
Modeling and simulations of marine sectors of
the Antarctic ice sheet across various spatial scales:

the subglacial environment and its impact on instabilities

Thesis submitted by Thomas Gregov
in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in
Engineering Science (ULiège) and in Sciences (ULB)
February 2025

Supervisors: Professor Maarten Arnst (Université de Liège)
Aerospace and Mechanical Engineering
Computational and Stochastic Modeling

and Professor Frank Pattyn (Université libre de Bruxelles)
Geosciences, Environment and Society

Laboratoire de Glaciologie

Thesis jury :
Maarten Arnst (Université de Liège)
Benjamin Dewals (Université de Liège)
Elisa Mantelli (Ludwig-Maximilians-Universität München)
Frank Pattyn (Université libre de Bruxelles)
Mauro Perego (Sandia National Laboratories)
Laurence Rongy (Université libre de Bruxelles)



© Copyright by Thomas Gregov 2025. All Rights Reserved.
First printing, February 2025



Thesis jury:

The present dissertation has been evaluated by the members of the Jury (sorted by alphabetical order):

Maarten Arnst (Supervisor) Université de Liège;
Benjamin Dewals (Chair) Université de Liège;
Elisa Mantelli Ludwig-Maximilians-Universität München;
Frank Pattyn (Co-supervisor) Université libre de Bruxelles;
Mauro Perego Sandia National Laboratories;
Laurence Rongy Université libre de Bruxelles.

Funding:

This research was financially supported by the Fonds de la Recherche
Scientifique de Belgique (F.R.S.-FNRS) through a Research Fellowship,
by the Fonds David et Alice Van Buuren and the Fondation Jaumotte-
Demoulin, and by the School of Engineering of the Université de Liège.

A scientific stay at Sandia National Laboratories was supported by the
F.R.S.-FNRS through a mobility grant and by Wallonie-Bruxelles Inter-
national (WBI) though an excellence fellowship (WBI.World).

Computational resources have been provided by the Consortium des
Équipements de Calcul Intensif (CÉCI), funded by the F.R.S.-FNRS un-
der Grant No. 2.5020.11 and by the Walloon Region.

iii





Modeling and simulations of marine sectors of
the Antarctic ice sheet across various spatial scales:

the subglacial environment and its impact on instabilities

Thomas Gregov

Abstract

The Antarctic ice sheet is a major potential contributor to future sea-level rise, and its marine regions,
containing both grounded and floating sections, represent non-linear physical systems potentially sub-
ject to tipping points. The subglacial environment of these marine sectors plays a crucial role in marine
ice-sheet dynamics, yet it remains challenging to model due to the many unknowns surrounding it. This
thesis aims to understand how subglacial conditions impact instabilities in marine ice sheets based on
three original contributions that rely on analytical and numerical approaches across various spatial scales.

The first contribution examines grounding-line flux conditions which are semi-analytical expressions
used to determine ice flux at the grounding line. These flux conditions depend on the friction law that
is used to model the interactions between the ice and the bed on the grounded area of marine ice sheets.
We generalize the flux conditions, historically derived for Weertman and Coulomb friction laws, to ac-
commodate more complex laws like the Budd friction law, which includes the effective pressure applied
by the ice on the bed, and hybrid laws combining viscous and plastic behavior. Using asymptotic devel-
opments, we demonstrate the existence and uniqueness of solutions to this boundary-layer problem and
propose explicit flux expressions that remain valid in cases of steep slopes and low friction coefficients.

The second contribution presents a fast and simplified subglacial hydrological model for the Antarc-
tic ice sheet, incorporating efficient and inefficient drainage systems and accounting for both hard and
soft bed types. Applied to Thwaites Glacier, this model shows that subglacial hydrology accelerates
grounding-line retreat, with the retreat rates being a function of the efficiency of the drainage system
and of the type of bed. We also highlight that the retreat dynamics near the grounding line are primarily
driven by steep effective pressure gradients, rather than by the absolute value of effective pressure itself.

The third contribution of this thesis investigates the effect of pinning points –locations where the ice
temporarily grounds on bedrock peaks, adding stability to the ice sheet– on ice-sheet dynamics, partic-
ularly on the grounding line, the boundary between grounded and floating ice. We show that a singular
behavior can arise at these points, where the linearized problem associated with the mass and momentum-
balance equations becomes ill-defined, with infinite gradients in the momentum-balance equation. This
singularity raises important questions about current models and how grounding lines are treated in nu-
merical simulations, indicating the need for alternative formulations to improve modeling accuracy.

Overall, this thesis demonstrates the significance of subglacial conditions on Antarctic marine ice-
sheet dynamics and proposes advancements to improve their modeling. These findings suggest that refin-
ing predictions in response to a changing climate will require model developments that better represent
local ice-bedrock interactions and the spatial-temporal evolution of subglacial hydrology.

Key-words: marine ice sheets, numerical simulations, boundary layers, basal friction, subglacial hydrol-
ogy.
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Modélisation et simulations de secteurs marins
de la calotte antarctique sur plusieurs échelles spatiales :

l’environnement sous-glaciaire et son impact sur les instabilités

Thomas Gregov
Résumé

La calotte glaciaire de l’Antarctique est un contributeur potentiel majeur à la future hausse du niveau
global des mers, et ses régions marines, composées à la fois de sections ancrées dans la roche et de
régions flottant sur l’océan, représentent des systèmes physiques non linéaires susceptibles de former
des points de basculement. Le milieu sous-glaciaire de ces secteurs marins joue un rôle crucial dans
la dynamique des calottes glaciaires marines, mais reste difficile à modéliser en raison des nombreuses
inconnues le caractérisant. Cette thèse vise à comprendre comment les conditions sous-glaciaires in-
fluencent les instabilités des calottes marines, grâce à trois contributions originales s’appuyant sur des
approches analytiques et numériques à différentes échelles spatiales.

La première contribution de cette thèse se concentre sur les conditions de flux qui sont des expres-
sions semi-analytiques permettant de déterminer le flux de glace à la ligne d’ancrage. Ces conditions de
flux dépendent de la loi de friction utilisée pour modéliser les interactions entre la glace et la roche dans
la zone ancrée des calottes glaciaires marines. Nous généralisons les conditions de flux, historiquement
dérivées pour les lois de Weertman et de Coulomb, afin de les adapter à des lois plus complexes comme
la loi de Budd, qui inclut la pression effective que la glace exerce sur le substrat rocheux, ainsi qu’à
des lois hybrides combinant un comportement visqueux et plastique. En utilisant des développements
asymptotiques, nous montrons l’existence et l’unicité des solutions de ce problème de couche limite et
proposons des expressions explicites du flux adaptées aux situations de pentes importantes et de faibles
coefficients de friction.

La deuxième contribution propose un modèle hydrologique sous-glaciaire simplifié et rapide pour
la calotte antarctique, intégrant à la fois des systèmes de drainage efficaces et inefficaces, et prenant en
compte différents types de lits rocheux (déformable et rigide). Appliqué au glacier Thwaites, ce modèle
montre que l’hydrologie sous-glaciaire accélère le retrait de la ligne d’ancrage, les taux de retrait étant
fonction de l’efficacité du système de drainage et du type de lit rocheux. Nous soulignons également que
la dynamique de retrait près de la ligne d’ancrage est principalement influencée par les forts gradients de
pression effective, plutôt que par la valeur absolue de la pression effective elle-même.

La troisième contribution étudie l’effet des points de contact –les zones où la glace s’ancre tempo-
rairement sur des pics du substrat rocheux, stabilisant ainsi la calotte glaciaire– sur la dynamique de ces
calottes, en particulier sur la ligne d’ancrage, limite entre la glace ancrée et la glace flottante. Nous mon-
trons qu’un comportement singulier peut apparaître à ces points, où le problème linéarisé associé aux
équations de conservation de masse et de quantité de mouvement devient mal défini, avec des gradients
infinis dans l’équation de la quantité de mouvement. Cette singularité soulève des questions importantes
concernant les modèles actuels et la manière dont les lignes d’ancrage sont traitées dans les simulations
numériques, suggérant le besoin de formulations alternatives pour améliorer la précision des modèles.

En conclusion, cette thèse démontre l’importance des conditions sous-glaciaires dans la dynamique
des parties marines de la calotte antarctique et propose des avancées pour améliorer leur modélisation.
Ces travaux suggèrent que, pour affiner les prédictions dans un contexte de changement climatique, il
est nécessaire de développer des modèles capables de mieux représenter les interactions locales entre la
glace et le substrat rocheux, ainsi que l’évolution spatio-temporelle de l’hydrologie sous-glaciaire.

Mots-clés: calottes glaciaires marines, simulations numériques, couches limites, friction basale, hydrolo-
gie sous-glaciaire.
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Introduction

1.1 Context

1.1.1 The climate system of the 21st century

The climate has been of particular interest for several decades. Numerous observations have highlighted
rapid changes in key indicators of the climate [Fig. 1.1; IPCC, 2021]. These changes are taking place in
all components of the climate system: the atmosphere, cryosphere, biosphere and oceans, and are thus
the result of a structural and global modification of the climate. It is now undeniable that these changes
are the result of human activity, in particular due the increase in greenhouse gas emissions since the in-
dustrial era [Huber and Knutti, 2011; Gillett et al., 2021].

In this context, scientists are attempting to predict how the climate system will evolve over the com-
ing decades and centuries. The aim of such predictions is twofold: first, to quantify the impacts of current
anthropogenic activities to inform strategies for mitigating the adverse effects of climate change; second,
to identify regions at risk from climate change, thereby facilitating the implementation of effective adap-
tation measures [Morecroft et al., 2019].

However, there are several major difficulties associated with the study of climate and its evolution.
The first is conceptual and may seem obvious: conducting experiments on climate is not feasible. Sci-
entists typically study physical systems through reproducible experiments, allowing them to assess how
these systems react to various external stimuli and deduce their underlying dynamics. In the case of
climate, this approach is not possible. Thus, scientists rely on modeling to investigate these systems.
This involves developing a mathematical model that accurately represents the physical system –in this
case, the climate or one of its components– based on established physical principles. The system is then
analyzed mathematically, but more importantly, it is explored numerically. The advantage of numerical
simulations lies in their ability to modify system parameters and external forcings. Conceptually, this ap-
proach functions as a numerical laboratory, similar to experiments conducted in a traditional laboratory.
The model can then be modified and recalibrated according to current climate observations [Eyring et al.,
2016].

Another difficulty associated with the study of climate concerns its nature. Climate is a physical
system that is non-linear and stochastic [Dijkstra, 2013]. As a result, the climate’s response to external
modifications (e.g., an increase in temperature) is not proportional to changes in the latter. This non-
linearity has several consequences. From a theoretical point of view, it greatly complicates the study of
such a system, since many complex behaviors can appear in its evolution. In particular, the system will
not only depend on its current state but also on its past states; physically, we speak of irreversibility.
From a practical point of view, the non-linear nature of the climate system is worrying, as it means that
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Figure 1.1: Changes in the main components of the climate system (atmosphere, cryosphere, biosphere,
and oceans) based on the evolution of six key indicators from 1850 to 2018. Rapid changes in the indica-
tors can be observed, especially in the last 50 years [Credit: Sixth Assessment Report of the IPCC; IPCC,
2021].

climatic changes can occur relatively abruptly, with large and rapid modifications (similar to what is cur-
rently being observed, as mentioned above).

These potential abrupt changes to the climate system are of particular interest to scientists and are
therefore under close observation [Rosier et al., 2021; Dakos et al., 2024]. This has led them to identify
so-called tipping points, which are such that any small subsequent change in the system –whether trig-
gered by external disturbances or fluctuations in internal parameters– will induce qualitative changes in
its response. Qualitative change here means that the system’s behavior itself is altered; for example, the
system may be brought to a new equilibrium state. Such a qualitative change is necessarily associated
with significant quantitative changes in the system. A tipping point can be formalized as follows [Lenton,
2011]. Consider a physical system characterized by a feature F . The system depends on a parameter ρ.
A tipping point then corresponds to the critical value ρ = ρc at which a modification δρ leads to a
qualitative change in the system, measured by a threshold value F̂ , after an observation time T :

|∆F | := |F (ρ ≥ ρc + δρ|T )− F (ρc|T )| ≥ F̂ > 0. (1.1)

As an illustration, F may represent mean sea level, while ρ corresponds to the global surface tempera-
ture. An illustration of tipping points according to the definition (1.1) is shown in figure 1.2. The main
tipping points in the climate system are shown in figure 1.3. Note that the polar ice sheets have several
tipping points that are likely to occur at relatively low global warming, below 2 °C [Garbe et al., 2020;
Winkelmann et al., 2023; Klose et al., 2024]. These regions are therefore of particular interest, and are
now described.

1.1.2 The cryosphere
The cryosphere comprises all the frozen parts of the climate system. This includes in particular glaciers,
polar ice sheets (Greenland and Antarctica), and frozen ground ice. The focus here is on glaciers and
polar ice sheets, for reasons that will become clear later on.

Glaciers and polar ice sheets are vast regions of ice that flow under their own weight. Formally, ice
behaves like a shallow, shear-thinning fluid on geophysical time scales (say, of the order of several years):
its behavior can be modeled as that of generalized Newtonian fluid with an effective viscosity that is a
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Figure 1.2: Illustration of the concept of tipping point [adapted from Lenton, 2011, 2013]. A tipping
point is defined by the position ρ = ρc (green point) from which a small perturbation leads to qualitative
changes in the system (magenta point). This perturbation can take the form of an external perturbation δρ,
or of an internal variation δF . Quantitatively, the changes in the system are characterized by a switch ∆F
in a feature F of the system. In the plots, the continuous lines correspond to stable equilibrium positions
while the dashed ones correspond to unstable equilibrium positions. (a) Monostable system, in which the
tipping behavior is associated with highly non-linear changes. (b) Bistable system, in which the tipping
behavior is associated with the crossing of a saddle-node bifurcation. (c) Bistable system, in which the
tipping behavior is associated with a noise-induced transition.

Figure 1.3: Main tipping points in the climate system with associated likelihood in the context of global
warming [Credit: Potsdam Institute for Climate Impact Research (PIK)].
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decreasing function of the strain rate [Glen, 1955; Schoof and Hewitt, 2013]. In high-altitude regions,
ice accumulates thanks to precipitations. It is then carried by the ice flow to lower-altitude regions. In
the case of outlet glaciers and marine ice sheets, ice is essentially lost by being discharged in the water
through iceberg calving and by melting at the base of floating parts of ice sheets that are in contact with
the ocean. This is the case of Antarctica, for example, which is in contact with the Southern Ocean. For
land-terminated glaciers, on the other hand, ice is removed at lower altitude through sublimation and melt.

Overall, there is a dynamic balance between the amount of ice mass gained by glaciers and ice sheets
and the amount lost. If mass gain exceeds mass loss, these glaciers and ice sheets will grow. On the other
hand, if the gain is less than the loss, they will decrease in size. In the latter case, the ice that is lost does
not vanish; in fact, it may be released back into the ocean directly (e.g., through discharges in oceans)
or indirectly (e.g., through sublimation and then precipitation), ultimately leading to a rise in sea level.
All in all, it follows that the evolution of the cryosphere is directly linked to the evolution of sea level.
The reason why this rise needs to be monitored is that it has tangible effects on the habitability of various
coastal areas, which could be flooded if sea levels were to rise significantly [Nicholls and Cazenave,
2010; Nicholls et al., 2021]. Furthermore, the release of freshwater into the ocean could modify the cli-
mate system itself, by altering ocean circulation [Bronselaer et al., 2018; Purich and England, 2023].

To quantify sea-level rise, the global mean-sea level (GMSL), which is defined as a spatially-averaged
sea-level rise relative to a reference at a given time, is generally used. Over the period 1993–2018, the
GMSL has risen by around 81.2 mm, with an average rate of increase of about 3.25 mm per year. This
rise is attributed to several factors: thermal expansion at 45.9% (water takes up more space at higher
temperatures), glaciers at 19.4%, the Greenland ice sheet at 15.2%, the Antarctic ice sheet at 8.6%, and
the evolution of land-water storage at 10.9% [IPCC, 2021]. Thus, the current rise in GMSL is about
half a consequence of thermal expansion, with cryosphere-related components responsible for only a
few tens of percent. These data can be misleading as to the future evolution of the GMSL. It does not
take into account the total potential effect of cryospheric components, should they melt completely and
contribute to the sea-level rise. These potential contributions are given for glaciers: 0.32± 0.08 m; for
the Greenland ice sheet: 7.42± 0.05 m; for the Antarctice ice sheet: 57.90± 0.90 m [Morlighem et al.,
2017, 2019; Farinotti et al., 2019]. Although its current contribution to sea-level rise is relatively limited,
the Antarctic ice sheet therefore has considerable potential for future sea-level rise. This potential is
explained by Antarctica’s continental dimensions (Fig. 1.4). This is also a first reason why this thesis
focuses on sectors of the Antarctic ice sheet, rather than on other components of the cryosphere or of the
climate system.

1.1.3 Marine sectors of the Antarctic ice sheet

The marine regions of the Antarctic ice sheet are those in contact with the ocean (Fig. 1.5). They take
the form of ice masses that have both a grounded part, resting on bedrock, and a floating part, resting
on the ocean. These two regions are separated by what is known as the grounding line. It is therefore
important to study the evolution of the grounding line over time, whether through satellite observations
or numerical modeling, as it is a proxy for the overall evolution of an ice sheet. In general, a retreating
grounding line is associated with a reduction in ice-sheet size, and a positive contribution to sea-level rise.

Marine sectors of the Antarctic ice sheet are subject to a series of complex physical processes tak-
ing place on different spatial and temporal scales. These processes are such that the grounding line can
evolve on relatively short timescales, depending on external disturbances associated with changes in at-
mospheric or oceanic conditions [Robel et al., 2018]. This vision of an Antarctic ice sheet that is not
simply a passive component of the climate system, with a slow, uncertain and diffusive response, has
only recently come into evidence. This has led to a paradigm shift, where marine areas need to be studied
in detail, in view of the various mechanical, hydrological, and thermal processes taking place at these
locations. Given that these processes are relatively unconstrained, they lead to greater uncertainty in
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Figure 1.4: Maps of the Antarctic ice sheet [Credit: Bell and Seroussi, 2020].

(a) Photo of ice being discharged in the ocean in a Glacier near
the Antarctic Peninsula [Credit: Dr. Alba Martin-Español].

(b) Schematic of the main physical processes [Credit: National
Snow and Ice Data Center].

Figure 1.5: Representations of marine ice sheets.
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the ice-sheet response to a modification of the climate [Pattyn, 2018; Bulthuis et al., 2019; Pattyn and
Morlighem, 2020]. This is a second reason for studying Antarctic marine sectors: they appear to be
non-linear systems whose responses are complex. They can also lead to potential tipping points through
various instability mechanisms.

The sensitivity of marine regions to external perturbations has been motivated by various instability
mechanisms that can destabilize the grounding line, leading to large variations in their positions. A first
instability is called ‘marine ice-sheet instability’ (MISI). Initiated by Weertman [1974], this mechanism
suggests that marine ice sheets with a grounding line located on an up-sloping bed are unstable. This is
because the ice flux at the grounding line is an increasing function of the ice thickness at that position, so
that any initial retreat of the grounding line will be amplified in such areas, since there is then an increase
in the outflow of ice. From a mathematical point of view, there is a difficulty in studying marine ice
sheets in that the balance of forces is not the same on the grounded and floating parts, since the former
is subject to basal friction but not the latter. Despite this, Schoof [2007b,c, 2012] succeeded in formal-
izing this instability in their seminal papers, thanks to a boundary-layer analysis of a one-dimensional
marine ice sheet. In it, they proved that the grounding-line ice flux is indeed an increasing function of the
grounding-line thickness, thereby providing a theoretical basis for MISI.

Several studies have attempted to improve our undestanding of MISI. They have highlighted the
limitations in Schoof’s initial model [2007c], which considered a one-dimensional ice sheet, and have
subsequently extended the theory of marine ice sheets [Schoof et al., 2017; Pegler, 2018a,b; Book et al.,
2022; Sergienko and Wingham, 2022; Sergienko, 2022a]. One of the factors that can attenuate or even
remove MISI concerns the lateral stresses that can be applied to an ice sheet. This forms what is known
as ‘buttressing’, which stabilizes the grounding lines by providing additional resistance to ice motion. In
this way, grounding lines on up-sloping beds can remain stable if they are sufficiently laterally-confined.
Despite these criticisms, it seems that MISI is a mechanism worthy of attention, as it helps to explain
rapid and irreversible grounding-line retreat in regions with up-sloping beds that are not very confined.
This is the case of large sectors in West Antarctica (see Fig. 1.4), and this mechanism could trigger a
tipping point for this region: if the grounding line retreats too far, it could end up in areas with increas-
ingly deep bedrock, leading to positive feedback and rapid and total collapse of West Antarctica [Favier
et al., 2014; Joughin et al., 2014; Ritz et al., 2015; Garbe et al., 2020; Hill et al., 2023; Reese et al., 2023].

Another more fundamental criticism of the MISI concerns the fact that initial studies by Weertman
[1974] and Schoof [2007c] considered stationary ice sheets, or ice sheets evolving on relatively large
time scales that effectively allowed for a grounding-line motion that is slow. In reality, atmospheric and
oceanic forcing can vary in an apparent random fashion on relatively small time scales, which has led
some to question the validity of the MISI [Sergienko and Wingham, 2024]. According to them, a retreat
of the grounding line over an area with an up-sloping bed would therefore not necessarily be associated
with a MISI, but rather with rapid variability in the external conditions that apply to marine ice sheets.
However, a bias in this analysis is that it only considers a single trajectory in the forcing. Indeed, the
rigorous way to study a system subjected to stochastic forcing is to perform a probabilistic analysis on
its response by studying the distribution of responses. By carrying out such an analysis, it can be shown
that MISI does indeed appear as a mechanism that increases the probability of grounding-line retreat by
skewing the probability distribution of grounding-line retreat so that the latter is more important [Robel
et al., 2018, 2019; Mulder et al., 2018; Christian et al., 2020, 2022].

There are other potential instability mechanisms for marine ice sheets. The ‘marine ice-cliff insta-
bility’ (MICI) suggests a positive feedback between calving rate and ice thickness at the caving front,
which may lead to an accelerated retreat of the grounding line if this instability is initiated. However, this
instability is the source of much research within the scientific community, as it has not yet been observed
and there is no consensus on it yet [Edwards et al., 2019; Bassis et al., 2021, 2024; Morlighem et al.,
2024]. Finally, it has recently been suggested that the coupling between marine ice sheets and subglacial
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Figure 1.6: Schematic representation of several features of a subglacial hydrology system [Credit: Ash-
more and Bingham, 2014].

hydrology could create an additional destabilization mechanism [Lu and Kingslake, 2024; Bradley and
Hewitt, 2024].

The evolution of grounding lines depends on several physical processes. Among these, basal condi-
tions play a major role [Brondex et al., 2017, 2019; Bulthuis et al., 2019; Kazmierczak et al., 2022]. At
the base of the ice sheets, perturbations in the bedrock elevation slow down the ice flow by providing a
form of resistance. Furthermore, the subglacial environment is also made up of a hydrological system
that flows, like the ice, from the interior zones to the edges of the ice caps (Fig. 1.6). This hydrological
system can lubricate the bed, thereby reducing its resistance. Since the subglacial environment is difficult
to access, being located under one or more kilometers of ice, little is currently known about the processes
that take place there. This leads to a number of models, both for basal friction and subglacial hydrol-
ogy [e.g., Weertman, 1957; Schoof, 2005; Werder et al., 2013; Bueler and van Pelt, 2015; Sommers et al.,
2018; Gilbert et al., 2022]. The fact that there are several models, and that they are not well constrained
by observations, leads to uncertainty in the results of numerical simulations. The study of this subglacial
environment therefore appears to be an important research program to improve our understanding of the
dynamics of marine ice sheets, as well as the predictions of their evolution.

1.2 Motivation
The motivation for this thesis is based on the following three observations, which were described in the
previous section:

i. The Antarctic ice sheet is a major potential contributor to future sea-level rise.

ii. Marine regions of Antarctica, which are marine ice sheets, are non-linear physical systems that
could be subject to tipping points.

iii. The subglacial environment of marine ice sheets is an important control on marine ice-sheet dy-
namics, but there are still many unknowns about its modeling.
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Combining these three points, we find that subglacial conditions are one of the major sources of uncer-
tainty on the dynamics of Antarctica and therefore on its contribution to future sea-level rise. The aim of
this thesis is to reduce this uncertainty by essentially answering the following overarching question:

How do subglacial conditions impact the dynamics of marine ice sheets?

To do this, we intend to apply a combination of analytical and numerical methods, and build on re-
cent studies of the subglacial environment (bedrock topography, basal friction, and subglacial hydrology).
Firstly, Robel et al. [2022a] have recently shown that marine ice sheets possess ambiguous behavior when
their grounding lines lie on bed peaks, in that these grounding lines can either persist or retreat from these
peaks. This suggests that the bedrock profile beneath the ice plays an important role in the dynamics of
marine ice sheets; this had already been highlighted by the MISI. A question remains in that it is not clear
whether this ambiguous behavior stems from the locally sharp character of the bed peaks, or whether this
ambiguity is associated with the flow of marine ice sheets itself. There have been several numerical stud-
ies on bed peaks and in particular on pinning points, which are areas of ice shelves that are in contact
with local bed peaks [Favier et al., 2012; Favier and Pattyn, 2015; De Rydt and Gudmundsson, 2016].
However, a theoretical understanding of the effects of (possibly smooth) bed peaks remains unexplored.

In terms of basal friction, the friction law that was most widely used in the glaciological community is
the Weertman friction law, which relates basal velocity to basal friction through a power law [Weertman,
1957; Pattyn et al., 2012]. In particular, analytical studies of marine ice sheets, such as that proposed
by Schoof [2007b,c] to explain MISI, are usually based on such a law. Such a law represents a viscous
behavior for basal friction. However, numerous studies have recently suggested that friction laws should
also contain a plastic component, associated with ice sliding on water-filled cavities or on deformable
soft beds [Schoof, 2005, 2010a; Gagliardini et al., 2007; Tsai et al., 2015; Zoet and Iverson, 2015, 2020;
Joughin et al., 2019; Minchew and Joughin, 2020; Helanow et al., 2021]. This raises the question of the
effect of such plastic or visco-plastic laws on the behavior of marine ice sheets, and in particular on the
MISI model proposed by Schoof.

Recent studies have also shown that subglacial hydrology has a major impact on the dynamics of the
Antarctic ice sheet [e.g., Kazmierczak et al., 2022]. In addition, recent models have shown that subglacial
hydrology is not a homogeneous system, but rather takes on a different form depending on the magnitude
of the water flow that is transported [Schoof, 2010b; Werder et al., 2013]. The hydrological system can
then switch from a distributed, inefficient system to a localized, efficient system. Subglacial hydrology
models typically consider flow over a hard bed [Werder et al., 2013; Bueler and van Pelt, 2015; Hoffman
et al., 2018; Sommers et al., 2018], despite studies that have shown subglacial hydrology takes a different
form over soft beds [Walder and Fowler, 1994; Ng, 2000]. In addition, West Antarctica has been shown
to contain both hard and soft beds [Joughin et al., 2009; Schroeder et al., 2014; Muto et al., 2019]. Thus,
there is a need to build a model capable of simulating the flow of subglacial water over both hard and
soft beds. Finally, the study of the coupling between subglacial hydrology and marine ice sheets is still in
its infancy, with studies typically considering a coupling in idealized domains [e.g., Hoffman and Price,
2014; Gagliardini and Werder, 2018; Lu and Kingslake, 2024], or a subglacial hydrology system that
does not evolve over time, in particular for studies that are performed over Antarctica [e.g., McArthur
et al., 2023; Pelle et al., 2023]. Thus, the study of coupling between ice-sheet dynamics and subglacial
hydrology over large-scale areas of interest (typically, West Antarctica) remains to be carried out.

Overall, these considerations lead us to formulate the following research sub-questions, which we
will attempt to answer in this thesis:

Q1. How do bed peaks affect grounding-line motion?

Q2. How does the modeling of basal friction impact ice-sheet dynamics, in particular with respect to
marine ice-sheet instability and Schoof’s model?
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Q3. How does an active coupling between marine ice sheets and subglacial hydrology modifies large-
scale ice-sheet dynamics?

Q4. How does variability in the efficiency of a subglacial drainage system and in the bed type affects
ice-sheet dynamics?

1.3 Overview of the manuscript
The manuscript is structured in three parts (see Tab. 1.1). The first part presents a general overview of
the modeling of marine ice sheets. The aim of this part is to present the basics of ice-sheet mechanics, in
particular how the equations of classical mechanics apply to the case of ice-sheet flow. As such, this sec-
tion may be omitted by the reader who is already familiar with the models governing marine ice sheets.
This first part is structured as follows. Starting with the equations of continuous mechanics, we first
show how these are rewritten in view of the characteristics of ice sheets (Chapter 2). Next, we present
the classical approximations used to simplify the stress state in the equations of ice flow (Chapter 3).
Finally, an overview is given of the various research studies associated with the subglacial environment
(Chapter 4). Particular attention is paid to recent developments in the modeling of basal friction and
subglacial hydrology. To simplify the reading of this part, a list of symbols has been included at the end.

Chapter Name Type

I. Modeling marine ice sheets: an overview
2 Mechanics of marine ice sheets

Review3 Stress approximations for ice flow
4 The subglacial environment
∗ List of symbols

II. Original contributions
5 Extension of grounding-line flux conditions (Contribution 1)

Original6 A fast and simplified subglacial hydrology model (Contribution 2)
7 Singularity at pinning points (Contribution 3)

III. Conclusions and directions for future work
8 Conclusions and perspectives Review/Original

Table 1.1: Structure of the manuscript.

The second part is dedicated to the original contributions of this thesis. It consists of three distinct
works that attempt to answer the research questions posed above. The first and second contributions are
articles that have already been published in peer-reviewed scientific journals. They are copied in this
thesis in the same way as they were published, apart from some minor modifications to the form of equa-
tions and figures to make them more easily readable in a thesis manuscript. The third contribution is a
report that we aim to transform into a research paper and submit to a scientific journal in the near future.
The contributions rely on different methods and address different issues (see Tab. 1.2); hence, they can
be read independently from one another.

In the first contribution (Chapter 5), we focus on the effect that friction laws have on the dynamics of
marine ice sheets; this addresses Q2. Specifically, we revisit the analytical developments made by Schoof
[2007b,c] and Tsai et al. [2015]. Based on an asymptotic analysis near the grounding line, they obtained
expressions for the flux at the grounding line as a function of the ice thickness at this location. In the
glaciology literature, such expressions are known as ‘grounding-line flux conditions’. These authors ob-
tained flux conditions for the Weertman and Coulomb friction laws. We show that their results can be
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extended to more general laws such as the Budd friction law. In doing so, we also build a bridge be-
tween the results previously obtained by Schoof [2007b,c] and Tsai et al. [2015]. Our results highlight
the importance of the behavior of the friction law near the grounding line, and in particular whether this
law is such that basal friction vanishes or not at that location. In particular, vanishing friction leads to
a complex mechanical equilibrium where viscous, gravitational and frictional stresses are balanced in a
boundary layer close to the grounding line.

In the second contribution (Chapter 6), we develop a simplified model of subglacial hydrology capa-
ble of handling both efficient and inefficient drainage systems, on both hard and soft beds. Our model is
developed to be computationally fast, allowing coupling with an ice-sheet model. Thus, this contribution
addresses both Q3 and Q4. We first present the assumptions of the model and how it is implemented.
We test it on the idealized case of a one-dimensional marine ice sheet, and then apply it to Thwaites
Glacier (West Antarctica). Our results suggest that the inclusion of a hydrological model that evolves as
a function of the changes in ice-sheet geometry is essential, as it increases the sensitivity of ice sheets to
external perturbations. Moreover, both the efficiency of the drainage system and the type of bed are key
parameters determining this increased sensitivity.

In the third contribution (Chapter 7), we focus on the study of pinning points and their effects on the
dynamics of marine ice sheets; this addresses Q1. We show that they can generate singularities in the
coupling between the equations governing its motion, mass and momentum-balance equations. Impor-
tantly, we show that these singularities occur over smooth bedrock profiles. Indeed, the singularities are
associated with a difference between the mechanical equilibrium that takes place on the grounded and
floating parts of marine ice sheets. Essentially, these arise from the discrete nature of the grounding line,
which is such that the grounded/floating transition occurs abruptly. The presence of singularities thus
questions question the relevance of a mathematical model based on a grounding line, and suggests that a
diffuse grounding-zone model might be more appropriate.

Chapter Contribution Methods Main application

6 #1 perturbation methods / dynamical systems basal friction
7 #2 hydrology modeling / numerical simulations subglacial hydrology
5 #3 differential calculus / numerical continuation pinning points

Table 1.2: Methods and applications of the original contributions of this thesis.

Finally, the third part (Chapter 8) presents the general conclusions of this thesis and suggests various
perspectives for extending the research that has been initiated.
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Modeling marine ice sheets:
an overview

13





2

Mechanics of marine ice sheets

2.1 Introduction
In this section we describe the mechanics of marine ice sheets. Since ice sheets have macroscopic dimen-
sions, an ideal framework for studying them is continuum mechanics, which we introduce in section 2.2.
Then, in section 2.3, the equations of motion are specialized to the case of ice; ice takes the form of
a shear-thinning fluid that flows under its own weight (Fig. 2.1). The resulting system of equations is
summarized in section 2.4. Finally, we briefly discuss the ice-atmosphere, ice-ocean, and ice-bedrock
interactions in section 2.5.

(a) Elephant Foot Glacier, Greenland [Credit: Dr. Ole
Zeising].

(b) Penny Ice Cap, Canada [Credit: NASA].

Figure 2.1: Pictures that show the viscous behavior of ice sheets: on geophysical time scales, ice sheets
behave as shear-thinning fluids that flow under their own weight.

This chapter is based on the reference book [Greve and Blatter, 2009] and the lecture notes from
the Karthaus summer school [Fowler and Ng, 2021]. References on the subject also include the review
article [Schoof and Hewitt, 2013], the glaciology-oriented reference book [Cuffey and Paterson, 2010],
and the mathematically-oriented book [Fowler, 2011].

2.2 Continuum mechanics

2.2.1 Kinematics
Let us consider a body whose initial configuration is represented by the set Ω0 ⊂ R3 (Fig. 2.2). A point
in Ω0 is denoted byX and is referred to as a material point. Over time, this body may move and deform,

15
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and we characterize this motion by the following map:

ϕ : Ω0×]0,T [→ Ωt : (X, t) 7→ x = ϕ(X, t). (2.1)

Here, ]0,T [ is the interval of time which is of interest for the study of the motion and Ωt is the position
of the body at time t, i.e., Ωt := ϕ(Ω0, t). It is referred to as the current configuration, and a point in Ωt
is denoted by x and referred to as a spatial point.

Ω0

Reference configuration

Ωt

Current configuration

X
x

ϕ(X, t)

Figure 2.2: Schematic of the motion of a body. Each material pointX of the reference configuration Ω0
is mapped to a spatial point x of the current configuration Ωt according to x = ϕ(X, t).

The mapping ϕ is assumed to be a regular one: it is generally assumed that it is at least continuously
differentiable and that it admits, at each time t, an inverse map ϕ−1

t : Ωt → Ω0 such that

ϕ−1
t (ϕ(X, t)) = X, ∀X ∈ Ω0, (2.2a)

ϕ(ϕ−1
t (x), t) = x, ∀x ∈ Ωt. (2.2b)

This construction is particularly convenient because it allows to switch between the reference and current
configurations easily. Hence, it makes it possible to describe the motion of the body in terms of both the
reference configuration and the current configuration, leaving the physicist to choose the most appropri-
ate configuration for the situation under study. The first approach, in which the motion is described in
terms of the material points X ∈ Ω0, is known as a Lagrangian approach. The second approach, which
considers the spatial points x ∈ Ωt, is known as an Eulerian approach.

The material velocity and acceleration V ,A : Ω0×]0,T [→ R3 are respectively defined as the first
and second time derivatives of the mapping ϕ: V := ∂tϕ and A := ∂2

tϕ. In particular, we have the
following identity:

A(X, t) = ∂V

∂t
(X, t), ∀ (X, t) ∈ Ω0×]0,T [. (2.3)

To compute the spatial velocity and acceleration v,a : Ωt×]0,T [→ R3, we simply express the previous
quantities in the reference configuration, thanks to the inverse mapping ϕ−1

t :

v(x, t) := V (ϕ−1
t (x), t), (2.4a)

a(x, t) := A(ϕ−1
t (x), t). (2.4b)

It then follows from (2.2) that the material and spatial velocity and acceleration are also related according
to the following relations:

V (X, t) = v(ϕ(X, t), t), ∀ (X, t) ∈ Ω0×]0,T [, (2.5a)
A(X, t) = a(ϕ(X, t), t), ∀ (X, t) ∈ Ω0×]0,T [. (2.5b)
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Based on these relations, the relation between the spatial velocity and the spatial acceleration can be
obtained. Indeed, from (2.3) and (2.5) we have

a(x, t) =
[
∂

∂t
+ v(x, t) · ∇x

]
v(x, t). (2.6)

Hence, in contrast to the material velocity and acceleration that are simply related to each other by a
partial time derivative (see equation (2.3)), the relation between the spatial velocity and acceleration
takes the form of a more complex non-linear relationship that involves the spatial velocity itself. There
are two components in the right-hand side of (2.6): the first one, the partial time derivative, is due to
the change over time of the velocity at a fixed position. The second one is known as the advective or
convective part, and is due to the fact that the particle moves, so that it might go into regions that have
a different velocity, thereby affecting its acceleration. More generally, consider the time derivative of an
Eulerian quantity f = f(x, t) which characterizes a material property of the particles of the body. Then,
the rate of change of f , when following a particle, is known as the material or total derivative, and is
given by the following formula:

Material derivative of an Eulerian quantity

df
dt = ∂f

∂t
+ v ·∇xf . (2.7)

Just as we can consider the temporal variation of the mapping ϕ, we can also consider its spatial
variation. To do so, we introduce the deformation gradient F = F (X, t) as F := ∇Xϕ, which
takes the form of a two-point tensor field. It is such that an infinitesimal vector dX in the reference
configuration is mapped to an infinitesimal vector dx in the reference configuration:

dx = F · dX. (2.8)

It can also be interesting to look at how the velocity varies spatially. We therefore define the velocity
gradient L = L(x, t) as L := ∇xv. Because the velocity is associated with the time derivative of ϕ,
one might expect a relation between the velocity gradient and the time derivative of the deformation
gradient. In fact, it can easily be shown that

L = (∂tF )F−1. (2.9)

Finally, the velocity gradient can be decomposed to characterize the type of motion of a body. Specifi-
cally, one can split this tensor into its symmetric and anti-symmetric components, which are respectively
denoted byD andW :

L = D +W , D = DT, W = −WT. (2.10)

The tensor D is associated to the elongation of the body and is known as the strain-rate tensor. By
contrast, the tensor W is associated with the solid-body rotation of the body and is known as the spin-
rate tensor. This distinction can be made a bit more explicit thanks to the study of the evolution over time
of an infinitesimal vector dx. Thanks to (2.8) and (2.9), we have

d
dtdx = L · dx. (2.11)

Because W is anti-symmetric, there exists a unique vector w such that W · dx = w × dx. In fact, this
vector is nothing else than half the rotational of the velocity field (i.e., half the vorticity field):w = ω/2,
in which ω :=∇x × v. It follows that we have

d
dtdx = D · dx+ 1

2ω × dx, (2.12)
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in which the first component is associated with the elongation of dx, while the second component is
associated with its rotation.

In the following sections, we simplify the notations by assuming that all the spatial differential oper-
ators are expressed with respect to the current configuration, so we write, e.g.,∇f instead of∇xf .

2.2.2 Dynamics
Before considering the equations governing the dynamics of continuous materials, it is useful to introduce
Reynolds’ theorem that allows the rate of change of a quantity f integrated over the material volume Ωt
to be computed:

Reynolds’ theorem

d
dt

∫

Ωt
f dΩ =

∫

Ωt

[
∂f

∂t
+ div (vf)

]
dΩ (2.13a)

=
∫

Ωt

∂f

∂t
dΩ +

∫

∂Ωt
(vf) · ndΓ. (2.13b)

Here, ∂Ωt denotes the boundary of the volume Ωt, and n its outward-facing normal. Hence, the rate of
change of an integrated quantity f over the material volume has two contributions: one that is associated
with the local change of the quantity f within the domain Ωt, and one that is associated with the outflow
and inflow of f across the boundary ∂Ωt of this domain.

Next, we present the fundamental balance principles in their global formulation. To do so, we further
consider that the material under study is characterized by a mass density ρ = ρ(x, t) and an internal
energy density or specific internal energy e = e(x, t). Mass conservation then takes the following form:

d
dt

∫

Ωt
ρ dΩ = 0. (2.14)

Linear momentum balance, also simply called momentum balance, is given by

d
dt

∫

Ωt
ρv dΩ =

∫

Ωt
ρf dΩ +

∫

∂Ωt
tdΓ, (2.15)

in which ρv denotes the linear momentum, f the applied volumetric forces and t the applied surfaces
forces. Its angular counterpart is given by

d
dt

∫

Ωt
(x− x0)× ρv dΩ =

∫

Ωt
(x− x0)× (ρf) dΩ +

∫

∂Ωt
(x− x0)× tdΓ, (2.16)

for any arbitrary point x0 ∈ R3. Finally, energy balance takes the form

d
dt

∫

Ωt
ρ

(
e+ 1

2‖v‖
2
)

dΩ =
∫

Ωt
ρf · v dΩ +

∫

∂Ωt
t · v dΓ +

∫

Ωt
ρ r dΩ−

∫

∂Ωt
q · ndΓ. (2.17)

This last equation corresponds to the first principle of thermodynamics. The left-hand side contains the
total energy of the system, made of the internal and kinetic energy. The right-hand side contains four
parts: the mechanical power due to volume forces, the mechanical power due to surface forces, the heat
production due to a heat source r, and the heat exchange due to the heat flux q.
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An important quantity that needs to be introduced is the Cauchy stress tensor σ = σ(x, t), which is
the linear map between normal vectors n to a surface and the surface forces t that are applied on it:

t = σ · n. (2.18)

The existence of such a tensor follows from Cauchy’s theorem, which is itself a consequence of the
momentum balance (2.15). Applying Reynolds’ theorem (2.13) together with the definition of Cauchy
stress tensor (2.18) and a localization principle allows the global balance principles (2.14)–(2.17) to be
converted to their local forms:

Local formulation of balance principles

∂tρ+ div(ρv) = 0, (2.19a)

ρ (∂t + v · ∇)v = ρf + divσ, (2.19b)

σ = σT, (2.19c)

ρ(∂t + v ·∇)e = σ : D − div q + ρ r. (2.19d)

This set of coupled partial differential equations is the system of equations that needs to be solved to
determine the motion of a body. However, there are several equations lacking to close the system of
equations: the constitutive equations and the initial and boundary conditions. Constitutive equations
characterize the medium and are therefore material-dependent. Similarly, the initial and boundary condi-
tions that must be enforced depend on the specific situation that is studied.

Conditions at interfaces sometimes take the form of jump conditions, associated with the change
in kinematic and dynamical quantities across the interface between two subdomains, e.g., two regions
made of different materials. Formally, these jump conditions are obtained by applying the global balance
equations (2.14)–(2.17) in a volume that encloses the interface, and making the measure of this volume
tend towards zero. Let Γ be the interface separating two media Ω+ and Ω−. The jump operator J·K is
then defined, for a spatial quantity f = f(x), as

Jf(x)K := lim
y→x
y∈∂Ω+

f(y)− lim
y→x
y∈∂Ω−

f(y), ∀x ∈ Γ. (2.20)

The jump conditions associated with mass balance, momentum balance (both linear and angular), and
energy balance are then given by

Jρ(v − vi) · nK = 0, (2.21a)
Jσ · nK− Jρv(v − vi) · nK = 0, (2.21b)

Jq · nK− Jv · σ · nK +
q
ρ
(
e+ 1

2‖v‖2
)

(v − vi) · n
y

= 0. (2.21c)

Here, vi denotes the velocity of the interface, which might be different from the velocity v of the material
at that interface.

2.3 Ice flow

2.3.1 Rheology
Physically, ice has a polycrystalline structure. Specifically, ice is made of arrays of hexagonal structures
in which the vertices are the oxygen atoms (Fig. 2.3). When an external stress is applied, the structure
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is deformed, preferentially along the directions that are such that the hexagonal planes glide along each
other. On top of this mechanism, defects (or dislocations) in the lattice facilitate ice deformation through
their motion. Considering a lattice as shown in figure 2.3, there are specific directions along which the
material can be more easily deformed, and these are typically characterized by the orientation of the unit
vector c normal to hexagonal planes. However, in practice, ice is made of a collection of aggregates
that are oriented along various directions. If there is no preferred orientation among these aggregates,
i.e., if these orientations are uniformly distributed, then ice possesses an isotropic behavior and behaves
similarly irrespective of the orientation of the material with respect to that of the applied stress.

c
1 nm

Figure 2.3: Crystal structure of the ice Ih. It takes the form of a wurtzite structure, with stacks of
hexagonal rings whose vertices are oxygen atoms (red) and whose edges are hydrogen bonds (gray). The
atoms that make up a hexagon are not on the same plane, but on two planes that are slightly shifted so that
each atom’s neighbours are on the other plane. The vector c is perpendicular to the hexagonal structures.

In a continuum-mechanics approach, we are not interested in the details of the physical structure of
materials, but, rather, in the relation between macroscopic measures of applied stress and deformation.
This relation will then be the macroscopic image of the modifications in both the stress distribution and
the crystal structure of the ice. Figure 2.4 schematically shows such a relation for ice. Here, a lump of
ice is submitted to a shear stress τ , leading to a deformation angle γ that increases over time because of
ice creep. There are several parts to this mechanical response. First, there is an instantaneous response
γ = γ0 that is associated with an elastic behavior. If the stress continues to be applied, creep is initiated.
During an initial phase, known as primary creep, the deformation angle increases but with a shear rate γ̇
that gets smaller over time. Eventually, a plateau is reached, known as secondary creep, in which the
shear rate is constant. Then, tertiary creep begins, in which the shear rate increases again to stabilize
towards an ultimate value.

(b)

t

γ

γ0
I

II

III

(c)

γ

γ̇

I

II

III

(a)
⇀
τ

γ γ

Figure 2.4: Illustration of the creep of ice when submitted to a stress. (a) Schematic of a test in which
ice is submitted to shear. (b) Over time, the deformation angle γ increases according to three regimes:
primary creep (I), secondary creep (II), and tertiary creep (III). (c) Corresponding shear rate γ̇.
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For geophysical time scales, ice is modeled as an incompressible power-law fluid, with

γ̇ = 2Aτn, (2.22)

in which A is a viscosity coefficient and n a viscosity parameter. Fundamentally, this relation is associ-
ated with the second regime of ice creep, for which γ̇ becomes minimal. Hence, some complexity of the
ice rheology is dismissed but, as will be seen later, it is found that this simple relation is generally a good
model for ice flow. Note that more sophisticated models exist, in which the other creep regimes are also
included [Goldsby and Kohlstedt, 2001]. The relation (2.22) can be written in the form a generalized
Newtonian constitutive equation in which the effective viscosity η depends on the strain rate:

τ = η(γ̇) γ̇, η(γ̇) := 1
2A
− 1
n

(
γ̇

2

) 1−n
n

. (2.23)

Because n ≥ 1, ice is a shear-thinning fluid: its effective viscosity decreases when the strain rate in-
creases. Given the pioneering research conducted by Glen [1955] and Nye [1953, 1957], such a law is
known in the glaciology community as the Glen or Glen–Nye flow law. In the complex-fluids community,
it also referred to as the Ostwald–de Waele law [Saramito, 2016]. The viscosity coefficient A depends
on temperature; this is not unexpected as creep is associated with the motion of dislocations, which is a
temperature-dependent process. The usual model is an Arrhenius-like equation:

A(θ′) := A0 exp(−Q/Rθ′), θ′ := θ − ctp, (2.24)

in which A0 is a prefactor, Q is an activation energy for creep, R is the universal gas constant, θ′ is a
pressure-corrected temperature, ct > 0 is the Clapeyron slope, and p is the pressure. The relation (2.22),
or its equivalent (2.23), together with the temperature dependence (2.24) have been validated in both
laboratory and in-situ measurements [e.g., Glen, 1955; Weertman, 1983; Jezek et al., 1985; Budd and
Jacka, 1989]. In particular, Glen [1955] has obtained the first striking evidence of a power-law rela-
tion (Fig. 2.5). Their measurements suggest that n ≈ 3 in the power-law relation. We note that recent
observations suggest a slightly larger value n ≈ 4 [Millstein et al., 2022].

100 10110−2
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θ = − 0.02◦C
θ = − 1.5 ◦C
θ = − 6.7 ◦C
θ = −12.8 ◦C

Figure 2.5: Minimum creep rate ε̇ observed as a function of the applied stress σ [adapted from Glen,
1955]. The green symbols correspond to different stress states at θ = −1.5◦C: initial values (circles),
values after increasing the stress (diamonds), and values after decreasing the stress (squares). The lines
are best-fit regressions lines of the form ε̇ ∝ σn, with n = 3.17.

The rheology equation (2.22) corresponds to a simple shear-test configuration. It therefore remains
to generalize it so that it can be used for general three-dimensional cases. A natural method to do so
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consists in replacing the shear rate γ̇ by its three-dimensional equivalent, the strain-rate tensor D. In
terms of the the Cauchy stress tensor σ, the constitutive equation of a generalized Newtonian fluid is

σ = −pI + 2ηD, (2.25)

where I is the identity tensor. The effective viscosity η should furthermore be a function of D instead
of γ̇. To guarantee that this function is independent of the coordinate system, we further require it to be
a function ofD only through its principal invariants which, by definition, satisfy this constraint:

η = η(ID, IID, IIID), (2.26)

where
ID := trD, IID := 1

2
[
(trD2)− (trD)2] , IIID := detD. (2.27)

Given that ice is modeled as an incompressible fluid, the first invariant ID vanishes. Furthermore, for a
simple-shear test, the third invariant is zero. This suggests to use the second invariant as a generalization
of the shear rate γ̇. In a simple shear test,

γ̇

2 =
√

IID, (2.28)

so that we write, for consistency,

η(D) := 1
2A
− 1
n

(√
IID
) 1−n

n . (2.29)

It is convenient to rewrite the square root of the second invariant as a norm on the space of traceless
matrices; introducing

‖D‖∗ :=
√

1
2 [(trD2)− (trD)2], (2.30)

the equation for the effective viscosity becomes

η(D) := 1
2A
− 1
n ‖D‖

1−n
n∗ . (2.31)

Overall, the following constitutive equation is obtained for ice flow:

Ice rheology

σ = −pI + 2η(D, θ′)D, η(D, θ′) := 1
2 [A(θ′)]− 1

n ‖D‖
1−n
n∗ . (2.32)

This constitutive equation is obviously a simplification of reality. In particular, several modifications
have been introduced in the glaciology literature in order to make it more accurate. We mention these
here, as these improvements are important for certain cases, and have been the subject of important
research in recent years. A first extension of (2.32) concerns the isotropy assumption. To take into
account the effect of the orientation of the crystals, anisotropic models of various complexities have
been proposed [e.g., Gillet-Chaulet et al., 2005, 2006]. A practical approach consists in multiplying
the ice rheology factor A in equation (2.32) with an enhancement factor E which can be optimized so
that the computed velocity surface values match observed ones [Ma et al., 2010]. A second extension
is related to the analysis of ice sheets on short time scales, e.g., of the order of days. In that case, the
elastic component in the ice response cannot be neglected, and ice is typically modeled as a viscoelastic
material. This is particularly important for the modeling of the flexure of ice shelves in response to tides
[e.g., Vaughan, 1995]. Finally, a third extension of the viscous rheology (2.32) concerns the addition
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of a damage or failure component [e.g., Mobasher et al., 2016; Sun et al., 2017]. This is an area of
research that glaciologists have been focusing on in recent years; indeed, although there are widespread
observations of damage areas in the shear margins of ice shelves [Lhermitte et al., 2020], these processes
are not yet fully understood. Furthermore, this is a problem that is complex due to its multiphysics
nature: the intrusion of surface or sea water into ice-shelf faults can lead to damage and, eventually, to
rupture [Lai et al., 2020; Hageman et al., 2024].

2.3.2 Thermal properties
Ice is characterized by a heat capacity c = c(θ) and a heat conductivity k = k(θ). The internal energy
density and heat flux are then given, respectively, by

e =
∫ θ

θ0

c(Θ) dΘ, (2.33a)

q = −k(θ)∇θ, (2.33b)

in which θ0 is a reference temperature. Given that there is no heat source in ice shets, we set r = 0 in the
energy-balance equation (2.19d).

An additional assumption on the thermal state of the ice is also made to simplify this overview. It
is assumed that, over the whole interior of the ice sheet, ice is in its solid form, so that the temperature
is below its pressure melting point. We also assume that at the base of the ice sheet (at the ice-bedrock
interface), ice is temperate, i.e., at the pressure melting point.

2.3.3 Balance equations
Given the incompressible nature of ice, its rheology, and its thermal properties, the balance equations (2.19)
become

div v = 0, (2.34a)
ρ(∂t + v · ∇)v = −∇p+ div(2ηD) + ρf , (2.34b)

ρc(∂t + v ·∇)θ = 4 η ‖D‖2∗ + div(k∇θ). (2.34c)

Note that the angular momentum balance equation, which requires the Cauchy stress tensor to be sym-
metric, is automatically satisfied given that ice behaves as a generalized Newtonian fluid.

These equations can still be further particularized to the context of ice flow. Consider the momentum
balance equation (2.34b). The only external force that is applied to the ice is gravity. However, a com-
plication here is that this equation only holds for inertial reference frames, while the description of ice
is done in a reference frame that is attached to the Earth, which is rotating. As a consequence, one has
to consider additional fictitious forces that are associated with this motion: the centrifugal and Coriolis
forces. The applied forces are therefore given by

ρf = ρg − 2ρΩ× v, (2.35)

where g = γ−Ω× (Ω×x) is the effective gravity with γ the true gravity, and Ω is the Earth’s Poisson
vector. The resulting momentum-balance equation becomes

ρ(∂t + v · ∇)v = −∇p+ div(2ηD) + ρg − 2ρΩ× v. (2.36)

While we expect the pressure, viscous, and gravity terms to be important for the study of ice flows,
this might not be the case for the other terms. We therefore assess their importance by comparing the
characteristic value of each term with respect to the characteristic value of the pressure gradient. The
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scales that are chosen are typical of ice sheets and described in table 2.1. Using these scales yields the
following estimation for the relative importance of the horizontal inertial term, the vertical inertial term,
and the Coriolis term:

ρ[u]/[t]
[p]/[x] ∼ 10−9, ρ[w]/[t]

[p]/[h] ∼ 10−15, ρ‖Ω‖[u]
[p]/[x] ∼ 10−8. (2.37)

Accordingly, we drop these terms from the momentum-balance equation, which becomes

−∇p+ div(2ηD) + ρg = 0. (2.38)

Importantly, because the inertial terms are neglected, there is no explicit time dependency in this equation.
That does not mean that the ice flow is stationary; by contrast, this means that the ice flow follows the
changes in ice geometry and in the boundary conditions by reaching the associated equilibrium. In
particular, the ice flow is in quasi-static equilibrium with respect to the ice-sheet geometry.

Name Symbol Value Units

Ice density ρ 910 kg m−3

Gravity acceleration ‖g‖ 9.81 m s−2

Poisson vector magnitude ‖Ω‖ 7.29×10−5 s−1

Horizontal extent scale [x] 103 km
Thickness scale [h] 1 km

Horizontal velocity scale [u] 102 m year−1

Vertical velocity scale [w] 10−1 m year−1

Pressure scale [p] 10 MPa
Time scale [t] 104 year

Table 2.1: Physical parameters and characteristic scales associated with ice flow in ice sheets in order to
assess the importance of the various terms in the momentum-balance equation [adapted from Greve and
Blatter, 2009]. The scales have been chosen by first setting [x], [h], and [u] according to observed values.
Then, the pressure scale was set to [p] ∼ ρg[h] and the time scale to [t] ∼ [x]/[u]. Finally, the vertical
velocity scale was set based on the continuity equation (2.34a), so that [u]/[x] ∼ [w]/[h].

2.3.4 Initial and boundary conditions

The system of equations formed by the balance equations presented in the previous subsection requires
initial and boundary conditions. We describe these conditions by first introducing the different bound-
aries of the domains. Then, the conditions associated with each of these boundaries are briefly described.
Finally, we comment on the initial conditions.

A schematic of a marine ice sheet is shown in figure 2.6, together with the notations used to define its
boundaries. The boundary of the ice-sheet domain Ωt is partitioned into the following non-overlapping
sets:

• Γs: upper surface;

• Γg: grounded lower surface, where ice is in contact with the bed;

• Γf : floating lower surface, where ice is in contact with the ocean;

• Γcf : calving front, where ice detaches from the shelf which leads to a discharge of icebergs in the
ocean.
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All these sets potentially depend on time, as the ice-sheet geometry is expected to evolve as a function
of time. In addition to these boundaries, an additional fictitious boundary, the ice divide Γd, is often
added in numerical simulations with synthetic configurations. It serves as a symmetry plane, so that
symmetry conditions are associated to this boundary. The upper and lower surfaces are parametrized by
their elevation z = zs and z = zl. The distinction between the grounded and floating regions is made by
considering whether the elevation z is greater than or equal to the bedrock elevation zb:

Γs = {x ∈ cl(Ωt) : z = zs}, (2.39a)
Γg = {x ∈ cl(Ωt) : z = zl, zl = zb}, (2.39b)
Γf = {x ∈ cl(Ωt) : z = zl, zl > zb}, (2.39c)

where cl(Ωt) denotes the closure of the set Ωt. Alternatively, these boundaries can be defined using Ω̄t,
which is the projection of cl(Ωt) onto a plane perpendicular to the vertical axis (Fig. 2.6b). In other
words, Ω̄t is the smallest closed subset of R2 that contains the (x, y) coordinates of all the points in Ωt.
It can therefore be used to parametrize the boundaries through the elevation functions zs and zl:

Γs = {(x, y, zs(x, y, t)) | (x, y) ∈ Ω̄t}, (2.40a)

Γg = {(x, y, zl(x, y, t)) | (x, y) ∈ Ω̄t : zl = zb}, (2.40b)

Γf = {(x, y, zl(x, y, t)) | (x, y) ∈ Ω̄t : zl > zb}. (2.40c)

The following geometric constraint is further added to guarantee meaningful boundaries:

zs ≥ zl ≥ zb. (2.41)

Finally, we also introduce the grounding line Γgl as the transition between the grounded and floating
boundaries:

Γgl := cl(Γg) ∩ cl(Γf). (2.42)

Physically, the grounding line corresponds to the position where the ice switches from a grounded to a
floating configuration (or the opposite). It is an important quantity for the study of the dynamics of ice
sheets which will be referred to numerous times in the original contributions of this thesis (Part II of the
manuscript).

We now proceed to the description of the boundary conditions. On each boundary, we specify three
types of boundary conditions: one associated with its kinematics (the evolution of the boundary), one that
is associated with the dynamics (condition on the velocity or stress), and one that is associated with the
thermal state (condition on the temperature or heat flux). These conditions are schematized in figure 2.7.

Boundary conditions at the upper surface Γs (Fig. 2.7a)

The upper-surface boundary is such that z = zs. Hence, the following constraint must be satisfied:

fs(x, t) := z − zs(x, y, t) = 0. (2.43)

A particle that is located on this boundary and moves with its velocity will by construction stay on
this boundary. It follows that the total derivative of (2.43), when taking as velocity the velocity of the
boundary, must vanish. This yields the following kinematic equation:

∂tzs + u · ∇̄zs − w = as, (2.44)

in which u = (u, v) is the horizontal component of the velocity field, w is the vertical component of
the velocity field, and as is the surface accumulation rate. The latter is typically associated with input
of snow (it is positive if the ice-sheet gains mass due to accumulation). The operator ∇̄ denotes the
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Figure 2.6: Schematic representation of a marine ice sheet and its boundaries (not at scale). (a) Marine
ice sheets are subjected to various phenomena. They flow under gravity, which is represented by g. They
gain mass thanks to snow accumulation, which is modeled through a surface accumulation rate as, and
loose mass due to melt, mainly below the ice shelf, and to calving at the calving front. (b) Boundaries of
a marine ice sheet domain Ωt: upper surface Γs, grounded lower surface Γg, floating lower surface Γf ,
and calving front Γcf . The left boundary Γd is a fictitious boundary known as an ice divide which serves
as a symmetry plane. The set Ω̄t ⊂ R2 is the projection of the closure of the domain Ωt onto a plane
perpendicular to the vertical axis.
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Figure 2.7: Schematic of the boundary conditions applied on the boundaries of the ice-sheet domain.
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horizontal spatial gradient operator.

For the dynamical condition, we rely on the jump condition (2.21b). Given the small surface veloci-
ties, this condition becomes

Jσ · nK = 0, (2.45)

that is,
σ · n = −patm n, (2.46)

in which n is the outward-facing normal to the boundary and patm is the atmospheric pressure. The value
of patm is typically quite small compared to the stresses experienced in ice sheets; hence, it is neglected.
This yields the following stress-free condition:

σ · n = 0. (2.47)

For the thermal state at the boundary, we assume that the surface temperature θs is known, which
leads to a Dirichlet condition in terms of the temperature:

θ = θs. (2.48)

Boundary conditions at the grounded lower surface Γg (Fig. 2.7c)

Similarly to the case of the upper surface, a kinematic equation can be obtained. As the lower-surface
boundary is such that z = zl, this equation is here given by

∂tzl + u · ∇̄zl − w = mb, (2.49)

in which mb is the basal melt rate. It corresponds to the rate of ice loss due to melt at the base and is
counted positively in case of melt.

In terms of the dynamical condition, a distinction must be made between the normal and tangential
conditions. On the one hand, we enforce a no-penetration condition of the ice into the bedrock:

v · n ≤ 0, (2.50)

with n the outward normal to the boundary. Here, the case v · n < 0 corresponds to the case where the
grounded lower region is moving upward, i.e., where it switches to a the floating configuration. In that
case, the normal stress σnn := (σ ·n) ·n in the ice must correspond to the subglacial water pressure pw,
i.e.,

σnn = −pw. (2.51)

The subglacial water is associated with subglacial conduits in which liquid water flows below the ice
sheet. Here, we assume that the pressure pw is known. However, in principle, it is also an unknown of
the problem, and a subglacial hydrological model must be considered; this topic is explored in details
in section 4.3. If the grounded lower surface is such that v · n = 0, then σnn ≤ −pw: the ice normal
stress must be sufficiently negative (i.e., sufficiently in compression) so that it ‘pushes’ on the bedrock,
preventing a local uplift by the subglacial water. Together, these conditions lead to contact conditions:

v · n ≤ 0, (2.52a)
(σnn + pw) ≤ 0, (2.52b)

(v · n)(σnn + pw) = 0. (2.52c)

On the other hand, we fix the tangential component of the traction force to the surface. This tangential
component can be written as T (σ ·n), in which T := (I −n⊗n) is the tangential projection operator,
with n the outward facing normal:

T (σ · n) = σ · n− σnnn. (2.53)
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This tangential component is set to a prescribed value τb that represents the friction at a sub-scale level,
e.g. due to roughness in the bedrock:

T (σ · n) = τb. (2.54)

In general, it depends on many quantities such as the ice-sheet basal velocity as well as the subglacial
water pressure; this topic is discussed in section 4.2.

Finally, because we assume that ice is temperate at the base, its value is simply set to the pressure
melting point θm:

θ = θm. (2.55)

Nonetheless, the particular thermal state at this interface can be further exploited. At the pressure melting
point, any surplus in heat leads to additional ice melt, so we expect a balance between latent heat and
thermal heat fluxes. Actually, applying the jump condition (2.19d) to the present situation, we obtain

mb = qt + qgeo + qb
ρL

, (2.56)

which allows to compute the basal melt which is necessary for the computation of the evolution of the
free surface, i.e., equation (2.49). Here, qt is the conductive heat flux in the ice (caused by thermal
gradients), qgeo is the geothermal heat flux that comes from the Earth’s core, qb is the heat dissipation
associated with basal processes and L is the latent heat of fusion of ice. The heat flux qb is typically
associated with the energy dissipated by the motion of ice and of subglacial water:

qb = |τb · ub|+ |qw · ∇̄φ|, (2.57)

with ub is the basal velocity, qw is the subglacial water flux, and φ is the hydraulic potential. As previ-
ously mentioned, these subglacial quantities are explored in sections 4.2 and 4.3.

Boundary conditions at the floating lower surface Γf (Fig. 2.7d)

At the floating lower surface, the kinetic equation obtained for the grounded lower surface, equation (2.49),
still holds:

∂tzl + u · ∇̄zl − w = mb. (2.58)

The only distinction is that the basal melt rate is now associated with sub-shelf melt. It is typically a
parametrization of ice-ocean interactions; in contrast to equation (2.56) that only depends on quantities
that can be obtained in an ice-sheet model, the sub-shelf melt rate must be computed based on ocean
properties obtained thanks to observational data or another model.

The dynamical and thermal boundary conditions take the form of a continuity of the surface traction
and of the basal temperature:

σ · n = −pwn, (2.59a)
θ = θw, (2.59b)

in which pw and θw are the ocean water pressure and temperature, respectively. Assuming a hydrostatic
distribution, the former is given by pw = ρwg(zsl − z) with ρw the water density and zsl the sea-level
elevation.

Boundary conditions at the calving front Γcf (Fig. 2.7b)

The calving-front position is characterized by an implicit equation of the form fcf(x, y, t) = 0, in
which fcf is the function associated with the calving front. If one considers that a particle at the ice-
front with the velocity of the calving front stays on it, one gets that the total derivative of fcf with that
velocity must vanish. This yields the kinematic condition

∂tfcf + u · ∇̄fcf = ucf , (2.60)
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in which ucf is the calving-front velocity.

The dynamical and thermal boundary conditions again correspond to a continuity of the surface
traction and of the basal temperature:

σ · n = −pcfn, (2.61a)
θ = θcf . (2.61b)

Here, (pcf , θcf) are defined as the pressure and temperature of the atmosphere, (patm, θs), above sea-
level (for z ≥ zsl), and as the pressure and temperature of the ocean water, (pw, θw), below sea-level
(for z < zsl).

Initial conditions

Finally, initial conditions have to be prescribed. Here, we fix the initial value for the temperature field
and for the fields describing the geometry, zs, zl, and fcf :

(θ, zs, zl, fcf) = (θ0, z0
s , z0

l , f0
cf), (2.62)

in which the zero superscript indicates prescribed values. Note that there is no need to prescribe the initial
velocity field, as the the momentum-balance equation does not contain any time derivative, the advective
term being neglected due to the geophysical scales.

2.4 Summary of the governing equations

2.4.1 Equations for ice flow

The equations governing ice flow are summarized below. These equations involve three fields, v, p,
and θ, defined over the domain Ωt×]0,T [, that need to be determined.

Summary of equations for ice flow

Balance equations
div v = 0, in Ωt×]0,T [, (2.63a)

−∇p+ div(2ηD) + ρg = 0, in Ωt×]0,T [, (2.63b)

ρc(∂t + v ·∇)θ = 4 η ‖D‖2∗ + div(k∇θ), in Ωt×]0,T [, (2.63c)

Kinematics

∂tzs + u · ∇̄zs − w = as, on Ω̄t×]0,T [, (2.64a)

∂tzl + u · ∇̄zl − w = mb, on Ω̄t×]0,T [, (2.64b)

∂tfcf + u · ∇̄fcf = ucf , on Ω̄t×]0,T [, (2.64c)

zs ≥ zl ≥ zb, on Ω̄t×]0,T [, (2.64d)
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Boundary conditions at the top surface
σ · n = 0, on Γs×]0,T [, (2.65a)

θ = θs, on Γs×]0,T [, (2.65b)

Boundary conditions at the bottom surface
v · n ≤ 0, on Γg×]0,T [, (2.66a)

(σnn + pw) ≤ 0, on Γg×]0,T [, (2.66b)
(v · n)(σnn + pw) = 0, on Γg×]0,T [, (2.66c)

T (σ · n) = τb, on Γg×]0,T [, (2.66d)
θ = θm, on Γg×]0,T [, (2.66e)

σ · n = −pwn, on Γf×]0,T [, (2.66f)
θ = θw, on Γf×]0,T [, (2.66g)

Boundary conditions at the calving front
σ · n = −pcf n, on Γcf×]0,T [, (2.67a)

θ = θcf , on Γcf×]0,T [, (2.67b)

Initial conditions

(θ, zs, zl, fcf) = (θ0, z0
s , z0

l , f0
cf), at Ωt × {t = 0}. (2.68)

2.4.2 Challenges

The system of equations (2.63)–(2.68) presents several difficulties that makes it particularly hard to solve.
These difficulties have led researchers to develop new solver strategies to overcome them:

• Large-scale problem: the domain Ωt on which the equations must be solved is typically of very
large scale, with horizontal scales that are of the order of hundreds or thousands of kilometers
for ice sheets. Yet, several processes must be solved at a sub-kilometer scale, e.g., grounding-line
migration [Durand et al., 2009; Pattyn et al., 2012]. To limit the computational cost due to the scales
involved, adaptive-mesh refinement techniques have been implemented in large-scale ice sheet
codes [Cornford et al., 2013; Jouvet and Gräser, 2013; Isaac et al., 2015b]. Those techniques allow
to refine the computational mesh only in the necessary regions, typically close to the grounding line
in which large gradients of the unknown fields are present. Furthermore, codes have been designed
so that they can be run on massively parallel architectures, exploiting the structure of both CPUs
and GPUs [Watkins et al., 2023].

• Non-linearities: the fact that ice sheets have a viscosity that depends on the strain-rate tensor
makes the equations non-linear. Specifically, the effective viscosity is inversely proportional to
the magnitude of the strain-rate tensor (equation (2.32)). As a result, the problem is often quite
ill-conditioned, and solution methods may fail to converge or converge slowly. Several strategies
have been proposed to resolve this difficulty; for example, the use of homotopy confinuation in
the Newton solver [Tezaur et al., 2015] or preconditioners that exploit the shallow geometry of ice
sheets [Tuminaro et al., 2016; Heinlein et al., 2022].
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• In addition, machine-learning techniques are employed to solve the momentum-balance equations
rapidly thanks to a previously trained neural network [Jouvet et al., 2021; Jouvet and Cordonnier,
2023; He et al., 2023]. This provides a possible for solution to accelerate ice-sheet simulations
which can be slow because of the two previous difficulties.

• Free-surface problem: for each time step, the upper and lower surface as well as the calving front-
position must be updated. As there is a coupling between these positions and the velocity field
in the ice sheet, this leads to restrictions on the allowable time steps [Bueler, 2022]. Specific
time-integration methods can help reduce this effect [Löfgren et al., 2022].

• Evolving grounding line: the positions of the grounded and floating regions are unknowns of the
problem that must be determined for each time step, as those typically evolve over time. As
a consequence, different boundary conditions at the lower ice-sheet surface may be applied at
each time step. Formally, the mechanical problem can be formulated as an obstacle problem,
similar to contact problems that can be found in computational mechanics. There are several ways
to formalize this problem [e.g., Gagliardini et al., 2007; Schoof, 2011; Stubblefield et al., 2021;
de Diego et al., 2022, 2023]; for example, this structure can be identified in the contact conditions
identified over the grounded region Γg, namely equations (2.66a)–(2.66c):

v · n ≤ 0, (2.69a)
(σnn + pw) ≤ 0, (2.69b)

(v · n)(σnn + pw) = 0. (2.69c)

These are illustrated in figure 2.8. This structure was discussed and exploited in Stubblefield et al.
[2021] and in de Diego et al. [2022, 2023].

• Initial conditions: the geometry and thermal state at the initial configuration must be determined,
on top of material properties (e.g., the enhancement factor of friction coefficients). This yields
an inverse problem, in which these fields must be such that the system of equations (2.63) yields
quantities that match observations (e.g., surface velocities) [Perego et al., 2014]. A difficulty here
is that both there are uncertainties in both the observations and the model, so a proper probabilistic
framework is required [Petra et al., 2014; Isaac et al., 2015a].

(a)

v · n

σnn + pw
(b)

θ − θm

mb

Figure 2.8: Representation of complementarity conditions in the boundary conditions of the thermo-
mechanical ice-flow problem. These lead to the formulation of the problem as an obstacle problem. The
blue region corresponds to the admissible values of the variables. (a) Conditions associated with the
contact between the ice and the bedrock in terms of velocity and stress (2.69). (b) Conditions associated
with the thermal basal conditions (2.70).

2.4.3 Limitations
There are several limitations to the ice-flow model presented here. The two major ones are the absence
of damage mechanics and the assumed temperate basal thermal state. We justify these simplifications by
the fact that a further discussion of the physics of these mechanisms is not needed for our applications
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(Part II). Nonetheless, for the sake of completeness, we briefly discuss these here, with a focus on their
implications in terms of model complexity.

Firstly, as mentioned in the rheology discussion (subsection 2.3.1), the new-generation of ice-sheet
models includes damage mechanics in their formulation, and we have not described their physics in de-
tail here. A difficulty with the inclusion of damage mechanics in ice-sheet models is that (i) ice can be
damaged locally and (ii) this damage is fundamentally a Lagrangian quantity, as it is associated with the
ice material itself. This leads to challenges in terms of implementation, as ice-sheet codes are typically
large-scale codes that are based on an Eulerian formalism [Duddu and Waisman, 2012; Jiménez et al.,
2017].

A second aspect is the thermal state. We have assumed that all the basal ice was temperate, i.e., at the
pressure melting point. That is not the case in reality; for example, there are regions in Antarctica where
the ground is completely frozen. The distinction between frozen and temperate states yields yet another
obstacle problem, with constraints of the form

(θ − θm) ≤ 0, (2.70a)
mb ≥ 0, (2.70b)

mb(θ − θm) = 0, (2.70c)

on the grounded lower boundary Γg (Fig. 2.8). In particular, this means that the inclusion of such a
thermal model is not simple. At the same time, the thermal state of ice sheets is thought to be a key
factor in their sensitivity to increasing temperatures [Dawson et al., 2022]. An additional difficulty may
arise from the presence of sub-temperate sliding zones that are below the pressure melting point but
where sliding is permitted [Shreve, 1984; Fowler, 1986b]. These regions have strong implications for
ice streams [Mantelli et al., 2019; Mantelli and Schoof, 2019]. Finally, ice above the base can be in a
temperate state; the ice sheet is then said to be polythermal. This leads to a region in which ice melts,
leading to a mixture of ice and water. To take this phenomenon into account, the energy-balance equation
(2.34c) must be modified, and an equation for the moisture evolution must be added [Hutter, 1982; Baral
et al., 2001; Schoof and Hewitt, 2016; Hewitt and Schoof, 2017].

2.5 Interactions with other components of the Earth System

2.5.1 Ice-atmosphere interactions
Formally, the effect of the interactions between the atmosphere and the ice is modeled using the net ac-
cumulation rate as. This is the result of a number of phenomena: accumulation by snowfall, ablation by
surface erosion, sublimation and meltwater run-off. In a glaciological context, this is often referred to as
‘surface mass balance’ (SMB). This accumulation term is important in the evolution of ice sheets as it is
one of the main controls on their evolution, directly modifying their geometry. Moreover, its evolution
is challenging in the context of a warming climate. Indeed, it appears that both precipitation and melt
runoff will increase in future climate scenarios, with contrasting tendencies between ice shelves (increase
of SMB) and grounded parts (decrease of SMB) [Kittel et al., 2021]. Furthermore, ice-atmosphere inter-
actions are also known to be non-linear phenomena, with processes such as the melt-elevation feedback
that is associated with the positive feedback between a shrinking ice sheet and inceased melt at lower
elevations [Oerlemans, 1981; Edwards et al., 2014; Levermann and Winkelmann, 2016]. Finally, recent
studies have shown that SMB has significant local spatial and temporal variability [Wauthy et al., 2024].

Ideally, the SMB should be calculated based on a regional climate model applied to the ice sheet
under study, for example using the MAR model [Agosta et al., 2019] or the RACMO model [van Wessem
et al., 2018]. Given the existing feedbacks between ice-sheet geometry and SMB, this must be done in
conjunction with an ice-sheet model. However, this is computationally expensive. Instead, one alternative
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is to use a parametrization of the SMB as a function of a reduced number of parameters. A popular
parametrization is the ‘positive-degree-day’ scheme (PDD), which calculates the SMB as a function of
the time during which near-surface temperature exceeds freezing [Huybrechts and de Wolde, 1999]. PDD
models are computationally cheap and can include the melt-elevation feedback; as such, they have been
used in large-scale ice-sheet models [e.g., Garbe et al., 2020; DeConto et al., 2021; Coulon et al., 2024b].

2.5.2 Ice-ocean interactions
The oceans interact with the ice sheets through the sub-shelf melt rate mb. There are similarities and
differences with ice-atmosphere interactions. On the one hand, as with ice-atmosphere interactions, cou-
pling ice-sheet models to oceanographic models is challenging, so a number of simplified models and
parametrizations have been developed. Physically, there is a zone called the subglacial plume, where
oceanic water interacts with the freshwater that is delivered from the subglacial hydrology at the ground-
ing line and meltwater from the melting of the submerged part of the ice shelves [Hewitt, 2020]. The
dynamics of plumes depends on ocean temperatures, ocean stratification and the geometry of the sub-
shelf cavities. Several models for sub-shelf melt have been proposed, including the PICO model [Reese
et al., 2018a] and the plume model [Lazeroms et al., 2019], which are regularly used in large-scale ice-
sheet models, as well as simpler algebraic parametrizations relating sub-shelf melt to ocean temperatures
far from the ice-ocean interaction zone [Favier et al., 2019; Jourdain et al., 2020; Burgard et al., 2022].
Finally, new models based on neural networks have recently been developed [Burgard et al., 2023].

On the other hand, the behavior of the sub-shelf melt has a much less ambiguous impact than that
of the net mass accumulation rate. In fact, an increase of ocean temperatures in future climate scenarios
has a clear destabilizing effect on ice sheets. There are several reasons for this. First, a rise in ocean
temperatures leads to enhanced sub-shelf melting, since it is an increasing function of the temperature
difference between the ice and the ocean [Jenkins et al., 2010, 2018; Burgard et al., 2022]. Secondly,
rising temperatures could have a more structural effect by altering oceanographic currents. This could
enhance the effect of sub-shelf melt at great depths, particularly near the grounding line, potentially
destabilizing it [Hill et al., 2024]. Finally, by reducing the size of the ice shelves, the sub-shelf melt has
the effect of destabilizing the ice sheets by removing or limiting their buttressing effect [Gudmundsson
et al., 2019]. Conversely, evolving ice sheets can lead to a modification of the oceanographic currents
because of the change in freshwater flux that is discharged in the oceans [Coulon et al., 2024a].

2.5.3 Ice-bedrock interactions
Marine ice sheets partly rest on the bedrock. This appears in the mechanical problem introduced above
through the bedrock elevation field zb. The simplest approach is to assume that this elevation is fixed in
time. However, this is not strictly speaking the case: the bedrock (specifically, the lithosphere) has a vis-
coelastic behavior, so that it will react to any change in the geometry of the ice sheet. This modification,
known as the ‘glacial isostatic adjustment’ (GIA) must be taken into account if the ice sheets are studied
over relatively long periods, e.g., over several hundred years. In this case, it has been shown that GIA
has a stabilizing effect on ice sheet, since it reduces their changes when they are subjected to external
forcings [Gomez et al., 2010; Whitehouse, 2018].

In principle, changes in bedrock elevation should not be considered in an isolated fashion. They must
be considered in conjunction with changes in ice-sheet thickness and sea-level elevation, as these three
components interact through changes in gravitational loading. This led to the so-called ‘sea-level equa-
tion’, which relates changes in bedrock elevation, sea-level elevation, and ice-sheet thickness [Farrell and
Clark, 1976]. However, solving this problem is costly, so a whole range of models of varying complexity
have yet again been developed, from simple two-dimensional models which can be run efficiently in ice-
sheet models [e.g., Le Meur and Huybrechts, 1996; Coulon et al., 2021] to full three-dimensional models
[e.g., Zhong et al., 2022].
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Stress approximations for ice flow

In this chapter, we review the main approximations for the models for ice flow. Starting from the orig-
inal momentum-balance equations derived in the previous section, we motivate the use of simplifica-
tions based on scaling arguments (section 3.1). We then present approximations that were developed
to simplify the stress state in the equations for the motion of ice, namely the Blatter–Pattyn model, the
shallow-shelf approximation, and the shallow-ice approximation (section 3.2). We also present several
approximations to the momentum balance that have been recently developed as a way to obtain a com-
putationally cheap model that still contains the essential features for ice flow (section 3.3). Finally, we
discuss a few practical aspects with respect to the use of ice-flow models (section 3.4). This chapter is
mainly based on the references [Morlighem, 2011], [Perego et al., 2012], and [Pattyn, 2023].

3.1 Motivation
The motivation for developing approximate models for the equations of ice motion comes from the initial
complexity of the governing equations. These are given in the following model, written here in their
explicit form, which we call the ‘full–Stokes model’ to emphasize that it is the original, unsimplified
model:

Full–Stokes model:
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This system is made of the momentum-balance equations along the x,y,z directions as well as an incom-
pressibility condition that corresponds to the mass-conservation equation. Together, those equations form
a saddle-point problem for the velocity and pressure fields. Note that we here only focus on the differ-
ential equations governing the ice flow; for simplicity, we do not consider the kinematics (the evolution
of the geometry), the thermal problem (the evolution of the temperature), or the boundary/initial condi-
tions. As mentioned in section 2.4.2 of the previous chapter, the system of equations (3.1) is particularly
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challenging to solve for several reasons; among others, it is a system of coupled non-linear differential
equations that must be solved on a very large domain. As a consequence, obtaining a solution to the
problem of ice flow is computationally expensive.

However, ice sheets heave specific features that can be exploited to simplify the system (3.1). The key
point is that ice sheets are shallow, with a characteristic width [x] of the order of thousands of kilometers
and a characteristic thickness [h] of the order of kilometers. It follows that the aspect ratio ε := [h]/[x]
is of the order O(10−3). One then expects certain spatial gradients to be smaller than others. Formally,
let us denote by [u] and [w] the characteristic scales associated with the horizontal and vertical velocities.
These two are constrained; according to the incompressibility condition (3.1d), we have

∂u

∂x
, ∂v
∂y
∼ ∂w

∂z
⇒ [u]

[x] ∼
[w]
[h] . (3.2)

It follows that
[w]
[x] ∼ ε

2 [u]
[z] ⇒ ∂w

∂x
, ∂w
∂y
∼ ε2 ∂u

∂z
, ε2 ∂v

∂z
, (3.3)

so that one expects ∂xw to be much smaller than ∂zu and ∂zv. This observation will be exploited in the
following sections.

3.2 Principal approximations
In this section, we derive the main approximations for ice flow. Here, we follow a physics-based approach
in which some of the terms from the governing equations are neglected based on a priori assumptions
on the flow geometry and regime. For a more formal derivation of these models based on an asymptotic
treatment of the equations, we refer the interested reader to Hindmarsh [2004], Schoof [2006], and Schoof
and Hindmarsh [2010]. For a derivation based on variational principles, we refer to Dukowicz et al.
[2010, 2011] and Jouvet [2016].

3.2.1 Blatter–Pattyn model
Assumptions

We start with the so-called Blatter–Pattyn (BP) model. The model has been introduced by Herterich
[1987], Blatter [1995], and Pattyn [2003]. It is sometimes referred to as a ‘first-order approximation’ as
it is a model based on a rather limited set of assumptions. These are given by the following:

H1. The vertical equilibrium is quasi-cryostatic:

∂zσzz − ρg ≈ 0, (3.4)

i.e., it is assumed that
|∂xσxz|, |∂yσyz| � |∂zσzz|. (3.5)

H2. Ice sheets are shallow, in the sense that they are sufficiently thin so that:

|∂xw|, |∂yw| � |∂zu|, |∂zv|, (3.6)

which is consistent with the estimation obtained in (3.3).

H3. The lower and upper ice-sheet surfaces are approximately horizontal, so that

nx,ny ≈ 0 and |nz| ≈ 1. (3.7)
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Derivation

To derive the Blatter–Pattyn model, we need two elements: an expression for the pressure and a sim-
plification of the strain-rate tensor. First, we integrate the simplified vertical equilibrium (3.4) (assump-
tion H1). At the upper surface, z = zs and we have a free-stress boundary condition σ · n = 0, which
here simplifies as σzz = 0 given that nz ≈ 1 (assumption H3). Hence,

σzz = ρg(z − zs), (3.8)

that is,
p = ρg(zs − z) + 2η ∂zw. (3.9)

Uisng the incompressibility condition (3.1d), this equation becomes

p = ρg(zs − z)− 2η(∂xu+ ∂yv), (3.10)

which is the first key element of the Blatter–Pattyn model. To obtain the second element, we simplify the
strain-rate tensor. According to assumption H2, the latter can be written as

D =




∂xu
1
2 (∂xv + ∂yu) 1

2∂zu

1
2 (∂xv + ∂yu) ∂yv

1
2∂zv

1
2∂zu

1
2∂zv −∂xu− ∂yv


 . (3.11)

These two results, namely, the simplified expression of the pressure and of the strain-rate tensor, can
be exploited in order to simplify the momentum-balance equations (3.1a)–(3.1c). By construction, the
vertical component (3.1c) is automatically satisfied. For the horizontal components, we get

∂x [2η ∂xu] + ∂y [η (∂yu+ ∂xu)] + ∂z [η ∂zu]− ρg ∂xzs + ∂x [2η (∂xu+ ∂yv)] = 0, (3.12a)
∂x [η (∂yu+ ∂xv)] + ∂y [2η ∂yv] + ∂z [η ∂zv]− ρg ∂yzs + ∂y [2η (∂xu+ ∂yv)] = 0. (3.12b)

Rearranging, we obtain the following system of equations for (u, v):

Blatter–Pattyn model:

− ∂

∂x

[
2η
(

2∂u
∂x

+ ∂v

∂y

)]
− ∂

∂y

[
η

(
∂u

∂y
+ ∂v

∂x

)]
− ∂

∂z

[
η
∂u

∂z

]
+ ρg

∂zs
∂x

= 0, (3.13a)

− ∂

∂x

[
η

(
∂u

∂y
+ ∂v

∂x

)]
− ∂

∂y

[
2η
(
∂u

∂x
+ 2∂v

∂y

)]
− ∂

∂z

[
η
∂v

∂z

]
+ ρg

∂zs
∂y

= 0. (3.13b)

Discussion

The Blatter–Pattyn model has two significant advantages compared to the original full–Stokes model.
Firstly, the number of equations and unknowns is reduced: we only need to solve two equations for
(u, v), as the vertical velocity field w and the pressure field p do not appear anymore in the governing
equations. The latter can in fact be obtained as by-products, once the u and v fields have been calculated;
thanks to continuity equation (3.1d) and to (3.10), we have that

w = w|z=zl
−
∫ z

zl

(∂xu+ ∂yv) dz̃, (3.14a)

p = ρg(zs − z)− 2η(∂xu+ ∂yv). (3.14b)
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Hence, we effectively have a semi-decoupling between the horizontal and vertical dynamics in the sense
that the latter can entirely be determined based on the former. The second advantage is that the Blatter–
Pattyn model forms an elliptic system of (non-linear) partial differential equations. Elliptic systems are
particularly desirable from a numerical point of view, as standard finite elements or centered finite dif-
ferences can be used to solve them. By contrast, the saddle-point form of the full–Stokes model requires
special care when it is discretized numerically, e.g., mixed finite elements or stabilization methods. On
top of that, there exists a large range of methods to accelerate the computation of the solution of equations
of the form (3.13) [e.g., multigrids methods: Brown et al., 2013; Tuminaro et al., 2016].

3.2.2 Shallow-shelf approximation
The shallow-shelf approximation (SSA) is a model that further reduces the complexity of the ice flow by
assuming that it takes the form of a sliding motion. It is therefore an appropriate model for ice streams
(fast-flowing ice flows) and ice shelves. Introduced by Morland [1987], MacAyeal [1989], and Weis et al.
[1999], it is sometimes also known as the shelfy-stream approximation.

Assumptions and derivation

In the SSA, the following additional assumption is assumed, on top of the ones used to derive the BP
model:

H4a. There is negligible vertical shear in an ice column:

∂zu, ∂zv ≈ 0. (3.15)

In other words, the horizontal velocity components are only functions of (x, y): u(x, y) and v =
v(x, y).

To derive the SSA equations, the equations (3.13) are integrated over the ice column zl ≤ z ≤ zs. A
small technical difficulty appears here in that when doing so, the two first terms in the equations (3.13)
are integrals of the partial spatial derivative in the x and y axis. It would be convenient if these two
operations –integration and derivation– could be exchanged. However, that is in principle not possible
because the integration bounds, zl and zs, are themselves functions of x and y. Formally, we have

∂x

∫ zs

zl

f dz =
∫ zs

zl

∂xf dz + f |z=zs
∂xzs − f |z=zl

∂xzl, (3.16a)

∂y

∫ zs

zl

f dz =
∫ zs

zl

∂yf dz + f |z=zs
∂yzs − f |z=zl

∂yzl, (3.16b)

in which f represents the viscous terms in (3.13). Given the hypothesis of approximately horizontal
lower and upper ice-sheet surfaces (assumption H3), we neglect the terms proportional to the spatial
gradients of zl and zs. It follows that that we can effectively interchange the integration and differentiation
operations. Then,

∂x

∫ zs

zl

[2η (2∂xu+ ∂yv)] dz + ∂y

∫ zs

zl

[η (∂yu+ ∂xu)] dz + [η ∂zu]z=zs
z=zl

− ρgh ∂xzs = 0, (3.17a)

∂x

∫ zs

zl

[η (∂yu+ ∂xv)] dz + ∂y

∫ zs

zl

[2η (∂xu+ 2∂yv)] dz + [η ∂zv]z=zs
z=zl

− ρgh ∂yzs = 0, (3.17b)

Applying the dynamic boundary conditions (2.66d) and (2.65a), respectively representing the application
of basal friction law at the bottom surface and free-slip at the top surface, we get

∂x

∫ zs

zl

[2η (2∂xu+ ∂yv)] dz + ∂y

∫ zs

zl

[η (∂yu+ ∂xu)] dz + 1g τb,x − ρgh ∂xzs = 0, (3.18a)

∂x

∫ zs

zl

[η (∂yu+ ∂xv)] dz + ∂y

∫ zs

zl

[2η (∂xu+ 2∂yv)] dz + 1g τb,y − ρgh ∂yzs = 0, (3.18b)
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in which 1g is the indicator function for the grounded domain, over which there is basal friction, and
τb,y, τb,y are the x, y components of τb. Finally, we evaluate the integrals of the viscous terms. Here, we
rely on the assumption that u and v independent of z (assumption H4a) to get

∂x [2η̄h (2∂xu+ ∂yv)] + ∂y [η̄h (∂yu+ ∂xu)] + 1g τb,x − ρgh ∂xzs = 0, (3.19a)
∂x [η̄h (∂yu+ ∂xv)] + ∂y [2η̄h (∂xu+ 2∂yv)] + 1g τb,y − ρgh ∂yzs = 0, (3.19b)

where η̄ denotes the vertically-integrated effective viscosity defined as

η̄ := 1
h

∫ zs

zl

η dz = 1
h

∫ zs

zl

1
2A
− 1
n ‖D‖

1−n
n∗ dz, (3.20)

and where h := zs − zl is the ice thickness. This expression can be further simplified because of the
simplified form of the strain-rate tensor (assumptions H3 and H4a). Indeed, we have

‖D‖2∗ = (∂xu)2 + (∂yv)2 + ∂xu ∂yv + 1
4∂yu ∂xv, (3.21)

which does not depend on z. Hence,

η̄ = 1
2
‖D‖

1−n
n∗

h

∫ zs

zl

A−
1
n dz. (3.22)

Overall, the following model is obtained:

Shallow-shelf approximation:

− ∂

∂x

[
2η̄h

(
2∂u
∂x

+ ∂v

∂y

)]
− ∂

∂y

[
η̄h

(
∂u

∂y
+ ∂v

∂x

)]
− 1g τb,x + ρgh

∂zs
∂x

= 0, (3.23a)

− ∂

∂x

[
η̄h

(
∂u

∂y
+ ∂v

∂x

)]
− ∂

∂y

[
2η̄h

(
∂u

∂x
+ 2∂v

∂y

)]
− 1g τb,y + ρgh

∂zs
∂y

= 0. (3.23b)

Discussion

The main advantage of the shallow-shelf approximation over the Blatter–Pattyn model is that the equa-
tions governing u and v are defined on a two-dimensional set, whereas those of the Blatter–Pattyn model
were defined on a three-dimensional set. This difference arises from assumption H4a, which removes the
dependence of the equations on the vertical coordinate.

The system (3.23) has an interesting physical interpretation. It corresponds to a balance between three
different forces: the divergence of viscous stresses, basal friction and gravitational driving stress. Rather
than talking about viscous stresses, glaciologists generally speak of ‘membrane stresses’ or ‘longitudinal
stresses’ to emphasize that in the SSA model, these are reduced to horizontal variations in velocity.

3.2.3 Shallow-ice approximation
Whereas the shallow-shelf approximation considers ice motion associated with a sliding motion, the
shallow-ice approximation (SIA) considers ice motion associated with a vertical deformation, i.e., a
shearing of the ice. It is appropriate for slow-flowing ice flow, e.g., the flow taking place inland of the ice
sheet, far from the grounding line. This model was introduced by Fowler and Larson [1978], Morland
and Johnson [1980], and Hutter [1983].
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Assumptions and derivation

Here, on top of the assumptions of the BP model, the following assumption is added:

H4b. There is negligible horizontal straining in the ice:

∂xu, ∂yu, ∂xv, ∂yv ≈ 0. (3.24)

With this assumption, the equations (3.13) of the BP model become

−∂z(η ∂zu) + ρg ∂xzs = 0, (3.25a)
−∂z(η ∂zv) + ρg ∂yzs = 0. (3.25b)

These can be integrated vertically. Because of the stress-free condition at z = zs, they become

η ∂zu = ρg(z − zs)∂xzs, (3.26a)
η ∂zv = ρg(z − zs)∂yzs. (3.26b)

The effective viscosity η greatly simplifies because of the hypotheses on the strain-rate tensor (assump-
tions H3 and H4b). It is given by

η = 1
2A
− 1
n ‖D‖ 1−n

n , ‖D‖2 = 1
4(∂zu)2 + 1

4(∂zv)2. (3.27)

Combining (3.26) with (3.27), it is possible to express the effective pressure η as follows:

η = 1
2A
−1 [ρg(z − zs)‖∇̄zs‖

]1−n . (3.28)

Combining this result with (3.26), on then gets

∂zu = 2(ρg)nA(z − zs)n‖∇̄zs‖n∂xzs, (3.29a)

∂zv = 2(ρg)nA(z − zs)n‖∇̄zs‖n∂yzs. (3.29b)

Finally, these equations can be integrated vertically yet again to obtain the shallow-ice approximation:

Shallow-ice approximation:

u = u|z=zl
− 2(ρg)n

∫ z

zl

A(zs − z̃)n dz̃ ‖∇̄zs‖n−1 ∂zs
∂x

, (3.30a)

v = v|z=zl
− 2(ρg)n

∫ z

zl

A(zs − z̃)n dz̃ ‖∇̄zs‖n−1 ∂zs
∂y

. (3.30b)

Discussion

The equations of the SIA model are such that the horizontal velocities u and v are simply obtained as
analytical expressions which are functions of the slope of the upper-surface elevation zs. It is necessary
to perform a vertical integration, but this can be done independently at each position where the velocity
is calculated; in that sense, the model is purely local.

It can be noted that this model can be coupled with an equation for the thickness h of the ice in order
to obtain a parabolic equation for the latter [e.g., Schoof and Hewitt, 2013]. In view of the similarities
with the theory of lubrication in fluid mechanics, this model is often refereed to as the ‘lubrication model’
for ice flow.
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u, v, w, p

(a)

u, v

(b)

u, v

(c)

u, v

(d)

Figure 3.1: Schematic of the principal approximations of ice flow [adapted from Morlighem, 2011]:
(a) Full–Stokes model; (b) Blatter–Pattyn model; (c) shallow-shelf approximation; (d) shallow-ice ap-
proximation. The variables below each drawing correspond to the unknowns in the approximate model
for ice flow.

Name L-classification Type Dimension Unknowns

FS - Saddle point 3D u, v,w, p
BP LMLa Elliptic 3D u, v

SSA L1L1 Elliptic 2D u, v
SIA S Algebraic 0D u, v

Table 3.1: Properties of the principal approximations for ice flow. The approximations are ordered by
decreasing order of complexity. The L-classification is a systematic ordering for the approximations of
ice flow, following Hindmarsh [2004].

3.2.4 Summary

The models presented in this subsection are summarized in figure 3.1 and in table 3.1.

3.3 Approximations to higher-order models

Here, we present models of ice flow that attempt to account for both membrane stresses (i.e., sliding
behavior, similar to the SSA model) and vertical shear (i.e., vertical deformation behavior, similar to the
SIA model), while maintaining low model complexity. In doing so, they provide approximations to the
‘higher-order’ BP model. While they are not formally of higher order themselves, these models yield
errors comparable to those of the BP model in practice. Several approaches can be used to obtain such
models, which we describe here.

3.3.1 Hybrid models

Hybrid models are the simplest models that allow to include both membrane and shear stresses. They
simply consist in a linear combination of the velocity fields obtained by the SSA and SIA models. Bueler
and Brown [2009] suggest to model the ice-flow velocity u as

u = f usia + (1− f)ussa, (3.31)

in which ussa and usia are the velocity fields obtained with the SSA and SIA models, respectively, and
0 ≤ f ≤ 1 is a weighing parameter. Given that the SSA is expected to hold in fast-flowing regions, while
the SIA is expected to hold in slow-flowing regions, f can be parameterized as a function f = f(‖ussa‖)
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that is such that

f(‖ussa‖) ∼ 1 for ‖ussa‖ � u0, (3.32a)
f(‖ussa‖) ∼ 0 for ‖ussa‖ � u0, (3.32b)

in which u0 is a threshold velocity parameter separating slow-flowing from fast-flowing velocities, e.g.,
u0 = 100 m/a. Alternatively, one can simply add both contributions [Winkelmann et al., 2011; Pollard
and DeConto, 2012a; Pattyn, 2017], which results in

u = usia + ussa. (3.33)

Given that the SIA is dominant in the region where the SSA is not (and vice-versa), this provides an
approximation scheme that is similar to (3.31) [Bernales et al., 2017]. Such a model is often refereed to
as the ‘SSA+SIA’ model.

3.3.2 Depth-integrated models
Depth-integrated models arise from a vertical integration of the Blatter–Pattyn model. The depth-integrated
equations are then simplified to obtain a model that can be used effectively in practice. It follows that
depth-integrated models are very similar to the SSA model, since the latter was developed using this prin-
ciple. However, the assumptions used to simplify the depth-integrated equations are weaker compared
to that of the SSA, and in particular it is not assumed that there is no vertical shear in an ice column. In
practical terms, depth-integrated models have a similar structure to the SSA equations, but the effective
viscosity includes contributions associated with vertical shear stress. As a result, they provide a stronger
coupling between sliding and shearing motions than hybrid models. Depth-integrated models include the
L1L2 model of Schoof and Hindmarsh [2010], the DIVA model [Goldberg, 2011; Arthern et al., 2015],
and the MOLHO model [Dias dos Santos et al., 2022].

3.3.3 Multilayer models
A third family of approximations to higher-order models are multi-layer models. Here, the idea is to have
a series of a few horizontal models that can be solved very easily (in a similar way to an SSA model),
and to combine them to obtain a vertical distribution of velocities. In this way, these models allow both
sliding and shearing motion to be taken into account, but at a lower cost compared to the BP model. An
example of such a model is the MSSA [Jouvet, 2014, 2015].

3.4 Practical aspects

3.4.1 Validity of the approximations
The choice of an ice-flow model depends on the conditions in which it is found and the computational re-
sources available. The rule of thumb is that the SSA model is valid for flow in ice shelves or ice streams,
whereas the SIA model is valid for regions where the ice flows slowly or where there are large slopes
in the bed topography. In transition zones between SSA and SIA, it is preferable to use a higher-order
model. Finally, the full–Stokes model is necessary where there is a particularly complex stress distribu-
tion (e.g., non-cryostatic vertical stress, Raymond effects at the ice divides).

In order to assess the validity of the different approximations, intercomparison studies have been
developed within the glaciology community. These consider test cases with an imposed numerical set-up.
Different ice-flow codes, associated with different model approximations, are then tested and compared
on the same set-up. This makes it possible to compare both the validity of the approximations and the
influence of numerical implementation details (type of discretization, resolution, etc). Intercomparative
studies in the glaciological literature include the evaluation of higher-order models [ISMIP-HOM; Pattyn
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Name Model(s) Discretization Main reference

Elmer/Ice FS FE Gagliardini et al. [2013]
MALI BP FE/FV Hoffman et al. [2018]
ISSM SSA, BP FE Larour et al. [2012]

BISICLES L1L2 FV Cornford et al. [2013]
CISM DIVA FE/FV Lipscomb et al. [2019]

f.ETISh/Kori-ULB SSA+SIA FD Pattyn [2017]
PISM SSA+SIA FD Winkelmann et al. [2011]
YELMO SSA+SIA FD Robinson et al. [2020]

Table 3.2: List including some of the main ice-flow codes. These codes are developed using different
methods of spatial discretization: finite elements (FE), finite volumes (FV), or finite differences (FD).
They generally include several model formulations that can be solved; here, we highlight only the models
that are typically used with these codes [e.g., in intercomparison studies, as shown in Seroussi et al.,
2020].

et al., 2008], of different models when applied to marine regions [MISMIPs; Pattyn et al., 2012, 2013;
Asay-Davis et al., 2016; Cornford et al., 2020], and the evaluation of ice-sheet codes for predicting the
evolution of the entire Antarctic ice sheet [ISMIP6; Seroussi et al., 2020].

3.4.2 Implementations
Examples of ice-flow codes are shown in table 3.2.
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The subglacial environment

4.1 Introduction
Subglacial conditions, namely subglacial friction and basal hydrology, have a major influence on ice-
sheet dynamics, but are currently poorly understood [Flowers, 2015; Bulthuis et al., 2019; Brondex et al.,
2019; Dow, 2022b; Kazmierczak et al., 2022]. They are the subject of numerous studies which aim at
modeling the processes that govern those conditions. These models are presented in sections 4.2 and 4.3.
In the section dedicated to basal friction (section 4.2), we review friction laws, first on hard and then on
soft beds. We conclude with friction laws that are thought to unify both hard and soft beds. Similarly,
we start the section dedicated to subglacial hydrology (section 4.3) by first comparing the physics of sub-
glacial water flow on hard and soft beds. Finally, we discuss the question of including multiple drainage
systems in a unified model.

This chapter is based on the lecture notes Fowler and Ng [2021] and Hewitt [2023], as well as studies
which are directly referred to in the text. For subglacial hydrology, a reference article on the subject is
the review paper Flowers [2015]. A selected history of the earlier developments of basal friction can also
be found in Fowler [2010c].

4.2 Basal friction
Numerous studies have shown that the surface velocities observed over ice sheets cannot be explained by
the creep of ice alone [e.g., Rignot and Mouginot, 2012; Ryser et al., 2014; Maier et al., 2019]. In fact,
there is an additional component to the ice motion which comes from the basal conditions: basal sliding.
Physically, if the ice at the ice-sheet base is temperate, then there can be a small water film that allows ice
to slide on the bedrock. This motion is not without resistance, as, among others, bumps in the bedrock
create some drag that will slow down ice flow. Nevertheless, this sliding behavior is a major contributor
to the motion of ice sheets.

Formally, basal mechanics are parametrized through a relation between the basal velocity ub and the
basal traction or shear stress τb, which are defined as the tangential components of the surface traction
and of the velocity, respectively:

τb := T (σ · n), (4.1a)
ub := T (v), (4.1b)

where T is the tangential projection operator defined by

T := (I − n⊗ n), (4.2)

45
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with I the identity mapping and n the unit exterior normal to the ice-bed interface. While early develop-
ments in glaciology initially led to sliding relations of the form

ub = ub(τb), (4.3)

it is now a common practice to consider so-called friction laws, which are of the form

τb = τb(ub). (4.4)

Such a relation then takes the form of a (usually non-linear) boundary condition for the ice-flow problem
(see section 2.4).

Importantly, friction laws parametrize unresolved sub-scale processes. Fundamentally speaking, the
sliding behavior as previously described is nothing else than a form of ice creep that happens within a
boundary layer close to the bed. However, there are many different phenomena in that region, which
are both not well-known –direct measurements are very difficult– and at a very local scale (typically,
sub-meter scale). Hence, when dealing with models for ice sheets, we encapsulate these small complex
processes in a basal friction law of the form (4.4). Practically, this also means that parameters in the basal
friction will be resolution-dependent [Kyrke-Smith et al., 2018]. A schematic of this concept of friction
law, together with the main friction laws described later in this section, is shown in figure 4.1.

In what follows, we will not work with the vector relation (4.4) but, for convenience, with its scalar
representation. Because friction at the bed is opposed to ice motion, we have

τb = −τb ûb, (4.5)

in which τb := ‖τb‖ is the magnitude of the basal friction stress, and ûb is the direction of the basal
velocity, defined as ûb = ub/‖ub‖ if ‖ub‖ 6= 0 and as ûb = 0 otherwise. Writing ub := ‖ub‖, we will
therefore describe friction laws in terms of relations of the form

τb = τb(ub). (4.6)

4.2.1 Hard beds
Viscous sliding and regelation

The original study of sliding on hard beds is due to Weertman [1957]. They considered that sliding is
influenced by two phenomena: viscous creep and regelation. Viscous creep simply corresponds to the
influence of bedrock due to bumps (also called obstacles) in its geometry on ice flow. Because of Glen’s
flow law, a simple analysis suggests a non-linear relationship between τb and ub of the following form:

τb = ν2 (2dA)−
1
n u

1
n

b , (4.7)

where A is the viscosity coefficient in Glen’s flow law, n is the associated exponent, d is the scale of
bumps in the bedrock, and ν := d/λ is a measure of bed roughness, where λ is the characteristic distance
between the bumps. Regelation is a purely thermal effect. It can be explained as follows: upstream of a
bed obstacle, the normal stress is relatively larger (because the bed offers resistance to the ice motion),
which leads to a lower pressure melting point. By contrast, in the lee of the obstacle, the normal stress is
relatively smaller, leading to a higher pressure melting point. This leads to a potential of melting upstream
of the obstacle, and freezing downstream of it. This mechanism is made possible by a conductive heat
flux that goes from downstream to upstream of the obstacle and gets converted to latent heat used for
melting the ice. Balancing these two heat fluxes leads to the following relation:

τb = ν2
(
ρLd

kbct

)
ub, (4.8)
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⇀
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ub→
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hard bed
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τb
viscous

plastic
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(a)

(b) (c)
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Figure 4.1: Schematics associated with the notion of friction law in ice-sheet modeling [adapted from
Hewitt, 2023]. (a) Schematic of the concept of friction law: the macroscopic friction stress τb is related
to the macroscopic basal velocity ub according to a relation of the form, in magnitude, τb = τb(ub). This
relation models the physical phenomena that are not modelled in the large-scale model, e.g., sliding over
small protrusions, regelation, or till deformation. (b) On hard beds, friction is caused by the resistance
offered by the bed roughness, this resistance being modulated by the formation of water cavities. (c) On
soft beds, friction is caused by the plow of particles at the ice-bed interface. (d) Models of subglacial
friction in a log-log plot: viscous relation τb ∝ upb (‘Weertman’ friction law), plastic relation τb ∝ N
(‘Coulomb’ friction law), and visco-plastic relation (‘regularized Coulomb’ friction law). The regularized
Coulomb law has been proposed as way to unify several models of subglacial friction on both hard and
soft beds [Minchew and Joughin, 2020]. A missing element in this schematic is the characterization of
the effective pressure N = pi − pw, pi being the ice overburden pressure and pw the subglacial water
pressure, which modulates the magnitude and regime of friction.
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where L is the latent heat of water, kb is the thermal conductivity of the bedrock, and ct is the Clapeyron
slope.

These two mechanisms are effective at different scales: the first one is dominant for large obstacles,
while the second one is dominant for small obstacles. This suggests that there is a controlling obstacle
size at which the stresses are comparable so that the sum of the friction stresses defined in (4.7) and (4.8)
is minimized. This value is given by

d0 :=
[

kbct

nρL(2A) 1
n

] n
n+1

u
1−n
1+n
b (4.9)

and, for this obstacle size, we get

τb = ν2
(

ρL

2nnkbctA

) 1
n+1

u
2

n+1
b . (4.10)

This type of law, in which the basal friction stress takes the form of a power-law with respect to the basal
velocity is then known as a Weertman friction law, which we denote as follows:

Weertman friction law
τb = Cw u

p
b, (4.11)

in which Cw > 0 is a friction coefficient that depends on the properties of the bed, and p > 0 is an
exponent. In practice, the value p = 1/3 is often used [e.g., Pattyn et al., 2012].

A shortcoming of Weertman’s derivation is that it is based on a scaling analysis, and not on a rigorous
derivation. To circumvent this issue, Nye [1969, 1970] and Kamb [1970] solved the mathematical prob-
lem of sliding with regelation. They assumed that ice behaves as a Newtonian fluid, i.e., considered n = 1
in Glen’s flow law, so that ice has a constant viscosity η. That is a major limitation of their work, as the
shear-thinning behavior of ice is an essential component to the physics of ice flows. Nonetheless, this
allows to obtain a system of linear equations for temperature and ice velocity, which can then be solved
analytically for small perturbations in the bed profile. In particular, the following explicit expression for
the friction law was obtained:

τb = η κ2
0

π
ub

∫ +∞

0

κ3

κ2 + κ2
0
Sb(κ) dκ, (4.12)

in which Sb denotes the power spectral density of the bedrock elevation zb along a flowline. Here, κ0
denotes the controlling wavenumber for the problem, and is defined as

κ2
0 := ρL

4 kbctη
. (4.13)

Several comments can be made with respect to this result. Firstly, bed roughness has a clear impact on the
friction law, as can be seen to the influence of the power spectral density in the equation (4.12). Secondly,
the obtained friction law is linear, which is expected as the equations of the problem are all linear. Thirdly,
the controlling wavenumber is consistent with the earlier results of Weertman [1957] when considering
the linear case n = 1. Indeed, for such a case, η = (2A)−1, and comparison between (4.9) and (4.13)
yields

κ0 = 1
2d
−1
0 . (4.14)
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Sliding with cavitation

Early on, Lliboutry [1968] suggested that subglacial water could modify the sliding laws. The mechanism
at play here is subglacial cavitation, in which cavities can be filled with water, depending on the subglacial
water pressure and the basal velocity of ice. Following a series of measurements, Budd et al. [1979]
introduced a generalization of the Weertman friction law (4.11) that includes the effect of subglacial
water pressure:

Budd friction law
τb = Cb u

p
bN

q, (4.15)

with Cb > 0 a friction coefficient and p, q exponents that are typically such that 0 < p, q ≤ 1. Here,
N = pi−pw is the so-called effective pressure, with pi the ice overburden pressure (i.e., the pressure that
the ice applies on the bed, because of its thickness), and pw the subglacial water pressure (i.e., the water
pressure at the ice-bedrock interface). The rationale behind such a relation is that an increasing amount
of water can further lubricate the bed by ‘flooding’ the obstacles, thereby easing sliding of the ice on it
and reducing the basal friction. Importantly, the effective pressure should not be understood as the local
difference between the normal ice stress and the subglacial water stress but, rather, as the average of such
local difference over a characteristic region over which the friction law (4.15) is considered. Indeed, a
friction law is used to parametrize unresolved physical phenomena through a parametrization between
macroscopic quantities; here, the macroscopic basal friction stress, basal velocity, and effective pressure.
The local friction stress, basal velocity, and effective pressure are unresolved in large-scale ice-sheet
models and simulations.

One of the consequences of both the Weertman and the Budd friction laws is that basal friction is an
unbounded function of the basal velocity. If cavitation is allowed, such a result should not hold. Indeed,
the friction modeled by the friction law is associated with the resistance of the ice flow due to bumps in
the bedrock. Quantitatively, this resistance is due to the unbalance of the normal stress applied to each
side of the bumps. This normal stress upstream of the obstacle is larger the one downstream of it, which
generates drag. However, these stresses are constrained: they should be consistent with the value of the
effective pressure N . As a consequence, to increase drag, the normal stress applied to the lee of obstacle
should be reduced, but that is not always possible as below a critical pressure value cavitation is initiated
(see Fig. 4.2). Formally, one can show that the following bound, known as Iken’s bound, holds [Iken,
1981; Schoof, 2005]:

τb ≤ sup(z′b)N , (4.16)

with sup(z′b) the maximum up-slope of the bed in the direction of the ice flow.

A proper mathematical treatment of sliding with cavities was achieved by Fowler [1986a, 1987] after
several years in which the quantification of the impact of subglacial cavities remained unsolved. They
extended the Nye–Kamb theory with cavities by formulating the problem as a Hilbert problem so that
tools from complex analysis can be used. A major difficulty here is that the problem is non-linear because
of the free-boundary nature of the cavities, in contrast to the original Nye–Kamb theory. Assuming a
single cavity per bed period, they obtained a sliding relation of the form

τb = f(ub/N)N , (4.17)

in which f is a function that depends on the exact shape of the bedrock (see Fig. 4.3). However, the
qualitative behavior of f is seemingly independent of the bedrock geometry: it consists of a first linear
increasing part for small sliding velocities. Then, it reaches a maximum, after which it steadily decreases
towards zero. The first ascending part can be explained by the fact that, originally, an increase in velocity
leads to larger pressure differences on the sides of the bumps, thereby inducing more drag. This is
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somewhat reminiscent of equation (4.12); actually, this first ascending part corresponds to sliding without
cavitation; as such, it should be compatible with the particularization of equation (4.12) to the case where
regelation is negligible. This happens if the spectral content of the bed is limited to relatively small
wavenumbers κ� κ0, and one can then formally derive a link between the first increasing behavior of f
in (4.17) and the characteristics of the bed, similarly to (4.12) [Fowler, 1986a]. The decreasing part is
associated with cavitation; for large velocities, cavities grow, taking more and more space in the lee of
bumps and limiting the area of contact between the ice and the bed over which normal pressure can be
applied. This leads to a decrease in drag. Eventually, all the bed becomes flooded and the drag becomes
zero.

piub

σnnn

ub pi

x

y λ
pi = − 1

λ

∫
σnnn · ŷ ds

τb = 1
λ

∫
σnnn · x̂ ds

σnn(s)

ub

integrate

compute
(a) (b) (c)

Figure 4.2: Schematic of sliding with cavitation on a hard bed [notations adapted from Schoof, 2005].
(a) For sufficiently large velocities or low effective pressures, cavities become filled with water. (b)
Zoom on a single period of the bed. The ice flow creates an asymmetric distribution of the normal
stress σnn = (σ · n) · n. Here, n is the upwards-facing normal to the ice-bed interface. Note that
we assume a free-slip condition at the ice-bed interface, which leads to a zero tangential component of
the traction vector, which is therefore parallel to n. (c) Principle of the computation of a friction law
for sliding with cavitation: the basal friction can be obtained by computing the mean horizontal normal
pressure applied by the ice on the bed over a wavelength. A constraint here is that the far-field overburden
pressure in the ice, pi, should be consistent with the distribution of the vertical pressure applied by the
ice on the bed.
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Figure 4.3: Examples of sliding relations τb/N = f(ub/N) for various bed shapes [adapted from Fowler,
1986a; Schoof, 2005]. Here, the variables τb, ub, and N must be understood as the dimensionless basal
friction, basal velocity, and effective pressure, respectively.

Fowler’s results have been extended by Schoof [2005] who considered sufficiently smooth but oth-
erwise arbitrary periodic beds. This led to a relation similar to (4.17), in which f depends again on the
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particular bed geometry considered. A difference compared to the earlier results of Fowler [1986a] is that
the second part of f , associated with cavitation, decreases less rapidly and shows small local variations
during this decrease. These changes are associated with water that gradually fill the smaller cavities, so
that the normal pressure gets concentrated over the larger remaining bumps. Indeed, these changes in
pressure distribution lead to a decreasing part of the f function that is less smooth compared to a bed
with a single cavity per bump. Furthermore, the less sharp decrease can be explained by the variety of
bump sizes over which friction can be exercised, even when a cavity becomes flooded, in contrast to a
bed with one cavity per bed period. Note that the physical mechanism of cavitation somewhat validates
the assumption of negligible regelation, at least for sufficiently large velocities: as cavitation is initiated,
the smallest cavities get completely flooded. It follows that regelation can be neglected, as these small
cavities were precisely the ones where regelation could take place.

Based on these results, Schoof [2005] suggested the following friction law:

Schoof friction law

τb = CsN

(
Λ

Λ + Λ0

) 1
n

, Λ := ub
Nn

, Λ0 := λ0A

m0
. (4.18)

Here, λ0 is the wavelength for the dominant bumps, m0 is a typical bed slope, and Cs is a constant that
is smaller than the maximum bed slope. This friction law should not be understood as an exact analytical
result, but, rather, as a law that is compatible with the results observed when considering the sliding of a
Newtonian fluid over bed with cavitation. In particular, (4.18) was formally derived for the case n = 1.
Schoof’s friction law is such that the following limits hold:

τb ∼ CsΛ
− 1
n

0 u
1
n

b , for Λ� Λ0, i.e., for ub � Λ0N
n, (4.19a)

τb ∼ CsN , for Λ� Λ0, i.e., for ub � Λ0N
n. (4.19b)

The first case case is associated with sliding over bed without cavitation; we recover a Weertman friction
law. The second case is associated with the flooding of the dominant obstacles of the bed. In between, the
friction law transitions from one state to the other, leading to a saturation curve. Importantly, Schoof’s
friction law obeys Iken’s bound, and the bed cannot generate arbitrary large friction.

As previously mentioned, a limitation in Schoof’s derivation is that it is assumed that ice follows a
linear rheology. This hypothesis can be removed by relying on numerical methods to solve the problem
of basal sliding, rather than mathematical analyses. Following this approach, Gagliardini et al. [2007]
solved the Nye–Kamb problem, with cavitation, and with Glen’s flow law. They used a finite-element
method to simulate the ice flow, and tested several simple bed shapes. Their findings led them to suggest
the following friction law:

Gagliardini friction law

τb = CsN

(
χ

1 + αχq

) 1
n

, χ := ub
Cns N

nAs
, α := (q − 1)q−1

qq
(4.20)

Here, χ is a dimensionless sliding velocity, As is the sliding parameter without cavitation, α is a scaling
coefficient, and q is a free parameter that controls the shape of the friction law. The latter admits a
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maximum for χ0 := q/(q − 1), at which τb = CsN . An important particular case is the limit q → 1, for
which Gagliardini’s law becomes

τb = CsN

(
χ

1 + χ

) 1
n

, χ := ub
Cns N

nAs
. (4.21)

By definition, the sliding parameter As relates the basal velocity and stress in the absence of cavitation
through the relation ub = Asτ

n
b . The absence of cavitation corresponds to the case of low velocities.

Comparison with Schoof’s friction law in that case, equation (4.19a), then leads to Cns As = Λ0. It
follows that

χ = ub
NnΛ0

= Λ
Λ0

, (4.22)

so that

τb = CsN

(
Λ

Λ + Λ0

) 1
n

, (4.23)

and we recover Schoof’s law (4.18).

Validation

While several field studies have found a positive correlation between the basal velocity and subglacial
water pressure on hard beds [Bindschadler, 1983; Iken and Bindschadler, 1986], that is not always the
case [e.g., Harper et al., 2007]. A difficulty is that basal properties vary over space and time, so that
an assessment of sliding laws based on in-situ measurements is particularly challenging. Based on a
controlled laboratory set-up, Zoet and Iverson [2015] managed to investigate hard-bed sliding. Their
results suggest that the theory of sliding with cavitation is in good fit with experimental measurements,
at least for sinusoidal beds.

4.2.2 Soft beds
Viscous vs. plastic sliding

The rheology of a soft bed or till is probably even more complex than that of ice. Indeed, subglacial till
takes the form of a granular mass that is porous and deformable, its behavior depending both on the pres-
sure exerted by the ice and on the local subglacial hydrology. A friction law can therefore be associated
with several distinct modes of deformation: deformation of the till, slip motion at the ice-till interface
or on slip planes within the till, and sliding over sediment reliefs. Compared to the hard-bed case, one
still expects friction laws to be expressed as functions of basal friction and effective pressure, the latter
representing the subglacial hydrology. Effective pressure is still defined as N = pi − pw, but pw now
represents the pore-water pressure at the ice-till interface.

Boulton and Hindmarsh [1987] modeled till as a viscous material with a power-law rheology:

γ̇ = At
τa

N b
t

, (4.24)

with a, b > 0. Here, γ̇ is the strain rate in the till, At is a viscosity coefficient, τ is the shear stress in
the till, and Nt is the effective pressure within the till. Note that we use another notation for the effective
pressure in the till (denoted by Nt) and the one at the ice-till interface (denoted by N ), as both quantities
are typically different due to the effect of gravity that leads to an increasing pressure with depth. Based
on laboratory measurements, it was found that till rheology is consistent with that of a plastic material
[Kamb, 1991; Iverson et al., 1998; Tulaczyk et al., 2000a,b]:

{
τ < τy, if u = 0,
τ = τy, if u > 0,

(4.25a)
(4.25b)
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in which τy is a yield stress and u is the shear velocity in the till. The yield stress follows a Coulomb
relation:

τy := c+ tan(ϕ)Nt, (4.26)

with c the cohesion and ϕ the internal friction angle.

These two visions –the first representing till as a viscous material, the second representing it as a
plastic material– have led to a bit of controversy within the geophysical community. These differences
arose in part from criticism by experimentalists, who favored the plastic view, of the law (4.24), which
was not very robust, having apparently been derived from seven data points. However, from a modeler’s
point of view, a law of the form (4.25) is incomplete, since it does not allow the deformation in the till
to be determined [Fowler, 2002, 2003, 2018]. It seems that the approaches are in fact not totally incom-
patible: one way to combine a plastic approach with viscous behavior for the deformation of the till is,
for example, to use a Herschel–Bulkley law (see next subsection). In this case, the till cannot deform if
the stress does not exceed the yield stress. Above it, deformation is modeled by viscous behavior. Im-
portantly, this viscous behavior is not necessarily a local characterization of the rheology of the till, but
rather of its effective behavior on larger spatial or temporal scales. In particular, a till with a quasi-plastic
behavior can be modeled by a viscous law, the latter being associated with behavior on larger spatial
scales [Hindmarsh, 1997], plastic hardening [Fowler, 2003], local slip-stick events [Iverson and Iverson,
2001], or obstacles in the bed topography.

In practice, a convenient practical model for large-scale studies consists in modeling till with a
perfectly-plastic friction law, and assuming that τb = τy. This leads to the following so-called Coulomb
law:

Coulomb friction law
τb = CcN , (4.27)

where Cc > 0 is a friction coefficient, and where we have neglected the cohesion c in (4.26) as it is quite
small. Note the distinction from Coulomb’s law in classical mechanics, where it typically describes a
stick-slip behavior as in (4.25). In our case, however, we assume that the ice remains in a continuous
sliding state with the basal stress consistently at its yield value.

Modern theories

Recent analytical and experimental studies suggest a visco-plastic behavior for dense granular material
[Jop et al., 2006; Henann and Kamrin, 2013] and it is now standard to model till as a visco-plastic
fluid [e.g., Schoof, 2007a,d; Fowler, 2009, 2010b; Damsgaard et al., 2020; Warburton et al., 2023]. For
example, with a Herschel–Bulkley law that includes a dependence on effective pressure, one gets

{
γ̇ = 0, if τ < τy,
γ̇ = At(τ − τy)aN−bt , if τ ≥ τy,

(4.28a)

(4.28b)

with a yield stress given by τy = µtNt where µt is a (static) friction coefficient for the till. Such a law
can be written in its tensor form for general three-dimensional configurations.

Assume that, at the ice-till interface, the applied stress τb is above the yield-stress value τy. The till
will then deform over a finite thickness (see Fig. 4.4). This can be explained by the fact that the shear
stress at the ice-till interface can be assumed to be transmitted to the till so that τ = τb within the till
is a constant. However, that is not the case for the effective pressure that increases with depth. As a
consequence, the yield stress τy increases with depth and, at a sufficiently large depth, it will get above
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the applied shear stress τb so that the till will not deform beyond this limit.

piub
ub

unyielded till

τ

z

τy τb

ht

(a) (b) (c)

Figure 4.4: Schematic of sliding over a soft bed [adapted from Warburton et al., 2023]. (a) Depending
on the applied stress and the hydrology, the till can be deformed by the motion of ice. (b) Zoom on the
deformation of the till: for a visco-plastic rheology, the deformation is limited to a finite extent close to
the ice-till interface. (c). This extent ht of the deformation horizon can be computed by comparing the
applied stress τ = τb with the yield stress τy, the latter increasing with depth because of gravity.

The deformation horizon can be estimated quantitatively [Fowler, 2010a; Fowler and Ng, 2021; War-
burton et al., 2023]. Assuming that the pressures within the solid and liquid part of the till follow a
lithostatic and hydrostatic distribution, the effective pressure at an elevation z ≤ zb within the till can be
written as

Nt(z) = N +
∫ zb

z

∆ρtφt(Z)g dZ, (4.29)

in which ∆ρt = ρs− ρw, ρs is the sediment density, and φt = φt(z) is the porosity within the till. If that
porosity does not vary much, then Nt(z) = N + ∆ρtφtg(zb − z) and the yield stress evolves according
to

τy(z) = µt [N + ∆ρtφtg(zb − z)] . (4.30)

The elevation where the till starts to deform is then characterized by τy = τb. This leads to the following
deformation horizon:

ht = τb − µtN

∆ρtφtgµt
. (4.31)

Interestingly, this estimation can be used to derive a friction law. Indeed, if there is no slip between the ice
and the till, then γ̇ ∼ ub/ht in which ub is the velocity in the ice near the ice-till interface. Using (4.28)
and inverting for the basal friction then yields

τb = µtN + (Atht)−1N1/bu
a/b
b . (4.32)

This friction law can be seen a regularization of a perfectly-plastic friction law, thanks to the addition of
a Budd-like component that stems from the deformation of the till. Warburton et al. [2023] obtained a
similar result with a more elaborated model with a rheology γ̇ = γ̇(τ ,Nt) and a porosity φt = φt(γ̇,Nt)
that are based on studies of flow in granular media.

Validation

Laboratory experiments of sliding ice over a soft bed suggest a friction law of the following form [Iverson
and Zoet, 2015; Zoet and Iverson, 2020]:

τb = CcN

(
ub

ub + u0

)p
, (4.33)
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in which u0 = u0(N) is a linear function of N that depends on properties of the till. The physical
interpretation is that u0 is a threshold velocity: below it, friction comes from the deformation of the ice
flow around obstacles in the bed, so that we recover a Weertman-like friction law with τb ∝ upb (equa-
tion (4.11)). Above it, the bed deforms, and the friction is limited by the till shear strength, which yields
a Coulomb-like friction law τb ≈ CcN (equation (4.27)).

Additional measurements have shown that a similar law can be obtained to model sliding over a till
with a frozen fringe, i.e., a zone of layer of ice-rich debris at the ice-till interface [Hansen et al., 2024].
In that case, the Weertman-like part of the curve is actually associated with the deformation of the fringe
(note the similarity with the rationale behind (4.32)), and u0 is expected to depend on the rheological
properties of the fringe.

4.2.3 Towards a unified friction law
The previously exposed developments in the field of subglacial friction have led researchers to postulate
the existence of a so-called ‘unified friction law’ that would be able to model sliding on both hard and
soft beds. Such a law can be constructed by combining a plastic component, represented by a Coulomb
law, with a viscous component, represented by a Weertman law [Schoof, 2010a; Tsai et al., 2015]:

τb = min(CcN ,Cwu
p
b). (4.34)

This expression then switches between the Coulomb and Weertman laws as a function of the conditions.
To avoid a potential singularity associated with the transition between the two regimes, a smoothened
version of this friction law has been introduced. It allows a smooth transition between these regimes
[Joughin et al., 2019; Minchew and Joughin, 2020; Helanow et al., 2021]:

Unified friction law

τb = CrcN

(
ub

ub + u0

)p
. (4.35)

Here,Crc > 0 is a friction coefficient and u0 > 0 is a threshold velocity for the switch between the plastic
and viscous regimes. Such an expression is effectively a regularized Coulomb friction law in which u0
can be viewed as a regularization parameter. This friction law admits the following plastic and viscous
limiting behaviors:

τb ∼ CrcN , for ub � u0, (4.36a)

τb ∼ CrcNu
−p
0 upb, for ub � u0. (4.36b)

As such, it is consistent with the studies of sliding on hard and soft beds. For hard beds, we recover the
dependency τb ∝ upb associated with sliding over bed obstacles at low velocities and the limiting behav-
ior associated with the development of cavitation at large velocities. For soft beds, we also recover the
dependency τb ∝ upb associated with sliding over bed obstacles at low velocities and the plastic behavior
associated with the yield stress of the till. Such a friction law can also be viewed as a way to combine
form drag (drag due to obstacles to the flow) and skin drag (drag due to local shear stress at interfaces),
as described in figure 4.5.

The threshold velocity u0 in (4.35) can be fixed to a constant value, for example to a characteristic
velocity of ice streams: u0 ∼ 300 m/year [Joughin et al., 2019]. Alternatively, it can be viewed as a
parameter that depends on the effective pressure. This is in fact the view of the friction law (4.34) as it
implicitly defines u0 as

u0(N) = (Cc/Cw)1/pN1/p. (4.37)
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Figure 4.5: Schematic of a unified friction law [adapted from Minchew and Joughin, 2020]. For low
velocities, basal friction mainly stems from form drag, i.e., from the effect of bed obstacles on the viscous
flow of ice (I). For large velocities, basal friction mainly comes from skin drag (III). For hard beds, this
corresponds to the filling of water cavities that leads to a slowdown in the increase of basal friction.
For soft beds, this corresponds to the friction associated with the yield of the till. In between these two
regimes, there is an intermediate region in which the system transitions from one regime to the other (II).

Similarly, the Schoof and Gagliardini friction laws (4.18) and (4.20) are equivalent to the unified friction
law (4.35) with

u0(N) = Λ0N
n. (4.38)

The usual exponents values are p = 1/3 and n = 3, so that u0(N) ∝ N3 for the two expressions above.
Here, there is a slightly difference result with the soft-bed case, as Zoet and Iverson [2020] suggested
that u0(N) ∝ N . Nonetheless, the qualitative behavior is similar, as u0 increases with N .

Finally, it should be noted that the unified friction law (4.35) effectively corresponds to a Coulomb
friction law at grounding lines, since such areas are characterized by high velocities and low effective
pressures. Hence, basal friction will be proportional to the effective pressure near the grounding line.
In many models of subglacial hydrology, the effective pressure actually vanishes at grounding lines, so
that basal friction itself will vanish at grounding lines. This is in contrast to, for example, the Weertman
friction law (4.11), which does not lead to vanishing basal friction at the grounding line.

4.3 Subglacial hydrology
A missing element from the previous section is the characterization of the effective pressure and of the
physical processes that govern its evolution. This section is dedicated to such a discussion.

4.3.1 Effective pressure and hydraulic potentials
The effective pressure is defined as a difference between the pressure pi associated with the weight of an
ice column (often called overburden pressure) and pw, associated with the pressure in water cavities at
the ice-bed interface:

N = pi − pw. (4.39)

Here, pi must be understood as a ‘far-field’ value: this corresponds to the pressure in the ice outside
the direct vicinity of the bed, in which local variations in the bed elevation and complex processes may
modify this value. A typical assumption is that the ice pressure is cryostatic, which yields pi = ρgh
where ρ is the ice density and g is the acceleration of gravity: the ice pressure is simply proportional to
its thickness. Similarly, and in a manner consistent with the concept of a friction law, both the effective
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and the subglacial water pressures must be understood as local averages.

A first popular model of effective pressure consists in assuming that the subglacial water pressure pw
follows a hydrostatic distribution, as if the water system was perfectly connected to the ocean [e.g., Tsai
et al., 2015]. In such a case, one gets the following parametrization over the grounded domain:

Height-above-buoyancy effective-pressure parametrization

N = ρgh− ρwgmax(0,−zb). (4.40)

Such a model is suited for regions that are close to the grounding line, where the perfect connection
assumption is plausible. However, such a simple model fails for regions that are further away from it, so
that corrections [e.g., Downs and Johnson, 2022] or more sophisticated models, as described hereafter,
must be used.

While the definition (4.39) is simple, it is not necessarily the most practical. Anticipating what fol-
lows, one expects that the subglacial hydrology will be described in terms potentials that drive subglacial
water flows. Hence, we introduce the hydraulic potential φ and the geometric potential φ0 as follows:

φ := ρwgzb + pw, (4.41a)
φ0 := ρgh+ ρwgzb. (4.41b)

With these notations, the effective pressure is written as

N = φ0 − φ. (4.42)

The hydraulic potential φ drives subglacial water pressure: water flows from regions where φ is high
towards regions where it is low. The hydraulic potential is defined so that this motion can be attributed to a
change in basal elevation zb or a change in pressure pw. On the other hand, by construction, the geometric
gradient does not depend on the subglacial hydrological system: it only depends on the geometry of the
ice sheet. Furthermore, it corresponds to the value that the hydraulic potential would take if the effective
pressure was zero.

4.3.2 Hard beds
We now proceed to the description of the main hydrological systems on hard beds: water films, linked-
cavity systems, and channels (Fig. 4.6).

Water film (Fig. 4.6a)

One of the first models for subglacial water flow is due to Weertman [1972], who considered a water
film that flows in between the bedrock and the ice (Fig. 4.6a). The water film is characterized by a
thickness hw that evolves over space and time. Mass balance of subglacial water yields the following
equation:

∂thw + div qw = mw
ρw

, (4.43)

in which div qw is the horizontal divergence of the subglacial water flux qw and mw is the net water melt
rate. If there is no other type of subglacial flow and no intrusion of water in the bed, then mw = ρwmb,
in which mb is the basal melt rate introduced in section 2.3. Assuming that the water flow between the
ice and bedrock takes the form a laminar flow leads to a Poiseuille law:

qw = − h3
w

12ηw
∇̄φ, (4.44)
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(a) Water film. (b) Linked-cavity system. (c) Channel.

Figure 4.6: Schematic of the main types of subglacial water flow over a hard bed (a) Water film that
flows over the bedrock. (b) Linked-cavity system in which water fills the cavities that are in between bed
protrusions. (c) Channel in which the water is conducted in localized conduits. While a water film and a
linked-cavity system are distributed and inefficient water systems, channels are localized and efficient.

with ηw the dynamic viscosity of water.

It has been shown that such a water film cannot be stable, and necessarily leads to a channelization of
the subglacial water flow [Walder, 1982]. The instability process is as follows: following a local increase
in film thickness hw, the subglacial water flow qw increases. Thus, there will be an increase in melt
water due to the energy dissipated by the water flow, which again leads to an increase in film thickness.
Eventually, a series of channels is formed. This instability mechanism was later mitigated by Creyts and
Schoof [2009] who showed that, in the presence of bed protrusions, regelation and ice creep can actually
lead to a stabilization of the water film.

Nonetheless, Weertman’s original water-film model can be used as a large-scale parametrization of
the subglacial flow. Then, hw must be understood as the spatial average of the water film thickness over
a relatively large radius (say, hundreds of meters) that correspond to the resolution used in a large-scale
ice-sheet model. This is the approach that was pursued in Le Brocq et al. [2009] and Kazmierczak et al.
[2022]. These authors further simplified the models by assuming that (i) the water film was at equilibrium
and (ii) the effective-pressure gradient was small compared to the geometric potential gradient, i.e.,∇φ ≈
∇φ0. Under these assumptions, equations (4.43) and (4.44) become

div qw = mw
ρw

, (4.45a)

hw =
(

12ηw‖qw‖
‖∇φ0‖

) 1
3

. (4.45b)

The structure of these equations allows for an efficient computation of the water-film thickness. In-
deed, (4.45a) can first be solved for the subglacial water flux following a water-routing approach [Budd
and Warner, 1996; Le Brocq et al., 2006]. Then, the water-film thickness can be computed thanks
to (4.45b), which is an algebraic equation. It remains to link this thickness to the subglacial water
pressure. This simplest model assumes a linear relation with respect to the overburden pressure, leading
to

pw =
(
hw
h0

w

)
ρgh, (4.46)

in which h0
w is a scaling thickness that conceptually corresponds to the thickness for which all the bed is

covered with water. This yields the following effective-pressure parametrization:
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Subglacial-water-film effective-pressure parametrization

N =
(

1− hw
h0

w

)
ρgh. (4.47)

A linear relation similar to (4.46) has also been used in Bueler and Brown [2009] and Martin et al. [2011].
An alternative to this relationship consists in replacing the dependence on the water-film thickness with
a dependence on the subglacial water flux through a simple function [Pattyn et al., 2005; Goeller et al.,
2013; Kazmierczak et al., 2022]. Finally, we note that algebraic relations of the form (4.46) have also
been used in poroelastic models [Flowers and Clarke, 2002].

Linked-cavity systems (Fig. 4.6b)

The theory of linked-cavity systems was introduced by Walder [1986] and Kamb [1987]. The idea is that
the subglacial water system takes the form of small patches of water that are connected between each
other. These patches are formed in the lee of bed obstacles and persist as a result of a balance between
sliding over these obstacles, which tends to open water cavities, and ice creep, which tends to close them.
As we will see, from a modeling point of view, a linked-cavity system is similar to a Weertman film, since
both systems obey similar mechanisms; the main difference is that in the former case there is a notion of
localized patches, while in the latter one assumes a film that is more or less continuous. The theory of
linked-cavity systems was revisited in Schoof [2010b], Hewitt [2011], and Schoof et al. [2012] and we
here follow their model description.

As a proxy for the cavity size, we take the average cavity volume per unit area of the bed, which we
note hw. Here, the average is done over the bed roughness scale, and all the cavities are assumed to be
filled for simplicity (see Schoof et al. [2012] for a discussion of the case where this assumption is not
met). Mass conservation is then given by

∂thw + div qw = mw
ρw

, (4.48)

with the same notations as before. An additional governing equation enforces the rate at which the cavity
evolves over time:

∂thw = vo(hw)− vc(hw,N). (4.49)

Here, vo = vo(hw) and vc = vc(hw,N) denote opening and closing rates that are associated with
various physical phenomena, respectively. Usually, opening is assumed to be caused by sliding over bed
protrusions, and is modeled as

vo = hw − hb
lb

ub or vo = hb
lb
ub, (4.50)

with lb the characteristic distance between bed protrusions and hb their characteristic size. The first
expression is probably more meaningful, as vo(hb) = 0. Note that this expression is only valid if
hw ≤ hb; for hw > hb, one should set vo = 0. The second expression is simpler, being independent
of hw. As such, it is particularly convenient for simulations over longer time scales and with interactions
between the subglacial hydrology and the ice sheet, since the form of the opening rate and its dependence
with respect to the ice-sheet basal velocity are preserved. The closing mechanisms is taken as ice viscous
creep, with

vc = ccAhw|N |n−1N , (4.51)

where cc is a factor that depends on the form of the conduit, oftentimes taken as unity, and A and n are
the parameters in Glen’s flow law [Nye, 1953].
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Finally, a constitutive equation for the subglacial water flow is added to close the system of equations.
We here consider a family of Darcy-like equations of the form

qw = −kwh
α
w‖∇̄φ‖β−2∇̄φ, (4.52)

where kw is a hydraulic conductivity and α,β are exponents that depend on the nature of the flow. A
variety of values for α and β have been in considered in the glaciological literature as a function of the
nature of the modeled flow. Hewitt [2011, 2013] assumed a laminar flow with α = 3 and β = 2, which
leads to a relation similar to the equation (4.44) used for Weertman film. For turbulent flows, one typi-
cally assumes β = 3/2, but several values for α have been considered. A frequent choice is the use of
a Darcy–Weisbach relation, for which α = 5/4 [Clarke, 1996; Schoof et al., 2012; Werder et al., 2013;
Hoffman et al., 2018]. A Manning relation leads to α = 4/3 [Hewitt, 2011; Fowler and Ng, 2021]. Fi-
nally, interpretation of the Darcy–Weisbach relation for a flow between parallel plates leads to α = 3/2
[Creyts and Schoof, 2009; Sommers et al., 2018; Hill et al., 2023]. An overview of the constitutive equa-
tions for subglacial water flow, their limitations, and suggestions of improvements can be found in Clarke
[2005] and, more recently, in Hill et al. [2023].

While a linked-cavity system is made of localized patches of water, the model is described by a
thickness-like variable hw that is an average over the bed roughness scale. As such, linked-cavity systems
model in an effective way inhomogeneous flows that take place over multiple areas. Hence, they provide
a basis for the modeling of distributed flows.

Distributed flow

∂hw
∂t

+ div qw = mw
ρw

, (4.53a)

∂hw
∂t

= vo(hw)− vc(hw,N), (4.53b)

qw = −khαw‖∇̄φ‖β−2∇̄φ. (4.53c)

Channels (Fig. 4.6c)

While linked-cavity systems are the archetypal models for distributed flows, channels are the standard
models for localized, channelized flows. Their theory was initiated by Röthlisberger [1972] and Nye
[1976]; as a consequence, the usual models of channels are known as models of Röthlisberger channels
or R-channels. Channels are localized semi-circular conduits that are capable of transporting efficiently
large amounts of water. This leads to large thermal dissipation, which allows for melt on the channels
walls. This mechanisms is the primary means for channel growth. This is in contrast with linked-cavity
systems in which the opening is mainly due to sliding over bed protrusions.

To model channels, we follow the modern theory as exposed in Schoof [2010b], Hewitt [2011], and
Hewitt et al. [2012]. Channels are represented as infinitely small conduits and the position within the
conduits is parameterized by the streamline coordinate s. Mass conservation for the water in the conduit
is then given by

∂tSw + ∂sQw = Mw
ρw

, (4.54)

in which Sw is the conduit cross-sectional area, Qw is the conduit (volumetric) water flux, and Mw is the
effective input of water in the conduit. The channel geometry evolves according to

∂tSw = Vo(Qw)− Vc(Sw,N), (4.55)
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in which Vo = Vo(Qw) and Vc = Vc(Sw,N) are opening and closing rates. As previously mentioned,
opening is assumed to be due to the dissipated work of the water flow that allows melt at the conduit
walls:

Vo = Ξ−Π
ρL

, Ξ := |Qw∂sφ|, Π := −ctcwρwQw∂spw. (4.56)

Here, Ξ is the rate of dissipated energy by the water flow. The other term, Π, serves as a correction for
the dependence of the pressure melting point with respect to temperature so that it can be interpreted as a
change in sensible heat due to temperature variations. In its expression, ct denotes the Clapeyron slope,
and cw represents the specific heat capacity of water. Closing is due to the ice viscous creep and is written
as

Vc = ccASw|N |n−1N . (4.57)

The parameter cc is in general different from the corresponding factor appearing in equation (4.51) as
the geometry of a cavity is different from that of a channel. A common assumption is that channels are
semi-circular, which yields cc = 2n−n. Finally, a Darcy-like constitutive equation is again considered:

Qw = −KwS
α
w|∂sφ|β−2∂sφ. (4.58)

We refer to the previous discussion for the choice of parameters α and β as a function of the type of
flow in the conduits. Note that channels typically feature relatively large water fluxes, so a turbulent
parametrization is probably the most well-suited.

Physically, one expects that at low water fluxes, the hydrological system will be distributed as the
opening mechanism in equation (4.56) is not large enough to allow channels to persist. However, at
higher water fluxes, channelization becomes possible. A key feature of channels is that they tend to form
an arterial network in which only a few channels persist. This behavior can be observed in numerical
simulations but also in the equations of the model directly. Consider a steady-state channel with a known
water flux Qw and geometric potential gradient magnitude Ψ := −∂sφ0. The orientation of s is fixed so
thatQw and Ψ are non-negative. Furthermore, assume that the gradient in effective pressure is small with
respect to the hydraulic potential gradient so that ∂sφ ≈ −Ψ and that the sensible heat due to thermal
variations is small. Then, equations (4.55) and (4.58) become

QwΨ
ρL

= ccASwN
n, (4.59a)

Qw = −KwS
α
wΨβ−1. (4.59b)

Combining these together yields

N =
(

Ψ
ρLccA

) 1
n (
KwΨβ−1) 1

αn Q
α−1
αnw . (4.60)

Hence, N is an increasing function of Qw. If follows that larger channels, who have higher water fluxes,
are also characterized by higher effective pressures. As high effective pressures correspond to low sub-
glacial water pressures, those larger channels will be able to absorb more efficiently the neighboring melt
water, thereby out-competing smaller channels.

The equations for channelized flow are summarized hereafter:
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Channelized flow

∂Sw
∂t

+ ∂Qw
∂s

= Mw
ρw

, (4.61a)

∂Sw
∂t

= Vo(Qw)− Vc(Sw,N), (4.61b)

Qw = −KwS
α
w

∣∣∣∣
∂φ

∂s

∣∣∣∣
β−2

∂φ

∂s
. (4.61c)

4.3.3 Soft beds
We continue with the description of the main hydrological systems on soft beds: Darcy flow, Creyts–
Schoof film and canals (Fig. 4.7). Compared to the case of hard beds, a new component appears in the
evolution of the till upper elevation, denoted by zb = zb(x, y, t). It changes with time as the till is
deformed, and this change depends on and influences subglacial hydrology.

(a) Darcy flow. (b) Creyts–Schoof film. (c) Canal.

Figure 4.7: Schematic of the main types of subglacial water flow over a soft bed (a) Water film that flows
in the till through a Darcy flow. (b) Creyts–Schoof film in which water flows between the clasts of the
till, at the ice-till interface. (c) Canal in which the water is conducted in conduits incised in the ice and
the till. Darcy flows and Creyts–Schoof films are inefficient water systems, while canals are efficient
water systems.

Darcy flow (Fig. 4.7a)

If the meltwater input is limited, then the subglacial flow takes place within the till, below the ice-till
interface. We here follow the model presented in Fowler [2010a,b]. Mass conservation of the water
content in the till then yields

∂t

∫ zb

z∞

φt dz + div qw = mw
ρw

, (4.62)

in which z∞ is the minimum elevation of the till, φt is the porosity of the till, qw is the subglacial water
flux in the porous medium, and mw is the net melt water input. Water flow in porous media is typically
modeled as a Darcy flow, leading to

qw = −
∫ zb

z∞

φt
kt
ηw
∇̄φdz, (4.63)
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with kt the till permeability and ηw the water viscosity. Here, φ = pw + ρwgz is the hydraulic potential
within the till, and it should not be confused with the till porosity φt. On top of these equations, we also
prescribe equations for the evolution of the till elevation zb. This takes the form of a conservation of the
sediment material:

∂t

∫ zb

z∞

(1− φt) dz + div qs = ms
ρs

, (4.64)

with qs the sediment flux in the till and ms the net deposition rate of sediment material. Note that for a
constant and uniform porosity, the previous equation becomes a classical Exner equation:

(1− φt) ∂tzb + div qs = ms
ρs

. (4.65)

For the sediment flux, we follow Kyrke-Smith and Fowler [2014] by estimating it as

qs = 1
2htub −

h3
t

12ηt
∇̄N , (4.66)

with ht the thickness of deformable till and ηt its viscosity. Such a model attempts to model the sediment
flow as the sum of a Couette-like flow, due to the ice motion at the till-ice interface, and of a Poiseuille-
like flow, due to horizontal gradients in effective pressure [Fowler, 2009, 2010a].

To close the system, it remains to specify the behavior of the till as a function of the effective pressure
through a relation of the form φt = φt(Nt). Such a relation can be found based on soil mechanics, as
described hereafter. This results in the following model:

Darcy flow

∂

∂t

∫ zb

z∞

φt dz + div qw = mw
ρw

, (4.67a)

∂

∂t

∫ zb

z∞

(1− φt) dz + div qs = ms
ρs

, (4.67b)

qw = −
∫ zb

z∞

ktφt
ηw
∇̄φ dz, (4.67c)

qs = 1
2htub −

h3
t

12ηt
∇̄N , (4.67d)

φt = φt(Nt). (4.67e)

A simplified model of till hydrology has been proposed by Bueler and van Pelt [2015]. It is based on
the observation that the permeability in the till is typically small, so that the horizontal transport due to
the flux qw is expected to be relatively small. It follows that the mass-balance equation (4.67a) can be
simplified as

∂thw = mw
ρw

, (4.68)

in which hw :=
∫ zb
z∞

φt dz is the equivalent thickness of water content in the till. Assuming that the till is
homogeneous, the porosity φt and the effective pressure Nt are then uniform within it. In particular, the
latter is equal to N . It follows that the porosity can be written as

φt = hw
hw + hs

, (4.69)
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in which hs is the equivalent thickness of sediment content in the till. Experiments in till [Tulaczyk et al.,
2000a] suggest a linear relation between the till void-ratio et := hw/hs and the logarithm of the effective
pressure:

et − e0
t = Ct log10

(
N

N0

)
, (4.70)

withCt the coefficient of compressibility of the till and where e0
t is the void-ratio at the effective-pressure

reference value N0 [van der Wel et al., 2013]. The void ratio et contains the same information as the
porosity as both are related to

et = φt
1− φt

. (4.71)

In particular, it follows that equation (4.70) is an example of a model of the form φt = φt(Nt) (equation
(4.67e)). Combining the previous equations together, we have the following model, which we call ‘till
storage model’ because of its local behavior.

Till storage model

∂hw
∂t

= mw
ρw

, (4.72a)

et = hw
hs

, (4.72b)

et − e0
t = Ct log10

(
N

N0

)
. (4.72c)

To avoid having to determine hs, Bueler and van Pelt [2015] assumed that the equivalent water thick-
ness hw could not go beyond a maximum value h0

w at which the effective pressure reaches a minimal
value Nmin. From this, they obtained the following expression for the effective pressure:

N = N0

(
Nmin
N0

)hw/h
0
w

10[e0
t (h0

w−hw)]/(Cth
0
w). (4.73)

While convenient –this is an explicit algebraic expression for effective pressure– such an expression has
a rather limited range of application. Indeed, melt rates under ice sheets are such that the till would
be rapidly totally filled in such a model. This is what has been observed in numerical simulations over
Antarctica and Greenland, in which the above model resulted in a saturated till over the temperate regions
[Bueler and van Pelt, 2015; Kazmierczak et al., 2022]. For such a saturated till, N = Nmin uniformly
over the temperate regions. Given that this limiting behavior does not correspond to the conditions for
which the model has been designed, we conclude that it cannot be used for such cases. Form a modeling
perspective, the inability of subglacial till to transport large amounts of water suggests that an efficient
way capable of doing so must be present at the ice-till interface [Fountain and Walder, 1998; Fowler,
2010a].

Creyts–Schoof film (Fig. 4.7b)

One possibility for water flow at the ice-till interface is that it takes the form of a film that moves between
the various obstacles formed by the different bed protrusions and clasts. Such drainage system is known
as an inter-clastic or Creyts–Schoof film [Creyts and Schoof, 2009; Kyrke-Smith and Fowler, 2014].
Conceptually, such a film is a distributed drainage system and, as such, we can rely on the description of
a distributed flow as introduced for the case of hard beds, i.e., the system of equations (4.53). However,
two changes/clarifications need to be made, in that the closure rate now depends on the distribution of



4.3. Subglacial hydrology 65

clasts. In addition, a model for sediment flow must be added. These two additions are described now.

For the determination of the closure rate vc, we follow the model presented in Creyts and Schoof
[2009]. We consider the flow of a water film of thickness hw between the ice and the till. The latter is
covered by a collection of clasts, the smallest ones being fully drowned by the film, while the largest ones
are in contact with the ice (Fig. 4.8). The clasts are separated by size, and we assume that there are J
types of clasts, which are indexed by j = 1, ..., J . We note rj and lj the radius and the distance between
the centers of the nearest neighbors of the clasts in the class j, respectively. The classes are assumed to
be sorted by size so that r1 � r2 � ... � rJ and l1 � l2 � ... � lJ . To determine the closure rate of
such a system, we first consider the simple case of a single clasts class. In that case, the closing rate is
given by

vc = ccAl|N |n−1N + ctkb
ρLr

N

ζ
, (4.74)

where l is the distance between neighboring clasts, ct is the Clapeyron slope, kb is the thermal conductiv-
ity of the bed, ρ is the ice density, L is the latent heat of water, r is the radius of the bed protrusions, and ζ
is the proportion of ice that is in contact with these protrusions. The second term in the right-hand side
of (4.74) accounts for regelation, which acts as mechanism for closing of water cavities by the melting of
ice around the bed protrusions. Such a term is expected to be an important contribution to the total clos-
ing rate if the thickness of the water film is small so that smallest clasts are not immersed. To generalize
equation (4.74) to the case of multiple classes of clasts, Creyts and Schoof [2009] suggested to attribute
to each class j an effective pressure Nj := pj − pj+1, in which pj and pj+1 are respectively the far-field
normal stress applied on the clasts and on the ice roof of the clasts j. Hence, by construction, the normal
stress applied on the ice roof of class j corresponds to the far-field normal stress applied on the clasts in
the class j + 1. For the largest and smallest clasts, we have p1 = pi and pJ+1 = pw. As a consequence,

J∑

j=1
Nj = N , (4.75)

so that the effective pressure is partitioned into the Nj . The closing rate vjc of clast size j is then given
by the following generalization of (4.74):

vjc = ccAl̃j |Nj |n−1Nj + ctkb
ρLr̃j

Nj
ζj

, j = 1, ..., J . (4.76)

Here, l̃j and r̃j are the effective distance for ice creep and bed protrusions radius, taking into account the
effect of the subglacial water thickness hw (see Fig. 4.8):

r̃j :=
√
r2
j − h2

w, (4.77a)

l̃j :=
√
l2j − πr̃2

j . (4.77b)

Similarly, the proportion ζj can be expressed as a function of the thickness of the film and of the size
and spacing between the clasts. Now, we assume that the closing rates vjc are all the same, so that they
can be denoted by vc. We also assume that the effective pressure N and the water film thickness hw are
known. In that case, the system of equations formed by (4.75) and (4.76) consists in (J + 1) equations
for (J + 1) unknowns: N1,N2, ...,NJ and vc. Note that the clasts are here all assumed to be unsub-
merged, i.e., rj > hw for all j = 1, ..., J . This implicitly determines the number of clast classes J in this
model: if the water film gets thicker so that the smallest clasts, which are in the class J , get submerged
with rJ ≤ hw, then they should be removed from the calculation. The model then becomes a system of
(J − 1) equations for (J − 1) unknowns, and so on.
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(a) (b)

Figure 4.8: Notations for the model of a Creyts–Schoof film [adapted from Creyts and Schoof, 2009].
(a) A Creyts–Schoof film takes the form of a film that flows in between clasts that are at the ice-till
interface. (b) Zoom on the ice-till interface. The ice is in contact with a series of clasts that are sorted by
classes of decreasing size. The clasts in the class j have a radius rj and the distance between neighboring
clasts is denoted by lj . The effective radius r̃j and distance l̃j correspond to modifications of rj and lj that
include the effect of the thickness of the water film hw (see equations (4.77)). The effective pressureN is
distributed into the effective pressuresNj := pj−pj+1, in which pj denotes the far-field normal pressure
applied by the ice on the clasts of class j (see equation (4.75)).

Overall, it follows from this discussion that one can, in principle, determine the closing rate vc as a
sole function of the effective pressure N and of the water film thickness hw:

vc = vc(hw,N). (4.78)

However, this requires the knowledge of the distribution of the clast size and of the clast spacing, as well
as the solution of a system of equations. An alternative consists in prescribing an effective closing rate
that contains the qualitative features associated with a distribution of clasts:

vc = ccAl̃|N |n−1N , (4.79)

in which l̃ = l̃(hw) is a function that represents an effective distance between the clasts over the soft bed
[Kyrke-Smith and Fowler, 2014; Kyrke-Smith et al., 2014, 2015]. A reasonable assumption for l̃ is that
it is an increasing function of hw, with l̃(0) = l0 in which l0 represents the distance between the clasts in
the absence of water.

In terms of the till evolution, the model presented in (4.67) has to be modified. The driving force for
sediment motion is now the motion of water rather than ice. The effective shear stress τs applied by the
water on the till can be estimated as

τs = −1
2hw∇̄φ−∆ρtgds∇̄zb, (4.80)

in which ∆ρt = ρs − ρw is the difference of densities between the sediment and the water and ds is the
characteristic diameter of particles in the till [Fowler, 2010a; Kyrke-Smith and Fowler, 2014]. The first
term accounts for the motion of the water, while the second one accounts for the downward force on the
till particles due to the local bed slope. The (bed-load) sediment flux qs can then be modeled using a
Meyer-Peter and Mueller [1948] law:

qs = Ks

(
∆ρtgd

3
s

ρw

)1/2〈 ‖τs‖
∆ρtgds

− τ0
〉3/2

τs
‖τs‖

, (4.81)

where Ks is a dimensionless flux factor, τ0 is the (dimensionless) critical Shields stress, and 〈·〉 :=
max(·, 0) denote the Macaulay brackets [Ng, 2000; Fowler, 2010a; Damsgaard et al., 2017].
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Canals (Fig. 4.7c)

Canals are the efficient drainage systems on soft beds. They can be studied in a framework that is similar
to that of channelized drainage systems (see system (4.61)). However, there are two main differences
compared to the hard-bed case: firstly, canals do not take the form of semi-circular conduits but, rather,
as shallow, wide conduits that are incised in both the ice and the till. Secondly, there is a complication
in that both water and sediment are drained through canals, so appropriate laws have to be added for the
transport of sediment. Here, we describe a canal model following Walder and Fowler [1994].

We first fix the notations (Fig. 4.9). The total (volumetric) flux in a canal is denoted byQc = Qw+Qs,
in which Qw denotes the water flux and Qs the flux of suspended sediments. We also introduce the
proportions of water and sediment content πw and πs, such that Qw = πwQc and Qs = πsQc. By
construction, we have πw + πs = 1, and we can further assume that πs � πw, so Qc ≈ Qw. The
cross-sectional area of canals is denoted by S = Si + Ss, in which Si is the part that is incised in the
ice and Ss is the part that is incised in the till. We also denote by li the value of the portion of the canal
perimeter that is incised in the ice and ls the value of the portion incised in the till. Finally, the canal
width is denoted by lc, and the mean canal thickness is denoted by hc. With these notations, conservation
of mass for water and sediment can written as

∂t(πwS) + ∂sQw = mwli
ρw

+ Mw
ρw

, (4.82a)

∂t(πsS) + ∂s(Qs +Qb) = msls
ρs

+ Ms
ρs

, (4.82b)

where mw is the melt rate of ice at the ice-canal interface and ms is the net erosion sediment rate at the
till-canal interface. Here, Mw and Ms correspond to water and sediment input that might come from
neighboring tributaries. The flux Qb corresponds to the bed-load sediment flux, which is different from
the suspended sediment flux Qs.

y

z

hc

ice

till

Si

Ss

li

lslc

(a) (b)

Figure 4.9: Schematic of a canal. (a) Canals are drainage systems that are both incised in the ice and
the till. They open due to ice melt and sediment erosion, and close due to ice creep, till creep, and
sediment deposition. (b) Geometry of a canal [adapted from Walder and Fowler, 1994; Ng, 2000]. The
cross-sectional area of a canal is denoted by S = Si + Ss in which Si is the area incised in the ice and
Ss is the area incised in the till. The lengths li and ls are the contact areas at the ice/water and till/water
interfaces, per unit of canal length, respectively. The thickness of the canal is denoted by hc. The width
of the canal is denoted by lc. Note that, in general, the canal is not equally incised in the ice and the till
so that Si 6= Ss and li 6= ls.

Equations have to be added for the evolution of the sections Si and Ss incised in the ice and the
till, respectively. The mechanisms over both sections are similar: opening is due to melt/erosion, and
closing is due to creep. Assuming the viscous till rheology of Boulton and Hindmarsh [1987] (see
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equation (4.24)), Fowler and Walder [1993] derived the following creep rate of the till:

ε̇ = cc,tAtN
a
c N
−b, (4.83)

in which, in which At is a viscosity coefficient of the till a, b are exponents in the till rheology (taken
as a = 1.33 and b = 1.8), and cc,t is a prefactor that depends on the exact shape of the canal and
on a, b. Here, Nc = pi − pc denotes the effective pressure in the canal, with pc the water pressure in
the conduit, and N = pi − pw denotes the effective pressure in the till, with pw the pore-water pressure
far from the canal. In general, both effective pressures are different; however, an analysis suggests that
Nc = aN ≈ N , so as a first approximation we assume that both are equal to each other [Fowler and
Walder, 1993; Walder and Fowler, 1994]. The equations for the opening of Si and Ss are then given by

∂tSi = mwli
ρi
− cc,iAi l

2
i N

n, (4.84a)

∂tSs = msls
ρs
− cc,tAt l

2
sN

a−b. (4.84b)

We have written the ρi := ρ and Ai := A to emphasize that these values correspond to properties of ice
and not of water or sediment. A constitutive equation, linking the changes in hydraulic gradient φ and
the flux Qc, must be added to form a model for canals. Given that canals are shallow, an appropriate
constitutive equation is given by

qc = −kc h
3/2
c |∂sφ|−1/2∂sφ, (4.85)

in which qc is the flux per unit width and kc =
√

8/(ρwfw) is the hydraulic conductivity with fw ∼ 0.1 a
friction coefficient [Walder and Fowler, 1994; Ng, 2000]. Note that such equation effectively corresponds
to a turbulent Darcy–Weisbach equation with α = 3/2 and β = 3/2 (see equation (4.52)). Hence, the
volumetric water flux in the canal is given by

Qc = −kc lch
3/2
c |∂sφ|−1/2∂sφ. (4.86)

Overall, the following model for canal flow is obtained:

Canal flow

∂

∂t
(πwS) + ∂Qw

∂s
= mwli

ρw
+ Mw

ρw
, (4.87a)

∂

∂t
(πsS) + ∂

∂s
(Qs +Qb) = msls

ρs
+ Ms

ρs
, (4.87b)

∂Si
∂t

= mwli
ρi
− cc,iAi l

2
i N

n, (4.87c)

∂Ss
∂t

= msls
ρs
− cc,tAt l

2
sN

a−b, (4.87d)

Qc = −kc lch
3/2
c

∣∣∣∣
∂φ

∂s

∣∣∣∣
−1/2

∂φ

∂s
. (4.87e)

The system of equations (4.87) must be accompanied by a characterization ofMw, Ms, mw, ms, andQb.
The rates Mw and Ms are considered to be inputs of the model and are therefore assumed to be known.
The melt rate mw at the ice-canal interface can be computed by assuming that all the dissipated energy
is used to melt ice at that interface, given that the work done by erosion and associated with the transport
of sediment is negligible. Then,

mwli
ρi

= |Qc∂sφ|
ρiL

. (4.88)



4.3. Subglacial hydrology 69

The net erosion rate ms at the till-canal interface can be computed by subtracting the sedimentation rate
from the erosion rate. Following Parker [1978], these rates are parametrized as follows:

msls = Esvs

〈
τ

∆ρtgds
− τ0

〉3/2
− v2

s
ε
πshc, (4.89)

where Es ∼ 0.1 is a constant of proportionality for erosion, vs is the sediment grain-settling velocity,
and ε is an eddy diffusivity that characterizes the turbulence of the water flow. The stress τ corresponds to
the shear stress exerted at the roof and at the bed, which can be estimated based on the Darcy–Weisbach
relation τ = fρwu

2
w/8 with uw = Qw/S the mean velocity of the water flow in the canal. Finally, the

bed-load flux Qb is written using a Meyer–Peter–Mueller law (see equation (4.81)):

Qb = Ksls

(
∆ρtgd

3
s

ρw

)1/2〈
τ

∆ρtgds
− τ0

〉3/2
. (4.90)

We note that other parametrizations for sediment rate, erosion rate, and bed-load flux can be found in the
literature [e.g., Brinkerhoff et al., 2017; Delaney et al., 2019, 2023; Aitken et al., 2024]. Additionally, the
model presented assumes transport-limited conditions, where sediment flux reaches its carrying capacity.
However, canals may also experience supply-limited conditions [e.g., Delaney et al., 2019; Hewitt and
Creyts, 2019].

Despite its complexity, the model (4.87) can be used to obtain interesting insights relative to the
characteristics of canals. To simplify the analysis, consider a steady-state canal that is such that the
gradient in effective pressure is small with respect to the hydraulic potential gradient so that ∂sφ ≈ −Ψ.
Given the steady-state assumption, the ratio of the melt rate in the ice over the net erosion rate in the till
can then be estimated thanks to a ratio between (4.87c) and (4.87d):

mwli
msls

=
(
N

N0

)n+b−a
, N0 :=

(
ρsl

2
s cc,tAt

ρil2i cc,iAi

)1/(n+b−a)

. (4.91)

It follows that if N > N0, the canal will be be mainly incised in the ice, while for N < N0, it will
be mainly incised in the till. A numerical estimation of the critical effective pressure value N0 reveals
that N0 ≈ 8 × 105 Pa. We suppose that we are in the case N < N0, as this is the case associated with
canals. Then, lc ≈ li. This, together with equations (4.87c), (4.87e), and (4.88) allows to obtain an
explicit algebraic expression for the effective pressure, expressed as a function of the water flux:

N =
(

k2
c

ρicc,iAi

) 1
n

h
3
nc Ψ 2

nQ
− 1
nw . (4.92)

Importantly, the effective pressure in a canal is a decreasing function of the subglacial water flux. This
is a rather unexepected result, as channels have been found to have the opposite behavior, their effective
pressures increasing with increasing water fluxes (see equation (4.60)). In particular, this means that,
in contrast to channels, canals do not tend to isolate themselves from each other, and rather organize
themselves in a relatively distributed way, co-existing next to other canals. The key difference between
channels and canals is their shapes (circular vs. shallow) and it follows that the geometry of subglacial
conduits is a key driver for their dynamics and the spatial pattern they take.

The model of Walder and Fowler [1994] has been surpassed by the more sophisticated model of Ng
[1998, 2000]. They key difference is that in this new model, an expression for the canal thickness hc =
hc(y) is derived (see Fig. 4.9), while Walder and Fowler’s original model assumed a mean thickness
value. Ng [2000] obtained the following expression:

N ∝ Ψ− 1
nQ

3
2ns Q

− 5
2nw , (4.93)



70 Chapter 4. The subglacial environment

thereby including the effect of sediment flux in the expression for the effective pressure. Compared
to (4.92), the exponent of the water flux and the geometric potential gradient are different. However,
the same intriguing canal behavior is kept in that N decreases if Qw increases. A limitation in (4.93)
is that it requires the sediment flux to be known, while (4.92) does not depend on it. van der Wel et al.
[2013] suggest to overcome this issue by assuming that Qs is equal to a fixed small proportion of Qw,
e.g., Qs = Qw/500. Then, (4.93) becomes

N ∝ Ψ− 1
nQ
− 1
nw , (4.94)

leading to the same dependency with respect to the subglacial water flux as (4.92). Note that, within our
system of notations, the fraction Qs/Qw, here taken as 1/500, corresponds to πs/πw.

4.3.4 Multi-drainage models
The models presented above each involve the study of a single type of drainage on a clearly identified
type of bed. However, in practice, several types of drainage are expected to co-exist and evolve as a
function of subglacial conditions. In order to develop a multi-drainage model, the following questions
need to be addressed:

1. How to couple different localized and distributed drainage systems?

2. How to distribute subglacial melt to different types of drainage systems?

3. How to handle multiple bed types?

We note that existing multi-drainage models usually only tackle the first and second questions. Indeed,
they typically consider a system that is entirely made of a hard bed. An englacial storage term is some-
times added to allow for storage in some kind of underlying aquifer [e.g., Werder et al., 2013], but such
term has a limited impact for simulations of the hydrological system over long time scales as it disappears
when the system is in a steady state. The inclusion of both hard and soft beds in a hydrological model is
a motivation for the second original contribution of this thesis, which is presented in chapter 6.

We now present three frameworks for modeling multi-drainage systems: a lumped-element approach,
a continuous-discrete approach, and a fully continuous approach.

Lumped-element approach

In the lumped-element approach, we consider prototype models, called ‘elements’, that represent one or
more particular types of drainage with identified dynamics [Clarke, 1996]. Several elements can then be
linked together to form a network [Schoof, 2010b], or attributed to each grid cell of a large-scale mesh
to represent the hydrology on that cell [Gowan et al., 2023]. In the approach of Schoof [2010b], each
element of the hydrological system is supposed to be channel, a cavity filled with water, or something
in between these two cases. Formally, each element is characterized by a cross-sectional area Sw, a
volumetric water flux Qw, and an effective pressure N . The equations governing these quantities are
given by the following:

∂tS = Vo(Qw)− Vc(Sw,N), (4.95a)

Qw = −KwS
α
w|∂sφ|β−2∂sφ, (4.95b)

with opening and closing rates Vo = Vo(Qw) and Vc = Vc(Sw,N) given by

Vo = hbub + |Qw∂sφ|/ρL, (4.96a)

Vc = ccASw|N |n−1N . (4.96b)
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Such a model is very similar to the model of localized flow as introduced for channels in the hard-bed
section (system of equations (4.61)), and we use the same notations. The main difference is the addition
of the additional term hbub in the expression of the opening rate (4.96a). This term is reminiscent of
the opening term in linked cavities; see equation (4.50). The rationale behind such an approach is the
following. For low water fluxes, the hydrology system is supposed to be inefficient, i.e., similar to a
linked-cavity system. In that case, the first term hbub, which corresponds to opening by sliding over bed
protrusions, is dominant in (4.96a), so the element indeed mimics a cavity. For large water fluxes, the
hydrology system is supposed to take the form of a channel. This is again what the model does as the sec-
ond term |Qw∂sφ|/ρL, which corresponds to opening by melting of the conduit walls, becomes dominant
in the opening rate in that case. Overall, we thus see that taking a simple sum of the opening rates as-
sociated with cavities and channels allows us to obtain a hydrological element that covers both behaviors.

Further analysis is possible thanks to the simplicity of the model. Consider a steady-state element
with a known water flux Qw and geometric potential gradient magnitude Ψ := −∂sφ0. If there are
relatively small spatial variations in the effective pressure, then ∂sφ ≈ −Ψ. It follows that the effective
pressure is given by

N =
(

ρLhbub +QwΨ
ρLccAK

− 1
αw Ψ 1−β

α Q
1
αw

) 1
n

, (4.97)

which is a generalization of the result (4.60) which has been obtained for channels alone. In particular,
the effective pressure is no longer an increasing function of the water flux, as it was the case for channels.
Now, there is a threshold water flux Q0

w at which the element switches between a cavity and a channel.
It can be estimated by matching the opening rates associated with each type (cavity/channel); this yields

Q0
w ∼

ρLhbub
Ψ . (4.98)

The following limiting behaviors can then be obtained as for water fluxes far smaller or greater than Q0
w,

which are respectively associated with cavities and channels:

N ∝ Q−
1
αnw , for Qw � Q0

w, (4.99a)

N ∝ Q
α−1
αnw , for Qw � Q0

w. (4.99b)

We observe two strikingly different behavior as the effective pressure in cavities decreases with increasing
water flux, while it increases in the case of channels (Fig. 4.10). Typical values of the exponents are n = 3
and α = 5/4, for which one gets −1/(αn) = −4/15 ≈ −0.27 and (α− 1)/(αn) = 1/15 ≈ 0.07. This
difference also explains the different spatial organization of cavities and channels: channels tend to be
‘on their own’ as they will out-compete any smaller neighboring channels, leading to a localized pattern.
However, cavities will form a distributed system in which cavities co-exist close to each other.

Continuous-discrete approach

In the continuous-discrete approach, a (finite-element) triangulation of the domain is used to include both
localized and distributed drainage systems. Within each element of the triangulation, the system is as-
sumed to be made of linked cavities. By contrast, channels are localized on the edges of the elements.
Hence, the distributed drainage systems (linked cavities) are simulated in a continuous fashion, while the
localized ones (channels) are simulated on the network created by the set of element edges.

The evolution of the distributed component is driven by cavity opening through sliding and closing via
ice creep, as described by the system of equations (4.61). By contrast, the localized component evolves
through opening due to melting at the ice-channel interface and closing caused by ice creep, as described
by the system of equations (4.53). We note that the melt generated over the distributed drainage system
is not used as a possible mechanism for cavities opening. The reason behind this choice is practical:
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Figure 4.10: Schematic of the main physical drivers for the opening and closing of conduits on hard beds
[adapted from Schoof, 2010b]. (a) Cavities open thanks to sliding over bed protrusions and close due to
viscous creep of ice. (b) Channels open thanks to water melt at its boundaries and close due to viscous
creep of ice. (c) Relation between the steady-state effective pressureN and the subglacial water fluxQw,
following equation (4.97). Here, N0 and Q0

w are scaling values that allow to adimentionalize the system
[see Schoof, 2010b].
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it was found that including such a component in a distributed drainage system leads to an instability in
which the system becomes unstable. Such instability has been identified in Hewitt [2009] and discussed
in greater details in the appendix of Schoof et al. [2012]. To link the channels between each other, the
channel flux going into each node of the mesh is constrained to be equal to the channel flux going out-
side of it. This creates a constraint that effectively couples the channels of all the edges with each other
(analogously to Kirchhoff’s current law for electric circuits). The distributed and localized systems are
coupled with each other by attributing the net distributed water flux that goes into each edge as a source
term for the channels in these edges.

Such a model has been implemented in the hydrological model GlADS [Werder et al., 2013] and in
the hydrological component of the ice-sheet model MALI [Hoffman et al., 2018] which are quite popular
within the glaciological community [e.g., Dow et al., 2022; Hager et al., 2022]. It represents a quite
practical approach for including both distributed and localized components. However, there are several
limitations associated with it [Werder et al., 2013; Warburton et al., 2024]:

• Channels are a priori assumed to be located at the location of the edges of the elements of the
triangulation. In other words, their positions is not solely a result of the hydrological model (while
it should be).

• There is a dependence of the results on both the mesh and the mesh resolution, so that the results
do not actually converge when the mesh is refined.

• As previously mentioned, the opening due to melt is not included as a component for conduit
opening in the distributed system.

Fully continuous approach

In a fully continuous approach, the location of channels is not prescribed a priori, so channels are expected
to emerge spontaneously as a consequence of conditions in the hydrological system. In the hydrological
component of the PISM model, Bueler and van Pelt [2015] removed any localized component (i.e., the
model only consists of equations similar to (4.53)), effectively leading to a fully continuous approach.
However, such a model is incapable of producing channels, as channelization is made possible by melt
opening, which is not included in such a model. As channels are thought to play an important role in the
dynamics of subglacial hydrology, such an approach must be put aside.

In the SHAKTI hydrological model, Sommers et al. [2018] also adopted a fully continuous approach,
but included opening terms associated to melt in their formulation. Another change compared to the
previous hydrological models is that they adopted a constitutive equation for the subglacial water flux qw
that should be better at modeling both laminar and turbulent flows (the former being typically associated
with distributed, inefficient systems, and the latter being associated with localized, efficient systems).
Following studies of fluid flow in rock fractures [Zimmerman et al., 2004], they introduced the following
equation:

qw = − h3
w

12ηw(1 + Re/Rec)∇̄φ, (4.100)

where Re = ρw‖qw‖/ηw is the Reynolds number of subglacial water flux and in which Rec ∼ 103 is a
critical value associated with the laminar-turbulent transition. The main advantage of such constitutive
equation is that it admits the following limit cases,

qw = − h3
w

12ηw
∇̄φ, for Re/Rec � 1, (4.101a)

qw = − h
3/2
w√

12ρw/Rec
‖∇̄φ‖−1/2∇̄φ, for Re/Rec � 1, (4.101b)
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which effectively corresponds to a laminar behavior (α = 3, β = 2 in the Darcy equation (4.52)) and a
turbulent behavior (α = 3/2, β = 3/2 in the Darcy equation (4.52)).

With these modifications, channels do appear in numerical simulations. This is not unexpected, as
the inclusion of the melt-opening term is known to trigger an instability in the flow, leading to chan-
nelization. However, said channels are found to be infinitely small, practically always being one ‘pixel’
wide in simulations [Warburton et al., 2024]. Their locations were also found to be model dependent
[Sommers et al., 2018]. To solve this issue, Felden et al. [2023] added a diffusive term in the opening-
closing equation for the film thickness evolution hw. This allowed to obtain channels with a finite width.
Nonetheless, this diffusive term can seen as somewhat artificial, given that it does not rely on a physical
mechanism. Recently, Warburton et al. [2024] showed that there was in fact a missing piece in continu-
ous hydrological models that led to infinitely small channels. They showed that this missing component
was a non-local diffusive term within the equation (2.56) for melt rate :

mw = qt + qgeo + |τb · ub|+ |qw · ∇̄φ|
ρL

+ div
(
hwmw∇̄hw

1 + ‖∇̄hw‖2
)

. (4.102)

This new term is the last one and comes from the horizontal variations in the heat flux within the water
conduit. With this term, channels appear to have a finite width, and their shape actually correspond to the
one that is expected for such localized systems. This corresponds to a major improvement in subglacial
hydrological modeling. However, given the small size of the appearing channels –they have a width
of the order of meters– the applicability of such approach in large-scale ice-sheet simulations might be
limited, so further research efforts are needed in order to obtain computationally cheap models.
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Greek symbols
α Exponent in the Darcy–Weisbach equation -

β Exponent in the Darcy–Weisbach equation -

γ, γ0 Deformation angle -

γ̇ Shear rate s−1

γ True gravity kg m s−2

ε Eddy diffusivity m2 s−1

ε Aspect ratio -

ε̇ Creep rate s−1

ζ, ζj Proportion of ice in contact with bed protrusions -

η Ice viscosity Pa s

ηt Till viscosity Pa s

ηw Water viscosity Pa s

θ, θ0 Ice temperature K

θ′ Pressure-corrected ice temperature K

θcf Ice temperature at the calving front K

θm Ice temperature at pressure melting point K

θs Ice temperature at the upper ice-sheet surface K

θw Ocean water temperature K

κ, κ0 Wavenumber of the bedrock elevation m−1

λ, λ0 Wavelength of the bedrock elevation m

µt Friction coefficient in the till -

ν Measure of bed roughness -

πs Proportion of sediment content in a conduit -
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πw Proportion of water content in a conduit -

ρ, ρi Ice density kg m−3

ρs Sediment density kg m−3

ρw Water density kg m−3

∆ρt Difference of sediment/water density in the till kg m−3

σ Compression stress Pa

σ Cauchy stress tensor Pa

σnn Normal stress Pa

σzz Vertical stress Pa

τ Shear stress Pa

τ0 Critical Shields stress -

τy Yield stress Pa

τb, τb Basal friction stress Pa

τs Shear stress applied on the till Pa

φ Hydraulic potential Pa

φ0 Geometric potential Pa

φt Till porosity -

ϕ Internal friction angle -

ϕ Mapping of the motion of a body m

ϕ−1
t Inverse mapping of the motion of a body m

χ Friction coefficient in Gagliardini’s friction law -

ω Vorticity s−1

Γ Boundary of a domain m

Γcf Calving-front boundary m

Γf Floating lower-surface boundary m

Γg Grounded lower-surface boundary m

Γgl Grounding line m

Γs Upper-surface boundary m

Λ, Λ0 Friction coefficient in Schoof’s friction law Pa−n m s−1

Ξ Power per unit length dissipated by the water flow Pa m2 s−1

Π Rate of change of sensible heat per unit length Pa m2 s−1

Ψ Geometric potential gradient Pa m−1
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Ω Domain m

Ωt, Ω0 Ice-sheet domain m

Ω̄t Projection of the ice-sheet domain on a plane m

∂Ωt Boundary of the Ice-sheet domain m

Ω Earth’s Poisson vector s−1

Latin symbols
a Exponent in the till rheology -

a Spatial acceleration m s−2

as Net mass accumulation rate m s−1

b Exponent in the till rheology -

c Specific heat capacity of ice J kg−1 K−1

cc, cc,i Prefactor in the closing rate of ice creep m s−1

cc,t Prefactor in the closing rate of till creep m s−1

ct Clapeyron slope K Pa−1

cw Specific heat capacity of water J kg−1 K−1

d, d0 Scale of bumps in the bedrock m

ds Scale of sediment particles m

e Internal energy density J kg−1

et, e0
t Till void ratio -

f Function -

f Volumetric forces m s−2

fcf Equation of calving-front position m

fs Equation of upper-surface elevation m

fw Friction coefficient -

g, g Gravitational acceleration m s−2

h Ice thickness m

hb Characteristic size of bed protrusions m

hc Thickness of a canal m

hs Equivalent thickness of sediment content in a till m

ht Thickness of deformable till m

hw, h0
w Effective thickness of water m



78 List of symbols

k Thermal heat conductivity of ice W m−1 K−1

kb Thermal heat conductivity of the bedrock W m−1 K−1

kc Hydraulic conductivity of a canal Pa−1/2 m s−1

kt Till permeability m2

kw Hydraulic conductivity of a distributed drainage system Pa1−β m1+β−α s−1

l, lj , l̃, l̃j Effective distance between neighboring clasts m

lb Characteristic distance between bed protrusions m

lc Width of canal m

li Contact area of the canal with the ice per unit length m

ls Contact area of the canal with the till per unit length m

m0 Typical bed slope -

mb Basal melt rate m s−1

ms Net deposition rate of sediment material kg m−2 s−1

mw Net melt rate of water kg m−2 s−1

n Exponent in Glen’s flow law -

n Normal to a boundary -

nx Component of a normal along the x axis -

ny Component of a normal along the y axis -

nz Component of a normal along the z axis -

p Exponent in the friction law -

p, pi, pj Pressure in ice Pa

patm Atmospheric pressure Pa

pc Water pressure in a canal Pa

pcf Pressure at the calving front Pa

pw Water pressure Pa

q Exponent in the friction law -

q Heat flux in the ice W m−2

qb Heat dissipation associated with basal processes W m−2

qc Flux per unit length in a canal m2 s−1

qgeo Geothermal heat flux W m−2

qs Subglacial sediment flux m2 s−1

qt Conductive heat flux in the ice W m−2
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qw Subglacial water flux m2 s−1

r Heat production source term W kg−1

r, rj , r̃j Effective radius of bed protrusions m

t Time s

t Surface forces Pa

u Velocity component along the x axis m s−1

u Horizontal velocity m s−1

u0 Characteristic velocity m s−1

ub, ub Basal velocity m s−1

ucf Calving-front velocity m s−1

usia SIA velocity m s−1

ussa SSA velocity m s−1

uw Mean water velocity in a conduit m s−1

v Velocity component along the y axis m s−1

v Spatial velocity m s−1

vc, vjc Closing rate in a distributed drainage system m s−1

vi Interface velocity m s−1

vo, vjo Opening rate in a distributed drainage system m s−1

vs Sediment grain-settling velocity m s−1

w Velocity component along the z axis m s−1

w Vector associated with the spin-rate tensor s−1

x Spatial position component along the x axis m

x, x0 Position vector m

dx Infinitesimal vector in the current configuration m

y Spatial position component along the y axis m

z Spatial position component along the z axis m

zb Bedrock elevation m

zl Lower-surface elevation m

zs Upper-surface elevation m

zsl Sea-level elevation m

A, Ai, A0 Ice viscosity coefficient Pa−n s−1

A Material acceleration m s−2
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As Sliding parameter without cavitation Pa−n m s−1

At Till viscosity coefficient Pab−a s−1

Cb Friction coefficient in the Budd friction law Pa1−q m−p sp

Crc Friction coefficient in the regularized Coulomb friction law -

Cs Friction coefficient in the Schoof friction law -

Ct Till compressibility coefficient -

Cw Friction coefficient in the Weertman friction law Pa m−p sp

Es Constant of proportionality for sedimentation -

D Strain-rate tensor s−1

F Deformation gradient -

I Identity tensor -

Kw Hydraulic conductivity in conduit Pa1−β m2−2α+β s−1

Ks Dimensionless flux factor -

L Latent heat of fusion of ice J kg−1

L Velocity gradient s−1

Mw Effective melt rate in a localized conduit kg m−1 s−1

N , N0 Effective pressure Pa

Nc Effective pressure in canals Pa

Nmin Minimal effective pressure Pa

Nt Effective pressure in the till Pa

Q Activation energy for creep J

Qc Volumetric flux in a canal m3 s−1

Qs Suspended sediment flux in a canal m3 s−1

Qw, Q0
w Volumetric water flux m3 s−1

R Universal gas constant J K−1

Re, Rec Reynolds number -

S Cross-sectional canal area m2

Sb Power spectral density of the bedrock elevation m3

Si Cross-sectional canal area incised in ice m2

Ss Cross-sectional canal area incised in till m2

Sw Cross-sectional area of a conduit m2

T Length of the interval of time of interest s
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T Tangential projection operator -

V Material velocity m s−1

Vc Closing rate of a conduit m2 s−1

Vo Opening rate of a conduit m2 s−1

W Spin-rate tensor s−1

X Material point m

dX Infinitesimal vector in the reference configuration m

Mathematical symbols
R Set of real numbers -

f ∼ g f is of the order of g, f is asymptotic to g -

f ≈ g f is approximately equal to g -

f := g f is defined as g -

f � g f is much smaller than g -

f ∝ g f is proportional to g -

O(f) Order of f units of f

〈f〉 Macaulay brackets of f units of f

[f ] Order of magnitude of f units of f

JfK Variation of f across the interface units of f

]f , g[ Open interval: {x ∈ R : f < x < g} units of f , g

f̂ Direction of f -

‖f‖ Euclidean norm of f units of f

f · g Inner product of f and g units of f , g

f × g Vector product of f and g units of f , g

f ⊗ g Outer product of f and g units of f , g

FT Transpose of F units of F

‖F ‖∗ Norm of F units of F

F : G Tensor contraction of F andG units of F ,G

IF First principal invariant of F units of F

IIF Second principal invariant of F (units of F )2

IIIF Third principal invariant of F (units of F )3

tr(F ) Trace of F units of F



82 List of Symbols

det(F ) Determinant of F (units of F )3

cl(F) Closure of the set F units of F

dtf , df/dt Material time derivative of f units of f × s−1

∂tf , ∂f/∂t Partial time derivative of f units of f × s−1

∂sf , ∂f/∂s Spatial derivative of f along a streamline units of f ×m−1

∂xf , ∂f/∂x Spatial derivative of f along the x axis units of f ×m−1

∂yf , ∂f/∂y Spatial derivative of f along the y axis units of f ×m−1

∂zf , ∂f/∂z Spatial derivative of f along the z axis units of f ×m−1

∇f ,∇xf Spatial gradient of the scalar field f units of f ×m−1

∇̄f Horizontal spatial gradient of scalar field f units of f ×m−1

∇f ,∇xf Spatial gradient of the vector field f units of f ×m−1

∇Xf Spatial gradient of the vector field f in the reference configuration units of f ×m−1

div f Divergence of the vector field f units of f ×m−1

div f Horizontal divergence of the vector field f units of f ×m−1

divF Divergence of the tensor field F units of F ×m−1
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Extension of grounding-line flux
conditions

T. Gregov, F. Pattyn, and M. Arnst
Grounding-line flux conditions for marine ice-sheet systems
under effective-pressure-dependent and hybrid friction laws

Journal of Fluid Mechanics, 975, 2023

Flux conditions are semi-analytical expressions that can be used to determine the flux at the ground-
ing line of marine ice sheets. In the glaciology literature, such flux conditions have initially been es-
tablished for the Weertman and Coulomb friction laws. However, the extension to more general and
complex friction laws, such as the Budd friction law for which basal friction depends on both the basal
velocity and the effective pressure, is a topic of recent research. Several studies have also shown that
hybrid friction laws, which consider a transition between a power-law friction far from the ground-
ing line and a plastic behavior close to it, were good candidates for improved modeling of marine
ice sheets. In this article, we show that the flux conditions previously derived for the Weertman and
Coulomb friction laws can be generalized to flux conditions for the Budd friction law with two differ-
ent effective-pressure models. In doing so, we build a bridge between the results obtained for these
two friction laws. We provide a justification for the existence and uniqueness of a solution to the
boundary-layer problem based on asymptotic developments. We also generalize our results to hybrid
friction laws, based on a parametrization of the flux condition. Finally, we discuss the validity of the
assumptions made during the derivation, and we provide additional explicit expressions for the flux that
stay valid when the bedrock slopes are important or when the friction coefficients are relatively small.

5.1 Introduction
Marine ice sheets, such as the West Antarctic ice sheet, are continental ice masses which possess both
a grounded and a floating part. These two regions are separated by the so-called grounding line where
ice starts floating. There have been several studies in the recent literature aimed at understanding the
grounding-line behavior using numerical simulations, analytical methods, or a combination of both. In
particular, Schoof [2007c] and Tsai et al. [2015] have derived, based on simplified mechanical models
for marine ice sheets and asymptotic expansions, so-called flux conditions which allow the flux at the
grounding line, i.e., the amount of ice that crosses the grounding line per unit time, to be determined as a
function of grounding-line thickness. The stability of marine ice-sheet systems can then be studied, and it
has been found that, under certain assumptions, their dynamical behavior in these simplified mechanical
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86 Chapter 5. Extension of grounding-line flux conditions

models can be described in terms of saddle-node bifurcations and hysteresis [Schoof, 2007b, 2012].

Schoof [2007c] and Tsai et al. [2015] considered two friction laws: the Weertman friction law, in
which the magnitude of basal friction is proportional to a power of the basal velocity, and the Coulomb
friction law, in which basal friction depends on a yield stress proportional to an effective pressure between
the ice sheet and the underlying bedrock. Their work has been extended to more complex configurations
including the impact of buttressing, which appears for three-dimensional ice sheets [Schoof et al., 2017;
Pegler, 2018a,b; Haseloff and Sergienko, 2018, 2022; Sergienko, 2022a], the regime of low driving and
basal stress [Sergienko and Wingham, 2019], and the impact of non-negligeable bed gradients [Sergienko
and Wingham, 2022]. A current research topic is the study of more complex friction laws [Sergienko and
Haseloff, 2023]. This research is motivated by the observation that the behavior of marine ice sheets
in long-term numerical simulations is significantly influenced by the friction law that is used, even if
the starting configuration can be similar if one tunes adequately the friction coefficients [Brondex et al.,
2017].

In this paper, we derive flux conditions for a general class of friction models related to the Budd
friction law, which includes dependence on basal velocity and on effective pressure. Modeling effective
pressure is a challenging topic, and complex hydrology models can be coupled to the ice-sheet model
[Hewitt, 2013; Werder et al., 2013; Bueler and van Pelt, 2015]. Here, we consider two different effective-
pressure models that are elementary. The first one is associated with a perfectly-permeable bed, similar
to the effective-pressure model used in Tsai et al. [2015]. The second one considers a linear dependence
between the effective pressure and the ice thickness, which is frequent in numerical simulations of ice
sheets [Bueler and Brown, 2009; Martin et al., 2011]. The derivation of the flux conditions leads to a
problem that is formulated in terms of a dynamical system. We provide insight into the existence and
uniqueness of a solution to this problem. We propose a numerical solving strategy for obtaining the value
of a numerical factor appearing in this system. We also consider hybrid friction laws that are similar to
the ones considered in Schoof [2005, 2010a], Gagliardini et al. [2007], and Zoet and Iverson [2020]. In-
stead of allowing only friction coefficients to be tuned, these friction laws can represent different regimes
which can be triggered where certain physical conditions are met, e.g., friction has a plastic behavior near
the grounding line. The derivation of flux conditions for hybrid friction laws is challenging because they
introduce additional parameters whose magnitude is not necessarily small.

This paper is structured as follows. First, in section 5.2, the mathematical problem associated with
the mechanical behavior of marine ice sheets is described. Then, in section 5.3, we show that the ap-
proach adopted in Schoof [2007c] and Tsai et al. [2015] can be generalized to the Budd friction law in
combination with two different effective-pressure models. Using asymptotic developments, we also pro-
vide a justification for the existence and uniqueness of a solution to the resulting leading-order dynamical
system. In section 5.4, we generalize our results to hybrid friction laws similar to the one described in
Schoof [2005] based on a parametrization of the flux condition. In section 5.5, we discuss the validity
of the assumptions made to derive the flux conditions, and we propose explicit expressions that can be
used to take into account effects that have been neglected in the initial derivation. In section 5.6, the flux
conditions are compared with numerical simulations. Finally, in section 5.7, we discuss our results.

5.2 Problem formulation

We consider the evolution of an isothermal marine ice sheet using a flowline model known as the shallow-
shelf approximation [Morland, 1987; MacAyeal, 1989]. Such a model is suited for rapidly sliding ice
sheets. Vertical shear in the ice is then neglected, and the vertical normal stress is cryostatic. We assume
that the ice sheet is in a steady state. For a two-dimensional geometry, the solution to the flowline model
consists of two functions defined over an interval Ω =]0,xc[: the thickness h : Ω → R+ and the
horizontal velocity u : Ω → R. The position x = xc corresponds to a calving front, where icebergs
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Figure 5.1: Schematic representation of the ice-sheet geometry. The unknowns are the grounding-line
position xgl, the ice thickness h = h(x), and the horizontal velocity u = u(x). The bed is characterized
by a prescribed elevation b = b(x). We also assume that the calving-front position xc is known.

detach from the marine ice sheet. For simplicity, we consider a fixed calving-front position. In general,
the domain Ω contains both a grounded and a floating portion, denoted respectively by Ωg and Ωf . If
it exists and is unique, the point where the ice transitions from a grounded to a floating configuration
is known as the grounding line and is denoted here by xgl. This position is itself an unknown of the
problem. A schematic representation of such an ice-sheet geometry is shown in figure 5.1.

5.2.1 Governing equations

Multi-domain formulation

Let us denote by (hg,ug) and (hf ,uf) the values taken by the functions (h,u) on the grounded portion Ωg
and the floating portion Ωf of the domain Ω, respectively. With these notations, the governing equations
read as follows in the grounded portion:

d
dx (ug hg) = a, in Ωg, (5.1a)

2A− 1
n

d
dx

(
hg

∣∣∣∣
dug
dx

∣∣∣∣
1
n−1 dug

dx

)
− τb − Λhg|ug|

1
n−1ug = ρghg

d
dx (b+ hg), in Ωg. (5.1b)

Equation (5.1a) is a mass-conservation equation, stating that the flux variation of the ice flow must be
exactly compensated by the net mass accumulation rate a. Equation (5.1b) is a momentum-conservation
equation and establishes a balance between the divergence of membrane stress, the friction stress, the
lateral-drag stress, and the gravitational stress. The factor A and the exponent n are ice viscosity pa-
rameters associated with the Glen flow law (usually, n = 3), Λ is a lateral-drag coefficient, ρ is the
ice density, ρw is the water density, g is the gravity acceleration, and b = b(x) is the prescribed eleva-
tion of the underlying bedrock. The models used for the friction stress τb = τb(h,u) are described in
the next section. While we do not explicitly consider lateral drag in the present study, we do include it
in the problem formulation, as it allows for an easier comparison with the other results from the literature.
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In the floating portion, friction with the ocean and the air is neglected, leading to the following:

d
dx (uf hf) = a, in Ωf , (5.2a)

2A− 1
n

d
dx

(
hf

∣∣∣∣
duf
dx

∣∣∣∣
1
n−1 duf

dx

)
− Λhf |uf |m−1uf = ρ

(
1− ρ

ρw

)
ghf

dhf
dx , in Ωf . (5.2b)

Finally, continuity conditions are added at the interface between the regions:

hg = hf , ug = uf , 2A− 1
nhg

∣∣∣∣
dug
dx

∣∣∣∣
1
n−1 dug

dx = 2A− 1
nhf

∣∣∣∣
duf
dx

∣∣∣∣
1
n−1 duf

dx on Σ, (5.3)

The portions Ωg and Ωf and their interface Σ are defined by a flotation condition:

Ωg = {x ∈ Ω : ρgh > ρwg〈−b〉} , (5.4a)
Ωf = {x ∈ Ω : ρgh < ρwg〈−b〉} , (5.4b)

Σ = Ωg ∩ Ωf . (5.4c)

The symbol 〈·〉 = max(·, 0) corresponds to the Macaulay brackets. Hence, the grounded portion in-
cludes both the parts where the bedrock lies above the sea level (i.e., where 〈−b〉 = 0), as well as the
parts where the bedrock lies below the sea level, but where there is too much ice for it to be floating (i.e.,
where ρgh > −ρwgb).

In the simplest configuration, such as the one shown in figure 5.1, the grounded and floating portions
can be written as open sets Ωg =]0,xgl[ and Ωg =]xgl,xc[, so that the grounded-line position can be
properly defined as the unique element of Σ: Σ = {xgl}. We note that in general, the geometry might
be more complex. For example, there could be several isolated points on which the ice sheet switches
from a grounded to a floating position and vice-versa, leading to multiple grounding lines. A more exotic
configuration, not considered here, is the one described by Pegler [2018a] with the so-called marginal-
flotation zones. In that case, the interface Σ becomes a set of its own, i.e., the grounding-line width
becomes finite.

Boundary conditions

At x = 0, we assume the ice to be sufficiently slow so that it is virtually motionless (this could also
correspond to a symmetry condition):

u = 0, at x = 0. (5.5)

At the calving front, equilibrium between the horizontal stress in the ice and the ocean water pressure
yields the following Neumann boundary condition:

2A− 1
n

∣∣∣∣
du
dx

∣∣∣∣
1
n−1 du

dx = 1
2ρ
(

1− ρ

ρw

)
gh, at x = xc. (5.6)

Actually, if one considers an ice shelf without lateral drag and restricts the domain to the grounded
part Ωg only, which we will do in this study, then this boundary condition can still be used, i.e.,

2A− 1
n

∣∣∣∣
du
dx

∣∣∣∣
1
n−1 du

dx = 1
2ρ
(

1− ρ

ρw

)
gh, at x = xgl. (5.7)

Indeed, the equation (5.2b) with Λ = 0 implies that the quantity
[

2A− 1
nh

∣∣∣∣
du
dx

∣∣∣∣
1
n−1 du

dx −
1
2ρ
(

1− ρ

ρw

)
gh2

]
(5.8)

is conserved through the ice shelf.
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5.2.2 Friction laws

Power-law friction laws

The simplest friction law is the Weertman friction law, for which τb is proportional to |u|p with p > 0
[Weertman, 1957]. Usually, p = 1/3 is chosen. To take into account effective pressure, one can use the
so-called Budd friction law [Budd et al., 1979] for which

τb = CNq |u|p−1u, (5.9)

with C a friction coefficient, N an effective pressure, and p, q ≥ 0. Two elementary effective-pressure
models are presented in subsection 5.2.2. The Budd friction law can be rewritten as a sliding law, i.e.,
the velocity can be written as a function of the basal friction stress:

u = C−
1
pN−

q
p |τb|

1
p−1τb. (5.10)

It can also be noted that the law in (5.9) includes as a particular case the Weertman friction law if one
sets p = 1/3 and q = 0.

Coulomb friction law

A Coulomb behavior assumes that there is a yield stress τy = CN that must be reached for ice to be
sliding:

{
τb = CNsgn(u), if |u| > 0,

|τb| ≤ CN , if u = 0.
(5.11a)
(5.11b)

If the ice velocity is non-zero everywhere, then τb = CNsgn(u), which formally corresponds to a Budd
friction law with p = 0 and q = 1. In the rest of this paper, we will always consider this case.

Hybrid friction laws

Tsai et al. [2015] have considered a hybrid law that combines the Weertman and Coulomb friction laws:

τb = min(A−ps |u|p,CN) sgn(u), (5.12)

with As a friction coefficient that controls the onset of the plastic behavior. Such a law was originally
introduced in Schoof [2010a]. Smoothed versions have already been studied analytically and numerically
[Schoof, 2005, 2010a; Gagliardini et al., 2007]. They take the following form:

τb = C

(
|u|

|u|+AsC
1
pN

1
p

)p
N sgn(u), (5.13)

or, by introducing u0 = AsC
1
pN

1
p ,

τb = C

( |u|
|u|+ u0

)p
N sgn(u). (5.14)

This type of law, which exhibits viscoplastic behavior, is interesting from a modeling perspective because
it can be used to include both form and skin drag, even if these are distinct mechanisms [Minchew and
Joughin, 2020]. Form drag is associated with friction induced by ice deformation around obstacles and
can be modeled with a power-law friction law, while skin drag is associated with friction induced by
shear stress at the ice-bedrock interface, and can be modeled with a Coulomb friction law. Recently, Zoet
and Iverson [2015, 2020] have shown that such laws are in good agreement with experimental results.
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Weertman (W)

τb = C|u|p−1u

Coulomb (C)

τb = CN sgn(u)
Budd (B)

τb = CNq|u|p−1u

Tsai (T)

τb = min(A−p
s |u|p,CN) sgn(u)

Regularized Coulomb with u0 (RC1)

τb = C

(
|u|

|u| + u0

)p

N sgn(u)

Regularized Coulomb with As (RC2)

τb = C

(
|u|

|u| +AsC
1
pN

1
p

)p

N sgn(u)

u0 = AsC1/pN1/p

Figure 5.2: The considered friction models. The same notation C is used for the friction coefficient in
every friction law although those coefficients are not necessarily comparable to one another.

Summary

The friction laws that we will consider in this article are shown in figure 5.2.

Effective pressure

Modeling effective pressure is complex. The effective pressure can be expected to depend on both the
subglacial interface and the subglacial hydrology whose description is an active area of research [Flow-
ers, 2015]. State-of-the-art hydrology models typically involve sets of partial differential equations that
must be coupled with the ice-sheet model itself [Hewitt, 2013; Werder et al., 2013; Bueler and van Pelt,
2015]. Here, we will limit ourselves to very simple hydrology models that provide an explicit equation
for the effective pressure N = ρgh− pw.

The first elementary effective-pressure model we consider consists in assuming that the bedrock be-
low the ice sheet is perfectly permeable and connected to the nearby ocean, so that N = ρgh − pw
with pw following a hydrostatic distribution: pw = ρwg〈−b〉. The second elementary effective-pressure
model we consider consists in assuming a dependence of pw on the ice-sheet thickness h, such as through
a linear relation pw = c ρgh, with c a coefficient close to, but smaller than, one. We choose this model
for its simplicity, and because similar parametrizations are common in ice-sheet models. For example,
Bueler and Brown [2009] consider pw = 0.95 ρgh (w/wc), with w the thickness of a subglacial water
film and wc a critical value of that thickness. Martin et al. [2011] consider pw = 0.96λρgh, with λ a
parameter depending on the bedrock elevation that is such that 0 ≤ λ ≤ 1. We acknowledge that such
relations are usually used as parametrizations to close models, and they do not necessarily rely on the
modeling of a physical phenomenon. For convenience, we name the first type of elementary effective-
pressure model NA and the second one NB.
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5.2.3 Dimensionless formulation
We introduce scales [x], [h], [u], and [τb], leading to the following dimensionless variables:

x̂ = x

[x] , ĥ = h

[h] , b̂ = b

[h] , û = u

[u] , τ̂b = τb
[τb] , (5.15)

and to the following dimensionless ratios:

α = a

([u]/[x])[h] , β =
(

db
dx

)
[x]
[h] , γ = [τb][x]

ρg[h]2 , (5.16a)

δ = ρw − ρ
ρw

. ε = A−
1
n [u] 1

n

2ρg[x] 1
n [h]

, λ = Λ[u]m[x]
ρg[h]2 . (5.16b)

These scales and ratios should be characteristic of ice streams. The problem can be further simplified
by choosing the scales so that additional constraints on the dimensionless ratios are enforced, e.g., by
setting some of them to a unit value. However, we postpone these assumptions to a later stage, where the
context will provide justification for them. We also introduce the dimensionless flotation thickness ĥb as
ĥb = (1− δ)−1b̂. With these notations, the governing equations become

d
dx̂ (ûg ĥg) = α, (5.17a)

4 ε d
dx̂

(
ĥg

∣∣∣∣
dûg
dx̂

∣∣∣∣
1
n−1 dûg

dx̂

)
− γ τ̂b − λ ĥg|ûg|m−1ûg = ĥg

(
dĥg
dx̂ + β

)
, (5.17b)

for 0 < x̂ < x̂gl,

ĥg = ĥf , ûg = ûf , ĥg

∣∣∣∣
dûg
dx

∣∣∣∣
1
n−1 dûg

dx = ĥf

∣∣∣∣
dûf
dx

∣∣∣∣
1
n−1 dûf

dx , (5.18)

at x̂ = x̂gl,

d
dx̂ (ûf ĥf) = α, (5.19a)

4 ε d
dx̂

(
ĥf

∣∣∣∣
dûf
dx̂

∣∣∣∣
1
n−1 dûf

dx̂

)
− λ ĥf |ûf |m−1ûf = δ ĥf

dĥf
dx̂ , (5.19b)

for x̂gl < x̂ < x̂c, with the following boundary conditions:

û = 0, atx̂ = 0, (5.20a)
∣∣∣∣
dû
dx̂

∣∣∣∣
1
n−1 dû

dx̂ = δĥ

8 ε , at x̂ = x̂gl, (5.20b)

ĥ = ĥb, at x̂ = x̂gl. (5.20c)

5.2.4 Flux conditions
A flux condition is an expression of the grounding-line flux qgl ≡ h(xgl)u(xgl) as a function of the dif-
ferent physical parameters A, C, ... that appear in the problem formulation. Such an expression usually
takes the form of an approximation that is valid within an asymptotic regime associated with the magni-
tude of the previously introduced dimensionless ratios. Historically, the first flux condition was derived
by Schoof [2007c] for the Weertman friction law. They considered an unbuttressed ice sheet, i.e., λ = 0,
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a scaling and a bed geometry such that α ∼ 1, γ ∼ 1, and |β| . 1, and they assumed that ε � 1 and
δ � 1. Tsai et al. [2015] derived a flux condition under the same assumptions, but for the Coulomb
friction law. They showed that the resulting flux condition was more sensitive compared to one derived
by Schoof [2007c]. The importance of buttressing, i.e., the case λ 6= 0, was discussed by Pegler [2016,
2018a,b], Schoof et al. [2017], and Haseloff and Sergienko [2018, 2022]. They showed that taking into
account lateral drag could significantly change the dynamics of ice sheets, in particular by modifying
the stability criterion that was previously derived for unbuttressed ice sheets [Schoof, 2012]. The regime
of low basal stress, γ � 1, was covered by Sergienko and Wingham [2019]. The same authors also
discussed the importance of α and β, showing that the so-called marine-ice sheet instability hypothesis
was not applicable in general [Sergienko and Wingham, 2022; Sergienko, 2022b]. Schoof et al. [2017]
studied the impact that calving laws have on the flux conditions. All these authors, except Tsai et al.
[2015], have considered the Weertman friction law in their studies. Recently, Sergienko and Haseloff
[2023] studied the notion of stability of marine ice sheets submitted to a climate forcing for a broad class
of friction laws. However, they did not derive flux conditions for the configuration studied in the present
paper, which we describe hereafter.

In this paper, we derive flux conditions for the Budd friction law with two elementary effective-
pressure models, and show how they can be extended to hybrid friction laws. We will use the same
assumptions that were done by Schoof [2007c] and Tsai et al. [2015], namely, we consider an unbut-
tressed ice sheet (λ = 0), scales that are such that α, β, and γ are at most of orderO(1), and consider the
asymptotic regimes ε� 1 and δ � 1. We will discuss in a later section the validity of these hypotheses,
and we will show how the flux conditions can be modified to remain valid in the event that α, β, and γ
are not small or moderate.

5.3 Generalization to the Budd friction law

We now proceed to the derivation of a flux condition for the Budd friction law, that is, we consider a
friction law belonging to the family of friction laws τb = CNq|u|p−1u, where the effective pressure N
obeys one of the two elementary models previously introduced. We assume that n = 3, 0 ≤ p ≤ 1/3,
and 0 ≤ q ≤ 1, which holds for commonly used values. We assume that all the variables that appear
are constant, except x and the functions b, h, u, and N , which depend on this coordinate. We base our
derivation on the ideas that Schoof [2007c] and Tsai et al. [2015] have developed for the Weertman and
the Coulomb friction laws, and we show that they can be extended to the present context.

We introduce the dimensionless effective pressure as N̂ = N/[N ] where the scale [N ] is related to
the scales [h] and [τb] as follows:

[N ] =
{

ρg[h] (NA model),

(1− c)ρg[h] (NB model),
and [τb] = C[u]p[N ]q. (5.21)

We neglect lateral drag (λ = 0) and consider scales that are such that

α = 1, γ = 1, and |β| . 1. (5.22)
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With these considerations, the following problem is obtained:

d
dx̂ (û ĥ) = 1, for 0 < x̂ < x̂gl, (5.23a)

4 ε d
dx̂

(
ĥ

∣∣∣∣
dû
dx̂

∣∣∣∣
1
n−1 dû

dx̂

)
− (ĥ− 1A〈ĥb〉)q|û|p−1û− ĥ

(
dĥ
dx̂ + β

)
= 0, for 0 < x̂ < x̂gl, (5.23b)

û = 0, at x̂ = 0, (5.23c)

∣∣∣∣
dû
dx̂

∣∣∣∣
1
n−1 dû

dx̂ = δĥ

8 ε , at x̂ = x̂gl, (5.23d)

ĥ = ĥb, at x̂ = x̂gl, (5.23e)

in which 1A = 1 for the NA model, and 1A = 0 for the NB model.

5.3.1 Derivation of the flux condition

Equivalent dynamical system for the boundary-layer problem

One can expand the unknown fields as powers of ε and keep the leading-order terms because ε is typi-
cally very small – about 10−3 for commonly used values of the physical parameters. One then expects
an equilibrium between the friction and gravity terms in (5.23b), with the divergence of membrane stress
which can be neglected. However, this balance fails in two cases. If δ is such that ε � δ, then the Neu-
mann boundary condition (5.23d) at the grounding line cannot be fulfilled. This hints at the existence of
a boundary layer near the grounding line, in which the membrane-stress divergence becomes relatively
important. Furthermore, if the friction stress reaches a zero value at the grounding line (e.g., if 1A = 1
and q 6= 0), then all the terms appearing in (5.23b) must become very small close to the grounding line,
leading again to a boundary layer. In what follows, we place ourselves in one of these two cases so that
we expect the presence of a boundary layer close to the grounding line.

To solve a very similar problem, Schoof [2007c] and Tsai et al. [2015] used the method of matched
asymptotics: the solution inland, known as outer solution was matched with the so-called inner solution
associated with the boundary layer. To obtain this inner solution, they introduced a scaling of the form

x̂gl − x̂ = εκxX, ĥ = εκhH, ĥb = εκhHb, b̂ = εκhB, û = εκuU , (5.24)

where κx, κh, and κu are chosen in a such way that the divergence of membrane stress, the friction stress,
and the gravity stress are of the same order of magnitude near the grounding line; in other words, they are
of all of order O(εκ) for a same exponent κ. Furthermore, they are chosen such that the flux Q = HU
is O(1) at the grounding line. This leads in the current context to the following exponent values:

κx = n(p− q + 2)
n+ (p− q) + 3, κu = − n

n+ (p− q) + 3, κh = n

n+ (p− q) + 3. (5.25)

We remark that with the assumed values for n, p, and q, we have κx > 0, κu < 0, and κh > 0. At lead-
ing order, the flux Q is then constant within the boundary layer, and we replace it by the grounding-line
flux Qgl.

The inner problem can be further transformed. As in Schoof [2007c] and Tsai et al. [2015], the
solution to the inner problem is written as a trajectory of a 2D dynamical system of the form X̃ 7→
(Ũ , W̃ ), where X̃ , Ũ , and W̃ are respectively a scaled spatial coordinate, a scaled velocity, and a scaled
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membrane stress, thus allowing the dynamics of the system to be interpreted in the phase plane (Ũ , W̃ ).
To obtain this dynamical system, the following change of variables is introduced:

X = Hgl
2−q−np
p+1 X̃, U = Hgl

2−q+n
p+1 Ũ , −|UX |

1
n−1UX = HglW̃ , Qgl = Hgl

n+(p−q)+3
p+1 Q̃gl. (5.26)

At leading order, the following leading-order system is then obtained:

dŨ
dX̃

= −|W̃ |n−1W̃ , for X̃ > 0, (5.27a)

dW̃
dX̃

= −|W̃ |
n+1

Ũ
− 1

4
Ũ

Q̃gl

(
Q̃gl

Ũ
− 1A

)q
|Ũ |p−1Ũ + Q̃gl|W̃ |n−1W̃

4 Ũ2 , for X̃ > 0, (5.27b)

(Ũ , W̃ ) = (Q̃gl, δ/8), at X̃ = 0, (5.27c)

(Ũ , W̃ )→ (0, 0), as X̃ → +∞. (5.27d)

Equation (5.27d) is a matching condition and follows from the the fact that the inner and outer solution
must be of the same order in an intermediate region. Because U = û ε−κu and the outer solution is such
that û ∼ 1, we must enforce U → 0, and therefore Ũ → 0, outside of the boundary layer. Similarly,
UX = O(εκx−κu), and thus W̃ → 0 outside of it.

Flux condition

The rescaled flux at the grounding line, Q̃gl, appears as a free parameter in (5.27). In the following
section we will provide a justification for the existence of a trajectory that follows the flow defined
by (5.27a)–(5.27b) and satisfies the boundary condition (5.27c) for a unique value of Q̃gl dependent on
the effective-pressure model and the parameters n, p, q, and δ. Then,

Q̃gl ≡ Q̃gl(1A,n, p, q, δ). (5.28)

This numerical value can be computed using the numerical method described in the appendix B.
Using (5.26), it is possible to switch back to the original variables. The flux at the grounding line is then
given by the following expressions, for the NA and NB effective-pressure models, respectively:

qgl = Q̃gl (ρg)−
q−1
p+1 (2ρg)

n
p+1C−

1
p+1A

1
p+1h

n+(p−q)+3
p+1

gl , (5.29a)

qgl = Q̃gl (ρg)−
q−1
p+1 (2ρg)

n
p+1 [C(1− c)q]− 1

p+1A
1
p+1h

n+(p−q)+3
p+1

gl . (5.29b)

Impact of the relative ice-water density difference

Tsai et al. [2015] also showed a way to derive the approximate dependence of Q̃gl on δ. The idea is to
remark that if δ is treated as a small parameter in (5.27), then ŨX̃ ≈ 0 within the boundary layer. This
observation supports the introduction of a new scaling so that this term becomes O(1) at the grounding
line. With

X̃ = (δ/8)r1X̌, Q̃gl = (δ/8)r2Q̌gl, Ũ = (δ/8)r2 [Q̌− (δ/8)Ǔ ], W̃ = (δ/8)W̌ , (5.30)

a distinguished limit can be obtained, in which the dominant powers of δ balance each other. For the NA
model, a distinguished limit is achieved for

r1 = [(p− q + 1)− np]/(p+ 1) and r2 = (n− q)/(p+ 1). (5.31)

For the NB model, a distinguished limit is obtained for

r1 = [(p+ 1)− np]/(p+ 1) and r2 = n/(p+ 1). (5.32)
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Figure 5.3: Comparison between values of Q̃gl obtained numerically (circles) and the scaling Q̃gl ∝
(δ/8)r2 (lines) for several friction laws and effective-pressure models. The lines obey the equation Q̃gl =
Q̃gl|δ=0.1 (δ/0.1)r2 with r2 = (n− 1Aq)/(p + 1). In the right plot, the Weertman and the Budd results
coincide, as expected.

Finally, the following flux at the grounding line is obtained for the NA and NB effective-pressure
models:

qgl = Q̌gl

(
1− ρ/ρw

8

)n−q
p+1

(ρg)−
q−1
p+1 (2ρg)

n
p+1C−

1
p+1A

1
p+1h

n+(p−q)+3
p+1

gl , (5.33a)

qgl = Q̌gl

(
1− ρ/ρw

8

) n
p+1

(ρg)−
q−1
p+1 (2ρg)

n
p+1 [C(1− c)q]− 1

p+1A
1
p+1h

n+(p−q)+3
p+1

gl . (5.33b)

This scaling Q̃gl = (δ/8)r2Q̌gl, that is, the way in which Q̃gl depends on δ, is verified numerically in
figure 5.3.

5.3.2 Analysis of the leading-order dynamical system

We now consider the analysis of the dynamical system governed by the system of equations (5.27). More
precisely, we motivate the existence of a solution for a unique value of the grounding-line flux Q̃gl by
considering separately the case where the friction stress vanishes, or not, at the grounding line.

Strategy

To study the leading-order dynamical system, we first rewrite the system of equations in a way that allows
the dynamics close to the origin in the (Ũ , W̃ ) phase plane, i.e., for X̃ → +∞, to be studied. To this end,
we rewrite this system in terms of new variables X , ξ, Ψ, andQgl. The interpretation of these variables is
the following: X plays the role of a spatial coordinate, ξ is a rescaled velocity, Ψ is a measure of the ratio
of friction stress over gravity stress, and Qgl is a rescaled grounding-line flux. The specific form that
these variables take will be described separately for the case in which friction vanishes at the grounding
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line, and the case in which it does not. A problem of the following form is then be obtained:

dξ
dX = Fξ(ξ, Ψ,X ;Qgl), for X > 0, (5.34a)

dΨ
dX = FΨ(ξ, Ψ,X ;Qgl), for X > 0, (5.34b)

(ξ, Ψ) = (Gξ(Qgl),GΨ(Qgl)), at X = 0, (5.34c)

(ξ, Ψ)→ (0, 1), as X → +∞. (5.34d)

We then identify the point (ξ, Ψ) = (0, 1) as a fixed point, and study the dynamics of the flow defined
by (5.34a) and (5.34b) close to that point. It turns out that the only way to reach the fixed point is through
a center manifold that is unique. Therefore, if a solution to the problem defined by (5.34) exists, it
necessarily goes through this center manifold. The question then amounts to finding whether an orbit
that reaches this center manifold, i.e., that obeys (5.34a), (5.34b), and (5.34d), can satisfy the boundary
condition (5.34c). This last condition is in fact satisfied for exactly one value of the grounding-line
flux Qgl. To show this, we introduce a mapping D as follows:

D : ]0, +∞[→ R : Qgl 7→ D(Qgl) ≡ f(Qgl) [Ψc(Gξ(Qgl);Qgl)−GΨ(Qgl)] , (5.35)

in which f is a strictly positive or a strictly negative function and Ψc(ξ,Qgl) is the Ψ coordinate of the
center manifold at position ξ. To satisfy (5.34c), it is then necessary and sufficient that D(Qgl) = 0
for some Qgl. If, in addition, D is a strictly monotonic function, then this root is unique. Overall, this
means that there is exactly one value of Qgl that leads to a solution of (5.34), and the solution to the
leading-order dynamical system exists and is unique.

To simplify the notations in what follows, we define c1 and c2 by

c1 = 1 + (p− q + 3)/n and c2 = 1− (p− q + 3)/n. (5.36)

We note that for the assumed ranges of values of n, p, and q, the following inequalities hold:

c1 > 1 and − 1 < c2 < 1. (5.37)

Non-vanishing friction at the grounding line

We first consider the case of a non-vanishing friction stress at the grounding line, that is, a friction model
with either an exponent q = 0, so that there is no dependence with respect to the effective pressure, or
with the NB effective-pressure model. We note that this case shares similarities with the study considered
in Schoof et al. [2017], where the authors have included a lateral drag term in their momentum balance.
This term is of the form Λh |u|m−1u, which is analogous to a Budd friction law with p = m, q = 1,
and the NB effective-pressure model. In fact, it can be noted that the Budd friction law taken with the NB
effective-pressure model is effectively equivalent to considering a friction term dominated by lateral drag.

We introduce ξ, Ψ and Qgl as

ξ = Q̃
q−2
n −1

gl Ũ c1 , Ψ = Q̃
− q−2

n

gl W̃ Ũ1−c1 , Qgl = Q̃
p+1
n

gl , (5.38)

and X as

X =
∫ X̃

0
s (ξ(X), Ψ(X)) dX, s(ξ, Ψ) = Q̃

q−2+np
n c1

gl ξ
n(p−q)−(p−q+3)+n

(p−q+3)+n |Ψ|n−1Ψ. (5.39)
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The system (5.27) then becomes

dξ
dX = −c1 ξ2, for X > 0, (5.40a)

dΨ
dX = −c2 ξΨ−

1
4 |Ψ|

−n−1Ψ + 1
4, for X > 0, (5.40b)

(ξ, Ψ) = (Qgl,Q−1
gl δ/8), at X = 0, (5.40c)

(ξ, Ψ)→ (0, 1), as X → +∞. (5.40d)

It can be remarked thatQgl completely disappears from the differential equations and is only present
in the boundary conditions. This system is similar to the system considered by Schoof [2011], where they
considered the Weertman friction law. The only differences are the values of the parameters c1 and c2
which, in our case, could depend on q if we consider the NB effective-pressure model. The method used
in Schoof [2011] to show the existence and uniqueness of a solution can still be applied. We briefly
describe it, the calculations being analogous.

The idea of Schoof [2011] to show existence and uniqueness properties of a similar system is to con-
sider the characterization of (ξ, Ψ) = (0, 1) as a fixed point that can only be reached through a center
manifold that is unique, as well as the evolution of the product Ψ ξ along that manifold. They showed
that this product was equal to zero at the fixed point, and increasing without bound for increasing values
of ξ along that orbit. It then follows that there is exactly one value of Qgl that satisfies (5.40c), which
shows the existence and uniqueness of a solution. These ideas can still be applied to the more general
case that is considered here.

The reasoning can also be made with respect to the mapping D defined in (5.35) by choosing
f(Qgl) = Qgl. Indeed, the center manifold is independent of Qgl, so Ψc(ξ;Qgl) ≡ Ψc(ξ). Further-
more, the mapping ξ 7→ ξΨc(ξ) increases without bound with ξ. Therefore, the mapping

Qgl 7→ D(Qgl) = QglΨc(Qgl)− (δ/8) (5.41)

also increases without bound withQgl. Because ξΨc(ξ) = 0 for ξ = 0, we also haveD(0) = −δ/8 < 0.
Hence, D has exactly one root, which concludes the discussion.

Vanishing friction at the grounding line

We now consider friction laws that vanish at the grounding line, namely friction laws that involve the NA
effective-pressure model (in particular, we consider that q 6= 0). In that case, it cannot be shown that the
product Ψ ξ increases monotonically with ξ along an orbit that reaches the center manifold. Geometri-
cally, the hyperbola Ψ = (δ/8)/ξ will not necessarily intersect the solution trajectory at a single location.

We propose another strategy. Specifically, we consider another change of variables for ξ, namely,
ξ = (Ũ/Q̃gl)

1
2 , and we take f(Qgl) = 1 in (5.35). This change of variables is similar to the one

described in the supplementary material of Schoof et al. [2017]. We will also limit ourselves to the Budd
friction law with a linear dependence with respect to the effective pressure, that is, q = 1. For that value,
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we note that c2 > 0. The system (5.27) then becomes

dξ
dX = −1

2Qgl ξ
2c1+1, for X > 0, (5.42a)

dΨ
dX = −c2Qglξ

2c1Ψ− 1
4 |Ψ|

−n−1Ψ
(
1− ξ2)+ 1

4, for X > 0, (5.42b)

(ξ, Ψ) = (1,Q−1
gl δ/8), at X = 0, (5.42c)

(ξ, Ψ)→ (0, 1), as X → +∞, (5.42d)

and the mapping D becomes

Qgl 7→ D(Qgl) = Ψc(1;Qgl)− (δ/8)Q−1
gl . (5.43)

As before, the only fixed point in the system is the point (ξ, Ψ) = (0, 1), which corresponds to the
boundary condition (5.42d). We can again determine that the only way to reach this point is through a
center manifold. In contrast to the previous case, Qgl appears in the definition of the flow defined by
(5.42a) and (5.42b), so the center manifold depends onQgl. To demonstrate thatD possesses exactly one
root, we then show, based on asymptotic expansions, that the following properties hold: (i) D is a contin-
uous mapping, (ii) dD/dQgl > 0 for all Qgl > 0, (iii) limQgl→+∞D(Qgl) > 0, and (iv) D(δ/8) < 0.
The details of this analysis can be found in the appendix A.

5.3.3 Existence of a boundary layer
It can be remarked that, for some configurations, we obtain Q̌gl ≈ 1. In fact, these configurations are
those that are such that friction at the grounding line does not vanish, i.e., they correspond to a friction
law with q = 0, or with q > 0 but with the effective-pressure model NB. In that case, no boundary layer
is needed close to the grounding line, and the membrane-stress divergence can be neglected. Indeed,
the flux condition can be obtained by simply combining a balance between the friction and the gravity
stresses and the boundary conditions at the grounding line. For the Budd friction law, that approach
yields

CNqup ≈ −ρgh d
dx (b+ h) . (5.44)

With the assumption that the bedrock slope db/dx is negligible (|β| . 1) and that the flux diver-
gence dqadv/dx is not too large (α = 1), and in particular much smaller than qadv(du/dx)/u, we
have

d
dx (b+ h) ≈ dh

dx ≈ qadv
d

dx

(
1
u

)
. (5.45)

Using this relation in (5.44) and combining it with the grounding-line boundary condition (5.7) leads to
the following relation at the grounding line:

CNq

(
qgl
hgl

)p
≈ ρg

h3
gl
qgl

(
1
4ρ
(

1− ρ

ρw

)
g

)n
hnglA, (5.46)

that is,

qgl ≈
(ρg
C

) 1
p+1

N−
q
p+1

(
1
4ρ
(

1− ρ

ρw

)
g

) n
p+1

A
1
p+1h

n+p+3
p+1

gl . (5.47)

This relation corresponds to our flux condition (5.33b) with Q̌gl ≈ 1, as announced. In fact, the observa-
tion that the membrane-stress divergence can be neglected to derive the flux condition has been remarked
by Schoof [2007c, 2011] in their derivation for the Weertman friction law, and later by Sergienko and
Wingham [2022] who revisited their boundary-layer analysis. In particular, Sergienko and Wingham
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Figure 5.4: Solutions to the dimensionless problem for various friction laws, with the NA (continuous
lines) and the NB effective pressure-model (dashed lines): (a) velocity, (b) thickness, and (c) ratio of the
membrane-stress divergence and the gravity stress.

[2022] have shown that for ε � δ, which is what is assumed here, the boundary layer is very weak,
and this observation can be explained by the non-linearity of the governing equations. Furthermore, the
boundary layer will become increasingly weak as δ becomes smaller.

However, this analysis is not valid for a combination of friction law and effective-pressure model
that are such that friction stress vanishes at the grounding line. For these configurations, there is another
stress regime in the vicinity of the grounding line. In our analysis, this takes the form of a boundary
layer, which is necessary to obtain the correct flux condition. If it was not the case, then one would
obtain Q̌gl = 1. It follows that the fact that Q̌gl takes a value distinct from unity reflects the importance
of membrane-stress divergence in the boundary layer. This key observation was already made by Tsai
et al. [2015] for the Coulomb law, and is here confirmed for the more general Budd friction law.

The distinction between these two distinct behaviors can be observed in solutions to the different
formulations of the problem that arise in the derivation of the flux conditions. First, let us consider the
solutions to the problem written in its dimensionless form, namely to the system (5.23). We consider the
Weertman law with p = 1/3, the Coulomb law, and the Budd law with p = 1/3 and q = 1, with both the
NA and NB hydrological models. We take β = −10−1, ε = 6×10−4, and δ = 10−1. The solutions of the
problem are shown in figure 5.4. The most striking difference concerns the ratio of the membrane-stress
divergence and the gravity stress: this ratio is almost equal to zero in the entire grounded domain for the
Weertman friction law, as well as for the Coulomb and Budd friction laws with the NB model. On the
other hand, it becomes significant close to the grounding line for the Coulomb and Budd friction laws
when they are coupled with the NA model, i.e., when the friction stress vanishes at the grounding line.

A similar observation can be made if the problem is formulated in terms of (Ũ , W̃ ), i.e., by consid-
ering the system (5.27). The solutions are shown in figure 5.5. Qualitatively, the solutions associated
with vanishing grounding-line friction exhibit a stronger curvature in their trajectories. Importantly, the
far-field solutions, shown in dotted lines and corresponding to a simple friction/gravity balance, do not
represent well the dynamics close to the grounding line located at Ũ = Q̃gl.

Finally, this observation is also present in the version of the problem used in the analysis presented in
the previous subsection, namely (5.40). Indeed, the solution is then obtained as a portion of an orbit that
reaches the fixed point located at (ξ, Ψ) = (0, 1) through its center manifold. The solution trajectory can
be parametrized by ξ ∈ [0,Qgl], where Qgl is the ξ coordinate of the intersection of the center manifold
with the hyperbola whose equation is ξΨ = δ/8. An asymptotic analysis reveals that the center manifold
is such that Ψ ∼ 1 for small ξ. It thus follows that, for small values of δ/8, the solution trajectory is
included in the region which is such that Ψ ∼ 1. Because Ψ is a scaled version of the ratio between
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Figure 5.5: Solutions to the problem formulated in terms of (Ũ , W̃ ), for various friction laws, with the
NA (continuous lines) and the NB effective pressure-model (dashed lines). The dotted lines correspond
to the far-field solutions associated with the coupling of the Coulomb and Budd friction laws with the NA
model.

friction and gravity stresses, the divergence of membrane stress can be neglected over the whole domain,
even close to the grounding line. This argument is similar to the one developed in Schoof [2011] for the
Weertman friction law.

5.4 Generalization to hybrid friction laws

The derivation of the flux condition for the Budd friction law can be generalized to more general friction
laws of the form

τb = CΦ(|u|,N)Nq|u|p−1u. (5.48)

In this equation, Φ denotes a general function of |u| and N which is dimensionless.

We illustrate the derivation of flux conditions for hybrid flux conditions with the (RC1) friction law.
The derivation of flux conditions for the (RC2) and (T) friction laws is similar, and the details can be
found in the supplementary material. For the (RC1) friction law,

τb = C

( |u|
|u|+ u0

)p′
N sgn(u), i.e., Φ(|u|,N) =

( |u|
|u|+ u0

)p′
, with (p, q) = (0, 1). (5.49)

As compared with figure 5.2, we use an exponent p′ instead of p so as to distinguish this exponent from
the one in |u|p−1 in (5.48). Following the same steps as the ones described in the context of the Budd
friction law, the system (5.27) becomes

dŨ
dX̃

= −|W̃ |n−1W̃ , for X̃ > 0, (5.50a)

dW̃
dX̃

= −|W̃ |
n+1

Ũ
− 1

4

( |Ũ |
|Ũ |+ υ̃

)p′ (
1− 1A

Ũ

Q̃gl

)
Ũ

|Ũ | + Q̃gl|W̃ |n−1W̃

4 Ũ2 , for X̃ > 0, (5.50b)

(Ũ , W̃ ) = (Q̃gl, δ/8), at X̃ = 0, (5.50c)

(Ũ , W̃ )→ (0, 0), as X̃ → +∞, (5.50d)
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with υ̃ defined such that υ̃ = υ/υc with υ ≡ u0/[u] and

υc ≡
{

(2ρg)nC−1Ahn+1
gl [u]−1 (NA model),

(2ρg)n[C(1− c)]−1Ahn+1
gl [u]−1 (NB model). (5.51)

The difference with the system in (5.27) is that the system in (5.50) depends on an additional parameter,
namely, υ̃. This new parameter is a scaled version of u0. We interpret υ as the dimensionless version of
the reference velocity in the (RC1) friction law and υc as the proper variable to which υ must be com-
pared to in order to assess its importance on the system. The previous derivation cannot be applied as it
assumes that Q̃gl is the only parameter left in the system (provided n, p′, and δ are fixed). Furthermore,
we cannot consider that υ̃ is a small parameter and rescale the system accordingly, mirroring what has
been done with δ, because u0 could be large.

We propose the following strategy. If the value of the parameter υ̃ is fixed, then Q̃gl can be found us-
ing the numerical approach presented in appendix B. Repeating this process for a collection of parameter
values υ̃(1), ..., υ̃(N), a collection of corresponding values Q̃(1)

gl , ..., Q̃(N)
gl , solutions of (5.50), is obtained.

A parametric representation of the mapping υ̃ 7→ Q̃gl(υ̃) can then be fitted to the obtained dataset. The
flux conditions for the two effective-pressure models are then expressed as

qgl = Q̃gl(υ̃) (2ρg)nC−1Ahn+2
gl , (5.52a)

qgl = Q̃gl(υ̃) (2ρg)n [C(1− c)]−1
Ahn+2

gl . (5.52b)

The form of the function that approximates the relation υ̃ 7→ Q̃gl(υ̃) can be constrained. The friction
law presented in (5.49) is such that it tends towards a Coulomb-like friction law for small values of u0
and a Budd-like friction law for large values of u0. Assuming that this behavior is also present in the flux
condition, we expect the following relations to hold:

Q̃gl(υ̃) ∼ Q̃(C)
gl , for υ̃ � 1, (5.53a)

Q̃gl(υ̃) ∼
Q̃

(B)
gl

Q̃
(C)
gl

υ̃
p′
p′+1 , for υ̃ � 1. (5.53b)

with
Q̃

(C)
gl ≡ Q̃gl(1A,n, 0, 1, δ) and Q̃

(B)
gl ≡ Q̃gl(1A,n, p′, 1, δ), (5.54)

that is, the values of Q̃gl for the Coulomb and Budd friction laws.

The transition between the limit cases υ̃ � 1 and υ̃ � 1 can be observed numerically (figure 5.6b,
circles). These considerations justify the use of the following function as the fitted curve:

Q̃gl(υ̃) ≈ mε

(
Q̃

(B)
gl , Q̃(C)

gl , υ̃p
′/(p′+1)

)
, (5.55)

see figure 5.6a, where x 7→ mε(a, b,x) is a smoothed version of the x 7→ max(a x, b) function defined
by

mε(a, b,x) = (a/ε) log[exp(ε (x− b/a)) + 1] + b. (5.56)

The free parameter ε can be tuned to get the best fit, using for example a least-square fit to the dataset
{(υ̃(1), Q̃(1)

gl ), ..., (υ̃(N), Q̃(N)
gl )}. As shown in figure 5.6b, this approximation gives satisfactory results.

The dependency of Q̃gl on δ can also be obtained. As before, because we expect the flux condition
to be similar to the Coulomb and Budd cases for υ̃ � 1 and υ̃ � 1 respectively, we expect that the flux
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Figure 5.6: Approximation of the relation υ̃ 7→ Q̃gl(υ̃) for the (RC1) friction law combined with the NA
model. (a) Smooth version of the x 7→ max(a x, b) function. The free parameter ε controls the sharpness
of the transition between the lines y = b and y = a x. (b) Relation between υ̃ and Q̃gl for the NA
effective-pressure model. The circles correspond to the values of Q̃gl obtained numerically, and the lines
correspond to (5.55) with ε = 3.383.

Friction law Effective pressure Q̌gl(υ̌) Free parameter

(RC1)
NA (1A = 1) mε(Q̌(B)

gl , Q̌(C)
gl , υ̌p′/(p′+1)) ε = 3.383

NB (1A = 0) mε(Q̌(B)
gl , Q̌(C)

gl , υ̌p′/(p′+1)) ε = 3.043

Table 5.1: Functions υ̌ 7→ Q̌gl(υ̌) used in the flux condition of the (RC1) friction law.

conditions depend on δ in the following way:

qgl = Q̌gl(υ̌) (δ/8)n−1 (2ρg)nC−1Ahn+2
gl , υ̌ ≡ (δ/8)1−n

υ̃, (5.57a)

qgl = Q̌gl(υ̌) (δ/8)n (2ρg)n[C(1− c)]−1Ahn+2
gl , υ̌ ≡ (δ/8)−n υ̃, (5.57b)

for the NA and NB models, respectively. Approximating the relation υ̌ 7→ Q̌gl(υ̌) with the same function
as before, i.e., considering

Q̌gl(υ̌) ≈ mε

(
Q̌

(B)
gl , Q̌(C)

gl , υ̌p
′/(p′+1)

)
, (5.58)

with
Q̌

(C)
gl ≡ Q̌gl(1A,n, 0, 1) and Q̌

(B)
gl ≡ Q̌gl(1A,n, p′, 1), (5.59)

we obtain satisfactory results compared to the original dataset (figure 5.7). Table 5.1 summarizes the
approximation used to include the dependency with respect to the parameter u0.

5.5 Effect of α, β, and γ
In the derivation of flux conditions for the Budd friction law, as well as hybrid friction laws, we

considered an unbuttressed marine ice sheet with scales that are such that α = 1, γ = 1, and |β| . 1.
Those assumptions have proved useful, as they allowed to simplify the problem, leading to explicit ex-
pressions for the flux conditions. In particular, they lead to a constant flux in the boundary layer and a
negligible bedrock slope in the momentum-balance equation. Originally, these assumptions were made



5.5. Effect of α, β, and γ 103

0 2 40

1

2

3

Coulomb

Budd

υ̌
p′

p′+1

Q̌
gl

δ = 0.09
δ = 0.10
δ = 0.11
δ = 0.12

0 1 20

1

2

3

Coulomb

Budd

υ̌
p′

p′+1

Q̌
gl

δ = 0.09
δ = 0.10
δ = 0.11
δ = 0.12

(a) (b)

Figure 5.7: Relation between υ̌ and Q̌gl for the (RC1) friction law combined with (a) the NA effective-
pressure model and (b) the NB effective-pressure model. The circles correspond to values obtained
numerically, and the continuous lines correspond to the approximations described in table 5.1.

for marine ice-sheet systems, in particular by Schoof [2007c] and Tsai et al. [2015], whose work is the
starting point of this article. Nonetheless, recent studies have challenged these hypotheses. Specifically,
Sergienko and Wingham [2022] have shown that considering other scales, in which previously neglected
terms are included, leads to a more complex relation between the grounding-line flux and the ice thick-
ness at the grounding line. A corollary is that the marine ice-sheet instability, which amounts to say that
grounding lines which are located on regions with up-sloping beds are unstable, does not generally apply.

The role of this section is not to repeat the same analysis as the one presented in Sergienko and
Wingham [2022], but rather to see how, starting from our original flux conditions that follow the scal-
ing presented in Schoof [2007c] and Tsai et al. [2015], we can derive correction factors. These factors
allow to quantify the impact of a deviation from the original scaling (i.e., the effect of our hypotheses),
and to correct the flux conditions accordingly. Eventually, we will still obtain similar results as the ones
presented in Sergienko and Wingham [2022], although we here focus on explicit expressions of the flux
conditions.

To discuss these hypotheses, we consider the Budd friction law, and we structure this section in
several stages. First, we consider the case of a Budd friction law which is such that the divergence of
membrane stress can be neglected. This is the case if the friction stress does not vanish at the grounding
line and if γ ∼ 1 so that essentially friction balances gravity. The analysis is then simplified because
we obtain an algebraic equation for the grounding-line flux qgl. We identify two dimensionless groups,
denoted α/αc and β/βc, which allow to quantify the effect of the neglected terms in the derivation of the
flux condition on the ratio qgl/qgl,c, where qgl,c is a reference flux, corresponding to the flux derived in
section 5.3. We also provide new explicit expressions for the flux conditions which are valid in the cases
where α/αc and β/βc are not small. Then, we consider the case of a Budd friction law which is such that
the friction stress does vanish at the grounding line. The previous developments can no longer be used,
as the divergence of membrane stress plays an important role near the grounding line. Instead, we rely on
solutions of a problem involving a dynamical system and an unknown parameter Q̃gl, similarly to what
was done in section 5.3 and in section 5.4, to extend the validity of the flux conditions. We also comment
on the case of a friction stress which does not vanish at the grounding line, but for which γ � 1 so that
we do not expect a simple balance between friction stress and gravity stress.
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5.5.1 Non-vanishing friction law with γ ∼ 1: negligible membrane-stress diver-
gence

Let us consider a general Budd friction law τb = CNq|u|p−1u for which the divergence of membrane
stress can be neglected in the momentum-balance equation, so that no boundary layer is needed close to
the grounding line to obtain the flux condition (i.e., for which Q̌gl ≈ 1 in the flux conditions that have
been derived). To fulfill this condition, we consider a case where the effective pressure at the grounding
line, Ngl, is non-zero, so that the friction stress does not vanish, and where we have γ ∼ 1, so that the
friction stress indeed balances the gravity stress. The NB effective-pressure model falls into the category
of effective-pressure models that are such that Ngl 6= 0. In that case, the combination of the mass-
balance equation, the momentum-balance equation, and the grounding-line boundary condition yields
the following algebraic equation at the grounding line:

CNq
glq

p+1
gl + ρgqglh

p+1
gl

(
db
dx

)

gl
= ρg

(
1
4ρ
(

1− ρ

ρw

)
g

)n
Ahn+p+3

gl − ρghp+2
gl a. (5.60)

A similar expression can be found in Schoof [2007b,c] and in Sergienko and Wingham [2022]. If a
and (db/dx)gl cannot be neglected, then no expression relating the grounding-line flux qgl to the grounding-
line thickness hgl that is both exact and explicit can be obtained. We note that (5.60) can be written as

qgl
qgl,c

((
qgl
qgl,c

)p
+ β

βc

)
= 1− α

αc
, (5.61)

in which qgl,c is a reference flux, given by

qgl,c =
(ρg
C

) 1
p+1

N
− q
p+1

gl

(
1
4ρ
(

1− ρ

ρw

)
g

) n
p+1

A
1
p+1h

n+p+3
p+1

gl . (5.62)

In the case where the friction stress is non-zero at the grounding line, this reference flux is equal to the
flux that would be obtained if a and (db/dx)gl could be neglected in (5.60), i.e., this is the expression of
the flux that we have derived in section 5.3. The ratios α/αc and β/βc are defined as

α

αc
= a(

1
4ρ
(

1− ρ
ρw

)
g
)n

Ahn+1
gl

and
β

βc
=

(db/dx)gl qgl,ch
−1
gl(

1
4ρ
(

1− ρ
ρw

)
g
)n

Ahn+1
gl

. (5.63)

These ratios provide a way to quantify the impact of the hypotheses made to derive the flux conditions on
these flux expressions, more precisely the discrepancy with respect to the reference flux value qgl,c. This
difference will be small if α/αc and β/βc are both small. We note that the denominators in (5.63) are
proportional to the strain rate at the grounding line, so α/αc and β/βc can respectively be interpreted as
a normalized measure of the variation of ice velocity associated with the net mass accumulation rate and
the bedrock slope. These ratios can also be written with respect to the dimensionless numbers introduced
in section 5.2: we have

α

αc
= α

(
ε

δ/8

)n(
hgl
[h]

)−n
and

β

βc
= β γ−

1
p+1

(
ε

δ/8

) np
p+1
(
hgl
[h]

)− (p+q−np+1)
p+1

, (5.64)

so in the limit of ε → 0, the ratios α/αc and β/βc must tend towards zero. However, that limit
is never reached in practice. Equation (5.63) then allows to compute, quantitatively, the importance
of a, (db/dx)gl, and C on the derivation of flux conditions, as a function of the original dimensional
variables. Analogously, equation (5.64) allows to assess the importance of α, β, and γ on the validity of
our flux conditions.
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Figure 5.8: Effect of α/αc and β/βc on Q̌gl, for a non-vanishing Budd friction law with p = 1/3.
(a) Various values of α/αc. (b) Zoom on the case α/αc = 0.25. The colored continuous lines are
obtained by solving numerically equation (5.61). The dashed black line is obtained using equation (5.72).

The dimensionless ratios α/αc and β/βc can also be used to derive new flux conditions which are
approximately valid in the case where those ratios are not small. Indeed, we can formally write that

qgl = Q̌gl

(ρg
C

) 1
p+1

N
− q
p+1

gl

(
1
4ρ
(

1− ρ

ρw

)
g

) n
p+1

A
1
p+1h

n+p+3
p+1

gl , (5.65)

where Q̌gl = Q̌gl (α/αc,β/βc) is a correction factor. Note that, by construction, Q̌gl = qgl/qgl,c.
The expression of Q̌gl can be approximated by considering the algebraic equation (5.61). On the one
hand, this equation can be solved numerically for several fixed values of α/αc and β/βc (figure 5.8a).
The number of acceptable solutions of (5.61), i.e., of real and strictly positive solutions values for Q̌gl,
depends on the value of α/αc. In fact, α/αc = 1 plays the role of a bifurcation point. Indeed, for α/αc <
1, there is exactly one acceptable solution Q̌gl. It is also found that in that case, Q̌gl decreases with both
α/αc and β/βc. For α/αc = 1, there is exactly one acceptable solution, provided that β/βc < 0;
otherwise, there is no solution. For α/αc > 1, we observe a folding of the solution branch β/βc 7→
Q̃gl (α/αc,β/βc), which becomes multi-valued for β/βc < (β/βc)∗, and for which there is no solution
for β/βc > (β/βc)∗. The critical value (β/βc)∗ is given by

(
β

βc

)

∗
= −(p+ 1)p−

p
p+1

(
α

αc
− 1
) p
p+1

. (5.66)

On the other hand, the equation (5.61) can be solved approximately based on asymptotic analysis.
Specifically, the following asymptotic expressions hold. For α/αc < 1,

Q̌gl ∼
(

1− α

αc

) 1
p+1

− 1
p+ 1

(
1− α

αc

) p−1
p+1 β

βc
, for

∣∣∣∣
β

βc

∣∣∣∣� 1, (5.67)

Q̌gl ∼
(
− β

βc

) 1
p

, for
β

βc
< 0 and

∣∣∣∣
β

βc

∣∣∣∣� 1, (5.68)

Q̌gl ∼
(

1− α

αc

)(
β

βc

)−1
, for

β

βc
> 0 and

∣∣∣∣
β

βc

∣∣∣∣� 1. (5.69)

For α/αc = 1, Q̌gl = (−β/βc)1/p, provided that β/βc < 0. For α/αc > 1, the upper and lower solution



106 Chapter 5. Extension of grounding-line flux conditions

branches obey the following relations:

Q̌gl ∼
(
− β

βc

) 1
p

, for
β

βc
< 0 and

∣∣∣∣
β

βc

∣∣∣∣� 1, (5.70)

Q̌gl ∼
(

1− α

αc

)(
β

βc

)−1
, for

β

βc
< 0 and

∣∣∣∣
β

βc

∣∣∣∣� 1. (5.71)

It can be expected that the lower solution branch is seldom reached in practice as it corresponds to
relatively large values of a (as α/αc > 1) but to relatively small values of the flux qgl (as Q̌gl . 1).
Combining these expressions together, a closed-form formula can be obtained to approximate the value
of Q̌gl. Assuming that we are in the case where there is a least one solution for Q̌gl, i.e., considering the
case α/αc < 1 or β/βc < (β/βc)∗, we suggest the following expression (figure 5.8b, dashed line):

Q̌gl ≈





(1− α/αc)
1
p+1 − 1

p+1 (1− α/αc)
p−1
p+1 β/βc + (−β/βc)

1
p , for β/βc < 0,

(1− α/αc)
1
p+1
[
1 + (1− α/αc)−

p
p+1 β/βc

]−1
, for β/βc ≥ 0.

(5.72)

This expression can then be used to obtain the new flux condition (5.65), which is still approximately
valid for values of α/αc and β/βc which are not small.

5.5.2 Vanishing friction law: non-negligible membrane-stress divergence

We now consider the case where the divergence of membrane stress cannot be neglected in the momentum-
balance equation. Specifically, we consider the Budd friction law combined with the NA effective-
pressure model. In that case Ngl = 0, so it does not make sense to use the reference flux qgl,c defined
in (5.62). Instead, we define it as

qgl,c =
(

1− ρ/ρw
8

) n
p+1

(ρg)−
q−1
p+1 (2ρg)

n
p+1C−

1
p+1A

1
p+1h

n+(p−q)+3
p+1

gl . (5.73)

Note that, in contrast to the previous subsection, this is not the expression of the flux that was derived
in section 5.3. It is rather a reference flux that is used to define β/βc, without any specific physical
interpretation. Again, we include the effect of the assumptions into a prefactor Q̌gl such that

qgl = Q̌gl

(
1− ρ/ρw

8

)n−q
p+1

(ρg)−
q−1
p+1 (2ρg)

n
p+1C−

1
p+1A

1
p+1h

n+(p−q)+3
p+1

gl . (5.74)

with Q̌gl = Q̌gl (α/αc,β/βc). The previous discussion holds if the divergence of membrane stress can
be neglected in the momentum-balance equation. In general, and in particular for the Budd friction law
with the NA effective-pressure model, that is not the case. Still, we can follow a strategy similar to
the one used in section 5.4 to derive the flux conditions of hybrid friction laws to take into account the
effect of α/αc and β/βc: we can treat these ratios as parameters of the problem, and consider a mapping
of the form (α̃, β̃) 7→ Q̃gl(α̃, β̃). More precisely, if we keep the terms associated with the net mass
accumulation rate and the bedrock slope in the derivation of the flux condition described in section 5.3,
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we obtain the following system of equations, in place of (5.27):

dŨ
dX̃

= −|W̃ |n−1W̃ , for 0 < X̃ < Q̃gl/α̃, (5.75a)

dW̃
dX̃

= −1
4

Ũ

Q̃gl − α̃X̃

(
Q̃gl − α̃X̃

Ũ
− 1A

〈
1 + β̃

1− δ X̃
〉)q

× |Ũ |p−1Ũ − |W̃ |
n+1

Ũ
+ α̃

W̃

Q̃gl − α̃X̃

−1
4
α̃

Ũ
+ (Q̃gl − α̃X̃)|W̃ |n−1W̃

4 Ũ2 − β̃

4 , for 0 < X̃ < Q̃gl/α̃, (5.75b)

(Ũ , W̃ ) = (Q̃gl, δ/8), at X̃ = 0, (5.75c)

Ũ = 0, at X̃ = Q̃gl/α̃, (5.75d)

with

α̃ =
(
δ

8

)n
α

αc
and β̃ =

(
δ

8

) np
p+1 β

βc
. (5.76)

This system of equations is fundamentally different from (5.27). Indeed, it is is formally equivalent to
the initial system of equations presented in section 5.2, for unbuttressed ice sheets, since no additional
assumption has been made. By contrast, the system of equations (5.27) used in section 5.3 to obtain
the flux conditions was only valid within the boundary layer near the grounding line and in the limit of
ε→ 0. The system (5.75) is also more complex in two respects. On the one hand, the dynamical system
defined by (5.75a) and (5.75b) is non-autonomous, since X̃ appears in the definition of dW̃/dX̃ . On the
other hand, this system depends on the additional parameters α̃ and β̃. Because β̃ is proportional to the
bedrock slope db/dx which depends on the x coordinate, in general, β̃ = β̃(X̃).

However, the analysis can be simplified by considering linear bed geometries, so that β̃ is constant.
Let us fix the values of both α̃ and β̃. The system of equations (5.75) is then a parametric system which
only possesses solutions for specific values of Q̃gl. Despite the differences that have been mentioned,
we have found that the shooting method introduced in section 5.3 and described in appendix B was still
applicable to the system (5.75). We can thus obtain these particular values Q̃gl. Then, we convert the
mapping (α̃, β̃) 7→ Q̃gl(α̃, β̃) back the mapping (α/αc,β/βc) 7→ Q̌gl(α/αc,β/βc) by using (5.76) and
Q̃gl = (δ/8)(n−q)/(p+1)Q̌gl, which was derived in section 5.3. We have represented the effect of α/αc
and β/βc on Q̌gl in figure 5.9a using the aforementioned numerical method.

In contrast to the case of non-vanishing friction laws, it is not easy to derive asymptotic expressions
for Q̌gl for large or small values of β/βc, as one has to solve (5.75), which is significantly more complex
than an algebraic equation. Instead, we parametrize Q̌gl using a curve-fitting approach with simple
expressions. We suggest the following expression (5.9b, dashed line):

Q̌gl ≈





Q̌0
gl (1− 3.72β/βc) , for β/βc < 0,

Q̌0
gl

[
1 + 17.76 (1− α/αc)−1

β/βc

]−1
, for β/βc ≥ 0,

(5.77)

with Q̌0
gl ≡ Q̌gl|(α/αc,β/βc)=(0,0) = 0.71.

5.5.3 Non-vanishing friction law with γ � 1
Sergienko and Wingham [2019] have considered flux conditions for the Weertman friction law in a regime
of low basal and gravity stress. Specifically, they considered ε ∼ δ ∼ γ � 1, leading to the divergence
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Figure 5.9: Effect of α/αc and β/βc on Q̌gl, for the Budd friction law with the effective-pressure model
NA, n = 1/3, p = 1/3, q = 1, and δ = 0.1. (a) Various values of α/αc. (b) Zoom on the case α/αc =
0.25. The colored continuous lines are obtained by finding the values of Q̃gl that yield a solution to (5.75).
The dashed black line is obtained using equation (5.77).

of membrane stress being of the same order as the friction stress, but much smaller than the gravity stress.
This is a different regime from ours: in section 5.3 we have assumed that γ ∼ 1 and considered a scaling
that is such that the divergence of membrane stress, the friction stress, and the gravity stress have the
same order of magnitude.

They have obtained, as a zeroth-order solution, the following expression:

qgl

(
db
dx

)

gl
+ a(1− δ)hgl =

(
1
4ρg

(
1− ρ

ρw

))n
A [(1− δ)hgl]n+2 . (5.78)

In the limit δ � 1, this equation becomes

qgl =


1− a(

1
4ρ
(

1− ρ
ρw

)
g
)n

Ahn+1
gl




 (db/dx)gl(

1
4ρ
(

1− ρ
ρw

)
g
)n

Ahn+2
gl



−1

. (5.79)

This is exactly our equations (5.69) and (5.71), i.e., this flux condition can be associated with the regime
|β/βc| � 1 of a Budd friction law which does not vanish at the grounding line and in which the
membrane-stress divergence is negligible. This scaling can be motivated by equation (5.64): |β/βc| ∝
γ−1/(p+1).

5.6 Verification with numerical experiments
In this section, we verify the obtained flux conditions. First, we present the set-up used for the numerical
experiments. Then, we verify the flux conditions derived in section 5.3 and 5.4. Finally, we investigate
numerically the effect of α, β, and γ, and we confirm the results obtained in section 5.5.

5.6.1 Set-up
The values chosen for the physical parameters are typical for numerical experiments with marine ice
sheets, and are similar to the ones presented in Pattyn et al. [2012]. We take n = 3, ρ = 900 kg m−3,
ρw = 1000 kg m−3, and g = 9.8 m s−2. Glen’s viscosity parameter is set to A = 4.9× 10−25 Pa−3s−2,



5.6. Verification with numerical experiments 109

0 500 1,000 1,500

−1,000

0

1,000

x (km)

b
(m

)

0 500 1,000 1,500
x (km)

0 500 1,000 1,500
x (km)

(a) (b) (c)

Figure 5.10: Bed profiles considered in the numerical experiments: (a) polynomial bed; (b) linear bed;
(c) linear bed with oscillations.

and the net mass accumulation rate is set to a = 9.51 × 10−9 m s−1. In terms of the friction laws, we
consider the (W), (C), (B), (T), (RC1), and (RC2) friction laws with p = 1/3 and q = 1, and with both
the NA and the NB effective-pressure models. The friction coefficient for the (W) friction law is set to
C = 7.624 × 106 Pa m−1/3 s1/3. For the other friction laws, the friction coefficient will be specified
for each specific numerical experiment. The hydrology parameter c is set to 0.96. Three bed elevation
profiles are considered (figure 5.10). The first one is a polynomial bed that will be used to compare the
flux conditions in an idealized configuration. The second one depends linearly on x and will be used to
check the effect of the bed slope (and thus of β) on the flux conditions. The third one is similar to the
linear one, but an oscillatory signal has been added on top of it. It will be used to investigate the effect of
local variability in the bedrock profile.

Results are obtained either from the flux conditions themselves, or from the numerical solution of the
initial problem (equations (5.1)–(5.6)). For the spatial discretization, we use an in-house finite-element
code. The mesh is uniform with a constant element size of 180 m.

5.6.2 Flux conditions for the Budd and hybrid friction laws
The first experiment compares the flux conditions obtained in sections 5.3 and 5.4 with results of nu-
merical simulations. It mimics the experiment 3 of the Marine Ice Sheet Model Intercomparison Project
[Pattyn et al., 2012] which is a benchmark for the comparison of marine ice-sheet flowline models. We
considered the polynomial bed profile (figure 5.10a), fixed all the parameters to their reference values,
except for the ice rheology parameter A which is varied. For each particular value of A, a steady-state
ice-sheet solution was obtained and the grounding-line position was retrieved. On the one hand, this po-
sition was obtained numerically, thanks to the finite-element solution. On the other hand, we computed
the grounding-line position from the flux conditions: from the mass-conservation equation, we have the
global balance

qgl(hgl) = a xgl, (5.80)

where we have written qgl = qgl(hgl) to emphasize the dependency on the grounding-line ice thickness.
The flotation condition hgl = −(ρw/ρ)b(xgl) then allowed to obtain an algebraic equation for xgl:

qgl (−(ρw/ρ)b(xgl)) = a xgl. (5.81)

We solved this non-linear equation using a Newton–Raphson procedure.

It remains to choose the values of the friction coefficients for all the friction laws except for the
Weertman one. This is quite delicate, because the friction coefficients associated with different friction
laws are not necessarily comparable to one another; in particular, they do not have the same dimensions.
For the Weertman friction law, equation (5.81) has a solution xgl ≈ 800 km for A = 10−25 Pa−3 s−1.
We then chose the friction coefficients C for the Coulomb friction law and the Budd friction law so as
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Friction law Effective pressure C

(W) (p = 1/3) / 7.624× 106 Pa m−1/3 s1/3

(C) NA (1A = 1) 1.316× 100 -
(C) NB (1A = 0) 6.634× 10−1 -
(B) (p = 1/3, q = 1) NA (1A = 1) 6.116× 101 m−1/3 s1/3

(B) (p = 1/3, q = 1) NB (1A = 0) 3.018× 101 m−1/3 s1/3

(RC1) (p = 1/3) NA (1A = 1) 1.316× 100 -
(RC1) (p = 1/3) NB (1A = 0) 6.634× 10−1 -
(RC2) (p = 1/3) NA (1A = 1) 1.316× 100 -
(RC2) (p = 1/3) NB (1A = 0) 6.634× 10−1 -

(T) (p = 1/3) NA (1A = 1) 1.316× 100 -
(T) (p = 1/3) NB (1A = 0) 6.634× 10−1 -

Table 5.2: Numerical values of the friction coefficients used for the verification of the flux conditions.

Friction law Effective pressure Additional parameter

(RC1) (p = 1/3) NA (1A = 1) & NB (1A = 0) u0 = 10−5 m s−1

(RC2) (p = 1/3) NA (1A = 1) & NB (1A = 0) A−ps = 7.624× 106 Pa m−1/3 s1/3

(T) (p = 1/3) NA (1A = 1) & NB (1A = 0) A−ps = 7.624× 106 Pa m−1/3 s1/3

Table 5.3: Numerical values of the additional friction parameters As and u0 used for the verification of
the flux conditions.

to obtain this solution as well. The obtained friction parameters are shown in table 5.2. For the hybrid
friction laws, we considered the same friction coefficient C as the one obtained for the Coulomb friction
law because the Coulomb friction law is a limit case of the hybrid friction laws. The coefficient As was
chosen such that A−ps had the same value as the Weertman friction coefficient, again by identification of
the hybrid friction law as a Weertman friction law. Finally, we considered u0 = 10−5 m s−1, which is a
typical value for the velocity in marine ice sheets. All these values are summarized in table 5.2 and in
table 5.3.

The results are shown in figure 5.11. The grounding-line positions obtained using the flux condi-
tions match the results from the numerical simulations. We note that the physical parameters and the
bed profile considered in this numerical experiment are consistent with the assumptions made during the
derivation of the flux conditions, namely, the net mass accumulation rate and the bedrock slopes are not
too large, and the friction coefficient is not too small. With respect to the discussion of section 5.5, the
experiments have been conducted in a regime for which α/αc and β/βc are small.

As a side note, it can be observed that the curves all have the same shape, which could suggest that
the choice of friction laws actually has little impact on the mechanical equilibrium of marine ice sheets,
and in particular on flux conditions. However, this similarity is not the result of the impact of friction
laws but rather stems from the methodology used. The flux conditions associated with different friction
laws differ in two aspects: the exponent on the grounding-line thickness, and the dependence of the
factor that multiplies this thickness with respect to the physical parameters (A, C, ...). The considered
bedrock does not show a strong variability, so that the exponent on top of the grounding-line thickness
has a limited effect. Moreover, by construction, the friction coefficients were chosen uniformly and in
such a way that the curves pass through the same point, which effectively leads to a similar factor in front
of the grounding-line thickness. This explains the similarity between the curves shown in figure 5.11. In
practice, however, the friction coefficients are not uniform, but, rather, are tuned spatially so as to obtain
a similar thickness and velocity profile compared to some observations. This results in very different
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Figure 5.11: Comparison of the evolution of the grounding-line position with respect toA for the different
friction laws and effective-pressure models, using the flux condition (lines) and results of a finite-element
discretization of the original problem (circles, crosses). The results for the NA and NB effective pressure
models are respectively shown in blue and in green.

dynamics. We refer interested readers to Brondex et al. [2017] where these differences are discussed.

5.6.3 Effect of α, β, and γ

We now conduct a series of numerical experiments to determine numerically the situations in which the
assumptions made to derive the flux conditions in section 5.3 are not valid, and to confirm that the new
expressions, namely equations (5.65) and (5.74) combined respectively with the corrections factors de-
fined in (5.72) and (5.77), can be applied to correct these flux conditions. Practically, we check that they
lead to the same grounding-line flux value as the numerical results. We call the flux conditions derived
in section 5.5 ‘enriched’ flux conditions. First, we consider the linear bed profile (figure 5.10b), whose
elevation is given by b(x) = b0 + b1(x/L) with b0 = 720 m, b1 = −900 m, and L = 750 km. We vary
three physical parameters: the net mass accumulation rate a, the bedrock slope db/dx, and the friction
coefficient C. The goal is to reach a regime in which α/αc and β/βc are not small so that the flux
conditions derived in section 5.3 are not valid anymore. Then, we consider the more realistic ‘rough’
bedrock profile, as well as different values for the friction coefficient. We always consider the Budd
friction law with both the NA and NB effective-pressure models. We choose a reference friction coeffi-
cient of CA

0 = 1.73 m−1/3s1/3 in the first case, and CB
0 = 43.22 m−1/3s1/3 in the second case. These

values where chosen such thatCA
0 ρghgl ≈ CB

0 (1−c)ρghgl ≈ 7.624×106 Pa m−1/3s1/3 for hgl = 500 m.

First, we consider the reference physical parameters previously introduced, and we modify the values
of a, db/dx, and C in the following way. We first consider a, and vary its value within the interval
a0 ≤ a ≤ 10 a0, where a0 is the reference value introduced in the set-up subsection. For each fixed value
of a, we let the ice sheet evolve until it reaches a steady state. This leads to a collection of grounding-line
fluxes, which are compared to the grounding-line fluxes that would have been obtained thanks to our
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tios α/αc and β/βc corresponding to each numerical solution. We have considered the Budd friction law
with the NA (blue) and the NB (green) effective-pressure models.

flux conditions. For the NA effective-pressure model, we use (5.74) combined with (5.77), while for the
NB effective-pressure model, we use (5.65) combined with (5.72). We then perform a similar procedure
for db/dx and C, which are respectively varied in the ranges 10 (db/dx)0 ≤ db/dx ≤ (db/dx)0 and
0.5 × 10−1C0 ≤ C ≤ C0, with (db/dx)0 = b1/L. In this former case, only the slope of the linear bed
is varied; the value b(0) = b0 is left unchanged. By increasing the value of a, of |db/dx|, and reducing
the value of C, we attempt to reach a regime in which α/αc and β/βc cannot be neglected. The results
are shown in figure 5.12. It can be observed that, for the parameters considered, the ratio qgl,fc/qgl stays
close to one when the NB effective-pressure model is used, even when we use the flux condition derived
in section 5.3. By contrast, this ratio departs significantly from one when the slope or the friction param-
eter are varied in a simulation in which the NA effective-pressure model is considered. That is not the
case if we use the enriched flux conditions, as those lead to a ratio that is always close to one.

In practice, we expect a relatively variable bedrock elevation; hence, a linear configuration might
not be appropriate. To investigate the impact of this bedrock variability, we consider the bedrock profile
shown in figure 5.10c. Its elevation is given by b(x) = b0 + b1(x/L) + b2 sin(2πx/Lo), where b0, b1,
and L have the same values as before, b2 = 300 m, and where Lo is varied between 100 km and 300 km.
The physical parameters are the same as the ones used previously when varying the net mass accumula-
tion rate a. We observe in figure 5.13 similar findings compared to the previous numerical experiment.
Firstly, the ratio qgl,fc/qgl calculated using the flux conditions derived in section 5.3 deviates further from
a unit value as the bedrock has a larger slope variation. Secondly, the effect is much more pronounced
in the case of the NA effective-pressure model. Lastly, the use of corrective factors in flux conditions
enables satisfactory results, namely a qgl,fc/qgl ratio that remains close to unity.
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5.7 Discussion
In this section, we briefly discuss the flux conditions that we have derived in section 5.3 and in section 5.4.
Then, we comment on the limitations of these conditions by addressing both the analysis provided in
section 5.5 and some modeling assumptions.

5.7.1 Specifications of the obtained flux conditions
Dependence on the effective-pressure model

The flux conditions associated with the two effective-pressure models that we have considered are similar.
Their only differences concern the coefficient c, which only appears with the effective-pressure model
NB, the dependency with respect to δ, and the value of the numerical prefactor Q̌gl. In particular, for the
friction laws covered in this article, we found that Q̌gl is generally smaller for the NA model, compared
to the NB model.

Dependence on the physical parameters for the Budd friction law

The grounding-line flux depends on A and C in the following way: qgl ∝ (A/C)1/(p+1). We remark
that the exponent q, which is associated with the effective pressure, does not intervene. In particular, this
leads to the same dependency with respect to these parameters for the Weertman friction law (p = 1/3)
and the Budd friction law (p = 1/3, q = 1). For the NB effective-pressure model, the grounding-line flux
depends on c through qgl ∝ (1− c)q/(p+1). This time, both p and q impact this dependency.

Dependence on the additional parameter for hybrid friction laws

In a similar way to the hybrid friction laws which allow to switch from one friction law to another de-
pending on an additional parameter, the associated flux conditions allow to transition between different
states. For example, the (RC1) friction law is an intermediate friction law between the (C) and (B) fric-
tion law, and the additional parameter u0 controls the tendency of that law (figure 5.14).

Another point concerns the behavior close to the grounding line. Let us consider a friction law that
vanishes at the grounding line but that is different from the Coulomb friction law, for example the (RC1)
friction law. Close to the grounding line, both friction laws will be similar so that one could consider the
flux condition derived by Tsai et al. [2015] for the Coulomb friction law, even if it was not developed
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for this particular friction law. Our approach allows to assess this idea quantitatively. As shown in
figure 5.7, there is a transition in the plots, from a constant value of Q̌gl to an approximately linear
curve. The Coulomb behavior precisely corresponds to this first constant part. We therefore deduce that
the Coulomb flux condition can be considered if the additional parameter, υ̌, is sufficiently small. For
example, for the NA effective-pressure model, it is necessary that

υ̌p
′/(p′+1) . 0.1. (5.82)

Physically, this means that the viscous boundary layer is included inside the region in which the friction
law essentially behaves like a Coulomb friction law. It must be noted that the parameter u0 is critical in
that context because it controls the width of the region in which friction has a Coulomb-like behavior.

Dependence on the grounding-line thickness

Another result of our derivation concerns the stability of marine ice sheets. It is often assumed that if qg
depends on hg with a relatively large exponent κ, then the stable equilibrium positions will be more
stable with respect to external perturbations while the unstable ones will be more unstable with respect to
external perturbations [Schoof, 2012; Tsai et al., 2015]. This exponent can be computed for the friction
laws covered in this article. If n = 3, p = 1/3, and q = 1, then κ varies within [4, 5], depending on the
friction law considered (figure 5.15). Furthermore, the hybrid friction laws effectively behave as power
laws for limiting values of the additional parameter, u0 or As, so that the exponent κ transitions between
multiple values. For instance, κ switches from 4.75 to 5 for the (RC2) and (T) friction laws.

5.7.2 Limitations

Effect of α, β, and γ

From the mathematical analyses and the numerical simulations described in section 5.5 and 5.6, we
conclude that accounting for the net mass accumulation rate and the bedrock slope can have a significant
impact on the flux conditions, so that correction factors may be necessary. The impact is more significant
when using a friction law such that friction stress vanishes at the grounding line than when using a friction
law such that friction stress does not vanish at the grounding line. For both types of friction laws, the
impact of the net mass accumulation rate and the bedrock slope on the flux condition increases with a
decrease in the friction coefficient.
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2D geometry and steady-state assumptions

Another important assumption that was made concerns the geometry: in our derivation, we have used
a 1D flowline model that is in a steady state. This leads to modeling errors associated to (i) the effect
of lateral drag and (ii) the conservation of the flux along a streamline and over time. As described in
section 5.2, lateral drag can only be taken into account in a flowline model by a parametrization. The
effect of this parametrization on grounding-line flux conditions has been studied in Schoof et al. [2017],
Haseloff and Sergienko [2018], and Reese et al. [2018b]. We also refer the interested reader to Gud-
mundsson et al. [2012], Gudmundsson [2013], and Pegler [2016, 2018a,b] for numerical and theoretical
studies of the stability of buttressed ice sheets. The flowline assumption is important, as it leads to an
invariant flux near the grounding line, i.e., the flux is spatially constant in that area. In practice, that will
not be the case for channels that are widening or narrowing. Furthermore, it is unrealistic to assume that
ice streams are independent of the transverse bed variability [Sergienko, 2012]; it can be expected that
streamlines are condensed in areas where the friction induced by the bed roughness is limited.

In parallel, the steady-state assumption guarantees that all the unknown fields, and in particular the
grounding-line flux, are constant over time. If the ice sheet was not in a stationary configuration, then the
only equation that would need to be modified is the mass balance equation. It would be changed to

∂h

∂t
+ ∂

∂x
(uh) = a, (5.83)

that is, the same equation as the one we have used, provided we replace the net mass accumulation by
an effective accumulation rate given by aeff = a − ∂h/∂t. It follows that if the geometry is changing
sufficiently slowly such that ∂h/∂t is much lower than a, then flux conditions still make sense. Clearly,
this conclusion also assumes that the physical parameters, which were previously regarded as constant,
evolve over time scales that are sufficiently large compared to the dynamics of the problem under con-
sideration here. In general, however, that is not the case, and the time dynamics requires an analysis of
its own, see e.g. Schoof [2007b,c], Haseloff and Sergienko [2022], Sergienko and Wingham [2022], and
Sergienko and Haseloff [2023]. Nonetheless, we speculate that flux conditions can still be applied with
an effective accumulation rate as defined above when there is no grounding-line boundary layer, similarly
to what is observed, e.g., in Sergienko and Wingham [2022].

5.8 Conclusion

In this article, we generalized the flux conditions of marine ice-sheet systems. We showed that the
methodology of Schoof [2007c] and Tsai et al. [2015] can be extended to the general Budd friction law
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and for two different effective-pressure models, leading to the following expressions:
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Our flux conditions generalize and reconcile these previous works as we recover their flux conditions as
special cases. We also extended the flux conditions to hybrid friction laws. This was achieved through
the use of regularized functions which depend on a limited number of parameters that can be tuned
easily. Furthermore, we provided justifications for several properties of an equivalent dynamical sys-
tem associated with the leading-order solution to our problem. A numerical strategy was proposed for
the computation of a numerical factor appearing in the flux condition. Finally, the validity of the as-
sumptions made during the derivation was discussed, and a correction factor was proposed to extend the
domain of validity of the flux conditions, in particular in the context of rough bedrocks and low friction
coefficients.

The flux conditions can be separated in two classes, depending on the combination of friction and
effective-pressure models. The first class is associated with a non-vanishing friction stress at the ground-
ing line, and the dynamical behavior of the ice sheet near the grounding line is then qualitatively similar
to the one obtained with a Weertman friction law. Therefore, the derivation of the flux condition is sim-
pler because the divergence of membrane stress can be neglected. On the other hand, the second class
is more complex, with a combination of friction stress, gravity stress, and membrane-stress divergence
contributing significantly to the mechanical equilibrium near the grounding line. The effective-pressure
model considered is also important because for a fixed friction law a system could be categorized de-
pending on the effective-pressure model used.

The present work could be pursued in several directions. Firstly, the effective-pressure models con-
sidered are very simple. More realistically, a dynamic hydrology model should be coupled to the ice-sheet
model, similar to, e.g., Hewitt [2013]. The study of a flux condition associated with a steady state may
no longer be adequate in this case, since recent research has shown the presence of oscillatory phenom-
ena for such systems [Robel et al., 2013, 2016]. Still, a boundary-layer analysis that includes the time
evolution for such systems would be interesting.

Another direction for future work concerns the use of flux conditions. While they have allowed to
improve our theoretical understanding of marine ice sheets, they are also typically used in ice-sheet codes
with coarse meshes that do not allow for resolving the fine details near the grounding line. Assessing
their usage, with regards to the latest developments in flux conditions, is a possible research direction.
Jointly, it is possible to view this problem through another viewpoint. In a coarse mesh, the unknowns of
the problem are macroscopic variables, which represent in a certain sense a local average of phenomena
not explicitly solved. The governing equations, and in particular any potential flux condition, must then
obey modified equations that take this averaging process into account. To the best of our knowledge, such
a multiscale approach has been little applied in glaciology –a notable exception being Schoof [2003]–
and the standard rather consists in adding ad-hoc parametrizations.

Finally, it would be interesting to investigate the mechanical behavior of ice sheets near their ground-
ing line with models that are more involved than the shallow-shelf approximation, e.g., the Blatter–Pattyn
model [Pattyn, 2003] or the L1L2 model [Schoof and Hindmarsh, 2010].
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5.9 Appendix A: Analysis of the leading-order dynamical system:
vanishing friction at the grounding line

5.9.1 Problem formulation
The problem consists in finding X 7→ (ξ(X ), Ψ(X )) and Qgl such that

dξ
dX = −1

2Qgl ξ
2c1+1, for X > 0, (5.85a)

dΨ
dX = −c2Qglξ

2c1Ψ− 1
4 |Ψ|

−n−1Ψ
(
1− ξ2)+ 1

4, for X > 0, (5.85b)

(ξ, Ψ) = (1,Q−1
gl δ/8), at X = 0, (5.85c)

(ξ, Ψ)→ (0, 1), as X → +∞, (5.85d)

We consider the Budd friction law with a linear dependence with respect to the effective pressure (q = 1),
so that c1 > 0 and 0 < c2 < 1.

5.9.2 Principle of the analysis
Compared to the case of non-vanishing friction at the grounding line, we remark that the dynamical
system defined by (5.85a) and (5.85b) depends on Qgl. It is characterized by the following differential
equation:

dΨ
dξ = 2 c2

Ψ
ξ

+ 1
2

1
Qgl

1
ξ2c1+1

(
|Ψ|−n−1Ψ(1− ξ2)− 1

)
. (5.86)

The only fixed point of this dynamical system is the point (ξ, Ψ) = (0, 1). A linearization close to this
point reveals the presence of an unstable manifold associated with the vertical axis ξ = 0, and a center
manifold. A solution to the system of equations (5.85) must therefore go through this manifold, which
is unique (similarly to what is described in the appendix of Schoof [2011]). It is characterized by the
following behavior, close to the fixed point:

Ψc ∼ 1− 1
n
ξ2, as ξ → 0, ∀Qgl > 0, (5.87)

in which Ψc = Ψc(ξ;Qgl) is the Ψ coordinate of the center manifold at position ξ and for a value Qgl.

To show the existence and uniqueness of the system of equations (5.85), the mapping D is defined as
follows:

Qgl 7→ D(Qgl) = Ψc(1;Qgl)− (δ/8)Q−1. (5.88)

The problem then consists in showing that D admits exactly one root. To do so, we rely on a series
of intermediary properties associated with the center manifold as well as the dynamical system defined
by (5.85a) and (5.85b):

Ψc ≥ (1− ξ2) 1
n , for ξ ∈ [0, 1], ∀Qgl > 0, (5.89a)

∂Ψc/∂Qgl ≥ 0, for ξ ∈ [0, 1], ∀Qgl > 0, (5.89b)

Ψc > 0, for ξ ∈ [0, 1], ∀Qgl > 0, (5.89c)

dΨ/dξ|Ψ=1 < 0, for ξ ∈ ]0, 1], for Qgl = δ/8. (5.89d)

These properties allow to show that D has the desired behavior: it is a continuous, strictly monotonous
function which takes both positive and negative values. Indeed, D is a continuous mapping, because the
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flow of the dynamical system defined by (5.85a) and (5.85b) is continuous over (ξ, Ψ) ∈ ]0, 1]×]0, +∞[,
and Qgl impacts these equations in a smooth manner. Furthermore, from (5.89b),

dD
dQgl

(Qgl) = ∂Ψc

∂Qgl
(1;Qgl) + δ

8
1
Q2

gl
≥ δ

8
1
Qgl

> 0, ∀Qgl > 0. (5.90)

From (5.89b) and (5.89c),

Ψc(1;Qgl) > 0 and
∂Ψc

∂Qgl
(1;Qgl) ≥ 0, ∀Qgl > 0. (5.91)

In particular, this implies that limQgl→+∞Ψc(1;Qgl) > 0; hence, limQgl→+∞D(Qgl) > 0. Finally,
fix Qgl = δ/8. From (5.87), an orbit associated with the center manifold is below the Ψ = 1 line
for sufficiently small values of ξ. Furthermore, it cannot cross this line because (5.89d) prevents it.
Therefore, Ψc(1; δ/8) < 1, which yields D(δ/8) < 0.

5.9.3 Derivation of the intermediary properties
The form of the center manifold close to the fixed point is obtained with an ansatz of the form Ψc(ξ) =
1 + C ξη . Balancing the leading powers in ξ closed to the fixed point leads to C = −1/n and η = 2, as
announced. In can be deduced from (5.87) that

∂Ψc

∂ξ
∼ − 2

n
ξ and

∂Ψc

∂Qgl
→ 0, as ξ → 0, ∀Qgl > 0. (5.92)

Furthermore, close to the fixed point, Ψc > 0. From (5.86), dΨ/dξ → +∞ as Ψ → 0 for any fixed
ξ ∈ ]0, 1[ and Qgl > 0. Therefore, the center manifold cannot cross the Ψ = 0 line, and

Ψc ≥ 0, ξ ∈ [0, 1], ∀Qgl > 0. (5.93)

We now derive the properties (5.89a)–(5.89d). Fix Qgl > 0. Using (5.92), ∂Ψc/∂ξ < 0 for suffi-
ciently small values of ξ. Then, (5.86) yields (Ψc)−n(1 − ξ2) − 1 < 0, sufficiently close to the fixed
point. Furthermore,

dΨ
dξ

∣∣∣∣
Ψ=(1−ξ2)

1
n

= 2 c2
Ψ
ξ
> 0, for ξ ∈ ]0, 1]. (5.94)

This implies that the center manifold, which is initially above the curve Ψ = (1 − ξ2)1/n, cannot cross
it, hence (5.89a) is verified.

Using (5.86), we compute

∂

∂ξ

∂Ψc

∂Qgl
= −1

2
1
Q2

gl

|Ψc|−n−1Ψc(1− ξ2)− 1
ξ2c1+1 +

[
2 c2
ξ
− 1

2
n

Qgl

|Ψc|−n−2Ψc(1− ξ2)
ξ2c1+1

]
∂Ψc

∂Qgl
, (5.95)

where we have assumed that we can interchange the partial derivatives. For ξ → 0, ∂Ψc/∂Qgl → 0
using (5.92). Based on (5.89a), this implies that ∂(∂Ψc/∂Qgl)/∂ξ ≥ 0 as ξ → 0. Hence, ∂Ψc/∂Qgl
is initially equal to zero, and does not decrease with ξ for sufficiently small values of ξ. Furthermore, it
will always be non-negative because if ∂Ψc/∂Qgl = 0, then ∂(∂Ψc/∂Qgl)/∂ξ ≥ 0 from (5.95). This
yields (5.89b).

From (5.93), Ψc ≥ 0 for ξ ∈ [0, 1]. From the previous discussion, the center manifold cannot cross
the Ψ = 0 line for ξ ∈ (0, 1). Therefore, to show that Ψc > 0 for ξ ∈ [0, 1], we only have to discuss
the case Ψc = 0 at ξ = 1. To do so, we show that the point (ξ, Ψ) = (1, 0) is not accessible. Because
dΨ/dξ is ill-defined if Ψ = 0, we switch back to the (Ũ , W̃ ) variables, and to the system of equations
(5.27). The point (ξ, Ψ) = (1, 0) corresponds to the point (Ũ , W̃ ) = (Q̃gl, 0). By looking at the flow
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ξ

ξ 7→ 2 c2
(
δ
8
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ξ2c1

ξ 7→ 1
2 ξ

2

ξ0

Figure 5.16: Schematic representation of functions of ξ in order to determine the sign of f(ξ). Note
that c1 > 1 and 0 < c2 < 1.

near that point, we conclude that this point is a degenerate spiral. Hence, it cannot be reached from an
orbit that comes from the domain (Ũ , W̃ ) ∈ [0, Q̃gl[×]0, +∞[. This point is not accessible by the orbit
that we consider, and Ψc > 0 for ξ = 1. This leads to (5.89c).

Finally, evaluating (5.86) at Ψ = 1 and for Qgl = δ/8 yields

dΨ
dξ

∣∣∣∣
Ψ=1

= 1
ξ1+c1

(
δ

8

)−1 [
2 c2

(
δ

8

)
ξ2c1 − 1

2ξ
2
]
≡ 1
ξ1+c1

(
δ

8

)−1
f(ξ). (5.96a)

The terms defining the function f depends on ξ as in figure 5.16. We have

f(1) = 2 c2
(
δ

8

)
− 1

2 <
δ

4 −
1
2 < 0 (5.97)

because δ ≤ 1 as ρ, ρw > 0. This means that ξ0, the strictly-positive point where f(ξ0) = 0, is such
that ξ0 > 1. Therefore, f(ξ) < 0 for ξ ∈ ]0, 1], and dΨ/dξ|Ψ=1 < 0 for ξ ∈ ]0, 1]. This corresponds
to (5.89d).

5.10 Appendix B: Numerical solving strategy for finding Q̃gl

To determine the numerical prefactor Q̃gl (or, equivalently, Q̌gl) appearing in the system of equations (5.27)
and in the flux conditions (5.29a) and (5.29b), we propose the following numerical strategy. Consider the
phase plane associated with the dynamical system defined by equations (5.27a) and (5.27b) (figure 5.17).
For any Q̃gl, the first quadrant of the phase plane is split into two regions that are separated by an orbit
that goes towards the origin; one region above it and the other one below it. The solution sought is the
trajectory that, starting from the boundary condition at X̃ = 0, that is, equation (5.27c), reaches the
origin for X̃ → +∞ when following the flow defined by equations (5.27a) and (5.27b).

If Q̃gl is too large, then a trajectory that starts from the boundary condition at X̃ = 0 is in the lower
region of the phase-plane and never reaches the origin; on the other hand, if Q̃gl is too small, then the
trajectory stays in the upper part of the phase plane. The numerical approach to find a solution can
then be described. Let us assume that we have two values Q̃gl,− and Q̃gl,+, associated respectively to a
trajectory that stays in the lower part and in the upper part of the phase plane, similarly to figure 5.17a
and figure 5.17c. A bisection-like method can then be applied: the trajectory associated with Q̃gl =
(Q̃gl,−+Q̃gl,+)/2 can be computed, and if it is in the lower part (resp. upper part) of the phase plane, then
it replaces Q̃gl,− (resp. Q̃gl,+). Eventually, Q̃gl will converge towards the correct value Q̃gl,∗ which is
associated with the solution to (5.27). It follows that the corresponding trajectory is the one that separates
the phase plane in two (figure 5.17b). We note that a similar approach has been used in Hindmarsh [2012],
to tackle a different but related problem. Table 5.4 shows results, i.e., the values of Q̃gl, for combinations
of the parameters (1A,n, p, q, δ) that correspond to several friction laws of interest.
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(a) Q̃gl > Q̃gl,∗.
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(b) Q̃gl = Q̃gl,∗.
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Figure 5.17: Form of the phase plane associated with the dynamical system defined by (5.27a)–(5.27b),
for different values of Q̃gl, where Q̃gl,∗ is associated with a solution to (5.27). The blue curves represent
the trajectories that go through (Ũ , W̃ ) = (Q̃gl, δ/8).

Friction law Effective pressure n δ Q̃gl Q̌gl

Weertman (p = 1/3) / 3 0.1 5.25× 10−5 1.00
Coulomb NA (1A = 1) 3 0.1 9.63× 10−5 0.62
Coulomb NB (1A = 0) 3 0.1 1.92× 10−6 0.98

Budd (p = 1/3, q = 1) NA (1A = 1) 3 0.1 9.95× 10−4 0.71
Budd (p = 1/3, q = 1) NB (1A = 0) 3 0.1 5.18× 10−5 0.99

Table 5.4: Examples of values of Q̃gl and Q̌gl for combinations of (1A,n, p, q, δ) associated with several
friction laws of interest. The values of Q̃gl have been computed using the described numerical method.
The values of Q̌gl have been computed according to Q̌gl = ∆−rQ̃gl with r = (n − 1Aq)/(p + 1).
Because q = 0 for the Weertman friction law, the associated problem does not depend on the type of
effective-pressure model.
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We present a novel and computationally efficient subglacial hydrological model that represents in a sim-
plified way both hard and soft bed rheologies as well as an automatic switch between efficient and
inefficient subglacial discharge, designed for the Antarctic Ice Sheet. The subglacial model is dy-
namically linked to a regularized Coulomb friction law, allowing for a coupled evolution of the ice
sheet on decadal to centennial time scales. It does not explicitly simulate the details of water con-
duits at the local scale and assumes that subglacial hydrology is in quasi-static equilibrium with the
ice sheet, which makes the computations very fast. The hydrological model is tested on an idealized
marine ice sheet and subsequently applied to the drainage basin of Thwaites Glacier, West Antarc-
tica, that is composed of a heterogeneous (hard/soft) bed. We find that accounting for subglacial hy-
drology in the sliding law accelerates the grounding-line retreat of Thwaites Glacier under present-day
climatic conditions. Highest retreat rates are obtained for hard bed configurations and/or inefficient
drainage systems. We show that the sensitivity is particularly driven by large gradients in effective pres-
sure, more so than the value of effective pressure itself, in the vicinity of the grounding line. There-
fore, we advocate for a better understanding of the subglacial system with respect to both the spa-
tial and temporal variability in effective pressure and the rheological conditions/properties of the bed.

6.1 Introduction
Due to the ubiquitous and permanent ice cover, subglacial environments in Antarctica are hard to ob-
serve. The lack of direct observations results in major uncertainties in ice-dynamical behavior, especially
since the ice-bed interface is one of the main boundary layers that influence the overall dynamics of the
ice sheet. In ice-sheet models, basal processes are generally translated in a basal sliding law, that, for the
sake of simplicity, is largely parameterized. However, recent studies have shown that the level of plas-
ticity of basal sliding, which mainly depends on the bed rheology, is a highly controlling factor in terms
of mass change of the Antarctic Ice Sheet [Brondex et al., 2019; Bulthuis et al., 2019; Sun et al., 2020;
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Kazmierczak et al., 2022]. The rheology of the bed broadly covers two categories, i.e., (i) hard beds,
composed of bedrock and whose rigidity is greater than the ice, and also considered as non-deformable
and (ii) soft beds, or a subglacial till cover, whose rigidity is lower than the ice, and which can easily
be deformed [Muto et al., 2019]. The rheology is further influenced by the presence of subglacial water,
which is present underneath more than 50% of the ice sheet due to the thick ice cover [Robin et al.,
1970; Smith et al., 2009; Pattyn, 2010]. The spatial organization of the subglacial drainage system re-
mains poorly known, although recent attempts led to improvements regarding the modeling of subglacial
water flow [Livingstone et al., 2013; Willis et al., 2016; Dow et al., 2022; Dow, 2022a; Hager et al., 2022].

The nature of drainage systems and their tendency to organize into channels depend on subglacial
water flow as well as bed rheology. The morphology of subglacial water drainage systems influences
basal sliding by modifying the basal boundary conditions [Hewitt, 2011]. Furthermore, within drainage
systems, water flow and water pressure also vary greatly. Physically, the presence of subglacial water
directly influences basal sliding by lubricating the bedrock or by weakening the till strength. Budd et al.
[1979] proposed to link subglacial water to basal sliding through the effective pressure (which is the ice
overburden pressure, i.e., the downward pressure due to the weight of overlying ice, minus the subglacial
water pressure). The link between basal sliding and subglacial hydrology through the effective pressure
is used in most glacier and ice-sheet studies [Pattyn, 1996; Hoffman and Price, 2014; Beyer et al., 2018;
Gagliardini and Werder, 2018]. Other approaches are the use of subglacial water thickness [Weertman
and Birchfield, 1982; Budd and Jenssen, 1987; Alley et al., 1989; Johnson and Fastook, 2002] or sub-
glacial water flux [Pattyn et al., 2005; Goeller et al., 2013] as a control on basal sliding. In this study, we
consider basal sliding a function of effective pressure at the base of the ice sheet.

Generally, bed areas characterized by a low effective pressure correspond to regions of faster ice flow
[Iken and Bindschadler, 1986; Iverson et al., 1999] and consequently may become more sensitive (react
much faster and/or exhibit more ice change) to climate forcing [Kazmierczak et al., 2022]. However,
the effective pressure at the base of the ice sheet is difficult to determine as it depends on bed rheol-
ogy, the presence and distribution of subglacial water, the distribution of subglacial till and its thickness,
etc. Furthermore, subglacial processes occur on time scales that can be as small as a few hours [e.g.,
Clarke, 2005]. Such time scales are several orders of magnitude smaller than the typical response times
of glaciers and ice sheets, which are at least of the order of years. This discrepancy hampers numerical
coupling between subglacial hydrology and the ice dynamical response. Another limiting factor is the
spatial resolution on which these processes occur, hence the computational demand it entails. For in-
stance, state-of-the-art hydrological models such as GlaDS [Werder et al., 2013] are –due to their high
spatial and temporal resolution– extremely computationally demanding, and their applications to evolv-
ing ice sheets are often limited to the initialization of the ice-sheet system [e.g., McArthur et al., 2023;
Pelle et al., 2023]. Although there have been recent attempts to reduce their computational cost using
data-driven methods [Verjans and Robel, 2024], physics-based approaches have not yet been widely ex-
plored to achieve this goal.

In this paper, we propose a simplified model of the complex subglacial system that allows us to
dynamically link subglacial hydrology to basal sliding for various bed types (hard and soft). The model
considers different spatially- and temporally-varying subglacial water drainage systems. Their morpholo-
gies depend both on the subglacial water flux (distributed or channelized) and the rheology of the bed.
The approach allows us to evaluate the impact of the subglacial hydrological system and its evolution on
the ice-sheet response in a hard and a soft bed environment in large-scale models and with reasonable
computational times. By large-scale models, we mean models that have a spatial grid size that is orders
of magnitude larger than that of the hydrological system. The model also allows us to deal with mixed
beds, composed of zones of different rigidity.

In section 6.2, we describe the hydrological model and its implementation. We first evaluate our
model for an idealized marine ice sheet in section 6.3, to evaluate the implementation and robustness
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of the method. Subsequently, we apply our methodology to Thwaites Glacier, West Antarctica (section
6.4), generally characterized by a heterogeneous bed composed of soft and hard bed zones [Joughin
et al., 2009; Schroeder et al., 2014; Muto et al., 2019]. We discuss the impact of the dynamic subglacial
hydrology linked to basal sliding as well as the limitations of the model in section 6.5. Finally, we
conclude on the relevance of our findings in section 6.6.

6.2 Model description

6.2.1 Ice-flow model
We employ the Kori-ULB ice-sheet model [previously called f.ETISh; Pattyn, 2017; Seroussi et al.,
2019, 2020; Sun et al., 2020; Coulon et al., 2024b], which is a vertically integrated thermomechanically-
coupled, hybrid ice-sheet/ice-shelf model. It combines the shallow-ice approximation for ice deformation
with the shallow-shelf approximation for basal sliding in a similar way as in Winkelmann et al. [2011].
To account for sliding on both a hard and soft bed [Cuffey and Paterson, 2010; Beaud et al., 2022], we
employ a regularized Coulomb friction law [Joughin et al., 2019; Zoet and Iverson, 2020]. Such law
allows for a smooth transition between a power-law behavior at low velocity and a plastic Coulomb
behavior at high velocity, and takes the following form:

τb = CN

( ‖vb‖
‖vb‖+ v0

) 1
m vb
‖vb‖

, (6.1)

where τb is the basal shear or friction stress, N is the effective pressure, C is a friction coefficient
limiting the shear stress to a maximum plastic value CN , and vb is the basal sliding velocity. The
velocity threshold v0 is a parameter that controls the onset of plasticity in the friction law. A value of
m = 3 and v0 = 300 m a−1 are taken as in Joughin et al. [2019]. A complete list of symbols, and their
corresponding values and units, can be found in appendix A.

6.2.2 Hydrological model
Subglacial water in Antarctica essentially stems from basal melting of areas of the ice sheet that are at
the pressure melting point [Pattyn et al., 2005; Pattyn, 2010; Beyer et al., 2018; Dow, 2022a], due to
dissipative phenomena at the ice-bedrock interface. It is absent when the basal ice is at a temperature be-
low the pressure melting point [Pattyn, 2010; Livingstone et al., 2013]. Limited surface water infiltration
towards the bed has been observed in Antarctica, contrary to the Greenland Ice Sheet [Bell et al., 2018].
The presence of subglacial water will lead to a reduction of the contact between the ice and the subglacial
substrate, i.e., it will decrease the value of the effective pressureN = po−pw, with po the ice overburden
pressure and pw the subglacial water pressure. It is generally assumed that the ice overburden pressure is
cryostatic, so that po = ρigh where ρi is the ice density, g is the gravitational acceleration, and h is the
ice thickness. For a given ice-sheet geometry, the effective pressure is therefore fully characterized by
the subglacial water pressure.

Alternatively, one can consider a description based on potentials. Introducing the hydraulic potential
φ = ρwgb + pw and the geometric potential φ0 = ρigh + ρwgb, ρw being the density of fresh water
and b the bedrock elevation with respect to the local sea-level height, the effective pressure is then the
difference between both, i.e., N = φ0− φ. The rationale behind this description is that water flows from
regions where the hydraulic potential is high to regions where the potential is low [Shreve, 1972].

In this paper, we attempt to model together efficient and inefficient water flow over both hard and
soft beds. Generally, efficient systems transport large water fluxes and are characterized by localized
channelized flow, while inefficient systems take the form of distributed water flow. We define two spatial
scales: a global scale, which is the same as the one used for the ice-sheet model and that is typically of
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the order of kilometers, and a local scale, associated with a water conduit, and that is much smaller than
the global one (observations suggest that channels are meters to at most a few hundreds meters wide,
that maximal width being reached close to the grounding line [Drews et al., 2017]). The computation
of the water flow is done at the global scale, while the computation of the effective pressure is done at
the local scale. For the latter, we consider a single element of the hydrological system, which we refer
generically to as ‘conduit’. The term conduit is used for localized drainage systems (such as cavities,
channels, canals), as opposed to diffuse drainage systems (such as continuous films, diffuse water flow
within sediments). This applies to efficient flow (channel or canal), or to elements of an inefficient system
(cavity or patchy film between clasts), applicable to both a hard or a soft bed. In particular, we do not
use ‘conduit’ as a synonym for ‘channel’, as a conduit can correspond to other types of hydrological
elements. Such approach can be seen as a sub-grid parametrization of the effective pressure; a similar
procedure was described in Gowan et al. [2023]. The idea of unifying both inefficient and efficient water
flow has been previously explored in Arnold and Sharp [2002], in Schoof [2010b], and in Sommers et al.
[2018]. Our approach is shown schematically in figure 6.1 and described in detail in the next subsections.

Simplifying assumptions

Our model is constructed from multiple approximations that simplify the physics describing subglacial
hydrology. It differs from recent studies aiming to develop high-resolution models, such as GlaDS
[Werder et al., 2013], SHAKTI [Sommers et al., 2018], CUAS [Beyer et al., 2018], and the subglacial
hydrology components within PISM [Bueler and van Pelt, 2015] and MALI [Hoffman et al., 2018]. These
models typically take the form of a series of coupled partial differential equations that are computation-
ally challenging to solve. Furthermore, these models involve a large number of parameters, many being
poorly constrained. Finally, due to their high spatial and temporal resolution they are often computation-
ally demanding. The latter may limit their application to drainage basins or single glaciers on time scales
of a few years. By contrast, our model is computationally cheap, with the computational time associated
with the subglacial hydrology calculation representing only a small fraction of the computational time
associated with the ice-sheet model. This allows us to study the impact of subglacial hydrology on ice
dynamics on a large scale and at a limited computational cost, while at the same time keeping the essen-
tial features of complex subglacial hydrology models.

The key simplifying assumptions are given by the following:

1. There is limited temporal melt variability so that the hydrological system is in a quasi-static equi-
librium with respect to the ice-sheet geometry. Therefore, changes in ice geometry will be the main
driver for changes in subglacial water variability (both spatial and temporal).

2. A few kilometers upstream of the grounding line, the hydraulic gradient is approximated by the
geometrical gradient.

3. The drainage density, that is, the number of conduits per grid cell, is uniform.

4. The effective-pressure distribution is not calculated at the sub-grid (local) level.

The first assumption is based on several studies of subglacial hydrology in Antarctica [Le Brocq
et al., 2009; Pattyn, 2010; Kazmierczak et al., 2022], among others, that demonstrate that –contrary to
the Greenland Ice Sheet– there is limited surface meltwater infiltration. Hence, changes in hydrology
are primarily due to changes in ice geometry. Since the time scales associated with water flow are much
smaller than those associated with ice flow, subglacial hydrology automatically adapts to any change in
ice geometry and reaches the associated equilibrium. The second assumption is motivated by a scaling
analysis through an estimation of the dimensionless ratio η := [∇N ]/[∇φ0], where [∇N ] is the scale
of the spatial gradients for the effective pressure and [∇φ0] is the characteristic scale for the geometric
potential gradient. For the former we take [∇N ] = [N ]/[x], with [N ] = 1 MPa and [x] = 103 km. For
the latter we take [∇φ0] = 5× 10−2 MPa km−1, which is a plausible value for ice sheets [Hewitt, 2011].
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This results in η = 2 × 10−2 � 1, suggesting that ‖∇N‖ � ‖∇φ0‖ and ∇φ ≈ ∇φ0. We further
note that profiles obtained with a high-resolution subglacial hydrology model suggest that ∇φ and ∇φ0
have a correlation of at least ∼ 80% for a region that is several kilometers upstream of the grounding line
(see Supplementary Material S1). Finally, the third and fourth assumptions follow from our modeling
approach, where we do not describe the effective pressure at the sub-grid scale and where we assume
the same number of conduits in each grid cell, similar to Gowan et al. [2023]. However, the effective
pressure within a channel may well differ from its value away from the channel, which is something that
is not taken into account. Consequently, these last assumptions are the most likely to be debatable.

Subglacial water routing

Let us denote by Ω the grounded ice-sheet domain where subglacial water is routed. This domain evolves
over time according to both internal conditions (e.g., changes in ice velocity) and external conditions
(e.g., changes in sub-shelf melt). Its boundary is partitioned into non-overlapping subsets Γd and Γgl,
representing the divides of the considered basin and the grounding line, respectively. The subglacial
water flux, qw (m2 s−1), is determined from a mass balance equation that takes the form of a steady-state
continuity equation:

∇ · qw = ṁ

ρw
, in Ω, (6.2a)

qw · n = 0, on Γd, (6.2b)

in which ∇ is the horizontal spatial gradient, n is the outward normal to the boundary Γd, and ṁ is the
melt rate (kg m−2 s−1). The latter is computed from the energy balance within the ice sheet and includes
effects of geothermal heat flux, frictional heating due to the motion of both ice and subglacial water, and
thermal conduction, i.e.,

ṁ = G+ τb · vb − qT
Lw

+ ṁw, (6.3)

where G is the geothermal heat flux, qT is the thermal conduction flux, Lw is the latent heat for ice,
and ṁw = |qw · ∇φ|/Lw is the water melt rate due to the dissipated energy from the subglacial water
conduits. However, we do not include this last term in the computation of the subglacial water in our
simulations as it was found to be negligible compared to the other terms. Note that by writing the system
of equations (6.2), we have assumed that the subglacial water system is in steady state with respect to a
given ice-sheet geometry. As previously mentioned, we justify this assumption by the observation that
the time scales associated with subglacial water flow are much smaller than the ones associated with
ice flow. By construction, this inhibits oscillations in the coupled system formed by the ice sheet and
the subglacial hydrology, which are known to exist for ice streams on time scales of thousands of years
[Robel et al., 2013], well beyond the time scales considered here.

Equation (6.2) is solved at the global scale, using the water routing of Le Brocq et al. [2009] to
compute the water flux based on the geometric potential gradient∇φ0. As the subglacial water flux qw is
in fact proportional to ∇φ instead of ∇φ0, we should use the potential gradient ∇φ itself. Nonetheless,
in view of the assumption that∇φ ≈ ∇φ0 over most of the domain,we choose not to do so as this allows
us to decouple the water routing solver from the effective-pressure calculation.

Subglacial effective pressure

The distributed water flux qw needs to be converted to the local volumetric water fluxQw (m3 s−1) within
the water conduits. Since the distance between the conduits is given by lc, it follows that there are ∆x/lc
conduits within each square grid cell of size ∆x×∆x of the ice-sheet mesh. Hence, the local water flux
is given by [Gowan et al., 2023]:

Qw = ‖qw‖∆x
∆x/lc

= ‖qw‖ lc. (6.4)
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(i) Subglacial water routing
∇ · qw = ṁ/ρw

(ii) Global–local matching
Qw = ‖qw‖ lc

(iii) Effective-pressure param.

N = F(φ0/N∞)︸ ︷︷ ︸
effect of GL

N∞︸ ︷︷ ︸
far field

Thermo-mechanical
ice-sheet model

φ0, ṁ

N

(Le Brocq et al. (2009))

(Gowan et al. (2023))

(Pattyn (2017))

qw

Qw

N

h, v

Figure 6.1: Flowchart of the dynamical linkage between the ice sheet and the subglacial hydrology. At
each time step, the ice-sheet model provides the basal melt rate ṁ and the geometrical potential φ0.
Based on these, the effective pressure is computed in three steps: (i) The globally distributed subglacial
water flux qw is computed according to Le Brocq et al. [2009]; (ii) a connection between both global
and local (conduit) scale is obtained by specifying the distance lc between the conduits [Gowan et al.,
2023], yielding a volumetric water flux Qw in each conduit; (iii) the effective pressure N is computed
for each conduit via a parametrization where F(φ0/N∞) = erf[(

√
π/2)φ0/N∞] serves as a correction

factor for the impact of the grounding line (GL), and where N∞ is the effective pressure far upstream of
the grounding line. This effective pressure is then used by the large-scale ice-sheet model and is the same
for all conduits that belong to the same grid cell.
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We take lc = 10 km, which is similar to the value considered in Gowan et al. [2023] based on observa-
tions of distances between eskers formed under the Laurentide Ice Sheet [Storrar et al., 2014]. However,
we acknowledge that this distance is likely to be a function of the drainage system, but leave this to be
investigated in future work.

While the water mass balance is defined at the global scale, conduits must evolve at the local scale,
which requires water flow to be resolved at this scale, irrespective of whether it is associated with a dis-
tributed or a localized flow pattern, similarly to what is done in Arnold and Sharp [2002], Schoof [2010b],
and Gowan et al. [2023]. Let us denote by S the cross-section area in a conduit, with characteristic width
and thickness L and H (Figure 6.2), so that S = H L. The equations governing the geometry of the
conduits and the flow of water within them in a quasi-static regime are given by the following:

Qw = K Sα‖∇φ‖β−1, in Ω, (6.5a)

‖vb‖hb + Qw‖∇φ‖
ρiLw

= 2n−nAL2|N |n−1N , in Ω, (6.5b)

N = 0, on Γgl, (6.5c)

where hb is the characteristic height of bed obstacles, and A and n are the viscosity parameters in Glen’s
flow law [Glen, 1955; Paterson, 1994], respectively. The first equation is a Darcy–Weisbach constitutive
equation for the water flow with K a conductivity coefficient, and α and β exponents. Following Schoof
[2010b], we assume a turbulent flow, with α = 5/4, β = 3/2, and K = (2/π)1/4√(π + 2)/(ρwf),
where f is a friction coefficient [e.g., Clarke, 1996]. The choice of a turbulent flow is justified for large
water fluxes, which is the case for converging subglacial channels near the grounding line. Other choices
have been considered for subglacial hydrology in the literature; we refer to Hewitt [2011] and Werder
et al. [2013] for laminar parametrizations, and to Hill et al. [2023] for a discussion of the transition
between laminar and turbulent flow and their range of validity. The second equation describes the equi-
librium between opening and closure rates of the conduits, assuming that the hydrological system is at
equilibrium. In general, opening and closing of subglacial water systems are due to various mechanisms
depending on the drainage system and bed type involved. These mechanisms include, amongst others,
melt of the subglacial conduit walls, sliding over bed protrusions, erosion of sediments, regelation, creep
of ice, and creep of sediments [Hewitt, 2011; Bueler and van Pelt, 2015]. Here, we consider opening
rates associated with sliding over bed obstacles, melting of the conduit walls, and a closure rate due to
ice creep [Nye, 1953]. The bed obstacles correspond to bed protrusions if the bed is hard, and to clasts
if the bed is soft, and our model treats these cases the same. Note that the first type of opening rate
is associated with an inefficient drainage system, while the second one is associated with an efficient
one. Finally, the third equation comes from the equality between the subglacial water pressure and the
sea-water pressure at the grounding line [Drews et al., 2017], which holds because we are considering
marine-terminated ice sheets.

The above model (6.5) is similar to the one that was used by Schoof [2010b] to describe both linked-
cavity systems (i.e., inefficient systems) and channels (i.e., efficient systems). Linked cavities have first
been described by Kamb [1987], following earlier theoretical developments related to sliding with cavita-
tion [Lliboutry, 1968; Kamb, 1970; Lliboutry, 1979; Iken, 1981; Fowler, 1986a, 1987]. For larger water
fluxes, the flow in cavities localizes into channels and the system becomes efficient, forming so-called
R-channels [Röthlisberger, 1972], defined as semi-circular tunnels formed within the ice of the glacier.
Such conduits allow water to flow rapidly and more efficiently [Kamb et al., 1985; Iken et al., 1993;
Hubbard et al., 1995; Lappegard et al., 2006].

Our model is also analogous to those that describe ice flow over soft beds. In a soft-bed system,
water can infiltrate the till and weaken its strength, hence increasing basal motion. In Antarctica, till
properties indicate a low porosity and hydraulic conductivity, obstructing the water circulation in the till
itself and leading to water saturation [Tulaczyk et al., 2000a,b]. Indeed, as the drainage rate from the
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Figure 6.2: Schematic representation of a conduit (here, of a channel) in the subglacial hydrological
system, characterized by a cross-sectional width L and thickness H and by a water flux Qw. The ice
sheet has a thickness h, is moving at a velocity v, and overlays the bedrock whose upper surface is
located at z = b. The bedrock type is parameterized by κ, with κ = 1 corresponding to a soft bed, κ = 0
corresponding to a hard bed, and 0 < κ < 1 corresponding to a mixed bed.

till towards a subglacial aquifer is much smaller than the basal melt rate, subglacial till is supposed to
be water-saturated [Bueler and van Pelt, 2015; Kazmierczak et al., 2022]. Water that cannot infiltrate the
till will take the form of a water film that flows around clasts higher than the water thickness [Creyts and
Schoof, 2009; Kyrke-Smith et al., 2014]. For large subglacial water fluxes, the film becomes unstable
and conduits form a channelized network [Walder, 1982]. For ice sheets, efficient conduits on a soft
bed take the form of canals, which are incised in the till. They are typically much wider and shallower
compared to hard-bed channels [Walder and Fowler, 1994]. These different types of drainage systems,
following (6.5), are schematized in figure 6.3. Despite the qualitative differences between soft and hard
bed hydrology, the governing equations are quite similar and mainly differ in their geometry, i.e., how
width L and thickness H of the conduits are related to their cross-sectional area S.

To compute the effective pressure within each conduit, we combine the Darcy–Weisbach equa-
tion (6.5a) with the opening-closing equation (6.5b). This allows us to eliminate S and obtain an equation
for N only. However, the resulting equation takes the form of a non-linear differential equation, which is
not easy to solve. The complexity stems from the fact that∇φ depends onN through∇φ = ∇φ0−∇N .
However, given our second simplifying assumption, we have ∇φ ≈ ∇φ0 outside the vicinity of the
grounding line. We then obtain algebraic equations for the effective pressure and the cross-sectional area
far from the grounding line, N∞ and S∞:

N∞ =
[(

H(S∞)
S∞

)2
ρiLw‖vb‖hb +Qw‖∇φ0‖

2n−nρiLwAS∞

] 1
n

, (6.6a)

S∞ = K−
1
α ‖∇φ0‖

1−β
α Q

1
αw . (6.6b)

Here, we have writtenH(S)/S instead of 1/L to emphasize thatN∞ depends on the way thatH depends
on S, which is a function of the bed type.

The assumption that ∇φ ≈ ∇φ0 breaks down close to the grounding line because N must reach
a zero value there for water to be connected to the ocean, as given by (6.5c). Hence, the effective
pressure decreases significantly in that area, leading to strong gradients in N . A boundary-layer analysis
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Figure 6.3: Schematic representation of the different types of drainage systems considered in this study:
efficient and inefficient drainage systems on soft and hard beds.

actually reveals that N ≈ φ0 close to the grounding line, and suggests that the effective pressure can be
approximated over the whole domain by

N = erf
[√

π

2
φ0
N∞

]
N∞, (6.7)

where erf(x) is the Gauss error function (see appendix B for more details). This approximation has been
verified by comparing it with numerical solutions of the differential equation for the effective pressure.
This equation reveals that the assumption that N ≈ N∞ becomes valid when φ0 becomes of the order
of N∞, which for Thwaites Glacier is typically a few kilometres from the grounding line.

Bed rheology

One element that is lacking from the equations describing conduits is the definition of their geometry, e.g.,
through a relation between their thicknesses and their cross-sectional areas, H = H(S). For hard-bed
systems, we follow Schoof [2010b] by assuming that L = H =

√
S, i.e., we consider conduits that are

equally wide and thick, even though we acknowledge that the theory of linked cavities by Kamb [1987]
was initially developed in the context of shallow cavities. For soft-bed systems, the geometry of conduits
is more challenging. For small subglacial water fluxes, water takes the form of a patchy film. When the
film gets thicker due to an increased water flux, its height will exceed the thickness of the smallest
clasts, so that the film will be flowing in between larger clasts that are separated by a larger distance
[Kyrke-Smith and Fowler, 2014; Kyrke-Smith et al., 2014]. This means that L increases with H . The
relation between both depends on the spatial distribution of the clasts, as well as their thickness [Creyts
and Schoof, 2009]. Here, we assume L ∼

√
S, which is not implausible, as this corresponds to the

parametrization used for cavities on a hard bed. However, a soft bed is qualitatively different from a hard
bed, as the till can be deformed. To take into account this difference, we introduce a factor Ftill, defined
as

L = Ftill
√
S. (6.8)

This deformation factor depends on the difference between ice and till viscosity, as well as the till thick-
ness, and increases with the ability of the till to deform, provided it is sufficiently thick. For a factor
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Ftill > 1, the effective pressure is lower compared to hard-bed systems [Beaud et al., 2022]. For this rea-
son, we here consider Ftill = 1.1. For larger subglacial water fluxes, water flow channelizes into canals,
for which we prescribe a thickness H = H0. Here, we take H0 = 0.1 m as prescribed in Walder and
Fowler [1994] for a sand/silt sediment type located under an ice sheet. For both inefficient and efficient
cases, we then set

H(S) = H0 +
(√

S/Ftill −H0

)
exp (−Qw/Qc) , (6.9)

with Qc a critical water flux value. Then H ≈
√
S/Ftill if Qw � Qc and H ≈ H0 if Qw � Qc. In

our simulations, we take Qc = 1 m3 s−1 which corresponds to the scale of the water flux considered in
Walder and Fowler [1994].

Finally, a mixed bed is composed of regions of various stiffness. We define the state of the bed
through a spatial field κ = κ(x) that describes the proportion of hard (κ = 0) and soft (κ = 1) bed.
An intermediate value of 0 < κ < 1 corresponds to a variation of the till thickness or stiffness, granting
it possesses intermediate rigidity compared to those attributed to the hard and soft cases. For a mixed
bed, the conduit-evolution relation is the same as the one used for the hard and soft cases, where we set
H = (1− κ)Hhard + κHsoft, with Hhard (resp. Hsoft) the thickness associated with a hard (resp. soft)
bed. A mixed-bed system is therefore able to cover the case of linked-cavities, channels, inter-clastic
films, and canals, depending on the value of κ and of the subglacial water flow intensity. A summary of
the differences between these cases can be found in table 6.1.

Type of bed Scaling H = H(S)
Hard L ∼ H H =

√
S

Soft (inter-clastic film) L/H ∼ F 2
till H =

√
S/Ftill

Soft (canal) H ∼ H0 H = H0

Table 6.1: Scaling for the geometry of the conduits of the hydrology system.

The dependence of the far-field effective pressure N∞ with respect to the magnitude of the conduit
water flux Qw is shown in figure 6.4 for hard and soft-bed systems. It clearly shows that the effective
pressure decreases with water flux for inefficient systems. For efficient systems, hard and soft-bed sys-
tems differ, where channels lead to an increase in the effective pressure, contrary to canals. Note that
this last distinction can be explained as follows. For large flux values, the opening-closing relation (6.5b)
essentially becomes a balance between the opening due to melt, which is proportional to the water flux,
and ice creep. Therefore, if the flux further increases, the ice-creep term must also increase. For chan-
nels, the factor L2 in the ice-creep term of (6.5b) increases with the water flux, but at an insufficient rate;
hence, the effective-pressure factor must also increase. By contrast, canals, because of their shallower
form, are such that this factor increases at a much faster rate. As a consequence, the effective pressure
must decrease in that case.

Besides soft, hard, and mixed beds, we also consider entirely efficient and inefficient drainage systems
to gauge the sensitivity of both separately, independent of the subglacial water flux. By default, our model
is such that the subglacial system naturally transitions from one to another depending on the subglacial
water flux. This transition happens because the melting term, which is proportional to the water flux,
becomes dominant over the sliding term in the left-hand side of (5a) as the water flux increases. By
removing the opening term associated with the sliding over obstacles, ‖vb‖hb, from equations (6.5b)
and (6.6a), it is possible to force the model to produce an entirely efficient drainage system. In this case,
we also set Qc = ∞, which guarantees that the conduit geometry is the one of an inefficient system for
soft beds. Similarly, to force an entirely inefficient system, the efficient component, Qw‖∇φ‖/ρiLw, can
be removed from (6.5b), together with the condition that Qc = 0.
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Figure 6.4: Relation between the value of the effective pressure N∞ far from the grounding line and the
magnitude of the conduit water fluxQw, for hard (in blue) and soft (in green) beds. The curves correspond
to equation (6.6a) coupled with the geometric relations shown in table 6.1. The physical parameters are
the ones displayed in the appendix A, with A = 2.4 × 10−24 Pa−3 s−1, ‖vb‖ = 0.5 × 10−5 m s−1, and
‖∇φ0‖ = 100 Pa m−1.

6.3 Idealized experiments

6.3.1 Experimental setup
As a first test of the hydrological model, we consider a flowband geometry for a marine ice sheet, taken
from the benchmark projects MISMIP and MISMIP3d [Pattyn et al., 2012, 2013], and which consists
of a linearly downward-sloping bed towards the ocean (Figure 6.5a). On this bed topography a marine
ice sheet is developed with a spatial resolution of 500 m, following the set-up described in the EXP1
of the MISMIP experiments [Pattyn et al., 2012, see figure 6.5a]. The steady state obtained with these
conditions is considered to be the ‘reference state’.

In our experiments, we use a regularized Coulomb friction law combined with hydrological models,
while the reference state from the MISMIP set-up has been obtained with a Weertman friction law. To
guarantee that the thickness and velocity fields obtained in the reference state are still compatible with a
steady state, we modify the friction coefficient at each position, following the method of Brondex et al.
[2017, 2019]. In practice, an iterative nudging method is used so that the basal friction matches the basal
friction obtained in the reference state. Here, the subglacial hydrologies are generated with a uniform
basal melt rate underneath the grounded ice sheet of ṁ/ρw = 5× 10−3 m a−1, which corresponds to the
mean basal melt rate of the Antarctic Ice Sheet [Pattyn, 2010]. By construction, this method yields initial
states that are steady states and in which both the geometry and the velocity field are identical for each
type of hydrology, allowing a direct comparison between them. The initial ice-sheet effective-pressure
profiles are shown in figure 6.5b.

We consider a uniform hard and soft bed and compare these to an experiment where (i) the effective
pressure is determined according to the HAB model (for ‘height-above-buoyancy’), which assumes a
perfect connection with the ocean, and (ii) basal sliding being independent of subglacial pressure or bed
rheology (NON). The effective pressure in the HAB model is therefore simply defined by

N = ρigh− ρsgmax(0,−b) , (6.10)

where ρs is the density of sea water. It is the most common parametrization of N used [e.g., Tsai et al.,
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Figure 6.5: Initial state for the experiments on idealized conditions, based on the MISMIP geometry
[Pattyn et al., 2012]. (a) The initial MISMIP steady-state ice-sheet geometry; xgl corresponds to the
distance to the grounding line. (b) Flowband profiles of the subglacial effective pressure for HAB (in
purple), HARD (in blue), and SOFT (in green) hydrological models. (c) Gradient of the subglacial
effective pressure near the grounding line for HAB (in purple), HARD (in blue), and SOFT (in green)
hydrological models.

2015].

For all models, the effective pressure is high in the interior and decreases towards the grounding
line, where it becomes zero by definition. For the HAB model, the horizontal gradient of the effective
pressure is the highest, mainly governed by the geometry of the bedrock and surface slopes. For HARD
and SOFT, representing the hard-bed and soft-bed systems, respectively, the effective pressure varies due
to variations in both the subglacial water flux and the cross-sectional size of the conduits, according to
equation (6.6a) (figure 6.5b).

Besides, we also compare the impact of the drainage efficiency, by comparing the cases where only
efficient (eff) or inefficient (ineff) systems are allowed to develop. Note that, by default, the switch
between both systems (efficient/inefficient) is determined based on the subglacial water flux magnitude.

6.3.2 Results: the efficient to inefficient switch

A first experiment aims at understanding the switch between efficient and inefficient drainage systems.
We force the MISMIP flowband setup with a sinusoidal variation in subglacial meltwater that is then
routed across a hard bed (figure 6.6a). The response in effective pressure and sliding velocity do not
simply follow the same sinusoidal pattern, but the ice velocity accelerates and decelerates as a function
of whether the system evolves into an efficient or inefficient drainage system (figure 6.6b and c). Sud-
den speedups correspond to sudden drops in the effective pressure and occur when either the amount
of meltwater diminishes or increases. Note that these sudden changes do not appear if the model is en-
tirely efficient or entirely inefficient. Similar characteristics of the subglacial hard-bed system have been
described by Schoof [2010b] and are shown in figure 6.6d. Although our model is a relatively crude
parametrization of the subglacial system, the intrinsic instability related to the switch between efficient
and inefficient drainage systems is captured.
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Figure 6.6: (a) Forcing of the MISMIP geometry with a sinusoidal variation in subglacial meltwater, for
a hard-bed system. (b) Response to the forcing in effective pressure, and (c) basal sliding velocity (blue:
efficient/inefficient; red: entirely efficient; beige: entirely inefficient). (d) Relationship between sub-
glacial water flux and effective pressure for both the efficient/inefficient drainage system. All quantities
have been evaluated at x = 1000 km, away from the vicinity of the grounding line. The dashed line cor-
responds to equation (6.6a), and Nc and Qc are critical values for a hard-bed system as defined in Schoof
[2010b]. The light pink (resp. dark pink) areas correspond to regions in which the efficient/inefficient
system is an inefficient (resp. efficient) regime.
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Figure 6.7: Grounding-line evolution after a sudden reduction in surface accumulation rate for the MIS-
MIP setup for NON (in grey), HAB (in purple), HARD (in blue), SOFT (in green), HARD efficient
(blue dashed line), HARD inefficient (blue dotted line), SOFT efficient (green dashed line) and SOFT
inefficient (green dotted line) hydrological models.

6.3.3 Results: perturbation experiment
For each hydrological model, the initial steady state is perturbed by instantaneously reducing the net mass
accumulation rate to 0.2 m a−1. The ice sheet is then allowed to evolve for a period of 20,000 years with a
time step of 5 years, eventually reaching a (near) steady state. The hydrological model is updated at each
time step (see also appendix C). The first series of experiments consists of comparing the response of
the different models (NON, HAB, HARD, SOFT), as well as the fully efficient (eff) and fully inefficient
(ineff) cases for HARD and SOFT models to this perturbation. The reduction in surface accumulation
generally leads to a slowdown of the ice velocity as well as a smaller ice sheet. This reduction also
results in a slight grounding-line retreat (NON in figure 6.7). However, linking basal sliding to any of
the hydrological models that are a function of effective pressure at the base of the ice sheet, leads to a
significant grounding-line retreat and overall grounded mass loss (figure 6.7). Of all subglacial models,
HAB is the most sensitive to the forcing, i.e., leading to the highest mass loss after forcing. Several
factors may be responsible for this, as has been shown in figure 6.5c: it is not only that the effective
pressure is low near or at the grounding line, but that also the effective-pressure gradient upstream of the
grounding line is the highest for the HAB model. The fact that the sensitivity of grounding-line retreat
increases with increasing gradient in effective pressure near the grounding line is shown in figure 6.5c.
While this gradient is equally high near the grounding line for all model configurations, it drops quite
quickly with distance from the grounding line for soft-bed systems, resulting in a minimal grounding-line
retreat. Since per definition the NON model, representing the solution independent of effective pressure,
has a zero gradient in effective pressure, it therefore leads to the least grounding-line retreat due to forcing
compared to the other hydrological models, as shown above.

6.4 Application to Thwaites Glacier

6.4.1 Experimental setup
For Thwaites Glacier, necessary input data are the present-day ice-sheet surface and bed geometry from
BedMachine v2 [Morlighem et al., 2019], surface mass balance and temperature from RACMO2.3p2
[van Wessem et al., 2018], and a prescribed field for the geothermal heat flux [Shapiro and Ritzwoller,
2004]. All datasets were resampled at a spatial resolution of 2 km. The simulations are performed at that
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spatial resolution and with a time step of 0.05 years.

Similar to the idealized experiments, a reference state is obtained with a Weertman friction law.
To obtain this state, the basal friction field is iteratively adapted to obtain a steady-state ice sheet with
grounded ice thickness as close as possible to the observed thickness using a nudging method [Pollard
and DeConto, 2012a; Pattyn, 2017; Coulon et al., 2024b]. For the floating ice shelves, the sub-shelf
melt/accretion is adjusted to keep the ice thickness comparable to observed [Coulon et al., 2024b]. In
a second step, the initial friction field corresponding to a given hydrological model is obtained with the
same method as explained for the idealized experiments. Initial bedrock and surface topographies, as
well as the ice velocity field can be found in the Supplementary Material S2, the friction coefficient fields
after initialization in the Supplementary Material S3 and the effective pressure values for HAB, HARD
and SOFT in the Supplementary Material S4. To evaluate the model drift of this initialization, the model
is run forward in time according to the different hydrological models, leading to a mass change after
100 years corresponding to 1–2 mm of sea-level rise. Thanks to this small model drift, the control run
does not have to be subtracted from the forcing runs, as was the case in Kazmierczak et al. [2022]. It
also demonstrates the improvements that have been made in terms of model initialization [Coulon et al.,
2024b].

All simulations start from this initial steady state, corresponding to the 2015 conditions. We then run
the model forward until 2100, under present-day climate conditions (atmospheric and oceanic). Sub-shelf
melt rates are calculated by the PICO model [Reese et al., 2018b] with an effective heat exchange veloc-
ity value of 3× 10−5 m s−1, which gives a realistic melt pattern for present-day ocean temperatures and
salinity. Since these dynamic melt rates replace the optimized basal melting/accretion field, the ice-sheet
system is no longer in steady state anymore and the grounding line reacts to the applied oceanic forcing
by a small retreat over the course of this century (Reference experiment NON in figure 6.8a). Note that
the mass loss for the NON experiment results in sea-level rise on the order of 10 mm by 2100, which is
an order of magnitude larger than the model drift (∼ 1 mm).

This simulation under present-day forcing conditions is repeated for the different subglacial hydro-
logical models HAB, HARD and SOFT. Akin to this, the spatial variability of the HARD and SOFT bed
models is assessed by considering heterogeneous and/or mixed beds for Thwaites Glacier [Muto et al.,
2019; Alley et al., 2022]. By heterogeneous we mean that the spatial field is composed of soft and hard
bed portions, while for a mixed bed, we consider that a particular grid cell is composed of a mix of hard
and soft bed, or 0 < κ < 1. We can therefore have different cases: homogeneous uniform (the whole bed
domain with either κ = 0 or κ = 1) or mixed (the whole bed domain with a constant value 0 < κ < 1),
as well as heterogeneous uniform (the domain composed of portions of hard bed and soft bed) and mixed
(0 ≤ κ ≤ 1). For the heterogeneous uniform beds, Joughin et al. [2009] and Muto et al. [2019] suggest
that soft beds are mainly found in subglacial depressions and hard beds generally on topographic highs,
which allows us to make the separation between both based on the subglacial topography, with the soft
layer occupying the deeper basins. In a first experiment, we set the transition between soft and hard bed
at a bedrock elevation of 1000 m below sea level (figure 6.9c). In a second experiment a transition zone is
considered (heterogeneous mixed), where κ is linearly varied between a depth of 500 and 1500 m below
sea level (figure 6.9d). We tested the influence of the nature of the drainage system itself by applying
only inefficient, efficient or both drainage systems for the different bed types described above.

6.4.2 Results: subglacial hydrology on homogeneous beds

As mentioned above, even under present-day atmospheric and oceanic forcing, the reference experiment
NON leads to a slight retreat of the grounding line over the period 2015-2100 that continues thereafter.
This is in line with large-scale model experiments [Coulon et al., 2024b] showing that Thwaites Glacier
may collapse, i.e., that it will continue to retreat even if the forcing is completely stopped, under present-
day climatic conditions on time scales of several centuries.
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Figure 6.8: Effect of the subglacial hydrological models in the Thwaites Glacier set-up. Present-day
climate conditions (atmospheric and oceanic) are applied from 2015 to 2100. (a) Grounding-line posi-
tions of Thwaites Glacier (bedrock elevation (m) in the background) in 2100 under constant present-day
climate conditions (atmospheric and oceanic) for the NON (black), HAB (purple), HARD (blue) and
SOFT (green) models. The inset in the upper right corner shows the position of Thwaites Glacier within
Antarctica. (b) Sea-level contribution from Thwaites Glacier from 2015 to 2100 under constant present-
day climate conditions (atmospheric and oceanic) for the NON (grey), HAB (purple), HARD (blue),
SOFT (green), HARD efficient (blue dashed line), HARD inefficient (blue dotted line), SOFT efficient
(green dashed line) and SOFT inefficient (green dotted line).
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The same retreat behavior is observed for the experiment including subglacial hydrology. However,
in all cases, subglacial hydrology accelerates the retreat of the grounding line by 2100 (figure 6.8a). For
instance, by 2100, we observe a sea-level contribution of around 50 mm for HAB, 95 mm for HARD,
20 mm for SOFT, while only 10 mm for NON (figure 6.8b). It is important to note that for all the sub-
glacial models a collapse of Thwaites Glacier is engaged under present-day climate forcing conditions.
However, only the hard-bed model (HARD) results in a collapse in less than 100 years. Not all major
mass losses coincide with a distinct grounding-line retreat, as the HAB model exhibits significant thin-
ning of the ice for a modest grounding-line retreat compared to the other subglacial models.

The efficiency of subglacial drainage is tested for both a uniform homogeneous soft and hard bed
(figure 6.9a and b). As demonstrated in the idealized experiments, it is also possible to force the drainage
to be efficient (eff) or inefficient (ineff). The results corroborate the previous experiment, i.e., that for a
hard bed, a large amount of ice is lost by 2100 compared to the soft bed. The only exception is that a
similar amount of (high) mass loss is observed for the inefficient drainage systems both for soft and hard
beds (figure 6.9a and b).

6.4.3 Results: subglacial hydrology on heterogeneous beds

Figure 6.9c and d show the grounding-line positions for a heterogeneous bed, where the subglacial basins
of Thwaites are considered to be soft bed, and the topographic highs hard bed. As previously mentioned,
the limit between both is set at a depth of 1000 m below present-day sea level. A peculiarity of this
setting is that the present-day grounding line is situated on a hard bed, and that the soft bed region is only
reached further inland. In the first experiment (figure 6.9c) the transition between both bed rheologies is
sharp (uniform heterogeneous); in the second experiment (figure 6.9d) there is a transition zone (mixed
heterogeneous). Despite the hard bed conditions in the present-day grounding zone, a larger mass loss by
2100 is observed for the mixed case. Similar to the previous experiment, the largest mass loss is observed
for inefficient drainage, irrespective of the bed rheology.

The results on mixed heterogeneous bed experiments show that the nature of the bed near the ground-
ing line determines the sensitivity of the glacier. With a sharp transition, the motion of the grounding line
over the hard-to-soft bed system will lead to a stabilization effect delaying grounding-line retreat. Such
stabilization is less pronounced for a mixed bed, where hard-bed physics also play a role in the transition
zone. Similar results are presented in the Supplementary S4 with the hard and soft bed zones locations
exchanged.

6.5 Discussion

We have developed a novel and unified subglacial hydrological model that incorporates efficient and inef-
ficient drainage and that applies to both soft and hard beds. It represents different discharge types, ranging
from channels and canals to cavities. While the model is a simplification compared to higher-resolution
hydrological models, it seems to capture the main characteristics of subglacial flow, and incorporates the
feedbacks associated with basal sliding and the ice dynamical response.

In this section, we first discuss the influence of the hydrological model and the bed type. We then
describe the hydrological feedback that may explain the increased sensitivity of the ice sheet due to
subglacial hydrology. Finally, we comment on the limitations of the model and suggest improvements to
our model.
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Figure 6.9: Grounding-line positions of Thwaites Glacier in 2100 under constant present-day climate
conditions (atmospheric and oceanic) for the subglacial model (inefficient and efficient, entirely efficient,
and entirely inefficient) on (a) a uniform homogeneous hard bed; (b) a uniform homogeneous soft bed;
(c) a heterogeneous uniform bed, with a sharp transition and (d) a heterogeneous bed, with a transition
zone of mixed bed.
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6.5.1 Influence of subglacial conditions

Our experimental results show that subglacial hydrology and the rheology of the bed (soft, hard, and
its related spatial variability) have a major impact on the dynamics of marine ice sheets and the West
Antarctic Ice Sheet in particular. Taking into account subglacial hydrology systematically leads to a
higher ice-sheet sensitivity for a given climate forcing. This is mainly due to the reduction of the effec-
tive pressure near the grounding line, which migrates upstream with a retreating grounding line.

Traditionally, large-scale ice-sheet models tend to calculate effective pressure at the base of the ice
sheet using the HAB parametrization, based on the height above flotation. This model assumes that sea
water infiltrates at the grounding line, increasing the water pressure and reducing the effective pressure
in the grounding zone. This leads to significant increases in basal sliding near the grounding line. The
idealized experiments clearly demonstrate that this model leads to the highest mass loss after a perturba-
tion and probably overestimates the contribution of ice sheets to climate forcing.

However, in more complex settings, such as Thwaites Glacier, the HAB model remains sensitive, but
also allows the grounding line to stabilize during its retreat on subglacial ridges. These bed peaks are
known to have a strong impact on grounding-line dynamics, and their influence on ice-sheet stability is
the subject of recent research [Robel et al., 2022a].

Results of our simplified hydrological model show that sliding over a hard bedrock (HARD) leads to
the largest reduction of the grounded domain and the highest sea-level contribution for a given forcing,
while sliding over a soft bed (SOFT) yields the smallest grounding-line retreat and sea-level contribution
(figure 6.8). In terms of drainage efficiency, the concentration of water flow in efficient conduits, espe-
cially in canals, but also for channels, slows down the retreat of the grounding line, which aligns with
one of the conclusions of Schoof [2010b]. This can be explained by a higher basal friction due to the
higher effective pressure in hard-bed channels [Hager et al., 2022], and by the lower effective pressure
variation in canals, leading to a reduced impact of subglacial hydrology on the basal friction field. It is
interesting to note that in the case of hard beds, our effective-pressure results are similar to those obtained
by Hager et al. [2022] with the MALI model [Hoffman et al., 2018], using a subglacial drainage model
built on cavities and channels.

Besides the hard bed, inefficient systems also lead to the highest mass loss of Thwaites Glacier over
this century. We observe that the largest mass loss occurs when the effective pressure gradient is large
towards the grounding line and less so when effective pressure is low, such as in canals (figure 6.8b, see
video supplements). This observation aligns with the work of Iken [1981], specifying that the highest
velocities is not observed where effective pressures is lowest, but rather when cavities enlarge due to an
increase in subglacial water pressure. Therefore, inefficient systems on both soft and hard beds show
very similar results, which is consistent with the representation of the considered drainage systems. Such
systems are quite similar as bumps in the hard system correspond to the clasts in the soft system. How-
ever, the lower effective pressure in the soft-bed system, associated with the deformation of saturated till,
slows down grounding-line retreat.

In general, a soft bed near the grounding line slows down its retreat under climatic forcing. However,
transitions between bed types also influence the speed of the grounding-line retreat. A binary switch from
hard to soft is more likely to stabilize the grounding-line position than a smooth transition. Moreover,
taking the total proportion between soft and hard beds and applying it uniformly across the entire domain
does not allow to capture the variation introduced by the spatial variability of bed rheology and the
associated drainage system.
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6.5.2 Hydrological feedback

The increased sensitivity observed with hydrological models can be explained by a positive feedback
between grounding-line migration and the reduction in basal friction at or near the grounding line. For-
mally, frictional stress τb can be split into two components: τ̃b, which is the value of the friction stress
with the initial effective-pressure field, and ∆τ̃b, which is the deviation with respect to this value:

τb = τ̃b + ∆τ̃b, (6.11)

where

τ̃b(t) = CN0

( ‖vb‖
‖vb‖+ v0

) 1
m vb
‖vb‖

, (6.12a)

∆τ̃b(t) = C [N(t)−N0]
( ‖vb‖
‖vb‖+ v0

) 1
m vb
‖vb‖

, (6.12b)

and where N0 = N(t = 0) is the effective pressure for the initial state. Because of the initialization pro-
cedure, τ̃b is initially the same for every hydrological model. In particular, it is also equal to the absence
of subglacial hydrology (NON). Therefore, ∆τ̃b stems from the evolution of the subglacial system and
its influence on basal friction. In other words, ∆τ̃b is associated with the spatial and temporal evolution
of the effective pressure.

Due to the evolution of subglacial hydrology in time, an instability mechanism may appear near the
grounding line, as the effective pressure is always low, and the gradient of the effective pressure is the
largest (figure 6.5). The zone of low effective pressure migrates with a migrating grounding line. Such
migration obviously does not take place when the subglacial hydrological field is kept constant or when
subglacial hydrology is not linked to basal sliding (or not considered; NON). For a retreating grounding
line, such linkage actually amplifies grounding-line retreat, as the friction stress close to the grounding
line is also reduced following this retreat, leading to a positive feedback mechanism. This reduction in τb
stems from a reduction of τ̃b, but most importantly from a large value in the magnitude of ∆τ̃b, which
is typically negative. This essentially explains the distinction between the HAB and the HARD/SOFT
models. The HAB model is purely local as it depends on the geometry of the ice sheet at the position
where the effective-pressure is evaluated. By contrast, the HARD/SOFT models also depend on the sub-
glacial water flux and on the distance with respect to the grounding line. This distinction allows for a
perturbation near the grounding line to ‘propagate’ upstream for the latter models. As this is not the case
for HAB models, it potentially enables the grounding line to stabilise near a ridge, for instance. This
distinction can be observed in the video supplement.

The qualitative assessment can be quantified in the case of a flowline according to the shallow-shelf
approximation. Following previous work [Weertman, 1974; Schoof, 2007b, 2012], a steady-state marine
ice sheet is unstable if

∂sq − a < 0, (6.13)

in which q is the flux at the grounding line, s is a coordinate parameterizing the position along the ice
sheet, and a is the net mass accumulation rate. For a large class of friction laws [Schoof, 2007c; Tsai
et al., 2015; Gregov et al., 2023], the flux at the grounding line can be approximated as

q = q0 C
− 1
m+1 [−(ρw/ρi)b]r , (6.14)

where q0, r > 0. It follows that for a uniform friction coefficient, a steady-state position on a up-sloping
(retrograde) bed is always unstable, i.e.,

∂sq − a = −rq(ρw/ρi) [−(ρw/ρi)b]−1
∂sb− a < 0. (6.15)
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However, an ice-sheet on a downward-sloping bed can be stable. For a spatially variable friction coeffi-
cient C = C(s), the instability condition becomes

− q C−1∂sC

m+ 1 − rq(ρw/ρi) [−(ρw/ρi)b]−1
∂sb− a < 0. (6.16)

This inequality can be achieved more easily for a downward-sloping (prograde) bed, compared to equa-
tion (6.15). Indeed, if ∂sC is positive and large at the grounding line, then the left-hand side of (6.16)
is reduced, and the instability condition is easier to fulfill. The initialization produces this condition for
the HAB, HARD and SOFT models, contrary to the NON case, where C(s) has to increase considerably
close to the grounding line to compensate for the vanishing effective pressure in order to obtain a fric-
tional stress similar to the one obtained by the absence of hydrology. Overall, this implies that the ice
sheet is less stable, and therefore exhibits a higher sensitivity to external forcings. This instability was
explored in greater details with a similar model in Lu and Kingslake [2024].

6.5.3 Model limitations
Although our simulations for hard, soft, and mixed beds allow to better assess the variability of the
response of ice sheets to a climate forcing, there remain some limitations. Our subglacial hydrology
models do not include variations of drainage density or of effective pressure below the resolution of the
ice-sheet discretization. This is a clear limitation, as we have shown that the spatial variability plays an
important role in the numerical experiments. From a physical perspective, improvements could be made
on the representation of physical processes. For example, till water pressure is omitted in the soft bed
model, and till deformation is only crudely parameterized. Water flow within the till and exchanges with
the neighbouring area (especially in the case of a variation in ice thickness) could well modify subglacial
water flow and therefore ice-sheet dynamics [Robel et al., 2023]. Recent studies have also shown that sea-
water intrusion may impact grounding-line dynamics through modifying the subglacial hydrology, hence
increasing the instability [Robel et al., 2022b; Bradley and Hewitt, 2024]. This also suggests that the
grounding line should be considered a grounding zone that allows for such intrusion, in agreement with
recent observations [Rignot et al., 2024]. Furthermore, erosion, deposition and sedimentary transport
processes that are not taken into account could play a role in the variability of effective pressure at
the base of the ice sheet [Ng, 2000; Hewitt and Creyts, 2019; Stevens et al., 2022]. Finally, even if
our results remain qualitatively valid if the parameter settings are modified (see appendix D), the latter
could be subject to more scrutiny, ideally within a probabilistic framework [Bulthuis et al., 2019; Verjans
et al., 2022; Coulon et al., 2024b]. This analysis could then be used to quantify the uncertainties in the
projections obtained in the simulations.

6.6 Conclusions
We developed a novel and simplified model of subglacial hydrology that applies to both soft and hard
beds, thereby representing both efficient and inefficient discharge types. The hydrological model is dy-
namically linked to an ice-sheet model (Kori-ULB) via a regularized Coulomb friction law. Despite its
relative simplicity, our model allows to obtain results that agree with multiple previous studies. Our
experiments are in agreement with Kazmierczak et al. [2022], showing that the type of subglacial hy-
drology modulates the basal sliding and that considering subglacial hydrology enhances the ice-sheet
response to sliding. Our tests on the spatial and temporal variability of bed rheology also show that a
soft-bed system in the grounding zone tends to stabilize a grounding line more easily compared to other
bed rheologies. By investigating various drainage efficiencies, our results concur with those of Schoof
[2010b] by showing that a channelization leads to ice deceleration as well as grounding-line stabilization.
The switch between efficient and inefficient drainage has clearly been shown in our experiments where
subglacial water input has been varied. Moreover, our results agree with Iken [1981] by the fact that the
highest sliding is not occurring at the highest subglacial water pressure, but rather where basal cavities
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are growing (i.e., when the basal water pressure is increasing downstream). Furthermore, we obtain the
largest response in grounding-line retreat for those subglacial conditions where the gradient in effective
pressure is the largest, not where its value is the lowest. Therefore, highly saturated grounding zones on
soft beds seem to be less responsive than hard-bed systems, where such large gradients in the vicinity of
the grounding line occur. While our results for Thwaites Glacier for a hard bed are qualitatively similar to
those of Hager et al. [2022], the ability of model to reproduce such results could be studied in more detail.

Overall, our study also emphasizes the necessity for more accurate data and observations of the bed
rheology of the Antarctic Ice Sheet at different spatial scales [Parizek et al., 2013; Koellner et al., 2019;
Muto et al., 2019; Alley et al., 2022; Li et al., 2022; Aitken et al., 2023]. Similarly, the observation
of efficient and inefficient subglacial water drainage systems and a connection with numerical results is
required [Schroeder et al., 2014; Hager et al., 2022; Dow et al., 2022].
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6.7 Appendix A: List of symbols

Symbol Description Units Value

α Exponent in Darcy–Weisbach relation - 5/4
β Exponent in Darcy–Weisbach relation - 3/2
Γd Boundary of the basin m -
Γgl Grounding line m -
κ Indicator of the heterogeneity content of the bed - -
ρi Density of ice kg m−3 9.17× 103

ρs Density of sea water kg m−3 1.03× 103

ρw Density of fresh water kg m−3 1.00× 103

τb Basal shear stress Pa -
φ Hydraulic potential Pa -
φ0 Geometric potential Pa -
Ω Grounded ice domain m -

Table 6.2: List of symbols used for the model (Greek alphabet).

Symbol Description Units Value

A Viscosity parameter in Glen’s flow law Pa−ns−1 -
b Bedrock elevation m -
C Friction coefficient - -
f Friction coefficient for a turbulent flow - 0.10
Ftill Factor for the conduits geometry in a till - 1.10
g Gravitational acceleration m s−2 9.81
G Geothermal heat flux W m2 -
h Ice thickness m -
hb Thickness of obstacles m 0.10
H Thickness of conduits m -

Hhard Thickness of conduits over a hard bed m -
Hsoft Thickness of conduits over a soft bed m -
H0 Thickness of canals m 0.10
K Conductivity coefficient in Darcy–Weisbach relation kgs1 ms1 ss3 -
L Width of conduits m -
lc Distance between conduits m 1.00× 104

Lw Latent heat of fusion of water J kg−1 3.35× 105

m Power-law exponent - 3.00
ṁ Melt rate kg m−2 s−1 -
ṁw Melt rate associated with the subglacial water flow kg m−2 s−1 -
n Exponent in Glen’s flow law - 3.00
n Normal vector to a boundary m -
N Effective pressure Pa -
N∞ Far-field effective pressure Pa -
qw Subglacial water flux m2 s−1 -
qT Thermal conduction flux W m−2 -
Qw Volumetric water flux in a conduit m3 s−1 -
Qc Critical water flux in a conduit m3 s−1 1.00
S Cross-sectional area of conduits m2 -
S∞ Far-field cross-sectional area of conduits m2 -
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v Ice velocity m s−1 -
vb Basal ice velocity m s−1 -
v0 Velocity threshold in the friction law m s−1 9.51× 10−6

x Position m -

Table 6.3: List of symbols used for the model (Latin alphabet). Here, s1 = 1 − β, s2 = 2β − 2α + 1,
s3 = 2β − 3.

6.8 Appendix B: The effective pressure near the grounding line: a
boundary-layer analysis

In this appendix, we apply a boundary-layer analysis of the hydrology system close to the grounding line,
and derive an approximate expression of the effective pressure in the area.

6.8.1 Problem statement
We consider a streamline of subglacial water parametrized by a parameter s ∈ [0, sgl], where s = sgl
corresponds to the grounding-line position. All the parameters are fixed and the magnitude of the geo-
metric potential gradient, Ψ = ‖∇φ0‖, is assumed to be constant and known. The governing equations
of the hydrology system are then expressed as

N = φ0 − φ, (6.17a)

∂tS + ∂sQw = Ṁ

ρw
, (6.17b)

Qw = −KSα|∂sφ|β−2∂sφ, (6.17c)

∂tS = ‖vb‖hb + |Qw ∂sφ|
ρiLw

− 2n−nAL2|N |n−1N , (6.17d)

where Ṁ is the net melt rate, associated with the amount of water that reaches the conduit. As boundary
conditions, we require a zero water flux at the ice divide, i.e., Qw = 0 at s = 0, and a continuity of the
subglacial water pressure with the ocean water, i.e., N = 0 at s = sgl. We consider hard beds, for which
L(S) =

√
S. For canals, L(S) = S/H0, and the derivation and results are quite similar.

6.8.2 Dimensionless equations
We first make the problem and the unknowns dimensionless. We therefore write

ŝ = s

[s] , t̂ = t

[t] , φ̂ = φ

[φ] , N̂ = N

[N ] , Q̂w = Qw
[Qw] , Ŝ = S

[S] . (6.18)

The scales are chosen as follows. First, we set [s] = sgl and [φ] = Ψ[s]. We further choose [t] to be a
time scale associated with ice flow. The other scales, [N ], [Qw], and [S], are chosen such that

[Qw]
[s] = Ṁ

ρw
, [Qw] = K[S]αΨβ−1, 1

ρiLw
[Qw]Ψ = 2n−nA[S][N ]n. (6.19)

This leads to the following dimensionless formulation of the problem:

ηN̂ = −ŝ− φ̂, (6.20a)

τ1 ∂t̂Ŝ + ∂ŝQ̂w = 1, (6.20b)

Q̂w = −Ŝα|∂ŝφ̂|β−2∂ŝφ̂, (6.20c)

τ2 ∂t̂Ŝ = ν + |Q̂w ∂ŝφ̂| − Ŝ|N̂ |n−1N̂ , (6.20d)
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for 0 < ŝ < 1, with boundary conditions Q̂w(ŝ = 0) = 0 and N̂(ŝ = 1) = 0. Four dimensionless ratios
appear here:

η := [N ]/[s]
Ψ , ν := ρiLw‖vb‖hb

[Qw]Ψ , τ1 := [S][s]
[t][Qw] , τ2 := ρiLw[S][s]

[t][Qw][φ] . (6.21)

The first ratio compares the magnitude of the spatial variation of N with respect to the geometric po-
tential gradient Ψ. It thus follows that if η � 1, then ∂sφ ≈ Ψ, while for η � 1, ∂sφ ≈ −∂sN .
The second parameter compares the two possible terms that lead to an opening of the cavities or of the
channels: it compares the opening due to sliding over bumps of the bedrock and the melt of the conduit
boundaries. The two last ratios compare the characteristic times related to changes in the water flux and
in the channel thickness with respect to the characteristic time of ice flow. In particular, if τ1, τ2 � 1,
which we anticipate, then the time dependency disappears from the problem and the hydrological system
is in a steady state.

In what follows, we drop the hats on the dimensionless variables to simplify the notations.

6.8.3 Outer solution
For commonly used parameters, we obtain η, τ1, τ2 � 1 and ν ∼ 1. This suggests to treat η, τ1, and τ2
as small parameters of the problem. The leading-order solution is then given by

Qw = s, S = s
1
α , φ = −s, N = s−

1
nα (ν + s) 1

n . (6.22)

This effective pressure has originally been obtained by Schoof [2010b]. It is such that N(s = 1) =
ν1/n, so the Dirichlet boundary condition at the grounding line is not fulfilled. This suggests that there
exists a boundary layer close to the grounding line, in which N quickly decreases to reach a zero value
(figure 6.10a). We therefore refer to the leading-order solution (6.22) as the outer solution, and the inner
solution, associated with the boundary layer, must be found to obtain an acceptable expression of the
effective pressure.

6.8.4 Inner solution
We first eliminate Qw and S from the dimensionless system of equations (6.20) to get the following
equation for N only:

ν + s|1 + η∂sN | = s
1
α |1 + η∂sN |

1−β
α |N |n−1N , (6.23)

for 0 < s < 1 and with N(s = 1) = 0. The boundary layer at the grounding line suggests the
introduction of a scaling in which ∂sN becomes of order O(1). We therefore introduce X = η−1(1− s)
and rename N = N . Then, at leading order,

ν|1− ∂XN|
β−1
α + |1− ∂XN|

β+α−1
α = |N |n−1N , (6.24)

for X > 0 and with N (X = 0) = 0. Because the inner solution must join the outer solution, we also
have the compatibility conditionN → (ν+ 1) 1

n as X → +∞. Finding the solution of this leading-order
problem is not trivial because of its non-linearity. Nonetheless, we approximate it by an expression Ñ .
We require that this approximate has the correct behavior over the boundaries of the boundary layer, that
is, Ñ ∼ X as X → 0 and Ñ ∼ (ν + 1) 1

n as X → +∞. We find that the following expression is a good
approximation of N for ν . 1; see figure 6.10b:

Ñ = erf
[√

π

2
X

(ν + 1) 1
n

]
(ν + 1) 1

n , (6.25)

where erf(x) = (2π)−1/2 ∫ x
0 exp(−t2) dt is the Gauss error function.
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Figure 6.10: Inner, outer, and composite solutions of the dimensionless problem, for η = 10−2 and ν =
1. (a) Outer solution: numerical solution to the system of equations (6.20) (continuous line) and leading-
order solution (6.22) to the outer problem (dashed line). (b) Inner solution: numerical solution to the
equation (6.24) (continuous line) and approximate solution (6.25) (dashed line). (c) Composite solution:
numerical solution to the system of equations (6.20) (continuous line) and composite solution (6.26)
(dashed line).

6.8.5 Composite solution
The composite solution, which is valid over the whole domain, is obtained by summing the inner and
outer solutions and subtracting the overlap in the matching area. This leads to the following expression:

N(s) = erf
[√

π

2
η−1(1− s)
(ν + 1) 1

n

]
(ν + 1) 1

n + s−
1
nα (ν + s) 1

n − (ν + 1) 1
n . (6.26)

It is possible to go back to the original variables to obtain the expression of the effective pressure as a
function of the original parameters. To do so, we introduce

N∞(s) =
[

ρiLw‖vb‖hb + (ρ−1
w Ṁs)Ψ

2n−nρiLwA(ρ−1
w Ṁs) 1

αK−
1
αΨ 1−β

α

] 1
n

, (6.27)

which is the outer solution written in its dimensional form. The effective pressure is then given by

N(s) = erf
[√

π

2
Ψsgl

N∞(sgl)

(
1− s

sgl

)]
N∞(sgl) +N∞(s)−N∞(sgl). (6.28)

Because N∞ does not change much over the boundary layer, the previous expression can be replaced by

N(s) = erf
[√

π

2
Ψsgl
N∞(s)

(
1− s

sgl

)]
N∞(s) (6.29a)

= erf
[√

π

2
φ0(s)
N∞(s)

]
N∞(s). (6.29b)

This composite solution closely matches the numerical solution to the problem (figure 6.10c).

6.9 Appendix C: Effect of the coupling frequency between the hy-
drological and ice-sheet models

Here, we investigate the effect of the coupling frequency between the hydrological and the ice-sheet
models. We show results for both MISMIP and Thwaites setups, and show that the hydrological model
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Figure 6.11: Effect of the coupling frequency between the hydrological and ice-sheet models: grounding-
line position after the forcing as a function of the ratio between the time step ∆thydro of the hydrological
model and the time step ∆tice of the ice-sheet model. Practically, we fix the ice-sheet time step and
increase the time step of the hydrological model to obtain several values for ∆thydro/∆tice. (a) MISMIP
configuration: grounding-line position after the forcing. (b) Thwaites configuration: sea-level contribu-
tion after the forcing.

must be updated at a frequency that is at least of the same order of magnitude as the update frequency
of the ice-sheet model. As a consequence, no subglacial hydrology model, no matter how complex, can
improve ice-sheet simulations involving grounding-line motion if it is not updated at a sufficiently high
frequency. In particular, considering a hydrological model during the initialization of an ice-sheet model
but not during a forward simulation is virtually useless as the impact of the hydrological model is then
almost nonexistent.

6.9.1 MISMIP
Figure 6.11a shows the grounding-line position after the same forcing as the one that was considered
in section 6.3, for various update frequencies of the hydrological model. If the hydrology model is not
regularly updated, then the results resemble the no-subglacial-hydrology case NON. This last case is
evidently not affected by the chosen time steps. A higher sensitivity of the subglacial hydrological model
also requires higher update frequency rates.

6.9.2 Thwaites
We can make the same observations in figure 6.11b as those made for the MISMIP configuration. A
difference remains in the time scales considered for the two studies, and by the fact that HAB does not
exhibits the largest sensitivity.

6.10 Appendix D: Influence of the unconstrained parameters of the
hydrological model

We performed a sensitivity analysis of the least constrained parameters of our model, i.e., lc,Qc, and Ftill
(figure 6.12). It can be observed that lc has only a limited effect for hard beds, while it has a more
pronounced impact for soft beds. From equation (6.4), a change in lc results in a change in the water
flux Qw, which will be important if water flow transitions from an efficient to an inefficient flow (or the
reverse). However, for hard beds, the entirely efficient or inefficient cases yield similar results (figure
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Figure 6.12: Sensitivity analysis of the results with respect to the parameters lc, Qc, and Ftill. The set-up
is the same as the one described in the forcing experiments over Thwaites (subsection 6.4.2; subglacial
hydrology on homogeneous beds), except that different values of these parameters are chosen. The
shaded areas correspond to the ranges lc ∈ [5, 15] km, Qc ∈ [0.5, 1.5] m3 s−1, and Ftill ∈ [1, 2], and the
lines correspond to the nominal values considered in the original experiment.

6.8b). On the contrary, for soft beds, the difference between the entirely efficient or inefficient cases
is more pronounced (figure 6.8b), and it follows that there is a stronger dependence with respect to lc.
For Qc and Ftill, the impact is limited. Finally, it can be noted the spread in the results increases over a
time.
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Singularity at pinning points

Singular behavior of marine ice sheets at pinning points:
numerical simulations and implications for grounding-line modeling

In prep.

Marine ice sheets play a crucial role in the climate system, as they are large ice masses interacting with
the ocean. These ice sheets consist of grounded and floating regions, separated by the grounding line,
which is key to understanding their dynamics. The balance between ice gain (from snow accumulation)
and loss (through basal melt and iceberg calving) drives the evolution of ice sheets. This report focuses
on the effects of pinning points –which can be defined as locations at which the floating region becomes
locally grounded due to localized bedrock features– on ice-sheet dynamics. We show that pinning points
can introduce a singular behavior in the governing equations for ice flow, making the linearized system
ill-defined. This singularity arises due to a different momentum balance over the grounded and floating
regions. Importantly, this singularity is independent of the discretization and appears even over smooth
beds and with friction laws that vanish at the grounding line. Based on numerical experiments, we also
show that these pinning points are such that a regularized formulation, in which the transition between
the grounded and floating regions is done smoothly, leads to numerical simulations that are qualitatively
different from the original, unregularized formulation of the problem. Finally, we suggest ways to handle
these singularities and to improve the modeling of marine ice sheets and of their grounding lines.

7.1 Introduction
Marine ice sheets are essential components of the climate system. They consist of large masses of ice in
contact with the ocean. These ice sheets are made up of two regions: a grounded region, where the ice is
in contact with the bedrock, and a floating region, where the ice floats on seawater. These two regions are
separated by the grounding line, which, as will be described later, is an important quantity in studying
the dynamics of marine ice sheets.

The evolution of marine ice sheets over time depends on the imbalance between the gain of ice, that
comes from snow accumulation at the upper surface, and the loss of ice, which is mainly due to basal melt
below the ice sheet and calving due to icebergs detaching from the ice front. Under evolving atmospheric
or oceanic conditions, ice sheets may therefore gain or loose mass. As a consequence, their equilibrium
is modified, which leads to a modification of their geometry. Ice takes the form of a shear-thinning fluid
that flows under its own weight, so that this change in geometry results in a change in the velocity pattern,
which itself leads to a change in the discharge at the ice front. Hence, more ice could be released in the

149
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ocean, which would lead to a modification of the sea level.

To understand their behavior, marine ice sheets have been studied using both analytical and numer-
ical methods. In seminal papers, Schoof [2007b,c, 2012] showed, based on a boundary-layer analysis,
that unbuttressed marine ice sheets whose grounding lines lie on upward-sloping bedrock are unstable.
This has important implications; in particular, it suggests that the West Antarctic Ice Sheet is particularly
sensitive to climate change: because of the topography of its bed, a perturbation in the position of the
grounding line could lead to further retreat, accelerating the rate of retreat and eventually leading to a
collapse [Pattyn, 2018; Coulon et al., 2024b]. The influence of bed topography has also been highlighted
in a recent study by Robel et al. [2022a]. Based on numerical experiments, they showed that ice sheets
exhibit ambiguous behavior at (sharp) bed peaks, either persisting at or retreating from these peaks.

In this report, we investigate the effect of pinning points on ice-sheet dynamics, in particular the
effect on their grounding lines. Pinning points are closely related to bed peaks, ice rises, and ice rum-
ples [Matsuoka et al., 2015]. Ice rises and rumples are features that are such that the floating parts of
ice sheets, called ice shelves, are locally grounded in bed peaks. Depending on whether the ice flow is
diverted around, or over this area, the feature is called a rise, or a ridge. Because they provide buttressing
to the ice flow through friction with the bedrock, they can offer additional stability to the ice sheet. These
positions are therefore known as pinning points, because they lead to grounding lines that are ‘pinned’ at
these locations. The impact of pinning points on grounding-line dynamics has previously been studied
through numerical simulations [Favier et al., 2012; Favier and Pattyn, 2015; De Rydt and Gudmundsson,
2016]. However, a theoretical understanding of their effects remains unexplored.

Here, we show that a singular behavior can appear at pinning points. This behavior is such that the
linearized problem formed by the coupled mass-balance and momentum-balance equations becomes ill-
defined, as components of the gradient of the momentum-balance equation become infinite. Importantly,
this singularity can occur with smooth bed profiles as it is an inherent feature of the contact nature of the
model, where there is a change in the stress balance in the basal and driving stresses across the grounding
line. Accordingly, such singularity is expected to arise independently of the discretization that is con-
sidered in numerical simulations. This raises interesting questions, both about of the model itself and
numerical simulations. In particular, this suggests that there is at the moment a bias in the treatment of
the grounding line in the numerical simulations of marine ice sheets. Indeed, these typically decouple
the mass-balance equation from the momentum-balance equation, therefore avoiding the singularity, but
also departing from the initial problem formulation. A possibility to solve this issue would be to develop
a new model formulation that allows for the presence of a ‘grounding zone’, for example through a reg-
ularized formulation that considers a smooth transition between the grounded and floating regions. Such
an intermediate region is further corroborated by recent theoretical and observational studies associated
with sub-shelf melt in a zone near the grounding line [Robel et al., 2022b; Bradley and Hewitt, 2024;
Rignot et al., 2024].

This report is structured as follows. First, in section 7.2, we present the mathematical model for ice
flow in marine ice-sheet systems. Then, in section 7.3, we study the linearized system that is obtained
from the mass-balance and momentum-balance equations. We highlight the potential for a singularity to
appear at pinning points, and subsequently introduce a regularized approach that allows this singularity
to be removed thanks to a smoothing of the grounding-line definition. In section 7.4, we conduct a series
of numerical experiments to investigate the effect of pinning points on grounding lines. We consider both
stationary and transient results, and compare both the original and the regularized approach. Finally, we
discuss our results in section 7.5 and conclude on their relevance in section 7.6.
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7.2 Model

7.2.1 Notations
We use the following system of notations. If Ω is a subset of Rd (d = 1, 2), then its measure in Rd is
noted |Ω|. We use standard letters for scalars (e.g., a), bold lowercase letters for vectors (e.g., a), and
bold upppercase letters for second-order tensors (e.g.,A). If f = f(x) is a scalar field, then∇f denotes
its gradient such that ∇f :=

∑
k(∂f/∂xk) ik in which xk if the k-th component of x and ik is the k-th

unit vector. The Hessian of f is further denoted hessf :=
∑
k,l(∂2f/∂xk∂xl) ik ⊗ il in which ⊗ is the

dyadic product. If f = f(x) is a vector field, then its divergence and gradient are respectively denoted
by divf :=

∑
k ∂fk/∂xk and ∇f :=

∑
k,l(∂fk/∂xl)ik ⊗ il with fk the k-th component of f . If

F = F (x) is a second-order tensor field, then its divergence is written as divF :=
∑
l(∂Fk,l/∂xl) ik

with Fk,l the (k, l) components of F . Finally, if F and G are second-order tensor fields, then we write
their tensor contraction (or Frobenius inner product) as F : G =

∑
k,l fk,lgk,l.

7.2.2 Strong formulation
We consider the ice flow of an isothermal marine ice sheet. We use a reduced-order model known as
the shallow-shelf approximation [Morland, 1987; MacAyeal, 1989; Schoof and Hewitt, 2013]. It can be
viewed as a depth-integrated model in which it is assumed that vertical shear can be neglected, so that ice
essentially flows in a sliding motion. Such an approximation is frequently used to model fast-flowing ice
streams [e.g. Schoof, 2007b,c; Bueler and Brown, 2009; Winkelmann et al., 2011; Pattyn, 2017]. It is for-
mally exact for ice shelves (the floating parts of ice sheets), and a good approximation for the grounded
parts of ice sheets close to the grounding line. Importantly, the vertical normal stress is cryostatic under
this assumption.

The domain of interest, covered by ice, is denoted Ω. It is a connected and bounded subset of Rd,
with d = 1 if we consider a two-dimensional ice sheet and d = 2 for a three-dimensional ice sheet. It
does not evolve with time. A point in Ω is denoted by x. The problem then consists of determining two
fields: the ice thickness h : Ω×]0,T [→ R≥0, and the horizontal ice velocity u : Ω×]0,T [→ Rd, where
T > 0 is the time over which the problem is considered (Fig. 7.1).

Domain

The domain Ω is partitioned into three subsets: the grounded domain, Ωg, where ice is grounded, the float-
ing domain, Ωf , where ice is floating, and the grounding line, Γgl, where ice switches from a grounded to
a floating position. Under the shallow-shelf approximation, Archimedes’ principle allows the following
characterization of these sets:

Ωg := {x ∈ Ω : G(x, t) > 0} , (7.1a)
Ωf := {x ∈ Ω : G(x, t) < 0} , (7.1b)
Γgl := {x ∈ Ω : G(x, t) = 0} , (7.1c)

where G is the flotation function

G(x, t) := h(x, t) + ρw
ρ
b(x), (7.2)

with ρ the ice density, ρw the water density, and b the bedrock elevation. In contrast with Ω, both Ωg, Ωf ,
and Γgl are functions of time, so we may write Ωg = Ωg(t), Ωf = Ωf(t), and Γgl = Γgl(t). Moreover,
they are not necessarily connected regions. The boundary Γ := ∂Ω of the domain is itself partitioned into
several parts: the ice divide Γd, where ice starts to flow, a free-slip boundary Γfs, which can be associated
with a symmetry plane, and a calving front Γcf , where ice detaches into icebergs.
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Figure 7.1: Schematic of a marine ice sheet, which is characterized by a thickness h and a horizontal
velocity u. Those fields are defined over a domain Ω which is partitioned into the grounded region Ωg,
the floating region Ωf , and the grounding line Γgl. The boundary Γ of the domain Ω is split into three
parts: the ice divide Γd, the free-slip boundary Γfs, and the calving front Γcf . In this figure, b denotes the
bedrock elevation and a the net mass accumulation rate.

In order to simplify the analysis of the problem, we have implicitly made a series of simplifying
assumptions that we now detail. Firstly, we have assumed that the bedrock elevation does not evolve and
takes the form of a smooth prescribed field b = b(x). This stationarity assumption amounts to neglecting
the glacial isostatic adjustment mechanism associated with the reaction of the Earth’s surface to changes
in ice geometry [Clark and Lingle, 1977; Mitrovica et al., 2001; Coulon et al., 2021]. Second, the ice
front Γcf is considered fixed, although in reality it moves according to ice-front advection and calving
events [Benn et al., 2007; Joughin et al., 2012]. We note that the physics of these ice-loss mechanisms
are not yet fully understood. It is this assumption that allowed us to say that Ω does not evolve with time.
Third, we consider that the grounding line is such that |Γgl| = 0, which guarantees that it is an object
whose dimension is (at most) that of a line, hence its name [we refer to Pegler, 2018b, for the description
of a set-up in which this condition does not hold]. All these assumptions are justified by the fact that we
here wish to focus on the motion of the grounding line alone.

Balance equations

The equations that govern the flow of ice are mass-balance and momentum-balance equations. These are
given by the following system of equations over the grounded and floating domains, respectively:

∂th+ div(hu) = a, in Ωg×]0,T [, (7.3a)
div [2h η(u) Σ(u)] + τb = τg, in Ωg×]0,T [, (7.3b)

and

∂th+ div(hu) = a, in Ωf×]0,T [, (7.4a)
div [2h η(u) Σ(u)] = τf , in Ωf×]0,T [. (7.4b)
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The first equations in these systems, equations (7.3a) and (7.4a), take the form of transport (hyperbolic)
equations for the ice thickness, with a the net mass accumulation rate, equal to the snowfall input at the
upper surface of the ice sheet, minus the melt rate at its base. The other equations in these systems, (7.3b)
and (7.4b), are elliptic equations for the ice velocity. They establish a balance between the divergence of
the viscous stresses, the driving stresses due to gravity, and, for the grounded domain, friction stresses.
The absence of inertial terms comes from the spatial and temporal scales associated with ice flow. Here,
Σ(u) is the membrane-deformation tensor,

Σ(u) := D(u) + [trD(u)]I, (7.5)

with D(u) := [∇u + (∇u)T]/2 the horizontal strain-rate tensor and I the identity tensor. The
membrane-deformation tensor plays an analogous role to the strain-rate tensor in the Navier–Stokes
equations, but for the shallow-shelf approximation in which the complexity of the model is reduced. The
effective viscosity, η(u), is given by

η(u) := 1
2A
− 1
n

(
‖D(u)‖2∗ + δ2

η

) 1−n
2n , ‖D(u)‖∗ :=

√
1
2
[
tr((D(u))2) + (trD(u))2], (7.6)

in which A > 0 and n > 1 are viscosity parameters associated a the power-law rheology, known in the
glaciology literature as Glen’s flow law [Glen, 1955]. The regularization parameter δη � 1 is introduced
to guarantee that the viscosity stays finite if the ice undergoes a rigid-body motion.

There are several possible parametrizations for the basal friction stress τb. Here, we consider two
of such friction laws. The first one is the most common one in glaciology and is known as Weertman’s
friction law [Weertman, 1957]. It assumes a power-law relation between the friction stress and the ice
velocity:

τb = −C‖u‖p−1u, (7.7)

with C > 0 and 0 < p < 1. The second one is known as the regularized Coulomb friction law [Schoof,
2005; Joughin et al., 2019] and is expressed as

τb = −µN
( ‖u‖
‖u‖+ (µN/C)1/p

)p
u

‖u‖ , (7.8)

where µ > 0 is an additional friction coefficient and N represents the effective pressure, defined sub-
sequently. This law is structured such that it transitions smoothly between two regimes: the Weertman
friction law at low velocity magnitudes or large effective pressures, and a Coulomb-type behavior at high
velocity magnitudes or low effective pressures. The latter scenario is anticipated near the grounding
line, whereas the former is expected farther inland within the ice sheet. Formally, these two regimes are
described as follows:

τb ∼ −C‖u‖p−1u, for ‖u‖ � (µN/C)1/p, (7.9a)

τb ∼ −µN
u

‖u‖ , for ‖u‖ � (µN/C)1/p. (7.9b)

Form a physical point of view, such a behavior is desirable as it can be used to model the effect of
subglacial cavitation over hard beds or of bed deformation at the ice-bed interface over soft beds [Schoof,
2005; Zoet and Iverson, 2020]. Accordingly, the regularized Coulomb law has been proposed as a unified
friction law by the glaciological community [Minchew and Joughin, 2020]. The effective pressure N
introduced in (7.8) is defined as an effective difference between the pressure applied by the ice sheet on
the underlying bed and the subglacial water pressure. The most simple model for N assumes a perfect
connection of the subglacial water with the ocean [e.g., Tsai et al., 2015], so that, over the grounded
region,

N = ρgh− ρwgmax(0,−b). (7.10)
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Interestingly, close to the grounding line b ≤ 0, so N = ρg G. To avoid any confusion with the regular-
ization that is introduced later on in this report, we now refer to this law as the ‘Schoof’ friction law.

Finally, τg and τf denote the driving stresses, that are due to gravity, over the grounded and floating
regions, respectively. In general, the driving stress may be written as ρgh∇s with g the acceleration of
gravity and in which s denotes the upper-surface elevation, so that gravity leads to a flattening of ice
sheets. The distinction between τg and τf stems from the different form that this surface elevation takes
over the grounded and the floating regions: for the former, the surface elevation is the sum of the bedrock
elevation and of the ice thickness: s = b+ h. By contrast, for the latter, it is directly proportional to the
ice thickness, as a consequence of the flotation state of ice shelves: s = (1− ρ/ρw)h. It follows that

τg = ρgh∇(b+ h), (7.11a)

τf = ρ

(
1− ρ

ρw

)
gh∇h. (7.11b)

Initial, transmission, and boundary conditions

To close the system of equations, it is necessary to add a collection of initial, transmission, and boundary
conditions. Firstly, we prescribe the initial ice-sheet geometry:

h = h0, on Ω× {t = 0}. (7.12)

We also enforce transmission conditions, namely, we require that both the ice thickness and the normal
component of the stress tensor are continuous across the grounding line:

JhK = 0, at Γgl×]0,T [, (7.13a)
J2h η(u) Σ(u) · nK = 0, at Γgl×]0,T [, (7.13b)

where J·K is the jump operator and n is the normal vector to the grounding line. The former is formally
defined, for a field f = f(x), as

Jf(x)K := lim
y→x
y∈Ωf

f(y)− lim
y→x
y∈Ωg

f(y), ∀x ∈ Γgl, (7.14)

provided these limits exist.

Finally, the following boundary conditions are imposed:

u = 0, on Γd×]0,T [, (7.15a)
u · n = 0, on Γfs×]0,T [, (7.15b)

(I − n⊗ n) [2h ηΣ] · n = 0, on Γfs×]0,T [, (7.15c)
[2h ηΣ] · n = τcf , on Γcf×]0,T [, (7.15d)

with n the outward normal to the boundary of the domain. Equation (7.15a) states that ice is motion-
less at the ice divide. Equation (7.15b) prohibits the penetration of ice through the free-slip boundary,
while equation (7.15c) enforces a zero shear value at that boundary. Finally, equation (7.15d) is a con-
sequence of the continuity of the horizontal component of the stress tensor at the ice-ocean interface:
the horizontal component of the (depth-integrated) stress tensor in the ice must be compensated by the
(depth-integrated) water pressure in the ocean, which is such that

τcf = 1
2ρ
(

1− ρ

ρw

)
gh2 n. (7.16)
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7.2.3 Weak formulation
Here, we consider the weak formulation associated with the system of equations formed by equations
(7.3), (7.4), (7.12), (7.13), and (7.15). To do so, we introduce the following functional spaces:

Sh := {h : Ω→ Rwithh sufficiently smooth}, (7.17a)

Su := {u : Ω→ Rd withu sufficiently smooth, u|Γd
= 0, u · n|Γfs

= 0}, (7.17b)

and we further set Sφ := Sh and Sφ := Su. By ‘sufficiently smooth’, we here mean that the integrals
appearing in the resulting weak formulation, obtained hereafter, exist. Multiplying the mass and momen-
tum balance equations (7.3)–(7.4) by test functions φ ∈ Sφ and φ ∈ Sφ and integrating them over Ω
leads to the following equations:

∫

Ω
∂thφdΩ +

∫

Ω
div(hu)φdΩ =

∫

Ω
aφdΩ, (7.18a)

∫

Ω
div[2h ηΣ] · φ dΩ +

∫

Ωg

τb · φ dΩ =
∫

Ωg

τg · φ dΩ +
∫

Ωf

τf · φ dΩ. (7.18b)

For the purposes of this report, we already discretize this system in time. We write ∂th = (h − h̃)/∆t
with h̃ the (known) thickness obtained at time t, h the (unknown) thickness at time t + ∆t, and ∆t the
time step. We also understand u as the (unknown) horizontal velocity at time t+ ∆t. Then, we integrate
the equations by parts, and apply the boundary conditions (7.15) together with the definition of the set
Sφ. This yields the following formulation:

Formulation (Weak formulation). Find (h,u) ∈ Sh × Su s.t.
∫

Ω
(h− h̃)/∆t φdΩ +

∫

Γcf

hu · nφdΓ−
∫

Ω
hu ·∇φ dΩ−

∫

Ω
aφdΩ = 0, (7.19a)

∫

Ω
2h ηΣ :∇φ dΩ +

∫

Ωg

(τg − τb) · φ dΩ +
∫

Ωf

τf · φdΩ +
∫

Γcf

τcf · φ dΩ = 0, (7.19b)

for all (φ,φ) ∈ Sφ × Sφ.

We may write this concisely as

Fh(h,u;φ) = 0, ∀φ ∈ Sφ, (7.20a)

Fu(h,u;φ) = 0, ∀φ ∈ Sφ. (7.20b)

Note that by formally taking the limit ∆t→ +∞, i.e., by removing the first term in (7.19a), we recover
a steady-state formulation. We also note that the study of the momentum-balance equation alone has
already been done in the literature, in particular in its variational formulation; we refer the interested
reader to Schoof [2006, 2010a] and Jouvet [2015].

7.3 Grounding-line motion and singularity

7.3.1 The linearized problem
In practice, to solve the system of equations (7.20), one may rely on a Newton procedure. After dis-
cretizating in space the equations, one linearizes them around a current estimate (h,u). This gives a
system of algebraic linear equations that can be solved, leading to an updated estimate. By repeating
this process, a solution to the problem may be found. The study of this linearized problem is of great
interest as it allows us to determine whether or not a solution can be found using this iterative method
and, if so, how quickly it will converge to that solution. It can also be used to determine the stability of



156 Chapter 7. Singularity at pinning points

equilibrium positions. Here we consider the linearization of (7.20) without prior discretization. The mo-
tivation behind this choice is to show properties of the linearization that cannot be attributed to a specific
discretization and are therefore expected to hold independently of the discretization adopted.

The linearization of the system of equations (7.20) reads as follows:

Formulation (Linearized problem). Find (δh, δu) with (h+ δh,u+ δu) ∈ Sh × Su s.t.

〈DhFh(h,u;φ), δh〉+ 〈DuFh(h,u;φ), δu〉 = −Fh(h,u;φ), ∀φ ∈ Sφ, (7.21a)

〈DhFu(h,u;φ), δh〉+ 〈DuFu(h,u;φ), δu〉 = −Fu(h,u;φ), ∀φ ∈ Sφ. (7.21b)

Here,DhFh andDuFh are the Gâteaux derivatives of Fh with respect to h and u, respectively. Similarly,
DhFu and DuFu are the Gâteaux derivatives of Fu with respect to h and u, respectively. The symbol
〈·, ·〉 denotes the duality pairing so that, for example, 〈DhFh(h,u;φ), δh〉 denotes the Gâteaux differen-
tial of Fh with respect to h, evaluated at (h,u;φ), and in the direction δh. The analytical expressions of
the terms appearing in (7.21) can be found in the appendix A.

A difficulty appears in the computation of DhFu. Indeed, the residual Fu takes the form of a sum of
integrals, some of which being defined over the sets Ωg and Ωf . Such terms are those associated with the
driving stresses τg and τf , and with the friction stresses τb. Because Ωg and Ωf depend on h, computing
the Gâteaux derivatives of these terms leads to two types of contribution: one that is associated with a
change in the grounded or floating domain, and one that is associated with a change in the integrated
quantity (i.e., a change in the stresses). To formalize this, we write

〈DhFu(h,u;φ), δh〉 = 〈Dh|Γgl
Fu(h,u;φ), δh〉+ 〈Dh|δΓgl

Fu(h,u;φ), δh〉, (7.22)

in which Dh|Γgl
Fu is associated with a change of the integrated quantity, the grounded and floating re-

gions being held fixed. By contrast, Dh|δΓgl
Fu is associated with a change in the grounded and floating

regions; this time, it is the integrated quantities that are being held fixed. The latter can therefore be
interpreted as a shape derivative [see, e.g., Allaire et al., 2021].

These different derivatives may be obtained by explicitly writing the dependency of Fu with respect
to h through a presence in the integrands, and through the moving grounded and floating regions. To do
so, we assume u and φ fixed and write

Fu(h,u;φ) = G(h, Ωg(h), Ωf(h)), (7.23)

where G has the structure described above. It follows that the different terms in the right-hand side
of (7.22) can be computed as

〈Dh|Γgl
Fu(h,u;φ), δh〉 := lim

θ→0

G(h+ θ δh, Ωg(h), Ωf(h))−G(h, Ωg(h), Ωf(h))
θ

, (7.24a)

〈Dh|δΓgl
Fu(h,u;φ), δh〉 := lim

θ→0

G(h, Ωg(h+ θ δh), Ωf(h+ θ δh))−G(h, Ωg(h), Ωf(h))
θ

. (7.24b)

The first term can be easily computed. For the second term, we have the following result. Its proof,
together with that of the other propositions of this report, can be found in the appendix B.

Proposition (Expression of the shape derivative). If ‖∇G‖ 6= 0 at Γgl, then

〈Dh|δΓgl
Fu(h,u;φ), δh〉 =

∫

Γgl

(τg − τf − τb) · φ ‖∇G‖−1δhdΓ. (7.25)
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Several comments can be made regarding this result. We first note that the expression for the shape
derivative involves the inverse of ‖∇G‖. This factor can be interpreted as a grounding-line sensitivity: it
corresponds to the number of meters the grounding line advances per meter of grounding-line thickness
increase. Given its importance and since the above result requires ‖∇G‖ 6= 0 to hold, we investigate it
further in the next subsection. We further note that, importantly, the shape derivative arises because the
governing equations differ over evolving domains (the grounded and floating regions). If this were not
the case, such a contribution would naturally not appear.

7.3.2 Singularity
The previous discussion reveals the importance of the magnitude of the gradient of the flotation func-
tion G. To clarify our vocabulary, we introduce the following definition.

Definition (Pinning point). A pinning point xgl ∈ Γgl is a point that is such that ‖∇G‖ = 0 at xgl.

Such a definition is purely mathematical. Nevertheless, an equivalent geometrical characterization can
be obtained, linking this definition to what is meant by a pinning point in a glaciological context. The
following result formalizes this.

Proposition (Geometrical characterization of a pinning point). A pinning point xgl ∈ Γgl is a point that
is such that the ice-sheet lower surface is locally tangent to the bedrock.

It follows that, at a pinning point, the shape-derivative expression (7.25) does not hold, as ‖∇G‖−1

is formally infinite at such a position. Physically, the grounding line is displaced by a quantity that is
not proportional to the perturbation δh; in other words, the grounding-line sensitivity is infinite. This
singularity can be attributed to several physical situations. An example is the situation of an ice shelf that
becomes locally in contact with a bump in the underlying bedrock. At the moment when the ice shelf is
in contact with the underlying bedrock bump, it is tangential to it, so we are indeed in the context of a
pinning point. If the ice shelf gets thicker, there will be the creation of one or several grounding lines in
that area, associated with the local anchoring of the shelf in the bedrock.

Pinning points can be classified based on the following result.

Proposition (Local behavior around a pinning point). Around a pinning point xgl, the flotation function
admits the following expansion:

G(x) = 1
2(x− xgl) · hessG(xgl) · (x− xgl) +O(‖x− xgl‖3). (7.26)

It follows that a pinning point can be characterized according to the Hessian of G at xgl. For a two-
dimensional ice sheet (d = 1), the Hessian is a scalar, so the local behavior of the flotation function
depends on the sign of this scalar. In particular, if it is non-zero, then the flotation has a local parabolic
profile. For a three-dimensional ice sheet (d = 2), pinning points can be classified according to the
eigenvalues λ1, λ2 of the Hessian. For example, the surface z = G(x) then locally corresponds to an
elliptic paraboloid if λ1 and λ2 are non-zero and of the same sign and to a hyperbolic paraboloid if λ1
and λ2 are of opposite sign.

7.3.3 A regularized approach
The singularity mentioned above appears as a feature that is associated with both the fact that the ground-
ing line moves whenever there is a change in the ice thickness, and the fact that there are different equa-
tions that govern the ice-sheet dynamics over the grounded and floating regions. It follows that a way to
avoid having to deal with this singularity consists in adopting a regularized approach in which there is
no abrupt change in the governing equations when switching between the grounded and floating regions.
Specifically, one can develop a formulation in which the transition between the grounded and floating
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regions occurs progressively.

To obtain this formulation, we start from the original expression of the momentum-balance equa-
tion (7.19b):

∫

Ω
2h ηΣ :∇φ dΩ +

∫

Ωg

(τg − τb) · φdΩ +
∫

Ωf

τf · φdΩ +
∫

Γcf

τcf · φdΩ = 0. (7.27)

This can be equivalently written as follows:
∫

Ω
2h ηΣ :∇φdΩ +

∫

Ω
1g(τg − τb) · φ dΩ +

∫

Ω
1fτf · φ dΩ +

∫

Γcf

τcf · φ dΩ = 0, (7.28)

in which we have introduced the indicator function 1g = 1g(x) (resp. 1f = 1f(x)) which is equal to one
if x ∈ Ωg (resp. x ∈ Ωf ) and to zero otherwise. A regularized formulation is then obtained by replacing
the indicator functions with smooth versions of these functions that approximate them. Here, we consider
the following expressions for the smoothed indicator functions (we denote them with hats):

1̂g(x) := 1
1 + exp(−G(x)/G0) , (7.29a)

1̂f(x) := exp(−G(x)/G0)
1 + exp(−G(x)/G0) , (7.29b)

in which the length G0 > 0 plays the role of a regularization parameter. These smoothened functions are
presented in figure 7.2. We note that these functions have the following properties:

0 < 1̂g(x) < 1, (7.30a)

0 < 1̂f(x) < 1, (7.30b)

1̂g(x) + 1̂f(x) = 1, (7.30c)

1̂g(x)→ 1g(x), as G0 → 0, (7.30d)

1̂f(x)→ 1f(x), as G0 → 0, (7.30e)

for almost all x ∈ Ω. Any pair of smooth functions that obey these equations is likely to be a valid
candidate for the construction of a regularized formulation. By replacing the indicator functions with
their smoothened counterparts, equation (7.28) becomes

∫

Ω
2h ηΣ :∇φdΩ +

∫

Ω
1̂g(τg − τ̂b) · φ dΩ +

∫

Ω
1̂fτf · φ dΩ +

∫

Γcf

τcf · φ dΩ = 0. (7.31)

Therefore, the friction stress τb and the driving stresses τg and τf are now considered over the full do-
main of the marine ice sheet. From a mathematical point of view, the effect of these stresses becomes
non-local in the sense that their influence is considered to be non-zero outside the regions on which they
were originally supposed to apply. Nonetheless, their contribution is weighted by a factor that decreases
exponentially fast with respect to the distance from the original region on which these stresses were orig-
inally defined.

Note that we have also replaced the basal friction stress τb by a smoothened counterpart τ̂b in (7.31).
The reason to do so is that that the friction stress is originally defined over the grounded region, and
extending its definition over the floating region might lead to a non-smooth expression. It turns out that
for the Weertman friction law, this issue does not appear. However, the Schoof friction law involves the
effective pressure which by definition vanishes over the floating region. The effective pressure is then
continuous but not continuously differentiable across the grounding line. It follows that the friction stress
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Figure 7.2: Smoothened functions used to define the regularized formulation of the problem.
(a) Smoothened version of the indicator function 1g for the grounded region Ωg. (b) Smoothened version
of the indicator function 1f for the floating Ωf . (c) Smoothened version of the effective pressure N .

itself is not smooth across the grounding line. A possibility to avoid this consists in regularizing the
effective pressure by replacing it with a smooth version N̂ that also depends, for consistency, on G0:

τ̂b = −µN̂
( ‖u‖
‖u‖+ (µN̂/C)1/p

)p
u

‖u‖ , N̂ := N +
√
N2 + (ρgG0)2

2 ; (7.32)

see figure 7.2c.

Overall, the following formulation is obtained, which is the regularized version of the system of
equations (7.19).

Formulation (Regularized weak formulation). Find (h,u) ∈ Sh × Su s.t.
∫

Ω
(h− h̃)/∆t φdΩ +

∫

Γcf

hu · nφ dΓ−
∫

Ω
hu ·∇φdΩ−

∫

Ω
aφdΩ = 0, (7.33a)

∫

Ω
2h ηΣ :∇φdΩ +

∫

Ω
1̂g(τg − τ̂b) · φ dΩ +

∫

Ω
1̂fτf · φ dΩ +

∫

Γcf

τcf · φ dΩ = 0, (7.33b)

for all (φ,φ) ∈ Sφ × Sφ.

Such a regularized approach has been considered in the finite-element ice-sheet code Uà [Gudmundsson
et al., 2012]. This code has been verified in inter-comparison studies [Pattyn et al., 2013; Cornford et al.,
2020; Levermann et al., 2020] and used to obtain projections in Antarctica [e.g., Reed et al., 2023]. The
use of a regularized friction term has also been considered in Pattyn et al. [2006].

7.4 Numerical experiments
In this section, we conduct a series of numerical experiments in order to investigate the following ele-
ments:

(i) the presence of discontinuities in the stress distribution across the grounding line;

(ii) the influence that pinning points have on ice-sheet dynamics;

(iii) the effect of the friction law on the two previous points;

(iv) the differences in the results obtained with the original and regularized formulations.
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The experiments are designed to be as simple as possible so that the results are easy to interpret. In
what follows, we first describe the numerical set-up that consists in the description of the physical and
numerical parameters and of the bed elevation profiles. Then, we show various numerical results. We
first compute the stress distribution profiles at steady state (with the Weertman/Schoof friction laws).
We also compute bifurcation plots corresponding to the set of steady-state solutions associated with
various values of the parameter a (with the Weertman/Schoof friction laws, with the original/regularized
formulations, and with/without pinning points). Finally, we compute the transient evolution of marine
ice sheets, starting from a steady state that is perturbed due to a variation in the parameter a (with the
Weertman/Schoof friction laws, with the original/regularized formulations, and with/without pinning
points).

7.4.1 Set-up
We consider two-dimensional ice sheets, defined over a domain Ω =]0,xcf [, in which xcf , the position
of the calving front, is set to xcf = 1800 km. The position x = 0 km corresponds to the ice divide. The
physical parameters used in the numerical experiments and their values are shown in table 7.1.

Description Symbol Value Units

Ice density ρ 910 kg m−3

Water density ρw 1028 kg m−3

Gravity acceleration g 9.81 m s−2

Friction coefficient C 7.624× 106 Pa m−1/3 s1/3

Friction coefficient µ 0.4 -
Ice viscosity coefficient A 4.9× 10−25 Pa−3 s−1

Ice viscosity exponent n 3 -
Net mass accumulation rate a 0.3 m year−1

Viscosity regularization parameter δη 10−12 s−1

Table 7.1: (Default) physical parameters used in the numerical experiments.

Two bedrock profiles are considered. The first one serves as a reference bedrock and is such that we do
not expect any pinning point to appear. It takes the form of a polynomial expression in the position:

bbg(x) = b0 + b2

(
x

L0

)2
+ b4

(
x

L0

)4
+ b6

(
x

L0

)6
. (7.34)

Such an expression is frequently used in numerical experiments that involve marine ice sheets [e.g.,
Pattyn et al., 2012]. We also consider a bedrock profile with a smooth bed peak that should lead to the
creation of a pinning point:

bpp(x) = bbg(x) +App exp
[
−1

2

(
x− xpp
Lpp

)2
]

. (7.35)

The values of the parameters appearing in these expressions are specified in table 7.2.

The numerical simulations are obtained based on a finite-element discretization of the weak formula-
tions (7.19) and (7.33). The mesh is uniform and consists of 104 elements, i.e., the resolution is set to
∆x = 180 m. The original formulation involves elements that contain both grounded and floating re-
gions. To obtain an exact integration in the finite-element assembly, we apply a quadrature rule on each
grounded and floating sub-regions over these elements [see Seroussi et al., 2014, SEP2]. Finally, for the
transient simulations, we stabilize the hyperbolic part of the equations by adding an artificial diffusive
term in the mass-balance equation [Kelly et al., 1980; dos Santos et al., 2021].
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Description Symbol Value Units

Bed amplitude b0 +0729.00 m
Bed amplitude b2 −2184.80 m
Bed amplitude b4 +1031.72 m
Bed amplitude b6 −0151.72 m
Characteristic length L0 7.5× 105 m
Bed amplitude App 370 m
Characteristic length Lpp 105 m
Bump location xpp 1.3× 106 m

Table 7.2: Parameters for the definition of the two bed profiles considered in the numerical experiments.

7.4.2 Stress distribution

We start with the solutions associated with the default physical parameters (Tab. 7.1) and with the first
bedrock profile. The numerical solutions are obtained by considering the steady-state version of the orig-
inal formulation. Specifically, a Newton scheme is applied to the discretized version of the non-linear
system of equations (7.19), until convergence is reached in which the residuals of both the mass-balance
and momentum-balance equations are sufficiently small. The obtained profiles are shown in figure 7.3
for both the Weertman and Schoof friction laws.

These results highlight the different stress regimes over the grounded and floating regions. For the
Weertman friction law, the momentum balance over the grounded region essentially corresponds to a
balance between the friction and driving stresses, the divergence of the viscous stresses being negligible.
Such behavior is expected; see, e.g., Sergienko and Wingham [2022]. At the grounding line, the basal
friction switches from a relatively high value of ∼ 200 kPa to a zero value over the floating region. To
guarantee that the momentum-balance equation is conserved, the magnitude of the driving stress is then
also greatly reduced. We note that the divergence of the viscous stresses jumps is also discontinuous at
the grounding line, but the jump is much smaller than the one of the other components of the momentum
balance.

These results can be compared with those obtained with the Schoof friction law. For that law, the
stress distribution is seemingly similar far from the grounding line. This is expected as in that case, the
velocities are relatively low, so that the Schoof friction law essentially reduces to the Weertman fric-
tion law (see equation (7.9a)). However, the behavior close to the grounding line is different. Firstly,
the grounding-line position is located slightly upstream (∼ 60 km) compared to the Weertman case. The
upper surface of the ice sheet is also more flat near the grounding line, which is a feature of the Coulomb-
like behavior in that region [Tsai et al., 2015]. In terms of the momentum-balance equation, there is a
boundary layer close to the grounding line in which each type of stress (viscous, driving, and friction)
contributes to the equilibrium [Gregov et al., 2023]. There is again a discontinuity in the stress distribu-
tion, in that both the divergence of the viscous stresses and the driving stress are discontinuous across the
grounding line. Nonetheless, this magnitude of the jump is much smaller compared to the one that was
observed for the Weertman friction law (∼ 40 kPa).

7.4.3 Steady states

The second type of results consists in bifurcation plots (also called bifurcation diagrams). Here, we
view a as a free parameter and obtain the set of steady-state solutions associated with varying values of
this parameter. In order to obtain two-dimensional plots, we use the grounded-domain extent, |Ωg|, to
represent the state of the system. Hence, bifurcation pots characterize the relation between |Ωg| and a.
The rationale behind the use of |Ωg| is that it has a simple interpretation for simple configurations in



162 Chapter 7. Singularity at pinning points

−1,000

0

1,000

2,000

z
(m

)

−2

−1

0

1

2
×105

τ
(P

a)

τv
τd
τb

0 500 1,000 1,500
−1

0
1

×105

x (km)

F
u

(P
a)

670 675
x (km)

τv
τd
τb

0 500 1,000 1,500
x (km)

610 615
x (km)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.3: Steady-state solutions corresponding to the original formulation with the Weertman (left)
and Schoof (right) friction laws. (a), (b), and (c): geometry, stress distribution, and residual of the
momentum-balance for the solution obtained with the Weertman friction law. (d), (e), and (f): geometry,
stress distribution, and residual of the momentum-balance for the solution obtained with the Schoof
friction law. The smaller darker panels correspond to a zoom near the grounding line, which is drawn as
a black dashed vertical line. These panels have been obtained with a higher resolution (∆x = 18 m). For
the panels associated with the stress distributions, τv, τd, and τb respectively correspond to the divergence
of the viscous stresses, to the driving stresses, and to the basal friction stresses.

which the ice is in a grounded state and then becomes floating (see, e.g., Fig. 7.3). Indeed, in that case,
|Ωg| is equal to the grounding-line position xgl, which is the unique element of the grounding-line set:
Γgl = {xgl}. Bifurcation diagrams involving xgl are standard in glaciology [e.g., Schoof, 2007b; Pat-
tyn et al., 2012; Mulder et al., 2018]. In particular, bifurcation plots have previously been obtained for
the Weertman and Schoof friction laws for such simple configurations based on boundary-layer anal-
yses [Schoof, 2007b,c; Tsai et al., 2015; Gregov et al., 2023]. The advantage of using |Ωg| is that this
variable makes sense for more complex configurations –which we will encounter here– in which Γgl does
not contain a single element.

To obtain bifurcation plots, we rely on numerical continuation methods [Allgower and Georg, 1990;
Govaerts, 2000]. We consider the two formulations (original/regularized), the two bed types, and the two
friction laws (Weertman/Schoof). For the regularized formulation, we rely on a pseudo-arclength con-
tinuation method which is the standard continuation method [Keller, 1977, 1987; Mulder et al., 2018].
However, we do not apply this method for the original formulation, as it requires the governing equa-
tions to be sufficiently regular (typically, at least continuously differentiable), which is not the case here.
Hence, we use an alternative continuation method which is based on a scalar constraint function that is
modified at each step of the continuation method. These two methods are described in the appendix C.
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Figure 7.4: Bifurcation curves of the grounded-region extent |Ωg| expressed as a function of the net
mass accumulation rate a for the first bed type and for the Weertman friction law. (a) Numerical re-
sults obtained with the original problem formulation (blue line) and steady-state solution obtained with
a boundary-layer analysis (dashed black line) [Schoof, 2007b,c]. (b) Numerical results obtained with
several values of the parameter G0 of the regularized formulation.

The obtained bifurcation plots for the first bed type are shown in figure 7.4 (Weertman friction law)
and in figure 7.5 (Schoof friction law). The plots associated with the second bed type are shown in fig-
ure 7.6 (Weertman friction law) and in figure 7.7 (Schoof friction law). Several comments can be made.
On the one hand, for the first bed type, all the bifurcations plots are continuous, and qualitatively similar
between the results obtained with the original and the regularized formulations. When the value of G0 is
reduced, the bifurcation diagram of the regularized formulation gets closer to the bifurcation diagram of
the original formulation. However, this is not the case for the second bed type, for which the bifurcation
curve stops at two locations when considering the original formulation. Here, such stops mean that the
numerical continuation method did not find any solution beyond the red crosses. These stops are not
present in the results associated with the regularized formulation, for which the bifurcation plots still
consists in continuous curves, whatever the value of G0 considered. On the other hand, we remark that
the results are qualitatively similar for the Weertman and Schoof friction laws, suggesting that similar
conclusions can be made irrespective of the specific type of friction law that is adopted.

The differences observed when considering the two formulations with the second bed type suggest
to look closer at the associated results. We have shown in figure 7.8 the ice-sheet profiles associated
with the red crosses of figure 7.6a. It then clearly appears that these points are pinning points as the
ice shelves are tangent to the bedrock for these configurations. In terms of the classification described in
subsection 7.3.2, we recognize the parabolic behavior of the flotation function near the pinning points. We
have also shown in figure 7.9 the intermediate states corresponding to the vertical part of the bifurcation
plots observed in figure 7.6b. We observe a progressive retreat of the grounding line, for which the ice
sheet takes a series of (nonphysical) intermediate geometries, with a small gap separating the shelf from
the bedrock near the grounding line.
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Figure 7.5: Bifurcation curves of the grounded-region extent |Ωg| expressed as a function of the net mass
accumulation rate a for the first bed type and for the Schoof friction law. (a) Numerical results obtained
with the original problem formulation (blue line) and steady-state solution obtained with a boundary-
layer analysis (dashed black line) [Tsai et al., 2015]. (b) Numerical results obtained with several values
of the parameter G0 of the regularized formulation.
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Figure 7.6: Bifurcation curves of the grounded-region extent |Ωg| expressed as a function of the net
mass accumulation rate a for the second bed type and for the Weertman friction law. (a) Numerical
results obtained with the original problem formulation (blue line) and steady-state solution obtained with
a boundary-layer analysis (dashed black line) [Schoof, 2007b,c]. (b) Numerical results obtained with
several values of the parameter G0 of the regularized formulation.
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Figure 7.7: Bifurcation curves of the grounded-region extent |Ωg| expressed as a function of the net
mass accumulation rate a for the second bed type and for the Schoof friction law. (a) Numerical results
obtained with the original problem formulation (blue line) and steady-state solution obtained with a
boundary-layer analysis (dashed black line) [Tsai et al., 2015]. (b) Numerical results obtained with
several values of the parameter G0 of the regularized formulation.
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for the two pinning-point configurations identified in figure 7.6. The red dashed line corresponds to the
position xgl of the pinning point itself, i.e., to the point that is such that G(xgl) = ∂xG(xgl) = 0.
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Figure 7.9: Results associated with the bifurcation curve of the regularized formulation with G0 = 30 m
(Fig 7.6b). Bifurcation curves of the grounded-region extent |Ωg| expressed as a function of the net
mass accumulation rate a, in the case of a bed that leads to pinning points. (a) Bifurcation curve of the
grounded-region extent |Ωg| expressed as a function of the net mass accumulation rate a (mauve line)
and points of interest (black circles). (b) Ice-sheet profiles corresponding to the points of interest.

7.4.4 Transient states
Finally, we consider the transient evolution of marine ice-sheet systems modeled with both formulations
(original/regularized) and both bed types. Given that the previous results have been found to be similar
for both friction laws, we here only consider the Weertman friction law.

Concretely, we start from equilibrium positions associated with a value of the net mass accumulation
rate of a = 1.8 m year−1. For such value, all configurations (with both formulations and both bed types)
are such that the grounding line is located at xgl ≈ 1400 km. Then, we modify the value of a in such a
way that the new associated steady state is located around xgl ≈ 500 km, upstream of the bed bump that
is located around x = 1000 km. To do so, we divide a by a factor of 103. By doing so, the grounding line
will progressively retreat in order to reach this new steady state. In particular, there will be a point where
it will be located in the region in which the bedrock has a positive slope, and we expect a fast retreat in
that area.

For the regularized formulation, we rely on an implicit time-integration scheme that considers the
system formed by the mass-balance and momentum-balance equations in a monolithic way (i.e., we con-
sider the system (7.33)). At each time step, a Newton method is applied in order to find a numerical
solution. An adaptive time-step scheme is used in which the time step is increased or reduced as a func-
tion of the number iterations done by the Newton method at the previous time step. For the original
formulation, the monolithic formulation is not adapted as we have found that the simulations stop (i.e.,
the time step reaches a zero value) because a pinning point is met. Therefore, we instead rely on an
iterative approach in which the mass-balance and momentum-balance equations are solved one after the
other. Again, these equations are solved with a Newton method, and an adaptive time-step scheme is used.

Numerical results are shown in figures 7.10 and 7.11, where the evolution of |Ωg| is shown as a
function of time t. The conclusions are sensibly similar to the ones that have been obtained for the study
of steady states. For the first type of bed, the transient evolution is similar for both formulations, and
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Figure 7.10: Evolution over time of the grounded-region extent |Ωg| after a perturbation in the net mass
accumulation rate, in the case of a bed that does not lead to pinning points. (a) Numerical results obtained
with the original problem formulation (blue line) and steady-state solution obtained with a boundary-
layer analysis (dashed black line) [Schoof, 2007b,c]. (b) Numerical results obtained with several values
of the parameter G0 of the regularized formulation.

the solution associated with the regularized formulation gets closer to that associated with the original
one as G0 → 0. By contrast, for the second type of bed, the differences are much more pronounced
between both formulations; in particular, there is a higher sensitivity with respect to the regularization
parameter G0, and there are qualitative differences in the way the grounding line retreats. For the original
formulation, we observe oscillations associated with an ice shelf that locally comes in contact with the
bedrock and then detaches, causing the marine ice sheet to move back and forth (Fig. 7.12a and 7.13a).
For the regularized formulation, this back-and-forth movement is absent, and the grounding line retreats
in an almost monotonic fashion (Fig. 7.12b and 7.13b).

7.5 Discussion
In this section, we discuss and interpret our results. First, we analyze the effect of pinning points on the
dynamics of marine ice sheets. Then, we discuss the origin of the singularity, mentioned in section 7.3,
as it leads to numerical issues with pinning points. Finally, we propose a number of possible approaches
to the treatment of this singularity. To this end, we suggest using appropriate specific numerical methods
or modifying the treatment of the grounding line in the formulation of the problem.

7.5.1 Impact of pinning points
Pinning points give the following results regardless of the friction law (Weertman/Schoof):

• Bifurcation plots obtained with the original formulation stop at the location of pinning points.

• There are qualitative differences between the results obtained with the original and regularized
formulations for both steady-state and transient simulations.

The first point can be explained by the fact that the Jacobian matrix contains an element that becomes
very large near a pinning point, namely the (discretized version of the) shape derivative (7.25). This
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Figure 7.11: Evolution over time of the grounded-region extent |Ωg| after a perturbation in the net mass
accumulation rate, in the case of a bed that leads to pinning points. (a) Numerical results obtained with
the original problem formulation (blue line) and steady-state solution obtained with a boundary-layer
analysis (dashed black line) [Schoof, 2007b,c]. (b) Numerical results obtained with several values of the
parameter G0 of the regularized formulation.
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Figure 7.12: Zoom on the evolution over time of the grounded-region extent |Ωg| after a perturbation in
the net mass accumulation rate, in the case of a bed leads to pinning points (Fig. 7.11). (a) Numerical
results obtained with the original problem formulation (blue line) and points of interest (black circles).
(b) Numerical results obtained with G0 = 10 m in the regularized formulation (blue line) and points of
interest (black circles).
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Figure 7.13: Ice-sheet profiles corresponding to the points of interest identified in figure 7.12.
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term involves the evaluation of the inverse of ‖∇G‖, which tends toward infinity as a pinning point is
approached. Consequently, the Newton method is unable to find a solution (Fig. 7.6 and 7.7). Note that
this does not imply that there is no steady-state solution beyond the pinning points. That being said,
the presence of the singularity within the weak formulation (prior to discretization) suggests that such
behavior will occur regardless of the discretization used.

The second point implies that the regularization parameter G0 acts as a singular perturbation to the
governing equations if pinning points are encountered in the numerical simulations. Indeed, in such
cases, the solution to the regularized problem does not converge to the solution of the original problem
as G0 → 0. These differences between the results of the two formulations can be explained by the non-
local character of the friction and driving stresses in the regularized formulation (7.33). This non-locality
for example allows the friction stress to act on a part of the ice that is floating, provided it is sufficiently
close to the bedrock (Fig. 7.9). In particular, this leads to a smoother evolution of the system, as changes
are progressively introduced, in contrast to the original formulation.

7.5.2 Origin of the singularity
The singularity observed with pinning points when considering the original formulation is caused by
three elements:

(i) a grounding line that separates the grounded and the floating regions and that depends on h;

(ii) a zero gradient value of the flotation function, leading to an infinite grounding-line sensitivity;

(iii) a discontinuity in some of the terms of the governing equations across the grounding line.

The first of these elements is an essential feature of marine ice sheets, which consist of grounded and
floating regions that evolve over time. Similarly, the second element is a condition associated with the
geometry of ice sheets. However, the third element is associated with the dynamics of ice sheets, and we
now discuss it.

There are two reasons for the terms in the governing equations to be discontinuous: there can be a
discontinuity in the friction stress and/or a discontinuity in the driving stress. The discontinuity in the
friction stress is easy to understand, as it simply follows from the fact that friction is only applied to the
grounded region. Hence, it will lead to a discontinuous contribution in the momentum-balance equation
if its value at the grounding line is non-zero (such as for the Weertman friction law). The discontinuity
in the driving stress is more subtle. In general, the driving stress is given by ρgh∇s, with s the upper-
surface elevation. There is a discontinuity in the driving stress because the upper-surface gradient takes
a different form over the grounded and floating regions (see equations (7.11a) and (7.11b)). The dis-
continuity in the upper-surface gradient was highlighted by Wilchinsky and Chugunov [2000] and later
reviewed by Schoof [2011]. It turns out that it is a consequence of the reduced-order model used here:
the shallow-shelf approximation. With this model, the vertical normal stress is cryostatic, so one may
use Archimedes’ principle to separate the grounded and floating regions. However, this assumption is
not valid at the grounding line, where there is actually a boundary layer that allows the upper-surface
elevation to connect smoothly between the grounded and floating regions [Schoof, 2011]. This boundary
layer takes the form of a shelf that bends as a viscous beam, in which horizontal gradients of the shear
stress in the ice are significant (note that such gradients are absent in the shallow-shelf approximation).
Geometrically, this boundary layer leads to small oscillations in the upper-surface elevation profiles in a
very small region near the grounding line; such features have been confirmed based on high-resolution
numerical simulations [see the inset of Fig. 2 in Durand et al., 2009].

An important comment here is that the singularity presented above has nothing to do with potential
bed irregularities; in particular, it has been observed for smooth bed profiles. Rather, the singularity can
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be explained as a consequence of a discontinuous friction or driving stress, the latter arising from the
simplifying assumptions made to obtain the reduced-order model considered here.

7.5.3 Perspectives

There are several ways to handle the identified singularity at pinning points. Given that the origin of this
singularity is linked to a reduced-order flow model, a natural option would be to consider a higher-order
flow model in which there is no assumption on the vertical component of the momentum-balance equa-
tion (which is here assumed to be cryostatic). However, such an assumption is oftentimes the basis of
high-order flow models, such as the Blatter–Pattyn model [Blatter, 1995; Pattyn, 2003]. It follows that
one might need to consider a model of ice flow that does not rely on any additional assumptions. In the
context of glaciology, such a model is known as the full-Stokes model [e.g., Greve and Blatter, 2009].
However, the simulations and analysis of marine ice sheets with such a model are notably difficult for two
reasons: on the one hand, they are extremely computationally expensive, as one here needs to resolve the
viscous beam boundary layer [Durand et al., 2009]. On the other hand, there is a more fundamental issue,
in that marine ice sheets, when modeled with the full-Stokes model, form obstacle problems in which
variational inequalities have to be solved [Stubblefield et al., 2021; de Diego et al., 2022, 2023]. Such
problems are known to be non-smooth, so it is unclear whether the singularity would actually disappear.
We note that this gives another interpretation to the singularity observed in this report: it can be viewed
as a remaining artifact of the obstacle-problem structure of the flow in marine ice sheets.

We now describe two alternative approaches that do not rely on a higher-order flow model. The
first consists of relying on methods that may be better suited to dealing with moving interfaces. Such
methods include more elaborate types of discretizations or solving strategies. Among these, we men-
tion the use of front-tracking methods [e.g., level-set methods; Osher and Fedkiw, 2001, 2003], moving
grids [e.g., arbitrary Lagrangian–Eulerian methods; Donea et al., 2004; Moës et al., 2023], or enriched
functional spaces capable of handling discontinuities [e.g., extended finite-element methods; Moës et al.,
1999; Khoei, 2014] as potential leads. Such methods have typically been used to handle problems in
computational mechanics that involve discontinuities, e.g., fracture and contact mechanics. To the best
of our knowledge, such methods have not yet been widely used in the glaciological context to handle
grounding-line motion, with the exception of a few recent studies [Hossain et al., 2020; Thacher et al.,
2024].

The second approach involves questioning the grounding-line concept. Grounding lines can be seen
as a mathematical abstraction of a real, complex physical system (the interface between the grounded
and floating regions). However, the discrete nature of grounding lines appears to introduce additional
complexity to the problem. A proposed solution is to replace the concept of a ‘grounding line’ with a
‘grounding zone’, where the transition between grounded and floating regions occurs over a finite area.
This model is physically motivated by the difficulty of pinpointing the position of grounding lines, given
small-scale spatial variations (e.g., localized seawater intrusions) and temporal changes (e.g., tidal ef-
fects). In particular, recent theoretical and observational studies have highlighted widespread seawater
intrusions in West Antarctica, creating a zone with increased sub-shelf melt near the grounding line [Ro-
bel et al., 2022b; Bradley and Hewitt, 2024; Rignot et al., 2024]. An example of such a model is the
regularized approach presented in subsection 7.3.3. However, determining the value of the regularization
parameter G0 remains a challenge. One possibility is to characterize the grounding zone –for instance,
by determining its typical spatial extent– and then assign a corresponding value to G0. Given the current
limited understanding of the various thermal, hydrological, and sedimentary processes in this region, this
issue remains unresolved and is an active area of research [e.g., Kowal and Worster, 2020; Hogan et al.,
2023; Parizek, 2024].
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7.6 Conclusion
In this report, we have studied the effects of pinning points on marine ice-sheet dynamics. Starting from
the mass-balance and momentum-balance equations, we have highlighted that a (strong) coupling be-
tween these two equations could lead to a singularity in which one of the components of the linearized
problem becomes unbounded. This term is associated with the motion of the grounded and floating re-
gions in response to changes in ice thickness when an ice shelf comes into contact with a bump in the
underlying bedrock or detaches from it, leading to a pinning point. Based on numerical simulations of
simple cases, we have compared several configurations. Specifically, we have demonstrated that pinning
points lead to (i) stops in the bifurcation plots and (ii) qualitative differences when comparing the results
to those obtained using a regularized approach, in which the transition between the grounded and floating
regions is progressive. These results were obtained with a smooth bedrock profile and two qualitatively
different friction laws (Weertman and regularized Coulomb), suggesting that these features are inherent
to the governing equations themselves. Finally, we have suggested several approaches to address the
identified singularities, based on the use of specific numerical methods or modifications to the concept of
grounding line.

The numerical simulations presented here are relatively simple. Therefore, it remains necessary to
study in detail the impact of pinning points and their treatment in other contexts. A first possible ex-
tension concerns the initialization of marine ice sheets. In practice, ice-sheet geometries and parameters
are initialized in such a way that the resulting thickness and velocity fields are compatible with obser-
vations. Such a problem takes the form of an inverse problem in which the misfit between observations
and computed quantities is minimized under the constraint that the governing equations of the problem
are satisfied. This is typically done by considering observed surface velocities with the constraint that
the momentum-balance equation is satisfied [e.g., Arthern and Gudmundsson, 2010; Morlighem et al.,
2010; Petra et al., 2012]. However, it has been found that adding the mass-balance equation as an ad-
ditional constraint leads to an initial state that results in numerical simulations that are more physically
sound [Perego et al., 2014]. This suggests that the singularity identified here could also be present
in such inversion procedures, given that they also involve the coupling between the mass-balance and
momentum-balance equations. Additional studies are necessary to investigate this.

Another extension concerns the impact of pinning points and their treatment in more realistic se-
tups. In reality, marine ice sheets are subject to additional complex physical processes, such as damage
propagation or oceanic sub-shelf melt. Such studies are particularly necessary for examining Thwaites
Glacier (West Antarctica), where observations have shown that the grounding line is currently rapidly
retreating [e.g., Mouginot et al., 2014; Rignot et al., 2014], potentially contributing significantly to fu-
ture sea-level rise; this glacier could contribute up to ∼ 0.65 m of sea-level elevation [Morlighem, 2020].
Indeed, it appears that pinning points are among the various factors influencing future grounding-line
retreat rates [Docquier et al., 2014; Benn et al., 2022; Wild et al., 2022].



7.7. Appendix A: Analytical expressions of the terms appearing in the linearized problem 173

7.7 Appendix A: Analytical expressions of the terms appearing in
the linearized problem

Here we write the analytical expressions of the different terms that appear in the linearized problem (7.21).

7.7.1 Residuals

Fh(h,u;φ) :=
∫

Ω
(h− h̃)/∆t φdΩ +

∫

Γcf

hu · nφ dΓ−
∫

Ω
hu ·∇φdΩ−

∫

Ω
aφdΩ, (7.36a)

Fu(h,u;φ) :=
∫

Ω
2h ηΣ :∇φ dΩ +

∫

Ωg

τg · φ dΩ−
∫

Ωg

τb · φ dΩ +
∫

Ωf

τf · φ dΩ

+
∫

Γcf

τcf · φ dΩ. (7.36b)

7.7.2 Gâteaux differentials

〈DhFh(h,u;φ), δh〉 =
∫

Ω
δh/∆t φdΩ +

∫

Γcf

δhu · nφdΓ−
∫

Ω
δhu ·∇φ dΩ, (7.37a)

〈DuFh(h,u;φ), δu〉 =
∫

Γcf

h δu · nφ dΓ−
∫

Ω
h δu ·∇φ dΩ, (7.37b)

〈DhFu(h,u;φ), δh〉 =
∫

Ω
2 δh ηΣ :∇φ dΩ +

∫

Ωg

〈Dhτg, δh〉 · φ dΩ

−
∫

Ωg

〈Dhτb, δh〉 · φ dΩ +
∫

Ωf

〈Dhτf , δh〉 · φdΩ

+
∫

Γcf

〈Dhτcf , δh〉 · φ dΓ +
∫

Γgl

(τg − τf − τb) · φ ‖∇G‖−1 δhdΓ, (7.37c)

〈DuFu(h,u;φ), δu〉 =
∫

Ω
h 〈Duη, δu〉Σ :∇φ dΩ +

∫

Ω
h η 〈DuΣ, δu〉 :∇φdΩ

−
∫

Ωg

〈Duτb, δu〉 · φ dΩ. (7.37d)

Here,

〈Dhτg, δh〉 = ρgδh∇(b+ h) + ρgh∇δh, (7.38a)

〈Dhτf , δh〉 = ρg
(

1− ρ
ρw

)
∇(h δh), (7.38b)

〈Dhτcf , δh〉 = ρ
(

1− ρ
ρw

)
g h δhn, (7.38c)

〈DuΣ, δu〉 = Σ(δu), (7.38d)

〈Duη, δu〉 = 1
2A
− 1
n

(
‖D(u)‖2∗ + δ2

η

) 1−3n
2n [tr(D(u)D(δu))− tr(D(u)) tr(D(δu))] . (7.38e)

For the derivatives of the basal friction stress, we distinguish the two friction laws. For the Weertman
law, we have

〈Duτb, δh〉 = 0, (7.39a)

〈Duτb, δu〉 = −C ‖u‖p−3 [(p− 1)(u · δu)u+ ‖u‖2δu
]

. (7.39b)
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For the Schoof friction law, we have

〈Duτb, δh〉 = −ρgµ
( ‖u‖
‖u‖+ (µN/C)1/p

)p+1
u

‖u‖δh, (7.40a)

〈Duτb, δu〉 = − µN

‖u‖4
( ‖u‖
‖u‖+ (µN/C)1/p

)p [
p (µN/C)1/p (u · δu)u+ ‖u‖3δu− (u · δu)‖u‖u

]
.

(7.40b)

7.8 Appendix B: Proofs of the propositions
Proposition (Expression of the shape derivative). If ‖∇G‖ 6= 0 at Γgl, then

〈Dh|δΓgl
Fu(h,u;φ), δh〉 =

∫

Γgl(h)
(τg − τf − τb) · φ ‖∇G‖−1δhdΓ. (7.41)

Proof. It suffices to prove that, for any function f that does not depend on h, we have

〈DhF (h), δh〉 =
∫

Γgl(h)
f ‖∇G‖−1δhdΓ, F (h) :=

∫

Ωg(h)
f dΩ. (7.42)

To show this result, we interpret it as a rewriting of Reynolds’ theorem. Given a domain ω that evolves
over time t, Reynolds’ theorem states that

∂t

∫

ω

f dΩ =
∫

∂ω

f w · ndΓ. (7.43)

Here, f is a function that does not depend on t, ∂ω is the boundary to ω, w is its velocity, and n is its
outward normal. We note if we consider this result at t = 0, then that the fact that w is the velocity of
the boundary ∂ω can be formally written by the condition

∂ω(t) = (id + tw + o(t)) ∂ω(0), for t→ 0, (7.44)

in which id denotes the identity mapping.

First, we write the Gâteaux differential appearing in (7.42) as the derivative of a function that depends
on a time-like parameter θ. To do so, we introduce the function F̃ (θ) := F (h+ θδh). Then, we have

F̃ ′(0) := lim
θ→0

F̃ (θ)− F̃ (0)
θ

= lim
θ→0

F (h+ θδh)− F (h)
θ

= 〈DhF (h), δh〉. (7.45)

The function F̃ can be written as
F̃ (θ) =

∫

ω

f dΩ, (7.46)

in which ω is a set that evolves with θ according to ω(θ) = Ωg(h+θδh). Hence, one can apply Reynolds’
theorem (7.43) to get

∂θ

∫

ω

f dΩ =
∫

∂ω

f w · ndΓ, (7.47)

where ∂ω(θ) = Γgl(h + θδh), and where w is the pseudo-velocity of this boundary. Evaluating this
expression at θ = 0 yields

〈DhF (h), δh〉 =
∫

Γgl(h)
f w · n dΓ. (7.48)

This is exactly (7.42) provided we show thatw is such thatw ·n = ‖∇G‖−1δh. To do so, we prove that
Γgl evolves according to

Γgl(θ) = (id + θn‖∇G‖−1 δh+ o(θ)) Γgl(0), for θ → 0. (7.49)
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Let us show that every element of the right-hand side of (7.49) is also an element of the left-hand side
of (7.49). Consider a point x0

gl ∈ Γgl(0); we then have to show that xθgl := x0
gl + θn ‖∇G‖−1 δh(x0

gl)
belongs to Γgl(θ) as θ → 0. In other words, xθgl should verify the equation

(h+ θ δh) + ρw
ρ
b = o(θ), for θ → 0. (7.50)

Evaluating the left-hand side at xθgl successively yields

(
h(xθgl) + θ δh(xθgl)

)
+ ρw

ρ
b(xθgl) = G(xθgl) + θ δh(xθgl) (7.51a)

= ∇G(x0
gl) · (xθgl − x0

gl) +O(θ2) + θ δh(xθgl) (7.51b)

= −θ δh(x0
gl) + θδh(xθgl) +O(θ2) (7.51c)

= O(θ2), (7.51d)

where we have used the fact that n = −∇G/‖∇G‖. It follows that xθgl ∈ Γgl(θ) for sufficiently small θ.
Analogously, it can be shown that every element of the left-hand side of (7.49) is also an element of the
left-hand side of (7.49), which concludes.

Proposition (Geometrical characterization of a pinning point). A pinning point xgl ∈ Γgl is a point that
is such that the ice-sheet lower surface is locally tangent to the bedrock.

Proof. If the neighborhood of the pinning point is grounded, then the lower-surface elevation l in that
neighborhood is given by b, so the claim follows. If the neighborhood of the pinning point is floating,
then l = −(ρ/ρw)h, from which ∇l = −(ρ/ρw)∇h. On the other hand, the condition ‖∇G‖ = 0
can be written as ∇[h + (ρw/ρ)b] = 0 or, equivalently, as ∇b = −(ρ/ρw)∇h, from which the claim
follows.

Proposition (Local behavior around a pinning point). Around a pinning point xgl, the flotation function
admits the following expansion:

G(x) = 1
2(x− xgl) · hessG(xgl) · (x− xgl) +O(‖x− xgl‖3). (7.52)

Proof. The result follows from the application of Taylor’s expansion around xgl, the definition of a
pinning point, and the assumed smooth nature of the bedrock elevation.

7.9 Appendix C: Continuation methods
In this section, we describe the continuation methods used in subsection 7.4.3. The first method is
classical [e.g., Keller, 1977, 1987]. The second method can be seen a modification of the first method
that removes the requirement to compute the tangent to the solution curve at each step. It is inspired
by Mittelmann [1987]. We consider a general setup in which a system is governed by M (algebraic)
equations, noted

F (X,α) = 0, (7.53)

in which X ∈ RM represents the state of the system and α ∈ R represents a parameter of the problem.
The goal of numerical continuation is to obtain, starting from a solution (X0,α0) of (7.53), a successive
number of points (X1,α1), (X2,α2), ... that are also solutions of (7.53). By doing so, we eventually
obtain an approximation to the solution curve that pass through (X0,α0), hence the name ‘continuation’.
Ideally, numerical continuation methods should be sufficiently robust to pass through bifurcation points,
which are associated with a change in the qualitative features of the system.
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7.9.1 Pseudo-arclength continuation
In the pseudo-arclength continuation, the idea is to parametrize the solution curve by an arclength co-
ordinate s, so that we write X = X(s) and α = α(s). Hence, along the solution curve, we have
F (X(s),α(s)) = 0. Differentiating this relation with respect to s yields

DXF ·X ′ +DαF α′ = 0. (7.54)

This equation defines the tangent (X ′,α′) to the solution curve, up to a proportionality constant. To fully
characterize the tangent, one can assume that this tangent is normalized, so that

‖X ′‖2 + |α′|2 = 1. (7.55)

The pseudo-arclength continuation can be introduced based on a predictor-corrector approach. As-
sume that the point (X0,α0) is known, together with the tangent (X ′0,α′0) at that location. The predictor
step consists of moving along this tangent by a quantity ∆s:

(X†0 ,α†0) = (X0,α0) + ∆s (X ′0,α′0). (7.56)

In the corrector step, a solution to the equations (7.53) is sought. However, it is required that the solution
belongs to the hyperplane that is perpendicular to the tangent (X ′0,α′0) and passes through the point
(X†0 ,α†0) (see Fig. 7.14). Formally, this condition can be written as

N(X,α) := X ′0 · (X −X0) + α′0(α− α0)−∆s = 0, (7.57)

which can be seen as a linearization of (7.55). The equations (7.53) and (7.57) form a system of (M + 1)
equations for the (M + 1) unknowns (X,α). A Newton procedure can then be applied to find a solution.
Once this is done, the procedure starts again, with (X1,α1) as the starting point instead of (X0,α0).

α

X
F = 0

α0 α1

X0

X1

∆s
N = 0

Figure 7.14: Illustration of the pseudo-arclength continuation method. Starting from a known solution
(X0,α0), the next solution (X1,α1) is sought as a solution to the governing equations (F = 0, blue
curve) that lies on the hyperplane perpendicular to the tangent of the curve and that is located at a distance
∆s from the known solution (N = 0, green line).

To determine the new tangent to the curve, one can rely on finite-difference approximations, e.g.,
based on (X ′1,α′1) = (X1 −X0,α1 − α0)/∆s. Another possibility is to solve equation (7.54) together
with (7.57), which form (M + 1) equations for the (M + 1) unknowns (X ′1,α′1). Additionally, we
note that the step ∆s can be adapted during the continuation procedure as a function of the number of
iterations in the Newton procedure at the previous step, similar to what is done in adaptive time stepping.

7.9.2 Objective-based continuation
The pseudo-arclength continuation method requires that the solution curve is sufficiently smooth to be
efficient. In particular, it is necessary that the tangent is well-defined. Here, we propose a method that
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does not rely on the tangent. The method relies instead on the assumption that there is some quantity
C = C(X,α) that increases or decreases when moving along the solution curve. This quantity should
be a function that is easy to compute. Initially, we have C0 = C(X0,α0). The next solution should then
satisfy C(X1,α1) = C0 + ∆C, where ∆C is a prescribed increment. Concretely, this continuation
method is similar to the pseudo-arclength continuation method, except that the additional constraint
N = 0 is now given by

N(X,α) = C(X,α)− C(X0,α0)−∆C = 0. (7.58)

Here, the step ∆C can be increased or decreased in an adaptive manner.

For the marine ice-sheet problem considered in this report, the state X of the system is the set
of nodal values of the finite-element discretization, and α is the net mass accumulation rate a. We have
found that a practical and efficient quantity forC is the volume of seawater in a region near the grounding
line obtained at the previous solution. Indeed, this quantity is expected to increase if the grounding line
retreats. Starting from a geometry that corresponds to a large value for the grounding-line position, the
continuation method will then allow sampling of the full range of grounding-line positions corresponding
to various ice-sheet geometries. Formally, we introduce the set Γgl,r as the region of points that is within
a radius r of the grounding line:

Γgl,r := {x ∈ Ω : dist(x, Γgl) < r} . (7.59)

We then define the volume of seawater in that region as

Vw :=
∫

Γgl,r

hw dΩ, hw := − ρ

ρw
h− b, (7.60)

where hw is the height of the seawater column. Note that hw = 0 over the grounding region. It is this
volume that corresponds to the quantity C in the previous discussion. Importantly, it is a linear function
ofX as it is proportional to the thickness, so its computation is easy.
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Conclusions and perspectives

Finally, we conclude this thesis by presenting conclusions and perspectives. First, we summarize the dif-
ferent parts of this manuscript, highlighting the key points that have been discussed (section 8.1). We then
move on to suggestions for future work (section 8.2). In this second section, we first propose perspectives
related to the original contributions of this thesis. Secondly, we propose more global perspectives related
to the field of marine ice-sheet modeling and simulations.

8.1 Summary and conclusions
The first part of this thesis was dedicated to a general overview of the modeling of marine ice sheets.
In chapter 2, we first presented the equations governing the dynamics of ice sheets. Starting from the
conservation principles of continuum mechanics, the local conservation equations for mass, momentum,
and energy were established. These were then specialized to the case of ice sheets, by taking advantage
of the shallow nature of their geometry and the specific rheology of ice. By adding initial and boundary
conditions, this led to the system of equations governing the movement of ice. This system was dis-
cussed, particularly in relation to the difficulties associated with its resolution, and the limitations of its
validity. Finally, interactions with other components of the Earth System (ice-atmosphere, ice-ocean, and
ice-bedrock) were briefly mentioned.

In chapter 3, we discussed the main approximations used to simplify the equations governing the mo-
tion of ice sheets. Starting from the full-Stokes model, we showed how the Blatter–Pattyn, shallow-shelf,
and shallow-ice models can be derived, and we discussed the properties of these models. Finally, we
identified some of the main codes used within the glaciology community and have discussed the efforts
undertaken by the community to compare both the ice-flow models and the codes in which they are im-
plemented.

In chapter 4, we presented the current state of the literature on subglacial conditions. More specif-
ically, we first introduced the main models for basal friction, both on a hard bed and on a soft bed.
Then, we reviewed the subglacial hydrological models. We were able to highlight that there is a large
number of them, related to the type of bed (hard/soft), their efficiency (efficient/inefficient), and their spa-
tial nature (distributed/localized). Finally, we discussed the problem of introducing several hydrological
components into a single model and presented several recently developed approaches to achieve this goal.

The second part of this thesis was dedicated to original contributions. In chapter 5, we investigated
flux conditions, which are expressions that relate the flux at the grounding line to the ice thickness at
that location. Flux conditions had already been derived for several friction laws, particularly for the
Weertman law [Schoof, 2007b,c] and for the Coulomb law [Tsai et al., 2015]. Here, we extended these
results to derive friction laws for the Budd law. Our results thus generalize the flux conditions associated
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with the Weertman and Coulomb laws, as these are special cases of the Budd law. One key result of our
analysis concerns the importance of the friction value at the grounding line. If this value is non-zero,
the problem simplifies because it can be shown that the divergence of membrane stress can be neglected
over the whole grounded part of the ice sheets. The mechanical balance in this region is thus reduced
to an equilibrium between the gravitational driving stress and basal friction. However, in the case where
friction vanishes at the grounding line, the mechanical equilibrium becomes more complex, with each
type of stress (membrane-stress divergence, gravitational driving stress, and basal friction) contributing
to the stress balance within a boundary layer near the grounding line.

The second original contribution (chapter 6) addresses the influence of subglacial conditions on the
evolution of marine ice sheets over centennial timescales. We developed a simplified subglacial hy-
drology model that allows for rapid simulation of subglacial hydrology, the latter being coupled to the
evolution of marine ice sheets. This model is capable of simulating both distributed and localized systems
on hard and soft beds. It was implemented in the large-scale ice-sheet code Kori-ULB, which enabled
testing on a realistic case, namely Thwaites Glacier. The results showed that accounting for subglacial
hydrology in ice-sheet models could significantly increase their contribution to sea-level rise. This can be
explained by an instability mechanism between the ice motion and the hydrology system. Furthermore,
this increase depends on the type of bed near the grounding line.

The third contribution (chapter 7) addresses the effect of pinning points on marine ice-sheet systems.
We highlighted the fact that pinning points create singularities in the system of equations governing
the motion of marine ice-sheets, namely the mass and momentum-balance equation. These singulari-
ties occur even for smooth beds; in fact, they are associated with a discontinuity in the basal friction
and gravitational driving stresses across the grounding line as the ice sheet transitions from a grounded
to a floating state. It is possible to avoid such singularities by regularizing the grounding line, so that
the transition from the grounded to the floating region is no longer abrupt but gradual. However, such
an approach significantly modifies the original equations, since they behave in a qualitatively different
way, independently of the value of the regularization parameter. Mathematically, the presence of this
regularization parameter appears as a singular perturbation of the original equations. This suggests that
either special numerical methods must be used to simulate marine ice sheets near pinning points, or the
grounding-line model must be modified, for example in favor of a grounding-zone model.

Overall, these contributions highlight the importance of subglacial conditions on the dynamics of ma-
rine ice sheets. Each time, it has been shown that the basal conditions in the vicinity of the grounding line
–including basal friction, subglacial hydrology, bed elevation, and bed type– have a significant impact on
its motion. Furthermore, these studies have revealed the presence of boundary layers associated with the
distribution of stresses in the ice and with the spatial variation of effective pressure. This suggests that, in
order to obtain robust simulations of ice sheets, particular attention must be paid to this region. This can
be done through the development and incorporation of specific models for marine ice sheets and/or a suf-
ficiently high spatial resolution. The flux conditions of chapter 5, the effective-pressure parametrization
of chapter 6, and the grounding-zone model suggested in chapter 7 are possible approaches for achieving
this objective.

8.2 Suggestions and perspectives for future work

8.2.1 Perspectives related to the original contributions

Contribution 1: extension of flux conditions

The research undertaken in the first contribution of this thesis can be pursued in several directions. The
first possibility concerns the hydrological model. In this study, we considered very simple hydrological
models that lead to explicit algebraic expressions for the effective pressure. The simplicity of such models
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is a weakness of the study. The way in which the boundary layer at the grounding line is modified when
the ice sheet is coupled with a more elaborate hydrological model could be studied. We note that it is
possible to anticipate the effect of such a coupling. Indeed, it seems that a hydrological model connected
to the ocean necessarily leads to a boundary layer for the effective pressure near the grounding line, in
which the effective pressure behaves similarly to the NA model [Lu and Kingslake, 2024; Kazmierczak
et al., 2024]. Moreover, such a boundary layer typically extends over several kilometers. This suggests
that the ‘mechanical’ boundary layer is entirely embedded in the ‘hydrological’ boundary layer. There-
fore, the results obtained with the NA model should hold even when a more complex hydrological model
is applied, as the effective pressure near the grounding line boundary layer will closely match that pre-
dicted by the NA model.

Another area of research concerns the use of flux conditions in large-scale ice-sheet codes. Indeed,
flux conditions are used to improve the accuracy of these models by integrating grounding-line dynamics
through the use of flux conditions as corrections for the fluxes at the grounding lines [Docquier et al.,
2011; Pattyn et al., 2012; Pollard and DeConto, 2012b, 2020]. Although certain criticisms have been
expressed at the use of flux conditions [e.g., Reese et al., 2018b; Sergienko and Wingham, 2022], the
fact remains that flux conditions make it possible to improve the accuracy of low-resolution models.
The study of flux conditions is therefore an important area of research, since they can greatly speed up
large-scale numerical simulations. In fact, the problem considered here corresponds more generally to
a homogenization problem: we are trying to determine average fields (velocity, pressure, etc) from a
relatively low resolution model. Ideally, the latter is obtained by averaging the equations of the high-
resolution model. As these equations are non-linear, new terms appear in the mean model obtained:
the mean of the high-resolution model does not correspond to a low-resolution model for the mean
fields. This is an analytical approach, but numerical methods also exist to take account of small-scale
physics in low-resolution models [e.g., multiscale methods; Efendiev and Hou, 2009; Abdulle et al.,
2012]. Such approaches are currently underdeveloped in the field of glaciology, as they are relatively
technical. However, there is great potential in view of the results of these methods in other fields [e.g.,
mechanics of composite materials, polymer dynamics, or flows in porous media; Hou and Wu, 1997;
Chung et al., 2015; Vassaux et al., 2019], and the benefits they would have on the performance of ice-
sheet codes.

Contribution 2: efficient and simplified hydrological model

The subglacial hydrology model presented in the second contribution of this thesis can be improved in
several ways. We propose three here, each of which is associated with a weakness or limitation of the
model.

Firstly, the distribution of conduits and the space between conduits is currently parametrized through
the distance between conduits lc which is taken to be uniform and independent of the type of drainage sys-
tem. This is one of the weaknesses of the model; for example, this distance is the same for linked-cavities
and canals, which form distributed systems, and channels, which form localized systems. One way of
remedying this would be to revise the parametrization of effective pressure by considering, for distributed
systems (linked-cavities and canals), a parametrization based on the distributed flow qw rather than on
the volume flow Qw. By comparing the effective-pressure expression thus obtained with the original
effective-pressure expression for channels, it should then be possible to obtain a unified parametrization
which is such that the length lc is associated only with the channels. An estimate of lc for that case can
then be obtained from observations of the distance between eskers. Note that this is again conceptually a
homogenization problem, so the previous comments also apply here.

The model can also be improved by incorporating new physical processes. At present, the inefficient
model for soft beds is simply a modification of the linked-cavities model on hard beds. In order to better
represent the physics of soft beds, one possibility would be to consider the compression of the till and the
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water flow between the water present in the till and the hydrological system present between the till and
the ice. Another element that could be improved concerns the modeling of hydrology near the grounding
line. Our results show that the shape of the effective pressure near the grounding line is an essential
element in ice-sheet dynamics. Thus, the dynamics of the hydrology in this zone could be the subject of
more detailed studies, given that there are processes not yet included in large-scale hydrological models;
this is for example the case sea-water intrusion, which is known to play an important role [Robel et al.,
2022b; Bradley and Hewitt, 2024; Rignot et al., 2024].

Finally, the model could be improved by using observational data and comparing it with other hydro-
logical models. The use of data makes it possible to calibrate the model parameters; moreover, this can
be done within a probabilistic framework so that uncertainties can be quantified [e.g., following Coulon
et al., 2024a,b]. In this context, it would be particularly interesting to carry out calibrated simulations
at the Antarctic scale. In this way, we could update the results of Kazmierczak et al. [2022], assessing
the effect of subglacial hydrology on Antarctic ice-sheet dynamics in the coming centuries, but this time
with a more elaborate hydrological model that will have been calibrated.

Contribution 3: singularity at pinning points

The third contribution is a work-in-progress report. It can be improved in several ways. First, the source
of the singularity could be further clarified. It would indeed be interesting to determine whether it is, as
suggested in the report, a consequence of the shallow-shelf approximation. In other words, it would be
interesting to know whether or not the singular behavior at pinning points is an intrinsic physical feature
of marine ice sheets. One way to investigate this would be to rerun the simulations using a full-Stokes
model and examine whether the identified features (e.g., stops in bifurcation curves and oscillations in
transient simulations) disappear or persist. A simpler approach would be to conduct numerical tests with
different types of regularization, for example, by regularizing only the friction stress but not the driving
stress (and vice-versa). Second, the technical details could be further specified; in particular, the func-
tional spaces of the velocity and thickness fields could be made more precise. Finally, more broadly,
the report could be refined to better highlight the practical significance of the results. Essentially, this
means emphasizing the impact of the singularity, namely the dependence on how the grounding line is
accounted for numerically (with a regularized approach or not) and, in cases where a regularization ap-
proach is used, the strong dependence on the regularization parameter.

Generally speaking, this contribution questions the relevance of the concept of a grounding line. This
leads to a number of interesting research possibilities. Essentially, there are two possibilities: either
the grounding line model is appropriate, or it is not. In the first case, it is necessary to develop nu-
merical methods capable of rigorously taking into account the singularity associated with the grounded
region/floating region transition in the case of pinning points. One way of approaching this problem is
to consider the marine ice-sheet problem as an obstacle problem, where the ‘obstacle’ is the bedrock.
Obstacle problems are classical in the field of computational contact mechanics, so many methods for
efficiently solving such problems have already been developed. However, such an approach has only
recently been developed in the field of glaciology; de Diego et al. [2022, 2023] have for example shown
that such a framework could be applied to the full–Stokes model applied to marine ice sheets. However,
preliminary work suggests that applying such a framework to the SSA model is not an easy task, given
the non-standard form of the equations in that model [Bosten, 2019; Gregov et al., 2022].

If the grounding-line concept is called into question, it is then necessary to develop a new model for
marine ice sheets. A regularized approach such as that used in the Úa model is possible [Gudmundsson,
2013], but it raises the question of the value of the regularization parameter. Another approach would be
to develop a grounding-zone model, taking into account the gradual nature of a transition between the
grounded zone and the floating zone as well as the various physical processes taking place. In particular,
it seems that the evolution of both subglacial hydrology and sediment are important controls that should
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therefore be included in such a model [Kowal and Worster, 2020; Bradley and Hewitt, 2024; Rignot et al.,
2024].

Finally, the difficulties encountered when studying a marine ice-sheet subject to pinning points sug-
gest another more fundamental research direction. These difficulties are associated with the non-smooth
nature of the equations governing the motion of ice sheets under the SSA model. Non-smooth models are
in fact more common than they appear in physical systems; for example, the contact problems mentioned
above are examples of this. A major difficulty in the study of such systems is that the usual methods –for
example, sensitivity analysis and continuation methods– are based on the assumption that the systems
are at least continuously differentiable. Since this is not the case for non-smooth systems, new tools
have to be developed to both study and solve such systems. Possibilities include generalizations of the
notion of gradient to mappings that are less regular [Shevitz and Paden, 1994; Stechlinski et al., 2018],
the use of adjoint smooth quantities [Miersemann and Mittelmann, 1989, 1991], and regularization ap-
proaches [Chen et al., 2000].

8.2.2 Other perspectives

Improvement of the modeling of basal friction

The understanding of basal friction has undergone a number of developments over the last few years,
culminating in a so-called ‘unified friction law’ which currently seems to have a consensus in terms of
its ability to take into account viscous and plastic behavior, and which is suitable for both hard and soft
beds. However, this does not mean that our understanding of basal friction and how to account for it
in models is complete. So far, the most extensive studies to provide a theoretical basis for friction laws
are typically based on the study of sliding on water-filled cavities [Fowler, 1986a, 1987; Schoof, 2005;
Gagliardini et al., 2007]. This can lead to some strange behavior; for example, the effective pressure in
channels is typically quite high, so that using a friction law with τb ∝ N would lead to a high basal
friction value, whereas it is physically expected to be low at this location. This apparent paradox is re-
solved by remembering that both τb and N are average values, which therefore do not apply here at the
channel apex, but over a representative spatial area. However, this highlights that the application of fric-
tion laws depends on the resolution of the models and the configuration chosen. With the development
of increasingly high-resolution ice-sheet models and the inclusion of new types of hydrological systems
that interact with ice motion, it appears that further studies on basal friction are needed. One possible
research direction would be to characterize the basal friction that should be attributed to a channel, as
illustrated in the example above.

An alternative way of assessing the validity of friction laws would be to rely on the observations
we have of the dynamics of glaciers and ice sheets. By comparing these with the results of numerical
simulations associated with several friction laws [in a similar way to, e.g., Brondex et al., 2019], it should
be possible to see whether one friction law produces better results than the others. However, there are
several difficulties in carrying out such a study. On the one hand, observational data remains relatively
limited, and is confined to recent years. Over such a small time span, it seems complicated to be able
to distinguish the trajectories associated with several different friction laws in the numerical simulations.
On the other hand, there is currently uncertainty both in the observations and in the parametrization of
physical processes other than basal friction in the ice-sheet models. This uncertainty leads to predictions
that take the form of confidence intervals rather than point predictions. It is therefore not clear that
the different friction laws can be distinguished if this uncertainty is such that the confidence intervals
between the different friction laws overlap. However, this remains a direction of research to keep in
mind, particularly with the accumulating observational data on glaciers and ice sheets.



186 Chapter 8. Conclusions and perspectives

Application of Lagrangian/Eulerian methods to ice-sheet dynamics

Ice-sheet models are typically described in terms of an Eulerian formalism (see section 2.2). The ad-
vantage of this is that the quantities of interest (velocity, pressure, etc) can be described numerically on
a fixed, potentially regular mesh. This simplifies both the implementation of ice-flow codes, and their
parallelization so that they can be used on high-performance computing infrastructures. However, the
inclusion of new physics in ice-sheet models has challenged this approach. Indeed, damage is a material
property, so a Lagrangian approach seems more appropriate to model it. This is also the case for localized
drainage systems such as channels, which could be described using a Lagrangian formalism allowing
greater freedom with regard to their position. Possible research directions include the use of methods
based on a Lagrangian approach on a moving finite-element mesh, in order to retain convergence prop-
erties and a code structure similar to Eulerian codes. This is the case of the updated-Lagrangian method
and of the particle finite-element method [Oñate and Carbonell, 2014; Jiménez et al., 2017; Cremonesi
et al., 2020]. Another direction would be to combine Lagrangian and Eulerian approaches to obtain a
method based on a mixed formalism [Foucard et al., 2015; Trouette et al., 2020].

Efficient calibration and uncertainty quantification

An area that has not been explored at all in this thesis concerns model calibration; in other words, the
identification of the initial state and the value of initial parameters in simulations. This is a major area of
research in the field of glaciology. This is indeed a particularly challenging problem: we need to solve an
inverse problem, i.e., identify the model parameters (typically, the friction coefficients) that are such that
the model response matches the observations (typically, the value of the surface velocity). The difficulty
here stems from the complexity of the model, which makes such inverse simulations computationally
very costly, and from the fact that the unknown is a spatial field and not a scalar. Since both models and
observations are subject to error, the inversion should ideally be performed within a probabilistic frame-
work (typically, using a Bayesian approach), so as to obtain a parameter distribution that is compatible
with the observations. The model can then be simulated in a forward direction, taking into account the
uncertainties obtained for the parameters; these can then be propagated to quantify the uncertainties on
the model outputs.

There are several directions of research to make the calibration of ice-sheet models more efficient.
One approach is to use a combination of models of varying complexity [Jakeman et al., 2024]. Another
approach is to create a surrogate model in place of the ice-sheet model, based for example on machine-
learning methods. Combined with the use of GPUs, these can result in a fast computational code, reduc-
ing the cost of numerical simulations (direct and inverse) by several orders of magnitude [Jouvet et al.,
2021; Jouvet, 2022; Jouvet and Cordonnier, 2023; He et al., 2023; Howard et al., 2023].
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T. (2008). Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM).
The Cryosphere, 2(2), 95–108, https://doi.org/10.5194/tc-2-95-2008.

Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C., Zwinger, T., Albrecht,
T., Cornford, S., Docquier, D., Fürst, J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten,
M., Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem, M., Payne, A. J., Pol-
lard, D., Rückamp, M., Rybak, O., Seroussi, H., Thoma, M., and Wilkens, N. (2013). Grounding-line
migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison.
Journal of Glaciology, 59(215), 410–422, https://doi.org/10.3189/2013jog12j129.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G.,
Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick,
F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A. (2012). Results of the Marine Ice
Sheet Model Intercomparison Project, MISMIP. The Cryosphere, 6(3), 573–588, https://doi.org/10.
5194/tc-6-573-2012.

Pegler, S. S. (2016). The dynamics of confined extensional flows. Journal of Fluid Mechanics, 804,
24–57, https://doi.org/10.1017/jfm.2016.516.

Pegler, S. S. (2018a). Marine ice sheet dynamics: the impacts of ice-shelf buttressing. Journal of Fluid
Mechanics, 857, 605–647, https://doi.org/10.1017/jfm.2018.741.

Pegler, S. S. (2018b). Suppression of marine ice sheet instability. Journal of Fluid Mechanics, 857,
648–680, https://doi.org/10.1017/jfm.2018.742.

Pelle, T., Greenbaum, J. S., Dow, C. F., Jenkins, A., and Morlighem, M. (2023). Subglacial discharge
accelerates future retreat of Denman and Scott Glaciers, East Antarctica. Science Advances, 9(43),
https://doi.org/10.1126/sciadv.adi9014.

Perego, M., Gunzburger, M., and Burkardt, J. (2012). Parallel finite-element implementation for
higher-order ice-sheet models. Journal of Glaciology, 58(207), 76–88, https://doi.org/10.3189/
2012jog11j063.

https://doi.org/10.5194/tc-11-1851-2017
https://doi.org/10.1038/s41467-018-05003-z
https://doi.org/10.3189/172756405781813672
https://doi.org/10.3189/172756405781813672
https://doi.org/10.1029/2005jf000394
https://doi.org/10.1029/2005jf000394
https://doi.org/10.1126/science.aaz5487
https://doi.org/10.5194/tc-2-95-2008
https://doi.org/10.3189/2013jog12j129
https://doi.org/10.5194/tc-6-573-2012
https://doi.org/10.5194/tc-6-573-2012
https://doi.org/10.1017/jfm.2016.516
https://doi.org/10.1017/jfm.2018.741
https://doi.org/10.1017/jfm.2018.742
https://doi.org/10.1126/sciadv.adi9014
https://doi.org/10.3189/2012jog11j063
https://doi.org/10.3189/2012jog11j063


Bibliography 207

Perego, M., Price, S., and Stadler, G. (2014). Optimal initial conditions for coupling ice sheet models
to Earth system models. Journal of Geophysical Research: Earth Surface, 119(9), 1894–1917, https:
//doi.org/10.1002/2014jf003181.

Petra, N., Martin, J., Stadler, G., and Ghattas, O. (2014). A Computational Framework for Infinite-
Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice
Sheet Flow Inverse Problems. SIAM Journal on Scientific Computing, 36(4), A1525–a1555, https:
//doi.org/10.1137/130934805.

Petra, N., Zhu, H., Stadler, G., Hughes, T. J., and Ghattas, O. (2012). An inexact Gauss–Newton method
for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. Journal
of Glaciology, 58(211), 889–903, https://doi.org/10.3189/2012jog11j182.

Pollard, D. and DeConto, R. M. (2012a). A simple inverse method for the distribution of basal sliding
coefficients under ice sheets, applied to Antarctica. The Cryosphere, 6(5), 953–971, https://doi.org/
10.5194/tc-6-953-2012.

Pollard, D. and DeConto, R. M. (2012b). Description of a hybrid ice sheet-shelf model, and application
to Antarctica. Geoscientific Model Development, 5(5), 1273–1295, https://doi.org/10.5194/gmd-5-
1273-2012.

Pollard, D. and DeConto, R. M. (2020). Improvements in one-dimensional grounding-line parameteri-
zations in an ice-sheet model with lateral variations (PSUICE3D v2.1). Geoscientific Model Develop-
ment, 13(12), 6481–6500, https://doi.org/10.5194/gmd-13-6481-2020.

Purich, A. and England, M. H. (2023). Projected Impacts of Antarctic Meltwater Anomalies over the
Twenty-First Century. Journal of Climate, 36(8), 2703–2719, https://doi.org/10.1175/jcli-d-22-0457.
1.

Reed, B., Green, J. A. M., Jenkins, A., and Gudmundsson, G. H. (2023). Recent irreversible retreat phase
of Pine Island Glacier. Nature Climate Change, 14(1), 75–81, https://doi.org/10.1038/s41558-023-
01887-y.

Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R. (2018a). Antarctic sub-shelf
melt rates via PICO. The Cryosphere, 12(6), 1969–1985, https://doi.org/10.5194/tc-12-1969-2018.

Reese, R., Garbe, J., Hill, E. A., Urruty, B., Naughten, K. A., Gagliardini, O., Durand, G., Gillet-Chaulet,
F., Gudmundsson, G. H., Chandler, D., Langebroek, P. M., and Winkelmann, R. (2023). The stability
of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea
glaciers under current climate on centennial timescales cannot be excluded. The Cryosphere, 17(9),
3761–3783, https://doi.org/10.5194/tc-17-3761-2023.

Reese, R., Winkelmann, R., and Gudmundsson, G. H. (2018b). Grounding-line flux formula applied as
a flux condition in numerical simulations fails for buttressed Antarctic ice streams. The Cryosphere,
12(10), 3229–3242, https://doi.org/10.5194/tc-12-3229-2018.

Rignot, E., Ciraci, E., Scheuchl, B., Tolpekin, V., Wollersheim, M., and Dow, C. (2024). Widespread
seawater intrusions beneath the grounded ice of Thwaites Glacier, West Antarctica. Proceedings of the
National Academy of Sciences, 121(22), https://doi.org/10.1073/pnas.2404766121.

Rignot, E. and Mouginot, J. (2012). Ice flow in Greenland for the International Polar Year 2008–2009.
Geophysical Research Letters, 39(11), https://doi.org/10.1029/2012gl051634.

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B. (2014). Widespread, rapid
grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992
to 2011. Geophysical Research Letters, 41(10), 3502–3509, https://doi.org/10.1002/2014gl060140.

https://doi.org/10.1002/2014jf003181
https://doi.org/10.1002/2014jf003181
https://doi.org/10.1137/130934805
https://doi.org/10.1137/130934805
https://doi.org/10.3189/2012jog11j182
https://doi.org/10.5194/tc-6-953-2012
https://doi.org/10.5194/tc-6-953-2012
https://doi.org/10.5194/gmd-5-1273-2012
https://doi.org/10.5194/gmd-5-1273-2012
https://doi.org/10.5194/gmd-13-6481-2020
https://doi.org/10.1175/jcli-d-22-0457.1
https://doi.org/10.1175/jcli-d-22-0457.1
https://doi.org/10.1038/s41558-023-01887-y
https://doi.org/10.1038/s41558-023-01887-y
https://doi.org/10.5194/tc-12-1969-2018
https://doi.org/10.5194/tc-17-3761-2023
https://doi.org/10.5194/tc-12-3229-2018
https://doi.org/10.1073/pnas.2404766121
https://doi.org/10.1029/2012gl051634
https://doi.org/10.1002/2014gl060140


208 Bibliography

Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R. C. A. (2015). Potential
sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528(7580),
115–118, https://doi.org/10.1038/nature16147.

Robel, A. A., DeGiuli, E., Schoof, C., and Tziperman, E. (2013). Dynamics of ice stream temporal
variability: Modes, scales, and hysteresis. Journal of Geophysical Research: Earth Surface, 118(2),
925–936, https://doi.org/10.1002/jgrf.20072.

Robel, A. A., Pegler, S. S., Catania, G., Felikson, D., and Simkins, L. M. (2022a). Ambiguous stability of
glaciers at bed peaks. Journal of Glaciology, 68(272), 1177–1184, https://doi.org/10.1017/jog.2022.
31.

Robel, A. A., Roe, G. H., and Haseloff, M. (2018). Response of Marine-Terminating Glaciers to Forcing:
Time Scales, Sensitivities, Instabilities, and Stochastic Dynamics. Journal of Geophysical Research:
Earth Surface, 123(9), 2205–2227, https://doi.org/10.1029/2018jf004709.

Robel, A. A., Schoof, C., and Tziperman, E. (2016). Persistence and variability of ice-stream grounding
lines on retrograde bed slopes. The Cryosphere, 10(4), 1883–1896, https://doi.org/10.5194/tc-10-
1883-2016.

Robel, A. A., Seroussi, H., and Roe, G. H. (2019). Marine ice sheet instability amplifies and skews
uncertainty in projections of future sea-level rise. Proceedings of the National Academy of Sciences,
116(30), 14887–14892, https://doi.org/10.1073/pnas.1904822116.

Robel, A. A., Sim, S. J., Meyer, C., Siegfried, M. R., and Gustafson, C. D. (2023). Contemporary
ice sheet thinning drives subglacial groundwater exfiltration with potential feedbacks on glacier flow.
Science Advances, 9(33), https://doi.org/10.1126/sciadv.adh3693.

Robel, A. A., Wilson, E., and Seroussi, H. (2022b). Layered seawater intrusion and melt under grounded
ice. The Cryosphere, 16(2), 451–469, https://doi.org/10.5194/tc-16-451-2022.

Robin, G. d. Q., Swithinbank, C., Smith, B., et al. (1970). Radio echo exploration of the Antarctic ice
sheet. International Association of Scientific Hydrology Publication, 86, 97–115.

Robinson, A., Alvarez-Solas, J., Montoya, M., Goelzer, H., Greve, R., and Ritz, C. (2020). Description
and validation of the ice-sheet model Yelmo (version 1.0). Geoscientific Model Development, 13(6),
2805–2823, https://doi.org/10.5194/gmd-13-2805-2020.

Rosier, S. H. R., Reese, R., Donges, J. F., De Rydt, J., Gudmundsson, G. H., and Winkelmann, R.
(2021). The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. The
Cryosphere, 15(3), 1501–1516, https://doi.org/10.5194/tc-15-1501-2021.

Röthlisberger, H. (1972). Water Pressure in Intra- and Subglacial Channels. Journal of Glaciology,
11(62), 177–203, https://doi.org/10.3189/s0022143000022188.

Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A., Hawley, R. L., Neumann, T. A.,
and Kristensen, S. S. (2014). Sustained high basal motion of the Greenland ice sheet revealed by bore-
hole deformation. Journal of Glaciology, 60(222), 647–660, https://doi.org/10.3189/2014jog13j196.

Saramito, P. (2016). Complex fluids: Modeling and Algorithms. Springer International Publishing,
https://doi.org/10.1007/978-3-319-44362-1.

Schoof, C. (2003). The effect of basal topography on ice sheet dynamics. Continuum Mechanics and
Thermodynamics, 15(3), 295–307, https://doi.org/10.1007/s00161-003-0119-3.

Schoof, C. (2005). The effect of cavitation on glacier sliding. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 461(2055), 609–627, https://doi.org/10.1098/rspa.
2004.1350.

https://doi.org/10.1038/nature16147
https://doi.org/10.1002/jgrf.20072
https://doi.org/10.1017/jog.2022.31
https://doi.org/10.1017/jog.2022.31
https://doi.org/10.1029/2018jf004709
https://doi.org/10.5194/tc-10-1883-2016
https://doi.org/10.5194/tc-10-1883-2016
https://doi.org/10.1073/pnas.1904822116
https://doi.org/10.1126/sciadv.adh3693
https://doi.org/10.5194/tc-16-451-2022
https://doi.org/10.5194/gmd-13-2805-2020
https://doi.org/10.5194/tc-15-1501-2021
https://doi.org/10.3189/s0022143000022188
https://doi.org/10.3189/2014jog13j196
https://doi.org/10.1007/978-3-319-44362-1
https://doi.org/10.1007/s00161-003-0119-3
https://doi.org/10.1098/rspa.2004.1350
https://doi.org/10.1098/rspa.2004.1350


Bibliography 209

Schoof, C. (2006). A variational approach to ice stream flow. Journal of Fluid Mechanics, 556, 227,
https://doi.org/10.1017/s0022112006009591.

Schoof, C. (2007a). Cavitation on Deformable Glacier Beds. SIAM Journal on Applied Mathematics,
67(6), 1633–1653, https://doi.org/10.1137/050646470.

Schoof, C. (2007b). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal
of Geophysical Research, 112(F3), https://doi.org/10.1029/2006jf000664.

Schoof, C. (2007c). Marine ice-sheet dynamics. Part 1. The case of rapid sliding. Journal of Fluid
Mechanics, 573, 27–55, https://doi.org/10.1017/s0022112006003570.

Schoof, C. (2007d). Pressure-dependent viscosity and interfacial instability in coupled ice-sediment flow.
Journal of Fluid Mechanics, 570, 227–252, https://doi.org/10.1017/s0022112006002874.

Schoof, C. (2010a). Coulomb friction and other sliding laws in a higher order glacier flow model.
Mathematical Models and Methods in Applied Sciences, 20(01), 157–189, https://doi.org/10.1142/
s0218202510004180.

Schoof, C. (2010b). Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803–
806, https://doi.org/10.1038/nature09618.

Schoof, C. (2011). Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. Journal of Fluid
Mechanics, 679, 122–155, https://doi.org/10.1017/jfm.2011.129.

Schoof, C. (2012). Marine ice sheet stability. Journal of Fluid Mechanics, 698, 62–72, https://doi.org/
10.1017/jfm.2012.43.

Schoof, C., Davis, A. D., and Popa, T. V. (2017). Boundary layer models for calving marine outlet
glaciers. The Cryosphere, 11(5), 2283–2303, https://doi.org/10.5194/tc-11-2283-2017.

Schoof, C. and Hewitt, I. J. (2013). Ice-Sheet Dynamics. Annual Review of Fluid Mechanics, 45(1),
217–239, https://doi.org/10.1146/annurev-fluid-011212-140632.

Schoof, C. and Hewitt, I. J. (2016). A model for polythermal ice incorporating gravity-driven moisture
transport. Journal of Fluid Mechanics, 797, 504–535, https://doi.org/10.1017/jfm.2016.251.

Schoof, C., Hewitt, I. J., and Werder, M. A. (2012). Flotation and free surface flow in a model for
subglacial drainage. Part 1. Distributed drainage. Journal of Fluid Mechanics, 702, 126–156, https:
//doi.org/10.1017/jfm.2012.165.

Schoof, C. and Hindmarsh, R. C. A. (2010). Thin-Film Flows with Wall Slip: An Asymptotic Analysis
of Higher Order Glacier Flow Models. The Quarterly Journal of Mechanics and Applied Mathematics,
63(1), 73–114, https://doi.org/10.1093/qjmam/hbp025.

Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and Anderson, J. B. (2014). Air-
borne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites
Glacier, West Antarctica. Geophysical Research Letters, 41(20), 7200–7208, https://doi.org/10.1002/
2014gl061645.

Sergienko, O. and Wingham, D. J. (2024). Diverse behaviors of marine ice sheets in response to temporal
variability of the atmospheric and basal conditions. Journal of Glaciology, (pp. 1–12)., https://doi.
org/10.1017/jog.2024.43.

Sergienko, O. V. (2012). The effects of transverse bed topography variations in ice-flow models. Journal
of Geophysical Research: Earth Surface, 117(F3), https://doi.org/10.1029/2011jf002203.

Sergienko, O. V. (2022a). Marine outlet glacier dynamics, steady states and steady-state stability. Journal
of Glaciology, (pp. 1–15)., https://doi.org/10.1017/jog.2022.13.

https://doi.org/10.1017/s0022112006009591
https://doi.org/10.1137/050646470
https://doi.org/10.1029/2006jf000664
https://doi.org/10.1017/s0022112006003570
https://doi.org/10.1017/s0022112006002874
https://doi.org/10.1142/s0218202510004180
https://doi.org/10.1142/s0218202510004180
https://doi.org/10.1038/nature09618
https://doi.org/10.1017/jfm.2011.129
https://doi.org/10.1017/jfm.2012.43
https://doi.org/10.1017/jfm.2012.43
https://doi.org/10.5194/tc-11-2283-2017
https://doi.org/10.1146/annurev-fluid-011212-140632
https://doi.org/10.1017/jfm.2016.251
https://doi.org/10.1017/jfm.2012.165
https://doi.org/10.1017/jfm.2012.165
https://doi.org/10.1093/qjmam/hbp025
https://doi.org/10.1002/2014gl061645
https://doi.org/10.1002/2014gl061645
https://doi.org/10.1017/jog.2024.43
https://doi.org/10.1017/jog.2024.43
https://doi.org/10.1029/2011jf002203
https://doi.org/10.1017/jog.2022.13


210 Bibliography

Sergienko, O. V. (2022b). No general stability conditions for marine ice-sheet grounding lines in the
presence of feedbacks. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-29892-3.

Sergienko, O. V. and Haseloff, M. (2023). ‘Stable’ and ‘unstable’ are not useful descriptions of marine
ice sheets in the Earth’s climate system. Journal of Glaciology, (pp. 1–17)., https://doi.org/10.1017/
jog.2023.40.

Sergienko, O. V. and Wingham, D. J. (2019). Grounding line stability in a regime of low driving and
basal stresses. Journal of Glaciology, 65(253), 833–849, https://doi.org/10.1017/jog.2019.53.

Sergienko, O. V. and Wingham, D. J. (2022). Bed topography and marine ice-sheet stability. Journal of
Glaciology, 68(267), 124–138, https://doi.org/10.1017/jog.2021.79.

Seroussi, H., Morlighem, M., Larour, E., Rignot, E., and Khazendar, A. (2014). Hydrostatic grounding
line parameterization in ice sheet models. The Cryosphere, 8(6), 2075–2087, https://doi.org/10.5194/
tc-8-2075-2014.

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C.,
Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K.,
Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert,
A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M.,
Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd,
A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R.
S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T. (2020). ISMIP6 Antarctica: a multi-
model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14(9),
3033–3070, https://doi.org/10.5194/tc-14-3033-2020.

Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C.,
Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert,
A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M.,
Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese,
R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal,
R. S. W., Winkelmann, R., and Zhang, T. (2019). initMIP-Antarctica: an ice sheet model initialization
experiment of ISMIP6. The Cryosphere, 13(5), 1441–1471, https://doi.org/10.5194/tc-13-1441-2019.

Shapiro, N. M. and Ritzwoller, M. H. (2004). Inferring surface heat flux distributions guided by a global
seismic model: particular application to Antarctica. Earth and Planetary Science Letters, 223(1),
213–224, https://doi.org/https://doi.org/10.1016/j.epsl.2004.04.011.

Shevitz, D. and Paden, B. (1994). Lyapunov stability theory of nonsmooth systems. IEEE Transactions
on Automatic Control, 39(9), 1910–1914, https://doi.org/10.1109/9.317122.

Shreve, R. L. (1972). Movement of Water in Glaciers. Journal of Glaciology, 11(62), 205–214, https:
//doi.org/10.3189/s002214300002219x.

Shreve, R. L. (1984). Glacier Sliding at Subfreezing Temperatures. Journal of Glaciology, 30(106),
341–347, https://doi.org/10.3189/s0022143000006195.

Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S. (2009). An inventory of active subglacial
lakes in Antarctica detected by ICESat (2003–2008). Journal of Glaciology, 55(192), 573–595, https:
//doi.org/10.3189/002214309789470879.

Sommers, A., Rajaram, H., and Morlighem, M. (2018). SHAKTI: Subglacial Hydrology and Kinetic,
Transient Interactions v1.0. Geoscientific Model Development, 11(7), 2955–2974, https://doi.org/10.
5194/gmd-11-2955-2018.

https://doi.org/10.1038/s41467-022-29892-3
https://doi.org/10.1017/jog.2023.40
https://doi.org/10.1017/jog.2023.40
https://doi.org/10.1017/jog.2019.53
https://doi.org/10.1017/jog.2021.79
https://doi.org/10.5194/tc-8-2075-2014
https://doi.org/10.5194/tc-8-2075-2014
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/https://doi.org/10.1016/j.epsl.2004.04.011
https://doi.org/10.1109/9.317122
https://doi.org/10.3189/s002214300002219x
https://doi.org/10.3189/s002214300002219x
https://doi.org/10.3189/s0022143000006195
https://doi.org/10.3189/002214309789470879
https://doi.org/10.3189/002214309789470879
https://doi.org/10.5194/gmd-11-2955-2018
https://doi.org/10.5194/gmd-11-2955-2018


Bibliography 211

Stechlinski, P., Khan, K. A., and Barton, P. I. (2018). Generalized Sensitivity Analysis of Nonlinear
Programs. SIAM Journal on Optimization, 28(1), 272–301, https://doi.org/10.1137/17m1120385.

Stevens, D., Ely, J. C., Livingstone, S. J., Clark, C. D., Butcher, F. E. G., and Hewitt, I. (2022). Effects of
basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model. Journal
of Glaciology, 69(274), 397–409, https://doi.org/10.1017/jog.2022.71.

Storrar, R. D., Stokes, C. R., and Evans, D. J. (2014). Morphometry and pattern of a large sample (>20,
000) of Canadian eskers and implications for subglacial drainage beneath ice sheets. Quaternary
Science Reviews, 105, 1–25, https://doi.org/10.1016/j.quascirev.2014.09.013.

Stubblefield, A. G., Spiegelman, M., and Creyts, T. T. (2021). Variational formulation of marine ice-
sheet and subglacial-lake grounding-line dynamics. Journal of Fluid Mechanics, 919, https://doi.org/
10.1017/jfm.2021.394.

Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R., and Zhao, L. (2017). Ice shelf fracture parameteri-
zation in an ice sheet model. The Cryosphere, 11(6), 2543–2554, https://doi.org/10.5194/tc-11-2543-
2017.

Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R., Dumas, C., Gillet-Chaulet, F.,
Goelzer, H., Golledge, N. R., Greve, R., Hoffman, M. J., Humbert, A., Kazmierczak, E., Kleiner,
T., Leguy, G. R., Lipscomb, W. H., Martin, D., Morlighem, M., Nowicki, S., Pollard, D., Price, S.,
Quiquet, A., Seroussi, H., Schlemm, T., Sutter, J., van de Wal, R. S. W., Winkelmann, R., and Zhang,
T. (2020). Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal
of Glaciology, 66(260), 891–904, https://doi.org/10.1017/jog.2020.67.

Tezaur, I. K., Perego, M., Salinger, A. G., Tuminaro, R. S., and Price, S. F. (2015). Albany/FELIX: a
parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for
advanced analysis. Geoscientific Model Development, 8(4), 1197–1220, https://doi.org/10.5194/gmd-
8-1197-2015.

Thacher, W., Johansen, H., and Martin, D. (2024). A high order cut-cell method for solving the shallow-
shelf equations. Journal of Computational Science, 80, 102319, https://doi.org/10.1016/j.jocs.2024.
102319.

Trouette, B., Atallah, G. H., and Vincent, S. (2020). A Mixed Eulerian–Lagrangian scheme for scalar
transport. Acta Mechanica, 231(9), 3525–3549, https://doi.org/10.1007/s00707-020-02727-2.

Tsai, V. C., Stewart, A. L., and Thompson, A. F. (2015). Marine ice-sheet profiles and stability un-
der Coulomb basal conditions. Journal of Glaciology, 61(226), 205–215, https://doi.org/10.3189/
2015jog14j221.

Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F. (2000a). Basal mechanics of Ice Stream B, west
Antarctica: 1. Till mechanics. Journal of Geophysical Research: Solid Earth, 105(B1), 463–481,
https://doi.org/10.1029/1999jb900329.

Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F. (2000b). Basal mechanics of Ice Stream B, west
Antarctica: 2. Undrained plastic bed model. Journal of Geophysical Research: Solid Earth, 105(B1),
483–494, https://doi.org/10.1029/1999jb900328.

Tuminaro, R., Perego, M., Tezaur, I., Salinger, A., and Price, S. (2016). A Matrix Dependent/Algebraic
Multigrid Approach for Extruded Meshes with Applications to Ice Sheet Modeling. SIAM Journal on
Scientific Computing, 38(5), C504–c532, https://doi.org/10.1137/15m1040839.

van der Wel, N., Christoffersen, P., and Bougamont, M. (2013). The influence of subglacial hydrology
on the flow of Kamb Ice Stream, West Antarctica. Journal of Geophysical Research: Earth Surface,
118(1), 97–110, https://doi.org/10.1029/2012jf002570.

https://doi.org/10.1137/17m1120385
https://doi.org/10.1017/jog.2022.71
https://doi.org/10.1016/j.quascirev.2014.09.013
https://doi.org/10.1017/jfm.2021.394
https://doi.org/10.1017/jfm.2021.394
https://doi.org/10.5194/tc-11-2543-2017
https://doi.org/10.5194/tc-11-2543-2017
https://doi.org/10.1017/jog.2020.67
https://doi.org/10.5194/gmd-8-1197-2015
https://doi.org/10.5194/gmd-8-1197-2015
https://doi.org/10.1016/j.jocs.2024.102319
https://doi.org/10.1016/j.jocs.2024.102319
https://doi.org/10.1007/s00707-020-02727-2
https://doi.org/10.3189/2015jog14j221
https://doi.org/10.3189/2015jog14j221
https://doi.org/10.1029/1999jb900329
https://doi.org/10.1029/1999jb900328
https://doi.org/10.1137/15m1040839
https://doi.org/10.1029/2012jf002570


212 Bibliography

van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G.,
Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer,
C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.
(2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part
2: Antarctica (1979–2016). The Cryosphere, 12(4), 1479–1498, https://doi.org/10.5194/tc-12-1479-
2018.

Vassaux, M., Richardson, R. A., and Coveney, P. V. (2019). The heterogeneous multiscale method applied
to inelastic polymer mechanics. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 377(2142), 20180150, https://doi.org/10.1098/rsta.2018.0150.

Vaughan, D. G. (1995). Tidal flexure at ice shelf margins. Journal of Geophysical Research: Solid Earth,
100(B4), 6213–6224, https://doi.org/10.1029/94jb02467.

Verjans, V. and Robel, A. (2024). Accelerating Subglacial Hydrology for Ice Sheet Models With Deep
Learning Methods. Geophysical Research Letters, 51(2), https://doi.org/10.1029/2023gl105281.

Verjans, V., Robel, A. A., Seroussi, H., Ultee, L., and Thompson, A. F. (2022). The Stochastic Ice-
Sheet and Sea-Level System Model v1.0 (StISSM v1.0). Geoscientific Model Development, 15(22),
8269–8293, https://doi.org/10.5194/gmd-15-8269-2022.

Walder, J. S. (1982). Stability of Sheet Flow of Water Beneath Temperate Glaciers and Impli-
cations for Glacier Surging. Journal of Glaciology, 28(99), 273–293, https://doi.org/10.3189/
s0022143000011631.

Walder, J. S. (1986). Hydraulics of Subglacial Cavities. Journal of Glaciology, 32(112), 439–445,
https://doi.org/10.3189/s0022143000012156.

Walder, J. S. and Fowler, A. (1994). Channelized subglacial drainage over a deformable bed. Journal of
Glaciology, 40(134), 3–15, https://doi.org/10.3189/s0022143000003750.

Warburton, K., Meyer, C., and Sommers, A. (2024). Numerical and physical instability of subglacial
water flow. EarthArXiv preprint, https://doi.org/10.31223/x54t32.

Warburton, K. L. P., Hewitt, D. R., and Neufeld, J. A. (2023). Shear dilation of subglacial till results
in time-dependent sliding laws. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 479(2269), https://doi.org/10.1098/rspa.2022.0536.

Watkins, J., Carlson, M., Shan, K., Tezaur, I., Perego, M., Bertagna, L., Kao, C., Hoffman, M. J.,
and Price, S. F. (2023). Performance portable ice-sheet modeling with MALI. The International
Journal of High Performance Computing Applications, 37(5), 600–625, https://doi.org/10.1177/
10943420231183688.

Wauthy, S., Tison, J.-L., Inoue, M., El Amri, S., Sun, S., Fripiat, F., Claeys, P., and Pattyn, F. (2024). Spa-
tial and temporal variability of environmental proxies from the top 120m of two ice cores in Dronning
Maud Land (East Antarctica). Earth System Science Data, 16(1), 35–58, https://doi.org/10.5194/essd-
16-35-2024.

Weertman, J. (1957). On the Sliding of Glaciers. Journal of Glaciology, 3(21), 33–38, https://doi.org/
10.3189/s0022143000024709.

Weertman, J. (1972). General theory of water flow at the base of a glacier or ice sheet. Reviews of
Geophysics, 10(1), 287–333, https://doi.org/10.1029/rg010i001p00287.

Weertman, J. (1974). Stability of the Junction of an Ice Sheet and an Ice Shelf. Journal of Glaciology,
13(67), 3–11, https://doi.org/10.3189/s0022143000023327.

https://doi.org/10.5194/tc-12-1479-2018
https://doi.org/10.5194/tc-12-1479-2018
https://doi.org/10.1098/rsta.2018.0150
https://doi.org/10.1029/94jb02467
https://doi.org/10.1029/2023gl105281
https://doi.org/10.5194/gmd-15-8269-2022
https://doi.org/10.3189/s0022143000011631
https://doi.org/10.3189/s0022143000011631
https://doi.org/10.3189/s0022143000012156
https://doi.org/10.3189/s0022143000003750
https://doi.org/10.31223/x54t32
https://doi.org/10.1098/rspa.2022.0536
https://doi.org/10.1177/10943420231183688
https://doi.org/10.1177/10943420231183688
https://doi.org/10.5194/essd-16-35-2024
https://doi.org/10.5194/essd-16-35-2024
https://doi.org/10.3189/s0022143000024709
https://doi.org/10.3189/s0022143000024709
https://doi.org/10.1029/rg010i001p00287
https://doi.org/10.3189/s0022143000023327


Bibliography 213

Weertman, J. (1983). Creep Deformation of Ice. Annual Review of Earth and Planetary Sciences, 11(1),
215–240, https://doi.org/10.1146/annurev.ea.11.050183.001243.

Weertman, J. and Birchfield, G. E. (1982). Subglacial Water flow Under Ice Streams and West Antarctic
Ice-Sheet Stability. Annals of Glaciology, 3, 316–320, https://doi.org/10.3189/s0260305500002998.

Weis, M., Greve, R., and Hutter, K. (1999). Theory of shallow ice shelves. Continuum Mechanics and
Thermodynamics, 11(1), 15–50, https://doi.org/10.1007/s001610050102.

Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E. (2013). Modeling channelized and
distributed subglacial drainage in two dimensions. Journal of Geophysical Research: Earth Surface,
118(4), 2140–2158, https://doi.org/10.1002/jgrf.20146.

Whitehouse, P. L. (2018). Glacial isostatic adjustment modelling: historical perspectives, recent ad-
vances, and future directions. Earth Surface Dynamics, 6(2), 401–429, https://doi.org/10.5194/esurf-
6-401-2018.

Wilchinsky, A. V. and Chugunov, V. A. (2000). Ice-stream-ice-shelf transition: theoretical anal-
ysis of two-dimensional flow. Annals of Glaciology, 30, 153–162, https://doi.org/10.3189/
172756400781820868.

Wild, C. T., Alley, K. E., Muto, A., Truffer, M., Scambos, T. A., and Pettit, E. C. (2022). Weakening
of the pinning point buttressing Thwaites Glacier, West Antarctica. The Cryosphere, 16(2), 397–417,
https://doi.org/10.5194/tc-16-397-2022.

Willis, I. C., Pope, E. L., Leysinger Vieli, G. J.-M., Arnold, N. S., and Long, S. (2016). Drainage
networks, lakes and water fluxes beneath the Antarctic ice sheet. Annals of Glaciology, 57(72), 96–
108, https://doi.org/10.1017/aog.2016.15.

Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann,
A. (2011). The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 1: Model description. The
Cryosphere, 5(3), 715–726, https://doi.org/10.5194/tc-5-715-2011.

Winkelmann, R., Steinert, N. J., McKay, D. I. A., Brovkin, V., Kääb, A., and Notz, D. (2023). Tipping
points in the cryosphere. In T. M. Lenton, D. I. Armstron McKay, S. Lorani, J. F. Abrams, S. J.
Lade, J. F. Donges, and others (Eds.), The Global Tipping Points: Report 2023, (pp. 56–77). Exeter:
University of Exeter.

Zhong, S., Kang, K., A, G., and Qin, C. (2022). CitcomSVE: A Three-Dimensional Finite Element Soft-
ware Package for Modeling Planetary Mantle’s Viscoelastic Deformation in Response to Surface and
Tidal Loads. Geochemistry, Geophysics, Geosystems, 23(10), https://doi.org/10.1029/2022gc010359.

Zimmerman, R. W., Al-Yaarubi, A., Pain, C. C., and Grattoni, C. A. (2004). Non-linear regimes of fluid
flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 41, 163–169,
https://doi.org/10.1016/j.ijrmms.2004.03.036.

Zoet, L. K. and Iverson, N. R. (2015). Experimental determination of a double-valued drag relationship
for glacier sliding. Journal of Glaciology, 61(225), 1–7, https://doi.org/10.3189/2015jog14j174.

Zoet, L. K. and Iverson, N. R. (2020). A slip law for glaciers on deformable beds. Science, 368(6486),
76–78, https://doi.org/10.1126/science.aaz1183.

https://doi.org/10.1146/annurev.ea.11.050183.001243
https://doi.org/10.3189/s0260305500002998
https://doi.org/10.1007/s001610050102
https://doi.org/10.1002/jgrf.20146
https://doi.org/10.5194/esurf-6-401-2018
https://doi.org/10.5194/esurf-6-401-2018
https://doi.org/10.3189/172756400781820868
https://doi.org/10.3189/172756400781820868
https://doi.org/10.5194/tc-16-397-2022
https://doi.org/10.1017/aog.2016.15
https://doi.org/10.5194/tc-5-715-2011
https://doi.org/10.1029/2022gc010359
https://doi.org/10.1016/j.ijrmms.2004.03.036
https://doi.org/10.3189/2015jog14j174
https://doi.org/10.1126/science.aaz1183

	Introduction
	Context
	The climate system of the 21st century
	The cryosphere
	Marine sectors of the Antarctic ice sheet

	Motivation
	Overview of the manuscript

	I Modeling marine ice sheets: an overview
	Mechanics of marine ice sheets
	Introduction
	Continuum mechanics
	Kinematics
	Dynamics

	Ice flow
	Rheology
	Thermal properties
	Balance equations
	Initial and boundary conditions

	Summary of the governing equations
	Equations for ice flow
	Challenges
	Limitations

	Interactions with other components of the Earth System
	Ice-atmosphere interactions
	Ice-ocean interactions
	Ice-bedrock interactions


	Stress approximations for ice flow
	Motivation
	Principal approximations
	Blatter–Pattyn model
	Shallow-shelf approximation
	Shallow-ice approximation
	Summary

	Approximations to higher-order models
	Hybrid models
	Depth-integrated models
	Multilayer models

	Practical aspects
	Validity of the approximations
	Implementations


	The subglacial environment
	Introduction
	Basal friction
	Hard beds
	Soft beds
	Towards a unified friction law

	Subglacial hydrology
	Effective pressure and hydraulic potentials
	Hard beds
	Soft beds
	Multi-drainage models


	List of symbols

	II Original contributions
	Extension of grounding-line flux conditions
	Introduction
	Problem formulation
	Governing equations
	Friction laws
	Dimensionless formulation
	Flux conditions

	Generalization to the Budd friction law
	Derivation of the flux condition
	Analysis of the leading-order dynamical system 
	Existence of a boundary layer

	Generalization to hybrid friction laws
	Effect of , , and 
	Non-vanishing friction law with 1: negligible membrane-stress divergence
	Vanishing friction law: non-negligible membrane-stress divergence
	Non-vanishing friction law with 1

	Verification with numerical experiments
	Set-up
	Flux conditions for the Budd and hybrid friction laws
	Effect of , , and 

	Discussion
	Specifications of the obtained flux conditions
	Limitations

	Conclusion
	Appendix A: Analysis of the leading-order dynamical system: vanishing friction at the grounding line
	Problem formulation
	Principle of the analysis
	Derivation of the intermediary properties

	Appendix B: Numerical solving strategy for finding gl

	A fast and simplified subglacial hydrological model
	Introduction
	Model description
	Ice-flow model
	Hydrological model

	Idealized experiments
	Experimental setup
	Results: the efficient to inefficient switch
	Results: perturbation experiment

	Application to Thwaites Glacier
	Experimental setup
	Results: subglacial hydrology on homogeneous beds
	Results: subglacial hydrology on heterogeneous beds

	Discussion
	Influence of subglacial conditions
	Hydrological feedback
	Model limitations

	Conclusions
	Appendix A: List of symbols
	Appendix B: The effective pressure near the grounding line: a boundary-layer analysis
	Problem statement
	Dimensionless equations
	Outer solution
	Inner solution
	Composite solution

	Appendix C: Effect of the coupling frequency between the hydrological and ice-sheet models
	MISMIP
	Thwaites

	Appendix D: Influence of the unconstrained parameters of the hydrological model

	Singularity at pinning points
	Introduction
	Model
	Notations
	Strong formulation
	Weak formulation

	Grounding-line motion and singularity
	The linearized problem
	Singularity
	A regularized approach

	Numerical experiments
	Set-up
	Stress distribution
	Steady states
	Transient states

	Discussion
	Impact of pinning points
	Origin of the singularity
	Perspectives

	Conclusion
	Appendix A: Analytical expressions of the terms appearing in the linearized problem
	Residuals
	Gâteaux differentials

	Appendix B: Proofs of the propositions
	Appendix C: Continuation methods
	Pseudo-arclength continuation
	Objective-based continuation



	III Conclusions and directions for future work
	Conclusions and perspectives
	Summary and conclusions
	Suggestions and perspectives for future work
	Perspectives related to the original contributions
	Other perspectives


	Bibliography


