. Also, the distribution patterns of
tick species across various SSA regions have further increased the focus on bacterial trans-
mission by ticks. In particular, A. variegatum and A. hebraeum, among the most common tick
species [20], are known for their capacity to transmit bacteria to both humans and animals
more than for their transmission of parasites and viral pathogens [43–46]. This implication
for common tick species in Africa based on a research preference for tick-borne bacterial
infections is further supported by the significance of the screening of ticks for bacterial
detection more than parasites and viruses (Figure 3). Research efforts predominantly target
tick-borne bacteria in ticks, while tick-borne parasites are extensively studied in ruminants.
It is noteworthy that the prevalence, spread, and associated risk factors of tick-borne bac-
teria has grown in importance due to their impact on animal and human health. Thus,
knowing which tick species can act as vectors, surveillance and efforts to prevent their
spread have become the subject of considerable research. However, the same pattern is not
observed with surveillance based on the prevalence and incidence of parasites, particularly
in domestic animals. Along these lines, implementation of preventive and control strategies
for parasitic diseases is indeed prioritized. Numerous factors can explain this strategic
focus. Examples include their high economic impact on livestock farming [47] and the
evidence supporting the participation of common ticks in the epidemiology of parasitic
diseases [21].

Regarding studies on the prevalence of tick-borne pathogens in humans, the focus was
more on bacteria too. Nine bacterial species were investigated, compared to three parasites
and one virus. These results confirm, as highlighted above, the importance attributed to
tick-borne bacteria as a public health concern in this region of Africa.

Over time, studies have shown a marked change in interest in monitoring tick-borne
pathogen agents. Initially, the focus was on the detection of bacteria and parasites. However,
this trend has gradually evolved to also include a marked interest in viruses, as observed
in the years 2021 and 2023. The shift towards the study of viruses can be associated
to a growing concern about the emergence of viral diseases, which are directly linked
to climate change and agricultural practices [48]. Indeed, several zoonotic infectious
diseases caused by new tick-borne viruses have been reported worldwide in recent years.
Examples include severe fever with thrombocytopenia syndrome identified in China in
2009, and the Heartland virus and Bourbon virus in the United States, respectively, in 2012
and 2014 [10–12]. In addition to these cases of emergence, re-emergence cases and the
geographical expansion of Crimean-Congo haemorrhagic fever and tick-borne encephalitis,
both discovered over 50 years ago, have been reported [6]. However, it is worth noting
that the increased interest in viruses in Africa since 2021 appears to be catalyzed by the
emergence of the COVID-19 pandemic. The emergence of this major disease has raised
concerns about the dangers of viral diseases and led to a general sense of caution towards
emerging diseases. The concurrent increase in attention to parasites during the same period
(2021) illustrates this caution.
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Furthermore, this study demonstrated the significant diversity of tick-borne pathogens
among ticks, animals, and humans in SSA. Of the 99 infectious agents screened, 88 were
identified, indicating a high detection success rate of 88.89%. Moreover, ticks, animals and
humans carried respectively thirty-eight, eleven, and two pathogens, with four pathogens
shared among all populations. Ticks and animals shared thirty-six pathogens, while
humans and animals shared five. This highlights the central role that ticks play in the trans-
mission and maintenance of pathogens within SSA agro-ecosystems [16]. The considerable
overlap of ticks and livestock regarding pathogens clarifies the central role of tick-driven
pathogen transmission in SSA agro-ecosystems. However, all tick-shared pathogens with
humans were observed to also be present in animals, illustrating the zoonotic potential
of infectious agents and livestock’s key role as a reservoir host for tick-borne zoonotic
agents. Hence, increased research into risk factors associated with infectious agents’ trans-
mission to humans will be crucial for the development of effective strategies to prevent
and control TBDs.

Additionally, when the detection rates in ticks, animals, and humans were compared,
there was a significant difference in those between ticks and humans, indicating that
pathogens are not as common in this group as in the others. Interestingly, a positive
correlation between the screening/detection of ticks and animals suggests the efficacy of
reported detection methods used to detect pathogens in the samples from these target
populations. In contrast, lack of such a correlation in humans raises questions about the
efficacy of the methods used for pathogen detection, as well as their prevalence in this host
group. It is evident that unlike ticks [49,50] and animals [51–53], humans are not a natural
reservoir, and only pathogens with zoonotic potential can be detected in humans. Studies
addressing pathogen detection in humans, such as those involved in this study, were
conducted on patients with febrile illnesses, as fever is a major clinical sign of tick-borne
zoonotic diseases. However, considering the results obtained, although the improvement
of diagnostic techniques is debatable for better detection, even in cases of low parasitemia,
it is essential to carefully define the study sample in order to improve the chances of
detecting pathogens present in the study area. Therefore, studies on tick-borne infections
in the human population should consider other clinical signs when defining the study
sample. It would also be necessary and beneficial to establish a sample from a population
at risk of tick bites or in contact with wildlife or domestic ruminants, which would provide
valuable information for the epidemiology of tick-borne infections in humans. Populations
of farmers, shepherds, slaughterhouse workers, and veterinarians would thus be ideal
groups to constitute such a sample.

4.2. Prevalent Pathogens, Vectors and Implications for Further Research and Livestock Farming
and Human Health

This review’s analysis of the prevalence and distribution of tick-borne pathogens
shows that the region of SSA is confronted with numerous challenges in animal and human
health. This region is the reservoir for a broad range of pathogens that affect livestock,
ticks, and humans. From the above results, it is evident that the prevalence of pathogens
varied significantly between the three population under investigation. Humans had a
limited array of pathogens detected, with A. phagocytophilum and C. burnetii being the
most frequently reported. In contrast, animals had a larger breadth of infections, with the
species of family Anaplasmataceae, i.e., A. marginale, E. ruminantium, A. centrale, as well
as Babesia spp., i.e., B. bigemina, and B. bovis, being the most detected. Ticks, on the other
hand, harbour a fascinating array of pathogens, including zoonotic ones, the most frequent
reported being E. ruminantium, A. marginale, and R. africae. Below is a detailed discussion of
all the most frequently identified species of veterinary importance as well as all zoonotic
pathogens and their distribution.

E. ruminantium is an obligate intracellular rickettsia responsible for heartwater [54].
The disease is responsible for the greatest loss in breeding exotic ruminants and small native
ruminants in endemic regions [55]. Transmitted by the ticks of the genus Amblyomma spp.,
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this disease has been the subject of numerous studies due to its impact, prevalence, and
wide distribution. This explains the frequency of research aimed at detecting the presence
of its causal pathogen in both ticks and host animals. Furthermore, this review highlights
the potential involvement of ticks R. decoloratus and H. truncatum (both widespread in
SSA) in the epidemiology of heartwater disease [56]. These findings, combined with
those already obtained for ticks R. evertsi and H. marginatum [56], as well as the observed
transmission by R. microplus [57], an invasive species resistant to acaricides [58,59], pose
new challenges for livestock farming in SSA. Moreover, they emphasize the urgent need
for in-depth research to better understand and manage the spread of heartwater disease
and prevent the emergence of E. ruminantium in order to ensure animal health as well as
food security in the region [60]. Regarding the difference observed in the frequency of
studies that have searched for E. ruminantium in animals and ticks, this can be explained by
two arguments. Firstly, it can be attributed to abundant documentation on the distribution
of its main vectors, such as A. variegatum and A. hebraeum [61], whose presence is closely
related to E. ruminantium infection. Secondly, animals act as definitive hosts and are often
early indicators of the presence of the disease. This explains why researchers focus on
monitoring in order to investigate possibilities of the disease occurrence among animal
populations and to identify the significance of large ruminants, suspected to be natural
reservoir of E. ruminantium [62,63].

A. marginale is largely responsible for bovine anaplasmosis, another of the most com-
mon blood infections in the whole world, occurring at an endemic level in tropical and
subtropical regions [64]. The disease also greatly affects the cattle farm economy, mainly by
lowering performance and increasing the mortality rate among animal populations infected
with this pathogenic agent [65]. Infection by A. marginale has been reported in 18 countries,
with 30 studies detecting it in animals compared to 10 studies in ticks. This disparity, as
highlighted by Adjou Moumouni et al. (2018), underscores the underutilization of ticks in
studies assessing the distribution of livestock diseases in Africa. Although the disease is
traditionally transmitted by the tick H. marginatum rufipes and Rhipicephalus genera ticks,
including R. decoloratus and R. microplus [19,66,67], the Amblyomma genus has also raised
suspicions for its potential role in the spread of bovine anaplasmosis in SSA. Recent research
studies have conducted DNA detection of A. marginale in A. variegatum-collected ticks in
Benin [68], Ethiopia [69], and Madagascar [70], as well as in A. lepidium ticks [71] and
A. cohaerens ticks [72] from Ethiopia. Such possible involvement of Amblyomma ticks might
have devastating consequences concerning livestock farming in SSA given that Amblyomma
species are widely distributed in the region. However, studies on the ability of ticks of this
genus, particularly A. variegatum, to transmit A. marginale are essential to define appropriate
control measures.

A. centrale, once considered a non-pathogenic variant of A. marginale, is officially
classified as a distinct organism [73]. Unlike its pathogenic counterpart, A. centrale is
associated with subclinical forms of bovine anaplasmosis, which has led to its use as a live
vaccine to protect animals against severe infections caused by A. marginale [64]. Just like
with A. marginale, studies in SSA have focused on identifying A. centrale in animals, mainly
livestock, rather than in ticks. Thus, eleven studies reported its occurrence in animals, while
only two studies reported it in ticks. It is also worth noting the wide geographic distribution
of A. centrale, reported in 13 countries of SSA, as well as its presence in A. variegatum ticks.
This widespread distribution of A. centrale, coupled with its potential as a live vaccine,
holds promising prospects for the management of A. marginale infections, which remain a
major challenge in the region.

A. ovis is a bacterium responsible for anaplasmosis in small ruminants such as sheep
and goats. The pathogen has a significant economic impact on the livestock industry
worldwide, especially in hot and arid areas or where ectoparasites are prevalent [74]. As
highlight by Diarra et al. (2023), none of the studies included in this review investigated
its DNA in ticks from West Africa. However, it has been reported in ticks from South
Africa, Ethiopia, and Zambia, where it was screened in the Rhipicephalus tick and in animals
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in South [75–78] and East Africa [79]. Furthermore, both studies that investigated its
DNA in sheep in Senegal reported its presence [80,81]. These observations, combined
with the widespread and invasive presence of its vectors Rhipicephalus [69,82–88] and
Amblyomma [85,89], confirm its presence in West Africa. Its non-detection in ticks from
this region is therefore attributed to the lack of research on its identification in ticks. Since
ticks serve as vectors for this pathogen, any control method should focus on combined
data regarding its vector spectrum, the epidemiological role of these vectors in disease
transmission, and its prevalence or occurrence in animals.

Bovine babesiosis, a major infectious disease in cattle in Africa, is primarily caused
by the species B. bovis and B. bigemina. This disease can lead to mortality rates of up
to 80% in exotic breeds [90]. Studies have revealed that B. bovis, due to its increased
virulence, is responsible for losses up to 20 times higher than those caused by B. bigemina,
the indigenous species [91]. However, despite their significant impact on animal health and
livestock productivity, an underutilization of ticks in surveillance studies of this disease has
been evident. B. bigemina has been investigated in twenty-four studies in animals compared
to only eight studies in ticks. Similarly, B. bovis has been studied in animals in twenty-one
studies, while only four studies have focused on ticks. This disparity in the scientific
literature raises questions about the effectiveness of disease control strategies, which may
not fully consider the role of vectors. R. annulatus and R. microplus ticks are recognized as
the main vectors of B. bovis and B. bigemina. However, no study has reported the presence
of these parasites within these two tick species. Among tick studies, only R. annulatus has
been used in two studies to investigate B. bigemina, and in one study to investigate B. bovis.
Nevertheless, these pathogens are reported in 15 SSA countries, highlighting that their
wide distribution that can only be facilitated by tick vectors. Therefore, further research is
necessary to deepen our understanding of the transmission dynamics of bovine babesiosis,
with a particular emphasis on the role of tick vectors.

The genus Theileria is an haemoprotozoan transmitted by ticks, infecting both domestic
and wild animals’ leukocytes and erythrocytes, causing bovine tropical theileriosis [92].
Along with the genus Anaplasma, it represents one of the largest genera covered by the
studies included in this review, suggesting a high species diversity in the region. The
Theileria species discussed in many of these studies are T. parva, T. mutans, T. velifera, T.
annulata, T. ovis, and T. taurotragi. T. mutans, T. velifera, and T. annulata are ones that are
most commonly related to ticks, and while T. parva is the one most described in animals, it
is followed by those species cited above. The detection frequency of each species within
each target population is strongly correlated with the frequency of studies that investigated
them. These results once again highlight the neglect of tick studies concerning animal
diseases and provide insights into research approaches on TBDs of veterinary importance
in SSA. Indeed, research on disease prevalence in hosts takes precedence over that on
pathogen prevalence in vectors, which are the primary actors in the distribution of these
pathogens [93].

T. parva, most frequently reported in studies on theileriosis, is the causative agent of
East Coast fever. This bovine disease is the most important theileriosis in SSA, leading to
severe economic losses exceeding USD 300 million and mortality exceeding one million
in family and nomadic herds [94]. It is widely distributed in East Africa, a region with a
high diversity of tick species, where its distribution coincides with the infestation rate of
its main vectors, R. appendiculatus and R. zambeziensis [20]. No studies have reported its
presence in West Africa [21]. The three studies reported from this region and included in
this review only searched for it in cattle blood. However, studies conducted by Byamukama
et al., (2021), in Uganda have shown that some tick species widely distributed in West
Africa are capable of carrying T. parva [95]. Indeed, its prevalence was reported at 25%,
40%, and 25%, respectively, in the ticks A. variegatum, R. decoloratus, and H. truncatum [89].
These observations pose threats to West African livestock, extensive and highly exposed
to wildlife, as the reservoirs of tick-borne infectious agents. Even though the main tick
species that transmit T. parva are not present in West Africa, it is possible that tick species
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colonizing West Africa are capable of acquiring it but incapable of transmitting it. It would
be wise for research in this region to focus on the prevalence of this pathogen in ticks to
consider subsequent control measures in case of proven transmission of the pathogen by
these tick species or in case of an emergence that could lead to the capacity of transmitting
this pathogen by these ticks. The other most reported species of Theileria, namely T. mutans,
T. velifera, and T. taurotragi, are responsible for benign infections [20,96,97]. Although it has
been reported that these parasites seem to offer some protection against the pathogenicity
of T. parva [98], a fatal infection caused by T. mutans in an animal previously infected with
and immune to T. parva has been reported in Kenya [99–101]. Indeed, their presence can
still have consequences on animal health and welfare, as well as on livestock productivity.
Therefore, it would be important and wise to closely monitor the emergence and prevalence
of these species, both in ticks and animals, especially in regions where they are present. This
would help to detect potential changes in their behaviour or virulence as well as prevent
possible outbreaks or economic losses in livestock.

The others interesting result from this review is the presence of various tick-borne
viruses, with only one found in animals and none in humans. Among the identified viruses,
the Crimean-Congo haemorrhagic fever virus (CCHFV) was the most frequently reported,
mentioned in six studies as being present in ticks. CCHFV, an RNA virus belonging to the
Bunyaviridae family, is transmitted by infected ticks mainly of the genus Hyalomma [102],
which are widely distributed in Africa [20]. It is known to cause severe haemorrhagic fever
in humans. Despite its detection in ticks in the studies included in this review, its absence
in animals (potential reservoirs) and humans raises questions regarding the potential for
transmission and the true prevalence of this disease among human populations in SSA.
Furthermore, this could be attributed to a limited interest among researchers in screening it
within the affected populations. Although this virus has generated more research interest
than any other virus, only three of the studies included in this review searched for its DNA
in humans. Two of these studies were conducted in Senegal, while only one study was
carried out in Kenya. It is also important to note that only one of the studies concerned
animal subjects. In addition, current studies also highlight the presence of viruses from the
Flaviviridae, Nairoviridae, Peribunyaviridae, Poxviridae, and Togaviridae families. Their
existence is not as pronounced as that of CCHFV. However, their detection demonstrates the
variety of tick virus pathogens present in SSA. Moreover, the detection of viruses such as the
Kaptombes virus in animals emphasizes the risk of transmission posed by these pathogens.
These observations underscore the need to intensify research on these viral agents to better
assess the risk to human health and implement appropriate preventive measures.

4.3. Tick-Borne Zoonotic Pathogens in Sub-Saharan Africa and the Need for Integrated One
Health Approaches

Rickettsia africae is a tick-borne pathogen within the spotted fever group (SFG) of
Rickettsiae, known to be transmitted primarily by ticks, particularly A. variegatum and A.
hebraeum [103]. This bacterium is responsible for causing African tick-bite fever in humans,
characterized by acute febrile illness accompanied by symptoms such as headache, chills,
muscle aches and occasionally a rash mainly observed in tourists traveling through en-
demic areas [104]. Despite its clinical significance, the dynamics of transmission and the
potential vectors involved remain incompletely understood [105]. Our review highlights
R. africae as the most commonly detected and distributed zoonotic bacteria among those
studied. While various tick genera, including Amblyomma, Hyalomma, and Rhipicephalus,
have been implicated as potential vectors, no study has conclusively demonstrated the
vector competence of Hyalomma and Rhipicephalus for R. africae [21]. Furthermore, the tick
samples analyzed in the reviewed studies were predominantly collected from livestock,
raising the possibility that the detected DNA originates from the blood of animals rather
than tick saliva. In light of the known reservoir role of livestock for R. africae, as demon-
strated in previous research [106], it is imperative to investigate the potential contribution
of livestock to the maintenance and transmission of this pathogen further. However, only
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one study included in our review specifically searched for R. africae DNA in livestock.
Therefore, further research, including surveillance for R. africae in livestock populations,
is warranted to elucidate its role in the epidemiology of African tick-bite fever. Moreover,
while R. africae has been predominantly studied in ticks, limited attention has been given to
its detection in humans. This contrasts with the broader understanding of other rickettsial
species, such as R. bellii, which have been reported in both humans and animals, suggesting
zoonotic transmission of Rickettsiae in the region. Therefore, future studies should prioritize
investigating the prevalence of Rickettsia species in human populations, applying a “One
Health” approach to better understand the dynamics of zoonotic transmission. Addition-
ally, our review identified other rickettsial species within the Rickettsiaceae family, such as
R. sibirica in H. truncatum and R. massimilae in Rhipicephalus ticks, including R. senegalensis,
R. turanicus, R. sanguineus, and R. lunulatus. The detection of these species highlights the
potential role of these tick species as vectors and the importance of understanding the
ecological niches and transmission dynamics associated with these tick species. Further
investigation is warranted to determine their prevalence and potential for transmission to
humans and animals, with a focus on specific tick vectors identified in this review.

Considering the family of Anaplasmataceae, these studies highlight the presence
of zoonotic agents such as A. capra, A. platys-Like, A. phagocytophilum, E. chaffeensis, and
E. canis. For instance, A. phagocytophilum, known to be responsible for human and ani-
mal granulocytic anaplasmosis [107], has been detected in different Amblyomma species,
including A. variegatum, A. Lepidium, and A. coharensis. This is concerning given the wide
distribution of Amblyomma ticks in SSA and their ability to infest various hosts, including
livestock, sheep, and humans [20]. Although the epidemiological role of these tick species
and other African tick species in which this pathogen has been detected has not been
specified [108–110], its presence in animals and humans confirms its zoonotic potential.
This also suggests the involvement of tick species present in this region of Africa in the
transmission and epidemiology of this zoonotic agent. This suggestion is supported by the
spatial similarity observed in this study between its presence in ticks and animals. Addi-
tionally, the detection of A. capra, a newly emerging agent discovered in China [111,112],
in ticks in Africa, combined with the presence of other Anaplasmataceae such as A. platys,
E. chaffeensis, and E. canis in both ticks and animals, highlights the rapid global dispersion
of these pathogens. This also raises concerns about their circulation within livestock in
SSA, thereby exposing farmers and travellers in this region to an increased risk. Given that
SSA is home to numerous tick species, biosafety measures must be seriously considered to
limit the dissemination or introduction of pathogens, as was the case with R. microplus and
B. bovis [19].

Coxiella burnetii, the causative agent of Q fever, emerged as the most prevalent bac-
terium studied in humans. This suggests that C. burnetii poses a significant public health
concern due to its potential to cause disease in humans. The fact that it has been re-
ported in ticks, animals, and humans in multiple SSA countries further emphasizes its
wide distribution and the need for further research into its transmission dynamics and
prevention strategies.

In addition, the characterization of zoonotic pathogens within the Borrelia genus
and Babesia species suggests complex dynamics of vector-borne diseases in SSA and the
need for integrated surveillance and control strategies to mitigate the risk of zoonotic
transmission. These findings further underscore the importance of One Health approaches,
which recognize the interconnections between human, animal, and environmental health,
and facilitate interdisciplinary collaboration, including between health sectors, veterinary
services, and environmental agencies, to address zoonotic disease emergence and spread
in SSA.

4.4. Detection of Atypical Pathogens for Sub-Sahara Africa

During the period covered by this review, the use of advanced molecular tools as-
sociated with sequencing allowed the detection of some pathogens which have never
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been suspected circulating in SSA. However, in almost all the cases, the detection of such
pathogens raised significant epidemiological questions, given the absence or rarity of
the usual vectors. A. phagocytophilum, B. microti, Ehrlichia muris, and R. sibirica represent
good examples of this list of atypical tick-borne pathogens of SSA reported by some stud-
ies. They used to be transmitted by Ixodes spp. and Dermacentor spp. ticks, which are
absent or rare in SSA [92,113–119]. Two main hypotheses could support these findings,
although in most of the cases the sequences of the genes studied have not been submitted
on GenBank [69,72,120–122].

Firstly, migratory birds could allow the transport of infected ticks in SSA which were
able to feed on animals in SSA and thus transmitted the pathogens. However, since the
tick vectors are absent, this hypothesis supposes that they did arrive to establish in SSA.
For instance, among the numerous studies highlighting the capacity of migratory birds to
disseminate ticks and the pathogens they transmit [123–128], those by Pascucci et al. (2019)
and Mancuso et al. (2022) are particularly notable. These studies demonstrated that trans-
Saharan migratory birds are capable of carrying African tick species and Rickettsia, as well as
viruses of zoonotic importance, from Africa into Europe [126,128]. Although these studies
focused on northward migration, they illustrate the principle of long-distance tick transport
by birds, which could potentially occur in both directions. Thus, similar migratory patterns
could facilitate the introduction of these vectors into SSA, where environmental conditions
might allow for their establishment and the subsequent transmission of pathogens to local
wildlife and livestock [129].

Secondly, the import of foreign races of animals by some modern livestock keepers
associated with the not yet known vector competence of local tick species could also lead to
such results. In fact, the co-circulation of ticks with some pathogens associated with some
environmental parameters (not specifically mastered) can induce the acquirement of vector
competence. For instance, in West Africa, following its introduction in 2002–2004 [130,131],
it has been recently demonstrated that the invasive tick Rhipicephalus microplus has acquired
the potential to acquire and transmit Ehrlichia ruminantium [57,132].

Obviously, the main limit in some detection of atypical pathogens for SSA is an
absence of the sequences of the studied genes in GenBank. Efforts should be made in
further investigations to fill this gap.

4.5. Study Limitations Induce Possible Underestimation of the Number of Pathogens Present

Our study primarily relied on molecular detection methods for identifying pathogens,
despite the existence of a positive correlation between the targeted pathogens and those
detected, particularly in ticks and animals. For instance, these techniques, while highly
specific and sensitive when properly applied, can sometimes have limited yield [133–136].
This limitation can be attributed to various factors, such as the quality of the sample and
its conservation, the timing of sample collection relative to infection, the pathogen load
present, the specificity of the primers used, or the choice of reference loci to target [137,138].
Such limitations may potentially lead to an underestimation of the actual prevalence of the
pathogens studied.

To overcome these challenges and achieve a more accurate representation of the epi-
demiological reality, it is strongly recommended that future studies adopt a diversified
diagnostic strategy. This approach should integrate not only conventional molecular meth-
ods but also the genomic approaches [134,136,139]. In cases where genomic approaches
are not feasible due to their high cost or the technical expertise required for interpreting
results [137], conventional molecular methods should be followed by a more in-depth ap-
proach. For instance, after amplifying relevant loci, sequencing of these amplicons should
be carried out [34,134,136]. The obtained sequences should then be subjected to a BLAST
search in GenBank and, in some cases, a phylogenetic analysis for accurate pathogen classi-
fication [139]. A precise definition of the population to be sampled, the type and quality
of the samples, and consideration of clinical and epidemiological data, where available,
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would provide more accurate context for the investigation and more in-depth interpretation
of the results.

The integration of these multiple data sources and diagnostic methods will offer a
more robust and comprehensive estimate of the pathogen load in the populations studied.
This global approach will obviously improve the accuracy of prevalence estimates but also
contribute to the better understanding of transmission dynamics and the actual impact of
these pathogens on animal and human health in the affected regions.

5. Conclusions

This systematic study highlights the variety of pathogens transmitted by ticks in SSA,
underlining that it is of paramount importance to investigate and monitor them as most
of them are zoonotic or potentially zoonotic. While research on bacteria and parasites is
progressing, studies on viruses remain largely insufficient. Furthermore, for the pathogens
studied, the focus population was ticks for bacteria, and livestock, especially cattle, for
parasites. No attention was given to human beings. Therefore, it is essential to deploy
further efforts to fill these gaps. This includes exploring zoonotic pathogens and assessing
their impact on both human and animal health, investigating the risk factors associated
with their emergence, and gathering insights from at-risk populations regarding related
biosecurity measures. By shedding light on these dangers and proposing research topics
for future works, this study hopes to contribute to the control of TBDs in an approach that
addresses both human and animal health as well as the ecosystem where they are.
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Appendix A

Table A1. Number of Studies Related to Each Tick-Borne Pathogen Species in Ticks, Animals, and Humans; Their Distribution and Target Loci Used.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Anaplasmatacea Anaplasma

Ca. Anaplasma ivorensis 1 1 NA NA NA NA Ivory_Coast TtAna [140]

Ca. Anaplasma africae NA NA 1 1 NA NA Senegal rpoB [80]

A. bovis 1 1 5 5 NA NA

Kenya,

16S, groEL

[141,142]
Malawi, [143]

South_Africa, [144]
Uganda, [122]
Zambia, [145]

A. capra 1 1 NA NA NA NA Ghana 16S [146] or [147]

A. centrale 3 3 11 11 NA NA

Benin,

16S, groEL,
msp2,msp4,
rpoB, TtAna

[148]
Burkina_Faso, [148]

Cameroon, [149]
Ethiopia, [71,148]
Ghana, [148]

Ivory_Coast, [140]
Kenya, [150,151]

Nigeria, [148,152]
Senegal, [80]

South_Africa, [73,153]
Sudan, [154]

Tanzania, [148]
Uganda, [122,148,155,156]
Zambia, [145]

A. marginale 10 10 32 31 NA NA

Benin,

16S, msp1,
msp2, msp4,
msp5, groEL,
rpoB, TtAna,

MAR1bB2, pCS20,

[16,24,43,68,148,157]
Botswana [75]

Burkina_Faso, [16,24,148]
Cameroon, [149]
Ethiopia, [71,72,77,78,148,158]
Ghana, [146–148,159]
Guinea, [160]

Ivory_Coast, [140]
Kenya, [141,142,150,151,161,162]

Madagascar, [70]
Malawi, [143]

Mozambique, [163]
Nigeria, [148,152,164–166]
Senegal, [80]

South_Africa, [73,144,153,167]
Sudan, [154,168]

Tanzania, [148,169,170]
Uganda, [95,122,148,155,171,172]
Zambia, [145]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

A. ovis 3 3 7 7 NA NA

Botswana,

16S, msp4,
groEL, rpoB,

[75]
Ethiopia, [88]
Kenya, [79]

Malawi, [76]
Mozambique, [84]

Senegal, [80,81]
South_Africa, [144,173]

Sudan [154]

A. phagocytophilum 3 3 5 4 1 1

Ethiopia,
16S, msp2,

groEL

[71,72]
South_Africa, [34,173,174]

Senegal, [81]
Mozambique, [163]

Uganda, [122]

A. platys 1 1 1 1 NA NA Senegal, 16S, groEL [81]

South_Africa, [144]

A. platys-like 1 1 9 9 NA NA

Cameroon,

16S, 18S,
groEL, msp4, rpoB,

[149]
Guinea, [160]
Kenya, [141,142,150,151,162]

Malawi, [143]
Nigeria, [165]
Senegal, [80]
Uganda, [95]

Anaplasma sp. Dedessa NA NA 1 1 NA NA Ethiopia, 16S [158]

Anaplasma sp. Hadesa NA NA 2 2 NA NA Cameroon, 16S [149]

Ethiopia, [158]

Anaplasma sp.
Lambwe-1 NA NA 1 1 NA NA Kenya, 16S [141]

Anaplasma sp.
Omatjenne 1 1 3 3 NA NA

Ethiopia,
16S

[71,158]
Uganda, [122]
Zambia, [145]

Anaplasma sp. Saso NA NA 1 1 NA NA Ethiopia, 16S [158]

Anaplasma spp. 4 3 14 14 1 0

Angola,

16S, groEL,
msp4, msp5, TtAna

[175]
Cameroon, [149]
Ethiopia, [88]

Ivory_Coast, [140]
Kenya, [79,141,142,162]

Malawi, [76,143]
Mozambique, [163]

Nigeria, [152,165,176]
Senegal, [35,81]

South_Africa, [177]
Sudan, [154]

Tanzania [178]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Anaplasma/Ehrlichia
spp. 2 1 3 3 NA NA

Cameroon,

16S

[149]
Ethiopia, [88]
Nigeria, [152,179]

South_Africa, [144]

Ehrlichia

Ca. Ehrlichia rustica 1 1 NA NA NA NA Ivory_Coast, TtAna [140]

Ca. Ehrlichia urmitei 1 1 NA NA NA NA Ivory_Coast, TtAna [140]

E. canis 4 4 2 2 NA NA

Ghana,
16S,

dsbA, groEL

[146,147]
Malawi, [76]
Senegal, [80]

South_Africa, [120,180]
Zambia, [145]

E. chaffeensis 1 1 1 1 NA NA
South_Africa,

16S, dsbA
[120]

Zambia, [145]

E. minasensis 2 2 3 3 NA NA

Ethiopia,
16S, dsbA

[158]
Ghana, [146,147]
Kenya, [142,150,151]

South_Africa, [120]

E. muris 1 1 NA NA NA NA South_Africa, dsbA [120]

E. ruminantium 15 15 20 16 NA NA

Benin,

16S, dsbA,
groEL, pCS20, TtAna

[16,24,43,68,148,157]
Burkina_Faso, [16,24,148]

Cameroon, [149,181,182]
Ethiopia, [71,72,77,78,88,148,158]
Ghana, [148]

Ivory_Coast, [140]
Kenya, [79]

Malawi, [76]
Mozambique, [183]

Nigeria, [148,152,184,185]
Senegal, [81]

South_Africa, [144,167,173,174,180,186,187]

Tanzania, [148,170]
Uganda, [95,122,148,156]
Zambia, [145]

Ehrlichia spp. 8 7 7 4 NA NA

Angola,

16S, dsbA,
groEL, gltA, TtAna

[175]
Cameroon, [149]
Ethiopia, [88]
Guinea, [160]

Ivory_Coast, [140]
Kenya, [142,150,151,162]

Malawi, [143]
South_Africa, [120,144,180]

Sudan, [154]
Tanzania, [178]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Coxiellacea Coxiella

C. burnetii 11 8 2 1 4 2

Angola,

COX,
htpB, IS1111

[175]
Ethiopia, [188,189]
Ghana, [146,147]

Ivory_Coast, [140]
Kenya, [190]

Madagascar, [191]
Sao_Tome [192]
Senegal, [35,193]

South_Africa, [167,174,194,195]
Zanzibar [196]

Coxiella spp. 4 3 NA NA NA NA

Angola,
16S,

rpoB, groEL

[175]
Sao_Tome, [192]

South_Africa, [197]
Tanzania [178]

Rickettsiacea Rickettsia

Ca. Rickettsia barbariae 1 1 NA NA NA NA Cameroon ompB [121]

R. aeschlimannii 5 5 NA NA NA NA

Angola,
ompA,

ompB, RaescSca1

[175]
Cameroon, [121]

Ghana, [146,147]
Ivory_Coast, [140]

Zambia, [198]

R. africae 21 21 1 1 1 0

Angola,

16S, gltA,
ompA, ompB,

17 kDa, poT15-dam2

[175]
Burkina_Faso, [199]

Cameroon, [121,149]
Comoros, [200]
Djibouti, [201]
Ethiopia, [88,199,202]
Ghana, [146,147]
Guinea, [18]

Ivory_Coast, [140]
Kenya, [31,203]
Liberia, [18]

Madagascar, [204]
Mozambique, [84,205]

Nigeria, [206]
South_Africa, [105,186,207,208]

Sudan, [209]
Tanzania, [200]
Zambia, [198]

R. massiliae 4 4 NA NA NA NA
Cameroon, Hypothetical protein,

23S-5S, ompB
[121]

Ivory_Coast, [140]
Nigeria, [206,210]

R. rickettsii 1 1 NA NA NA NA South_Africa 16S [197]

R. sibirica 1 1 NA NA NA NA Cameroon ompB [121]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Rickettsia spp. 27 25 6 2 2 1

Angola,

16S, gltA,
ompA, ompB, 17

kDa,

[175]
Benin, [43,68,211]

Burkina_Faso, [199]
Cameroon, [121,149]

Djibouti, [201]
Ethiopia, [88,188,199,212]
Ghana, [146,147]
Guinea, [18]

Ivory_Coast, [140]
Kenya, [141,162,213]
Liberia, [18]

Mozambique, [84,205]
Nigeria, [152,176,206]

Sao_Tome, [192]
Senegal, [35]

South_Africa, [167,173,174,194,208,214,215]

Sudan, [209]
Tanzania, [178]

Togo, [211]
Uganda, [46]
Zambia, [198]
Zanzibar [196]

R. felis NA NA 1 1 1 1
Cameroon,

16S
[149]

Ethiopia, [216]

R. bellii NA NA NA NA 1 1 Ethiopia, 16S [216]

Wolbachia Ca. Wolbachia ivorensis 1 1 NA NA NA Ivory_Coast, TtAna [140]

Spirochaetaceae Borrelia

Ca. Borrelia africana 1 1 NA NA NA NA Ivory_Coast, Bor ITS4 [140]

Ca. Borrelia ivorensis 1 1 NA NA NA NA Ivory_Coast, Bor ITS4 [140]

B. burgdorferi 1 0 NA NA NA NA [174]

B. theileri 1 1 1 1 NA NA
Cameroon,

18S, flaB
[149]

Mali, [217]

Borrelia spp. 5 3 2 1 2 1

Angola,

16S, flaB,
Bor ITS4

[175]
Cameroon, [149]
Ethiopia, [212,216]

Ivory_Coast, [140]
Madagascar, [218]

Tanzania, [178]
Uganda [95]

B. crocidurae NA NA NA NA 1 1 Senegal, glpQ [35]



Pathogens 2024, 13, 697 28 of 45

Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Parasite

Babesidae Babesia

B. bigemina 8 7 24 23 NA NA

Angola,

16S, 18S,
bs1, ITS1,

ITS2, ama1,
cytb, rap1a,
speI_avaI

[175]
Benin, [16,24,43,68,148,157]

Burkina_Faso, [16,24,148,219]
Ethiopia, [77,78,148,158]
Ghana, [148,159]
Guinea, [160]
Kenya, [150,151,161,162,220]
Lesitho, [221]
Malawi, [143]
Nigeria, [148,152,185]

South_Africa, [144,167,222–224]
Sudan, [168]

Tanzania, [148,169,170]
Uganda, [95,122,148,156,171,172]
Zambia, [145]

B. bovis 4 3 21 14 1 NA

Benin,

16S, 18S,
BoF2, cytb,

rap1, sbp2, sbp4

[16,24,43,68,148,157]
Burkina_Faso, [16,24,148,219]

Ethiopia, [77,78,148]
Ghana, [148,225,226]
Kenya, [161,220]
Lesitho, [221]

Mozambique, [227]
Nigeria, [148,152]

South_Africa, [167,173,222–224,227]
Sudan, [168]

Tanzania, [148,169,170]
Uganda, [95,148,171,172]
Zambia, [145]

B. caballi 2 2 1 1 NA NA
Ethiopia,

18S
[188]

South_Africa, [144]
Zambia, [145]

B. divergens NA NA 1 0 1 NA Ghana 18S [225]

B. microti 1 1 NA NA NA NA Uganda, 18S [156]

B. motasi 1 1 NA NA NA NA Lesitho, NA [221]

B. occultans 1 1 1 1 NA NA
Burkina_Faso,

18S
[219]

South_Africa, [144]

B. ovis 1 1 1 0 NA NA Kenya, NA [79]

Lesitho, [221]

B. rossi 1 1 NA NA NA NA Uganda, 18S [156]

Babesia sp. sable 1 1 1 1 NA NA
South_Africa,

18S
[144]

Zambia, [145]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Babesia spp. 2 2 2 0 NA NA

Angola,
18S,

ITS1, ITS2

[175]
Kenya, [141]
Sudan, [228]

Tanzania, [178]

B. gibsoni NA NA 2 2 NA NA
Malawi,

18S
[76]

Zambia, [145]

B. canis NA NA NA NA 1 NA Ghana 18S [225]

Babesia sp. mymensingh NA NA 1 1 NA NA Uganda, ama1 [171,172]

Theileridae Theileria

T. orientalis 2 2 7 4 NA NA

Benin,

18S, mpsp

[157]
Burkina_Faso, [219]

Ethiopia, [77,158,188,229,230]
Kenya, [161]

South_Africa, [231]

T. velifera 5 5 14 14 NA NA

Benin,

16S, 18S

[16,24]
Burkina_Faso, [16,24,219]

Cameroon, [149]
Ethiopia, [77,158,188,229]
Kenya, [141,150,151,161,162]

Malawi, [143]
Mozambique, [84]

Nigeria, [152]
South_Africa, [231]

Sudan, [232]
Uganda, [122,156]
Zambia, [145]

T. annulata 5 3 7 5 NA NA

Benin,

16S,
18S, tams1

[16,24,43,68,157]
Burkina_Faso, [16,24,219]

Ethiopia, [77,229]
Guinea, [160]
Nigeria, [233]

South_Africa, [144]
Sudan, [228,232,234]

T. bicornis 1 1 NA NA NA NA South_Africa, 18S [144]

T. buffeli 1 1 1 1 NA NA
South_Africa,

18S
[144]

Zambia, [145]
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Table A1. Cont.

Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

T. mutans 6 6 19 19 NA NA

Benin,

16S, 18S

[16,24,43,68,157]
Burkina_Faso, [25,26,107]

Cameroon, [149,235]
Ethiopia, [77,78,158,188,229,236]
Kenya, [141,150,151,161]

Malawi, [76,143]
Nigeria, [152]

South_Africa, [144,167]
Sudan, [232]

Tanzania, [170]
Uganda, [122,156]
Zambia, [145]

T. ovis 2 1 7 7 NA NA

Ethiopia,

18S

[229]
Kenya, [161]
Lesitho, [221]
Malawi, [76]

South_Africa, [144,173]
Sudan, [228,237]

Tanzania, [170]

T. parva 2 2 32 30 NA NA

Benin,

18S,
p104, COI

[148,157]
Burkina_Faso, [148,219]

Burundi, [238,239]
Cameroon, [235]

Congo, [240]
Ethiopia, [77,78,148]
Ghana, [148]
Guinea, [160]
Kenya, [150,151,161,162]
Lesitho, [221]
Malawi, [143]
Nigeria, [148]
Rwanda, [241]

South_Africa, [167,242]
Sudan, [243]

Tanzania, [148,169,170,244–247]
Uganda, [95,122,148,156,171,172,248–252]

Zambia, [145,253]

T. separata 2 2 4 4 NA NA

Ethiopia,

18S

[229]
Malawi, [76]

South_Africa, [144]
Sudan, [228,237]

Uganda, [156]
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Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

T. taurotragi 2 2 12 10 NA NA

Benin,

18S

[157]
Burkina_Faso, [219]

Ethiopia, [77,78]
Kenya, [150,151,161]

Malawi, [143]
Nigeria, [152]

South_Africa, [144,167]
Tanzania, [170,254]
Uganda, [122]
Zambia, [145]

T. equi NA NA 1 1 NA NA Zambia, 18S [145]

T. lestoquardi NA NA 4 4 NA NA Sudan, 18S, msp [228,234,237,255]

Theileria sp. Buffalo NA NA 3 3 NA NA
Kenya,

18S
[161]

South_Africa, [242]
Zambia, [145]

Theileria sp. Kudu 1 1 1 1 NA NA
South_Africa,

18S
[144]

Zambia, [145]

Theileria sp. Sable 1 1 1 1 NA NA
South_Africa,

18S
[144]

Zambia, [145]

Theileria spp. 5 4 10 10 NA NA

Agola,

18S, cytb

[175]
Cameroon, [149]
Ethiopia, [229]
Ghana, [159]
Kenya, [79,141,161]

Malawi, [76]
Nigeria, [256]

South_Africa, [144,231]
Tanzania, [170,178]
Uganda, [95,156]

Theileridae/
Babesidae

Theileria/
Babesia

Theileria/Babesia spp. 1 1 5 4 1

Cameroon,

18S

[149]
Ghana, [225]
Nigeria, [176,179]

South_Africa, [144]
Sudan, [232]

Virus

Alphaviridae Alphavirus Alphavirus 1 0 1 0 NA NA
Guinea,

L_segment
[257]

Kenya [150,151]

Bunyaviridae Phlebovirus

Balambala tick virus 1 1 NA NA NA NA Ghana, L_segment [258]

BDTPV 1 1 NA NA NA NA Kenya, RdRp [259]

BOGV 1 1 NA NA NA NA Kenya, RdRp [259]
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Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Bole tick virus 1 1 NA NA NA NA Kenya, RdRp [259]

PERV 1 1 NA NA NA NA Kenya, RdRp [259]

Phlebovirus 4 1 1 0 NA NA

Burkina_Faso, RdRp,
N_segment,
S_segment

[260]
Ghana, [261]
Guinea, [257]
Kenya, [150,151,259]

Phlebovirus DSP4 1 1 NA NA NA NA Kenya, RdRp [259]

Rift Valley Fever Virus 1 0 NA NA NA NA Burkina_Faso G2 [260]

Shibuyunji virus 1 1 NA NA NA NA Zambia, L_segment [262]

Flaviridae Flavivirus
Flavivirus 2 0 1 0 NA NA

Burkina_Faso, NS5,
L_segment

[260]
Guinea, [257]
Kenya [150,151]

JMTV 1 1 NA NA NA NA Kenya, NS5 [263]

Nairoviridae

Nairovirus Nairovirus 1 1 1 0 NA NA Ghana,
L_segment

[261]

Kenya [150,151]

Orthonairovirus

Orthonairovirus 1 0 NA NA NA NA Guinea NA [257]

CCHFV 7 6 1 0 3 0

Burkina_Faso,
Cameroon,

Kenya,
Mauritania,

Senegal,
South_Africa,

Uganda,
Zambia,

L_segment,
N_segment,
S_segment

[260]
[264]
[31]
[265]
[32,33]
[266]
[267]

DUGV 4 4 NA NA NA NA
Cameroon, L_segment,

S_segment
[264]

Ghana, [258,261]
Nigeria, [268]

Peribunyaviridae Orthobunyavirus

Ngari virus 1 1 NA NA NA NA Guinea, NgvS [257]

Orthobunyavirus 1 1 1 0 NA NA
Guinea,

S_segment
[257]

Kenya [150,151]

Poxyviridae
Parapoxvirus

Parapoxvirus 1 1 NA NA NA NA Burkina_Faso, B2L/J6R [260]

BPSV 1 1 NA NA NA NA Burkina_Faso, BPSV_J6R [260]

PCPV 1 1 NA NA NA NA Burkina_Faso, PCPV_J6R [260]

Orthopoxvirus Orthopoxvirus 1 0 NA NA NA NA Burkina_Faso, HA(J7R) [260]
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Domain Family Genus Species
Tick Animal Human

Countries Target Loci References
Screened Detected Screened Detected Screened Detected

Togaviridae

Orbivirus
Orbivirus 1 0 NA NA NA NA Guinea NA [257]

KPTV NA NA 1 1 NA NA Kenya segment 2 [269]

Thogotovirus
Dhori virus NA NA 1 0 NA NA Kenya S_segment [150,151]

Thogotovirus NA NA 1 0 NA NA Keny M_segment [150,151]

Legend: Ca: Candidatus, BDTPV: Brown dog tick phlebovirus; BOGV: Bogoria virus; PERV: Perkerra virus; JMTV: Jingmen tick virus; BPSV: Bovine papular stomatitis virus; PCPV:
Pseudocowpox virus; KPTV: Kaptombes virus; BTV: Balanbala tick virus; BoTV: Bole tick virus; NA: Not available.



Pathogens 2024, 13, 697 34 of 45

References
1. Muhammad, A.; Piyumali, K.P.; Abdullah, I.; Shumaila, M. Ticks and Tick-Borne Pathogens. In Ticks and Tick-Borne pathogens;

IntechOpen.: London, UK, 2018; Volume 9, pp. 3–9. ISBN 1-78985-765-1.
2. Jongejan, F.; Uilenberg, G. The Global Importance of Ticks. Parasitology 2004, 129, S3–S14. [CrossRef] [PubMed]
3. Mondal, D.B.; Sarma, K.; Saravanan, M. Upcoming of the Integrated Tick Control Program of Ruminants with Special Emphasis

on Livestock Farming System in India. Ticks Tick-Borne Dis. 2013, 4, 6. [CrossRef] [PubMed]
4. Fuente, J.D.L. Overview: Ticks as Vectors of Pathogens That Cause Disease in Humans and Animals. Front. Biosci. 2008, 6938.

[CrossRef] [PubMed]
5. Chitanga, S.; Gaff, H.; Mukaratirwa, S. Tick-Borne Pathogens of Potential Zoonotic Importance in the Southern African Region.

J. South Afr. Vet. Assoc. 2014, 85, 1–3. [CrossRef] [PubMed]
6. Estrada-Peña, A.; De La Fuente, J. The Ecology of Ticks and Epidemiology of Tick-Borne Viral Diseases. Antivir. Res. 2014, 108,

104–128. [CrossRef] [PubMed]
7. Sanchez-Vicente, S.; Tagliafierro, T.; Coleman, J.L.; Benach, J.L.; Tokarz, R. Polymicrobial Nature of Tick-Borne Diseases. Mbio

2019, 10, e02055-19. [CrossRef] [PubMed]
8. Burn, L.; Tran, T.M.P.; Pilz, A.; Vyse, A.; Fletcher, M.A.; Angulo, F.J.; Gessner, B.D.; Moïsi, J.C.; Jodar, L.; Stark, J.H. Incidence

of Lyme Borreliosis in Europe from National Surveillance Systems (2005-2020). Vector Borne Zoonotic Dis. 2023, 23, 156–171.
[CrossRef] [PubMed]

9. CDC Lyme Disease Surveillance and Data. Available online: https://www.cdc.gov/lyme/data-research/facts-stats/index.html
(accessed on 8 August 2024).

10. Kosoy, O.I.; Lambert, A.J.; Hawkinson, D.J.; Pastula, D.M.; Goldsmith, C.S.; Hunt, D.C.; Staples, J.E. Novel Thogotovirus Associated
with Febrile Illness and Death, United States, 2014. Emerg. Infect. Dis. 2015, 21, 760. [CrossRef] [PubMed]

11. Savage, H.M.; Godsey, M.S.; Lambert, A.; Panella, N.A.; Burkhalter, K.L.; Harmon, J.R.; Lash, R.R.; Ashley, D.C.; Nicholson, W.L.
First Detection of Heartland Virus (Bunyaviridae: Phlebovirus) from Field Collected Arthropods. Am. J. Trop. Med. Hyg. 2013, 89,
445–452. [CrossRef] [PubMed]

12. Yu, X.-J.; Liang, M.-F.; Zhang, S.-Y.; Liu, Y.; Li, J.-D.; Sun, Y.-L.; Zhang, L.; Zhang, Q.-F.; Popov, V.L.; Li, C.; et al. Fever with
Thrombocytopenia Associated with a Novel Bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. [CrossRef]

13. Al-Abri, S.S.; Abaidani, I.A.; Fazlalipour, M.; Mostafavi, E.; Leblebicioglu, H.; Pshenichnaya, N.; Memish, Z.A.; Hewson, R.;
Petersen, E.; Mala, P.; et al. Current Status of Crimean-Congo Haemorrhagic Fever in the World Health Organization Eastern
Mediterranean Region: Issues, Challenges, and Future Directions. Int J. Infect. Dis. 2017, 58, 82–89. [CrossRef]

14. Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Adamson, S.; Dowd, S.E.; Apanskevich, D.; Arijo,
A.; et al. A Study of Ticks and Tick-Borne Livestock Pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [CrossRef]
[PubMed]

15. Kivaria, F.M. Climate Change and the Epidemiology of Tick-Borne Diseases of Cattle in Africa. Vet. J. 2010, 184, 7–8. [CrossRef]
16. Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Yao, K.P.; Belem, A.M.G.; Farougou, S.; Oosthuizen, M.; Saegerman, C.;

Lempereur, L. Cross Border Transhumance Involvement in Ticks and Tick-Borne Pathogens Dissemination and First Evidence of
Anaplasma centrale in Burkina Faso. Ticks Tick-Borne Dis. 2021, 12, 101781. [CrossRef]

17. Zannou, O.M.; Ouedraogo, A.S.; Biguezoton, A.S.; Lempereur, L.; Patrick Yao, K.; Abatih, E.; Zoungrana, S.; Lenaert, M.; Toe,
P.; Farougou, S.; et al. First Digital Characterization of the Transhumance Corridors through Benin Used by Cattle Herds from
Burkina Faso and Associated Risk Scoring Regarding the Invasion of Rhipicephalus (Boophilus) Microplus. Transbound. Emerg. Dis.
2021, 68, 2079–2093. [CrossRef] [PubMed]

18. Mediannikov, O.; Diatta, G.; Zolia, Y.; Balde, M.C.; Kohar, H.; Trape, J.-F.; Raoult, D. Tick-Borne Rickettsiae in Guinea and Liberia.
Ticks Tick-Borne Dis. 2012, 3, 43–48. [CrossRef] [PubMed]

19. Biguezoton, A.S. Invasion Biologique & Écologie De La Santé Vétérinaire: Le Cas Des Communautés De Tiques Et Pathogènes
Associés Au Bénin Et Au Burkina Faso À L’heure De Leur Invasion Par La Tique Du Bétail Rhipicephalus (Boophilus) Microplus.
Ph.D. Thesis, Université Montpellier, Montpellier, France, 2016.

20. Wanzala, W. Distribution of Ticks and Tick-Borne Pathogens, Hosts, Habitat and Diseases in Kenya and Some Parts of Africa:
A Mini Review. J. Anim. Res. Nutr. 2023, 8.

21. Diarra, A.Z.; Kelly, P.; Davoust, B.; Parola, P. Tick-Borne Diseases of Humans and Animals in West Africa. Pathogens 2023, 12, 1276.
[CrossRef] [PubMed]

22. Farougou, S.; Tassou, A.W.; Tchabode, D.M.; Kpodekon, M.; Boko, C.; Youssao, A.K.I. Tiques et Hémoparasites Du Bétail Dans Le
Nord-Bénin. Rev. Méd. Vét. 2007, 158, 463–467.

23. Ntiamoa-Baidu, Y.; Carr-Saunders, C.; Matthews, B.E.; Preston, P.M.; Walker, A.R. An Updated List of the Ticks of Ghana and an
Assessment of the Distribution of the Ticks of Ghanaian Wild Mammals in Different Vegetation Zones. Bull. Entomol. Res. 2004,
94, 245–260. [CrossRef]

24. Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Kouassi, P.Y.; Belem, A.; Farougou, S.; Oosthuizen, M.; Saegerman, C.;
Lempereur, L. Cattle Ticks and Associated Tick-Borne Pathogens in Burkina Faso and Benin: Apparent Northern Spread of
Rhipicephalus microplus in Benin and First Evidence of Theileria velifera and Theileria annulata. Ticks Tick-Borne Dis. 2021, 12, 101733.
[CrossRef] [PubMed]

https://doi.org/10.1017/S0031182004005967
https://www.ncbi.nlm.nih.gov/pubmed/15938502
https://doi.org/10.1016/j.ttbdis.2012.05.006
https://www.ncbi.nlm.nih.gov/pubmed/23238246
https://doi.org/10.2741/3200
https://www.ncbi.nlm.nih.gov/pubmed/18508706
https://doi.org/10.4102/jsava.v85i1.1084
https://www.ncbi.nlm.nih.gov/pubmed/25685942
https://doi.org/10.1016/j.antiviral.2014.05.016
https://www.ncbi.nlm.nih.gov/pubmed/24925264
https://doi.org/10.1128/mBio.02055-19
https://www.ncbi.nlm.nih.gov/pubmed/31506314
https://doi.org/10.1089/vbz.2022.0071
https://www.ncbi.nlm.nih.gov/pubmed/37071405
https://www.cdc.gov/lyme/data-research/facts-stats/index.html
https://doi.org/10.3201/eid2105.150150
https://www.ncbi.nlm.nih.gov/pubmed/25899080
https://doi.org/10.4269/ajtmh.13-0209
https://www.ncbi.nlm.nih.gov/pubmed/23878186
https://doi.org/10.1056/NEJMoa1010095
https://doi.org/10.1016/j.ijid.2017.02.018
https://doi.org/10.1371/journal.pntd.0005681
https://www.ncbi.nlm.nih.gov/pubmed/28650978
https://doi.org/10.1016/j.tvjl.2009.12.003
https://doi.org/10.1016/j.ttbdis.2021.101781
https://doi.org/10.1111/tbed.13855
https://www.ncbi.nlm.nih.gov/pubmed/32985112
https://doi.org/10.1016/j.ttbdis.2011.08.002
https://www.ncbi.nlm.nih.gov/pubmed/22309858
https://doi.org/10.3390/pathogens12111276
https://www.ncbi.nlm.nih.gov/pubmed/38003741
https://doi.org/10.1079/BER2004302
https://doi.org/10.1016/j.ttbdis.2021.101733
https://www.ncbi.nlm.nih.gov/pubmed/33975003


Pathogens 2024, 13, 697 35 of 45

25. Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier,
P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702.
[CrossRef] [PubMed]

26. Akuffo, R.; Brandful, J.A.M.; Zayed, A.; Adjei, A.; Watany, N.; Fahmy, N.T.; Hughes, R.; Doman, B.; Voegborlo, S.V.; Aziati, D.;
et al. Crimean-Congo Hemorrhagic Fever Virus in Livestock Ticks and Animal Handler Seroprevalence at an Abattoir in Ghana.
BMC Infect. Dis. 2016, 16, 324. [CrossRef]

27. Ogo, N.I.; de Mera, I.G.F.; Galindo, R.C.; Okubanjo, O.O.; Inuwa, H.M.; Agbede, R.I.S.; Torina, A.; Alongi, A.; Vicente, J.; Gortázar,
C.; et al. Molecular Identification of Tick-Borne Pathogens in Nigerian Ticks. Vet. Parasitol. 2012, 187, 572–577. [CrossRef]
[PubMed]

28. Vial, H.J.; Gorenflot, A. Chemotherapy against Babesiosis. Vet. Parasitol. 2006, 138, 147–160. [CrossRef]
29. Burimuah, V.; Sylverken, A.; Owusu, M.; El-Duah, P.; Yeboah, R.; Lamptey, J.; Frimpong, Y.O.; Agbenyega, O.; Folitse, R.; Tasiame,

W.; et al. Sero-Prevalence, Cross-Species Infection and Serological Determinants of Prevalence of Bovine Coronavirus in Cattle,
Sheep and Goats in Ghana. Vet. Microbiol. 2020, 241, 108544. [CrossRef] [PubMed]

30. Cossu, C.A.; Collins, N.E.; Oosthuizen, M.C.; Menandro, M.L.; Bhoora, R.V.; Vorster, I.; Cassini, R.; Stoltsz, H.; Quan, M.; van
Heerden, H. Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic
Review and Meta-Analysis. Microorganisms 2023, 11, 714. [CrossRef] [PubMed]

31. Chiuya, T.; Villinger, J.; Falzon, L.C.; Alumasa, L.; Amanya, F.; Bastos, A.D.S.; Fèvre, E.M.; Masiga, D.K. Molecular Screening
Reveals Non-Uniform Malaria Transmission in Western Kenya and Absence of Rickettsia africae and Selected Arboviruses in
Hospital Patients. Malar. J. 2022, 21, 268. [CrossRef] [PubMed]

32. Mhamadi, M.; Badji, A.; Dieng, I.; Gaye, A.; Ndiaye, E.H.; Ndiaye, M.; Mhamadi, M.; Touré, C.T.; Mbaye, M.R.; Barry, M.A.; et al.
Crimean—Congo Hemorrhagic Fever Virus Survey in Humans, Ticks, and Livestock in Agnam (Northeastern Senegal) from
February 2021 to March 2022. Trop. Med. Infect. Dis. 2022, 7, 324. [CrossRef] [PubMed]

33. Sow, A.; Loucoubar, C.; Diallo, D.; Faye, O.; Ndiaye, Y.; Senghor, C.S.; Dia, A.T.; Faye, O.; Weaver, S.C.; Diallo, M.; et al. Concurrent
Malaria and Arbovirus Infections in Kedougou, Southeastern Senegal. Malar. J. 2016, 15, 47. [CrossRef]

34. Kolo, A.O.; Collins, N.E.; Brayton, K.A.; Chaisi, M.; Blumberg, L.; Frean, J.; Gall, C.A.; Wentzel, J.M.; Wills-Berriman, S.; De Boni,
L.; et al. Anaplasma phagocytophilum and Other Anaplasma spp. In Various Hosts in the Mnisi Community, Mpumalanga Province,
South Africa. Microorganisms 2020, 8, 1812. [CrossRef] [PubMed]

35. El Hadji Ibrahima, N.; Diatta, G.; Adama Zan, D.; Bassene, H.; Sokhna, C.; Parola, P. Quantitative Polymerase Chain Reaction
from Malaria Rapid Diagnostic Tests to Detect Borrelia Crocidurae, the Agent of Tick-Borne Relapsing Fever, in Febrile Patients in
Senegal. Am. J. Trop. Med. Hyg. 2023, 108, 968–976. [CrossRef] [PubMed]

36. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 16 January 2024).
37. Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde,

L.N.; et al. Burden of Non-Communicable Diseases in Sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease
Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [CrossRef] [PubMed]

38. Happold, D.C.D. The Interactions between Humans and Mammals in Africa in Relation to Conservation: A Review. Biodivers.
Conserv. 1995, 4, 395–414. [CrossRef]

39. Abdelbaset, A.E.; Kwak, M.L.; Nonaka, N.; Nakao, R. Human-Biting Ticks and Zoonotic Tick-Borne Pathogens in North Africa:
Diversity, Distribution, and Trans-Mediterranean Public Health Challenges. One Health 2023, 16, 100547. [CrossRef] [PubMed]

40. Bogovic, P.; Lotric-Furlan, S.; Korva, M.; Avsic-Zupanc, T. African Tick-Bite Fever in Traveler Returning to Slovenia from Uganda.
Emerg. Infect. Dis. 2016, 22, 1848–1849. [CrossRef] [PubMed]

41. Ledwaba, M.B.; Nozipho, K.; Tembe, D.; Onyiche, T.E.; Chaisi, M.E. Distribution and Prevalence of Ticks and Tick-Borne
Pathogens of Wild Animals in South Africa: A Systematic Review. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100088. [CrossRef]

42. Onyiche, T.E.; MacLeod, E.T. Hard Ticks (Acari: Ixodidae) and Tick-Borne Diseases of Sheep and Goats in Africa: A Review. Ticks
Tick-Borne Dis. 2023, 14, 102232. [CrossRef] [PubMed]

43. Adjou Moumouni, P.F.; Terkawi, M.A.; Jirapattharasate, C.; Cao, S.; Liu, M.; Nakao, R.; Umemiya-Shirafuji, R.; Yokoyama, N.;
Sugimoto, C.; Fujisaki, K.; et al. Molecular Detection of Spotted Fever Group Rickettsiae in Amblyomma variegatum Ticks from
Benin. Ticks Tick-Borne Dis. 2016, 7, 828–833. [CrossRef]

44. Diseko, L.J.; Tsotetsi-Khambule, A.M.; Onyiche, T.E.; Ramatla, T.; Thekisoe, O.; Gcebe, N. Coxiella burnetii Infections from Animals
and Ticks in South Africa: A Systematic Review. Vet. Res. Commun. 2024, 48, 19–28. [CrossRef] [PubMed]

45. Mangena, M.; Gcebe, N.; Pierneef, R.; Thompson, P.N.; Adesiyun, A.A. Q Fever: Seroprevalence, Risk Factors in Slaughter
Livestock and Genotypes of Coxiella burnetii in South Africa. Pathogens 2021, 10, 258. [CrossRef] [PubMed]

46. Nakao, R.; Qiu, Y.; Igarashi, M.; Magona, J.W.; Zhou, L.; Ito, K.; Sugimoto, C. High Prevalence of Spotted Fever Group Rickettsiae
in Amblyomma variegatum from Uganda and Their Identification Using Sizes of Intergenic Spacers. Ticks Tick-Borne Dis. 2013, 4,
506–512. [CrossRef] [PubMed]

47. Bastos, R.G.; Sears, K.; Dinkel, K.D.; Knowles, D.P.; Fry, L.M. Changes in the Molecular and Functional Phenotype of Bovine
Monocytes during Theileria parva Infection. Infect. Immun. 2019, 87, 10–1128. [CrossRef]

48. Mutai, B.; Njaanake, K.; Gathii, K.; Estambale, B.B.; Waitumbi, J.N. Bacteriome in Ticks Collected from Domestic Livestock in
Kenya. AiM 2022, 12, 67–82. [CrossRef]

https://doi.org/10.1128/CMR.00032-13
https://www.ncbi.nlm.nih.gov/pubmed/24092850
https://doi.org/10.1186/s12879-016-1660-6
https://doi.org/10.1016/j.vetpar.2012.01.029
https://www.ncbi.nlm.nih.gov/pubmed/22326937
https://doi.org/10.1016/j.vetpar.2006.01.048
https://doi.org/10.1016/j.vetmic.2019.108544
https://www.ncbi.nlm.nih.gov/pubmed/31928696
https://doi.org/10.3390/microorganisms11030714
https://www.ncbi.nlm.nih.gov/pubmed/36985288
https://doi.org/10.1186/s12936-022-04287-3
https://www.ncbi.nlm.nih.gov/pubmed/36115978
https://doi.org/10.3390/tropicalmed7100324
https://www.ncbi.nlm.nih.gov/pubmed/36288065
https://doi.org/10.1186/s12936-016-1100-5
https://doi.org/10.3390/microorganisms8111812
https://www.ncbi.nlm.nih.gov/pubmed/33217891
https://doi.org/10.4269/ajtmh.22-0342
https://www.ncbi.nlm.nih.gov/pubmed/36913922
https://www.fao.org/faostat/en/#data/QCL
https://doi.org/10.1016/S2214-109X(19)30374-2
https://www.ncbi.nlm.nih.gov/pubmed/31537368
https://doi.org/10.1007/BF00058424
https://doi.org/10.1016/j.onehlt.2023.100547
https://www.ncbi.nlm.nih.gov/pubmed/37363219
https://doi.org/10.3201/eid2210.160650
https://www.ncbi.nlm.nih.gov/pubmed/27648844
https://doi.org/10.1016/j.crpvbd.2022.100088
https://doi.org/10.1016/j.ttbdis.2023.102232
https://www.ncbi.nlm.nih.gov/pubmed/37531888
https://doi.org/10.1016/j.ttbdis.2016.03.016
https://doi.org/10.1007/s11259-023-10204-z
https://www.ncbi.nlm.nih.gov/pubmed/37642820
https://doi.org/10.3390/pathogens10030258
https://www.ncbi.nlm.nih.gov/pubmed/33668366
https://doi.org/10.1016/j.ttbdis.2013.07.001
https://www.ncbi.nlm.nih.gov/pubmed/24331642
https://doi.org/10.1128/IAI.00703-19
https://doi.org/10.4236/aim.2022.122006


Pathogens 2024, 13, 697 36 of 45

49. Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and
Clinical Consequences. Trends Parasitol. 2016, 32, 30–42. [CrossRef] [PubMed]

50. Parola, P.; Raoult, D. Ticks and Tickborne Bacterial Diseases in Humans: An Emerging Infectious Threat. Clin. Infect. Dis. 2001, 32,
897–928. [CrossRef] [PubMed]

51. Baneth, G. Tick-Borne Infections of Animals and Humans: A Common Ground. Int. J. Parasitol. 2014, 44, 591–596. [CrossRef]
[PubMed]

52. Kasi, K.K.; Arnim, F.; Schulz, A.; Rehman, A.; Chudhary, A.; Oneeb, M.; Sas, M.A.; Jamil, T.; Maksimov, P.; Sauter-Louis, C.; et al.
Crimean-Congo Haemorrhagic Fever Virus in Ticks Collected from Livestock in Balochistan, Pakistan. Transbound. Emerg. Dis.
2020, 67, 1543–1552. [CrossRef]

53. Psaroulaki, A.; Ragiadakou, D.; Kouris, G.; Papadopoulos, B.; Chaniotis, B.; Tselentis, Y. Ticks, Tick-Borne Rickettsiae, and Coxiella
burnetii in the Greek Island of Cephalonia. Ann. New York Acad. Sci. 2006, 1078, 389–399. [CrossRef]

54. Cowdry, E.V. Studies on the Etiology of Heartwater. J. Exp. Med. 1925, 42, 253–274. [CrossRef]
55. Hurtado, O.J.B.; Giraldo-Ríos, C. Economic and Health Impact of the Ticks in Production Animals. In Ticks and Tick-Borne

pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK, 2018; Volume 9, pp. 133–151. ISBN 1-78985-765-1.
56. Allsopp, M.T.E.P.; Van Strijp, M.F.; Faber, E.; Josemans, A.I.; Allsopp, B.A. Ehrlichia ruminantium Variants Which Do Not Cause

Heartwater Found in South Africa. Vet. Microbiol. 2007, 120, 158–166. [CrossRef]
57. Some, M.V.; Biguezoton, A.S.; Githaka, N.; Adakal, H.; Dayo, G.-K.; Belem, A.; Zoungrana, S.; Stachurski, F.; Chevillon, C. The

Potential of Rhipicephalus micropluss as a Vector of Ehrlichia ruminantium in West Africa. Ticks Tick-Borne Dis. 2023, 14, 102117.
[CrossRef] [PubMed]

58. Vilela, V.L.R.; Feitosa, T.F.; Bezerra, R.A.; Klafke, G.M.; Riet-Correa, F. Multiple Acaricide-Resistant Rhipicephalus microplus in the
Semi-Arid Region of Paraíba State, Brazil. Ticks Tick-Borne Dis. 2020, 11, 101413. [CrossRef]

59. Yessinou, R.E.; Akpo, Y.; Ossè, R.; Adoligbe, C.; Cassini, R.; Akogbeto, M.; Farougou, S. Molecular Characterization of Pyrethroids
Resistance Mechanisms in Field Populations of Rhipicephalus microplus (Acari: Ixodidae) in District of Kpinnou and Opkara, Benin.
Int. J. Acarol. 2018, 44, 198–203. [CrossRef]

60. Louw, M.; Allsopp, M.; Meyer, E.C.; Wasserman, E. Ehrlichia ruminantium, an Emerging Human Pathogen-a Further Report. South
Afr. Med. J. 2005, 95, 948–950. [CrossRef]

61. Allsopp, B.A. Natural History of Ehrlichia ruminantium. Vet. Parasitol. 2010, 167, 123–135. [CrossRef] [PubMed]
62. Gajadhar, A.A.; Lobanov, V.; Scandrett, W.B.; Campbell, J.; Al-Adhami, B. A Novel Ehrlichia Genotype Detected in Naturally

Infected Cattle in North America. Vet. Parasitol. 2010, 173, 324–329. [CrossRef] [PubMed]
63. Van Heerden, H.; Collins, N.E.; Brayton, K.A.; Rademeyer, C.; Allsopp, B.A. Characterization of a Major Outer Membrane Protein

Multigene Family in Ehrlichia ruminantium. Gene 2004, 330, 159–168. [CrossRef]
64. Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S.A. The Natural History of Anaplasma marginale. Vet. Parasitol.

2010, 167, 95–107. [CrossRef]
65. Spare, M.R.; Hanzlicek, G.A.; Wootten, K.L.; Anderson, G.A.; Thomson, D.U.; Sanderson, M.W.; Ganta, R.R.; Reif, K.E.; Raghavan,

R.K. Bovine Anaplasmosis Herd Prevalence and Management Practices as Risk-Factors Associated with Herd Disease Status. Vet.
Parasitol. 2020, 277, 100021. [CrossRef] [PubMed]

66. Battilani, M.; De Arcangeli, S.; Balboni, A.; Dondi, F. Genetic Diversity and Molecular Epidemiology of Anaplasma. Infect. Genet.
Evol. 2017, 49, 195–211. [CrossRef]

67. De Waal, D.T. Anaplasmosis Control and Diagnosis in South Africa. Ann. New York Acad. Sci. 2000, 916, 474–483. [CrossRef]
[PubMed]

68. Adjou Moumouni, P.F.; Guo, H.; Gao, Y.; Liu, M.; Ringo, A.E.; Galon, E.M.; Vudriko, P.; Umemiya-Shirafuji, R.; Inoue, N.; Suzuki,
H.; et al. Identification and Genetic Characterization of Piroplasmida and Anaplasmataceae Agents in Feeding Amblyomma
variegatum Ticks from Benin. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 137–143. [CrossRef] [PubMed]

69. Teshale, S.; Geysen, D.; Ameni, G.; Dorny, P.; Berkvens, D. Survey of Anaplasma phagocytophilum and Anaplasma spp. “Omatjenne”
Infection in Cattle in Africa with Special Reference to Ethiopia. Parasit Vectors 2018, 11, 162. [CrossRef] [PubMed]

70. Pothmann, D.; Poppert, S.; Rakotozandrindrainy, R.; Hogan, B.; Mastropaolo, M.; Thiel, C.; Silaghi, C. Prevalence and Genetic
Characterization of Anaplasma marginale in Zebu Cattle (Bos indicus) and Their Ticks (Amblyomma variegatum, Rhipicephalus
microplus) from Madagascar. Ticks Tick-Borne Dis. 2016, 7, 1116–1123. [CrossRef] [PubMed]

71. Teshale, S.; Geysen, D.; Ameni, G.; Asfaw, Y.; Berkvens, D. Improved Molecular Detection of Ehrlichia and Anaplasma Species
Applied to Amblyomma Ticks Collected from Cattle and Sheep in Ethiopia. Ticks Tick-Borne Dis. 2015, 6, 23. [CrossRef] [PubMed]

72. Hornok, S.; Abichu, G.; Takács, N.; Gyuranecz, M.; Farkas, R.; Fernández De Mera, I.G.; De La Fuente, J. Molecular Screening for
Anaplasmataceae in Ticks and Tsetse Flies from Ethiopia. Acta Vet. Hung. 2016, 64, 65–70. [CrossRef] [PubMed]

73. Hove, P.; Chaisi, M.E.; Brayton, K.A.; Ganesan, H.; Catanese, H.N.; Mtshali, M.S.; Mutshembele, A.M.; Oosthuizen, M.C.; Collins,
N.E. Co-Infections with Multiple Genotypes of Anaplasma marginale in Cattle Indicate Pathogen Diversity. Parasites Vectors 2018,
11, 5. [CrossRef] [PubMed]

74. Naeem, M.; Amaro-Estrada, I.; Taqadus, A.; Swelum, A.A.; Alqhtani, A.H.; Asif, M.; Sajid, M.; Khan, A.U.; Tariq, A.; Anjum, S.;
et al. Molecular Prevalence and Associated Risk Factors of Anaplasma Ovis in Pakistani Sheep. Front. Vet. Sci. 2023, 10, 1096418.
[CrossRef]

https://doi.org/10.1016/j.pt.2015.09.008
https://www.ncbi.nlm.nih.gov/pubmed/26613664
https://doi.org/10.1086/319347
https://www.ncbi.nlm.nih.gov/pubmed/11247714
https://doi.org/10.1016/j.ijpara.2014.03.011
https://www.ncbi.nlm.nih.gov/pubmed/24846527
https://doi.org/10.1111/tbed.13488
https://doi.org/10.1196/annals.1374.077
https://doi.org/10.1084/jem.42.2.253
https://doi.org/10.1016/j.vetmic.2006.10.026
https://doi.org/10.1016/j.ttbdis.2022.102117
https://www.ncbi.nlm.nih.gov/pubmed/36603230
https://doi.org/10.1016/j.ttbdis.2020.101413
https://doi.org/10.1080/01647954.2018.1491623
https://doi.org/10.1196/annals.1355.060
https://doi.org/10.1016/j.vetpar.2009.09.014
https://www.ncbi.nlm.nih.gov/pubmed/19836892
https://doi.org/10.1016/j.vetpar.2010.06.034
https://www.ncbi.nlm.nih.gov/pubmed/20663613
https://doi.org/10.1016/j.gene.2004.01.020
https://doi.org/10.1016/j.vetpar.2009.09.012
https://doi.org/10.1016/j.vpoa.2019.100021
https://www.ncbi.nlm.nih.gov/pubmed/32904721
https://doi.org/10.1016/j.meegid.2017.01.021
https://doi.org/10.1111/j.1749-6632.2000.tb05327.x
https://www.ncbi.nlm.nih.gov/pubmed/11193662
https://doi.org/10.1016/j.vprsr.2018.10.006
https://www.ncbi.nlm.nih.gov/pubmed/31014719
https://doi.org/10.1186/s13071-018-2633-y
https://www.ncbi.nlm.nih.gov/pubmed/29523210
https://doi.org/10.1016/j.ttbdis.2016.08.013
https://www.ncbi.nlm.nih.gov/pubmed/27592064
https://doi.org/10.1016/j.ttbdis.2014.04.023
https://www.ncbi.nlm.nih.gov/pubmed/25438799
https://doi.org/10.1556/004.2016.007
https://www.ncbi.nlm.nih.gov/pubmed/26919143
https://doi.org/10.1186/s13071-017-2595-5
https://www.ncbi.nlm.nih.gov/pubmed/29298712
https://doi.org/10.3389/fvets.2023.1096418


Pathogens 2024, 13, 697 37 of 45

75. Berthelsson, J.; Ramabu, S.S.; Lysholm, S.; Aspán, A.; Wensman, J.J. Anaplasma Ovis Infection in Goat Flocks around Gaborone,
Botswana. Comp. Clin. Pathol. 2020, 29, 167–172. [CrossRef]

76. Chatanga, E.; Kainga, H.; Razemba, T.; Ssuna, R.; Swennen, L.; Hayashida, K.; Sugimoto, C.; Katakura, K.; Nonaka, N.; Nakao, R.
Molecular Detection and Characterization of Tick-Borne Hemoparasites and Anaplasmataceae in Dogs in Major Cities of Malawi.
Parasitol. Res. 2021, 120, 267–276. [CrossRef]

77. Ringo, A.E.; Rizk, M.A.; Adjou Moumouni, P.F.; Liu, M.; Galon, E.M.; Li, Y.; Ji, S.; Tumwebaze, M.; Byamukama, B.; Thekisoe, O.;
et al. Molecular Detection and Characterization of Tick-Borne Haemoparasites among Cattle on Zanzibar Island, Tanzania. Acta
Trop. 2020, 211, 105598. [CrossRef] [PubMed]

78. Ringo, A.E.; Nonga, H.E.; Galon, E.M.; Ji, S.; Rizk, M.A.; El-Sayed, S.A.E.-S.; Mohanta, U.K.; Ma, Z.; Chikufenji, B.; Do, T.T.; et al.
Molecular Investigation of Tick-Borne Haemoparasites Isolated from Indigenous Zebu Cattle in the Tanga Region, Tanzania.
Animals 2022, 12, 3171. [CrossRef] [PubMed]

79. Ringo, A.E.; Aboge, G.O.; Adjou Moumouni, P.F.; Hun Lee, S.; Jirapattharasate, C.; Liu, M.; Gao, Y.; Guo, H.; Zheng, W.; Efstratiou,
A.; et al. Molecular Detection and Genetic Characterisation of Pathogenic Theileria, Anaplasma and Ehrlichia Species among
Apparently Healthy Sheep in Central and Western Kenya. Onderstepoort J. Vet. Res. 2019, 86, e1–e8. [CrossRef] [PubMed]

80. Dahmani, M.; Davoust, B.; Sambou, M.; Bassene, H.; Scandola, P.; Ameur, T.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular
Investigation and Phylogeny of Species of the Anaplasmataceae Infecting Animals and Ticks in Senegal. Parasit Vectors 2019,
12, 495. [CrossRef]

81. Djiba, M.L.; Mediannikov, O.; Mbengue, M.; Thiongane, Y.; Molez, J.-F.; Seck, M.T.; Fenollar, F.; Raoult, D.; Ndiaye, M. Survey of
Anaplasmataceae Bacteria in Sheep from Senegal. Trop. Anim. Health Prod. 2013, 45, 1557–1561. [CrossRef]

82. Aouadi, A.; Leulmi, H.; Boucheikhchoukh, M.; Benakhla, A.; Raoult, D.; Parola, P. Molecular Evidence of Tick-Borne
Hemoprotozoan-Parasites (Theileria ovis and Babesia ovis) and Bacteria in Ticks and Blood from Small Ruminants in Northern
Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 34–39. [CrossRef] [PubMed]

83. Belkahia, H.; Ben Said, M.; Ghribi, R.; Selmi, R.; Ben Asker, A.; Yahiaoui, M.; Bousrih, M.; Daaloul-Jedidi, M.; Messadi, L.
Molecular Detection, Genotyping and Phylogeny of Anaplasma spp. in Rhipicephalus Ticks from Tunisia. Acta Trop. 2019, 191,
38–49. [CrossRef] [PubMed]

84. Matsimbe, A.M.; Magaia, V.; Sanches, G.S.; Neves, L.; Noormahomed, E.; Antunes, S.; Domingos, A. Molecular Detection of
Pathogens in Ticks Infesting Cattle in Nampula Province, Mozambique. Exp. Appl. Acarol. 2017, 73, 91–102. [CrossRef]

85. Onyiche, T.E.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Vasić, A.; Schäfer, M.; Biu, A.A.; Ogo, N.I.; Thekisoe, O.; Silaghi, C.
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