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Cold-water corals

Foundation species forming reefs with wordwide
distribution, most commonly at depths ranging
between 200 and 2000 meters

Those reefs provide habitats and/or nursery grounds for
many other species: deep-sea biodiversity hotspots

Roberts et al. 2006 Science 312: 543-547




Cold-water corals

Cold-water corals mostly depend on photosynthetic organic matter produced in the euphotic zone and exported
through benthic-pelagic coupling

Zooplankton

epipelagic:
euphotic

S,
6//?{.0’.
)
4 S 200

. R mesopelagic
continental shelf break -~

bathy-

abysso-

Maier 2020

Y
BuhlsMiertensen et al. 2010 Mar. Ecol. 31: 21-50



Cold-water corals

Cold-water corals mostly depend on photosynthetic organic matter produced in the euphotic zone and exported
through benthic-pelagic coupling

Food availability is therefore limited, and usually available through infrequent but massive resource pulses ("feast &
famine" environment)
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Cold-water corals

Cold-water corals mostly depend on photosynthetic organic matter produced in the euphotic zone and exported
through benthic-pelagic coupling

Food availability is therefore limited, and usually available through infrequent but massive resource pulses ("feast &
famine" environment)

Energy acquisition is a major challenge for CWCs, and will likely become even more so in the next few decades as
global change could shift coral energy budgets (ocean acidification)
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Adaptations to food-poor environments

Zetsche et al. 2016, PLoS ONE 11(2): e0146766

Passive suspension feeders: secret mucus to enhance particle/prey trapping



Adaptations to food-poor environments

Spring feast Winter famine - -

Maier 2020

Selective suspension feeders: able to feed on multiple items (phytoplankton, zooplankton,
bacterioplankton, detritus, etc.), with considerable ecological plasticity



Adaptations to food-poor environments

No symbiosis with photosynthetic partners,

Denitrification Nitrification but corals + micro-organisms colonizing them
20-360 1-93 ]
act as a holobiont

Assimilation NH,* Micro-organisms : multiple metabolic
\ Nl 1200/ activities
N, fixation Excretion . ]
610-770 2400-6900 Desmophyllum pertusum derives nitrogen
Organic N from bacterial metabolism and uses it to

meet its nutritional requirements

Middelburg et al. 2015, Sci. Rep. 5, 17962
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Irish Sea

Study site: Lampaul Canyon, Bay of Biscay

Extensive coral formations between 800 and 1600 m,
built by three of the globally dominant cold-water reef
building species
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Study site: Lampaul Canyon, Bay of Biscay
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Study site: Lampaul Canyon, Bay of Biscay
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Objectives

Cold-water corals have multiple feeding strategies (wide fundamental niches) and show considerable trophic
plasticity.
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Objectives

Cold-water corals have multiple feeding strategies (wide fundamental niches) and show considerable trophic
plasticity.

In the Lampaul Canyon: what is the realized trophic niche of corals? How does each species acquire energy? Do they
share dietary resources with each other or with associated fauna, particularly filter and/or suspension feeders?

Maier 2020
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3 cruises onboard RV Thalassa
(August/September 2021, 2022
and 2023)

Sampling of coral colonies and
biomass-dominant associated
fauna using either HROV Ariane
or ROV Victor 6000

Dissection and extraction of
relevant tissues

Trophic markers measurements




Trophic markers: You are what you eat

When animals digest their food, they incorporate some compounds in their own tissues in a conservative way

Animals retain in their tissues some biochemical "traces" of the food they assimilated while synthesizing this tissue:
integrative trophic markers

Measuring the relative abundances of these compounds naturally present in tissues of animal consumers and in
their potential food items can generate indirect info about animal diet

Here: use of stable isotope ratios of C, N and Sand fatty acid composition to build proxies of trophic niches
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Ex situ |labelling experiments onboard, during the cruises
Use of pressurized aquaria to recreate in situ pressure conditions

Addition of *°NH,C| at environmental concentrations (3 pM), incubation for 24-72 hours, and quantification of
inorganic nitrogen uptake by coral holobionts through stable isotope analysis




Isotopic niches of corals and associated fauna
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Isotopic niches of corals and associated fauna
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Isotopic niches of corals and associated fauna
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Isotopic niches of corals and associated fauna

2022

Taxon
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Reef-building corals and associated suspension/deposit feeders seem to rely on different
dietary resources...
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Fatty acid composition of reserve lipids
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Fatty acid composition of reserve lipids
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Fatty acid composition of reserve lipids
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Zooplankton markers (%FA)

Diatom markers (%FA)

Fatty acid composition of reserve lipids
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Fatty acid composition of reserve lipids
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Isotopic niches of corals and associated fauna
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Isotopic niches — dominant syntopic corals
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Isotopic niches — dominant syntopic corals
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Isotopic niches — dominant syntopic corals
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Labelling experiments
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Labelling experiments
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Inorganic nitrogen fixation: how?

Inorganic nitrogen fixation has previously
been reported in D. pertusum, presumably
through mutualistic bacteria. However,
this symbiosis is currently poorly
documented.

Use of NanoSIMS to elucidate
incorporation patterns
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Inorganic nitrogen fixation: how?
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Inorganic nitrogen fixation has previously
been reported in D. pertusum, presumably
through mutualistic bacteria. However,
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documented.
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Inorganic nitrogen fixation: how much?

In Norwegian fjords, D. pertusum might
derive 10 — 30 % of its nitrogen from
symbiote metabolism.

Spatial and temporal variability?
Interspecific differences? Impacts of
environmental changes (ocean warming
and acidification)?
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Inorganic nitrogen fixation: how much?

In Norwegian fjords, D. pertusum might
derive 10 — 30 % of its nitrogen from
symbiote metabolism.

Spatial and temporal variability?
Interspecific differences? Impacts of
environmental changes (ocean warming
and acidification)?

Longer-term (9-12 months) experiments in
pressurized aquaria, in partnership with
Océanopolis (public aquarium, Brest, FR).

‘ Océan\Opolis

’l\w‘

BREST

L

FNNTINIED....



Take home message

= |n the Lampaul canyon, all 3 reef-building coral species exhibit marked
resource segregation with associated fauna.




Take home message

In the Lampaul canyon, all 3 reef-building coral species exhibit marked
resource segregation with associated fauna.

Corals are selective plankton feeders with species-specific preferences:
Desmophyllum pertusum and Solenosmilia variabilis seem to favour
zooplankton, while Madrepora oculata could have a more balanced diet
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Take home message

In the Lampaul canyon, all 3 reef-building coral species exhibit marked
resource segregation with associated fauna.

Corals are selective plankton feeders with species-specific preferences:
Desmophyllum pertusum and Solenosmilia variabilis seem to favour
zooplankton, while Madrepora oculata could have a more balanced diet
comprising zooplankton, phytoplankton and bacterioplankton.

The 3 species are able to supplement their dietary nutriment intake through
inorganic nitrogen fixation. The relative importance of this mechanism for
coral nitrogen budget is currently unclear.

Joint use of stable isotopes and fatty acids suggest that although foraging
strategies might differ, coral niches might partly overlap. Marked differences
between successive sampling years hint towards highly dynamic trophic
interactions.
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Isotopic niches — dominant syntopic corals

2021

2022
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SEApp < SEAo :
Pr(D|M) = 0.8152

SEApp < SEA o :
Pr(D|M) = 0.9990

SEAL, < SEA, . :
Pr(D|M) = 0.9963 ‘

Coral niche size changed across years for both species, and M. oculata showed a higher trophic
diversity in 2022 and 2023
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Trophic niches of corals and associated fauna
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Fatty acid composition of reserve lipids

Zooplankton trophic markers: 2 20:1(n-9), 20:1(n-11), 22:1(n-11)
Dinoflagellate trophic markers: 2 22:6(n-3), 18:4(n-3)
Diatom trophic markers: 2 16:1(n-7), 16:2(n-4), 16:4(n-1)

Bacteria trophic markers: £ 15:0, is015:0, 17:0, iso17:0
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