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A B S T R A C T

Scientific knowledge expands by observing the world, hypothesizing some theories about
it, and testing them against collected data. When those theories take the form of statistical
models, statistical analyses are involved in the process of testing and refining scientific
hypotheses. Those analyses can become challenging with the increased complexity of pro-
posed theories. In this thesis, we focus on statistical models that take the form of scientific
simulators and provide background about how machine learning can be used for statistical
analyses in this context.

The first part of this thesis is about showing empirically that performing statistical analy-
ses with machine learning involves a degree of approximation. Specifically, all statistical
analyses involve a level of uncertainty in the conclusions drawn, and we show that approx-
imations can lead to overconfident conclusions. We draw caution regarding such overcon-
fident conclusions and introduce a criterion to diagnose overconfident approximations.

In the second part, we introduce balancing, a way to regularize machine learning models to
reduce overconfidence and favor calibrated or underconfident approximations. Balancing
is first introduced for neural ratio estimation algorithms and then extended to other al-
gorithms. Intuition about why balancing leads to less overconfident solutions is provided,
and it is shown empirically that balanced algorithms are often either close to calibrated or
underconfident.

The third part shows that Bayesian neural networks can also be used to mitigate the over-
confidence of approximations. Unlike balancing, no regularization is required, and this
solution can then work with few training samples and, hence, computationally expensive
simulators. To that end, a new Bayesian neural network prior tailored for simulation-based
inference is developed, and empirical results show a reduction in overconfidence compared
to similar solutions without Bayesian neural networks.
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1
I N T R O D U C T I O N

Scientific discoveries are driven by data, either collected through controlled experiments
or by observing the world. Those scientific theories can take the form of a mathematical
model for some phenomenon in the world. In such cases, the model then represents our
current knowledge about that phenomenon. For example, Newton’s laws capture some
knowledge about motion dynamics and Maxwell’s equation knowledge about electromag-
netism. Scientific theories could also take other forms when not suited for mathematical
modeling. In this thesis, we keep the focus on mathematical modeling. Box (1976) and Blei
(2014) introduced the Box’s loop, a scientific method for constructing models for phenom-
ena from data. This method is represented in Figure 1.1. The loop contains three steps
that are repeated to improve a model iteratively. The first step is to build a model. This
involves some creativity and intuition to develop equations that could explain the obser-
vations made. The model might include parameters that are unknown. For example, if we
consider motion under a gravitational force, it is often modeled as being proportional to
object masses and the inverse of the squared distance between the objects. A multiplica-
tive constant is then added to obtain the scale of this force. It would be hard to come up
with a value for this multiplicative constant simply with intuition. The second step is then
to infer hidden quantities of the model, such as this multiplicative constant, from data.
Once a model has been built and its possible hidden quantities have been inferred, it can
be used to make predictions about the world, and those predictions can be challenged
against pieces of data. Discrepancies between predictions and data can be used to criticize
the model, for example, by identifying some effects that are not taken into account by the
model. This model criticism is then a feedback loop, allowing the building of more accurate
models. By repeating this procedure, more and more accurate models can be built.

Box’s loop provides a way to iteratively build a collection of models. Popper (1959) argue
that a model cannot be verified. However, a model can be refuted empirically. This collec-
tion of models should then be pruned out by removing models that can be shown to not
accurately reflect the world. This process is called falsification. Refuting models happens
both on model structure and hidden quantities. If we take back the example of motion
under gravitational force, one could refute that gravitational force is proportional to ob-
ject masses and the inverse of the squared distance between the objects or refute some
multiplicative constant values.

1
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Build model Infer hidden quantities Criticize model

Data

Apply model

Revise model

Figure 1.1: Visualization of Box’s loop (Box, 1976; Blei, 2014). The loop iterates over three main
elements: model building, model’s hidden quantities inference, and model criticism.
Iterating over those three elements aims to build better scientific models, taking into
account model criticism feedback.

Historically, scientists kept models simple enough such that inferring hidden quantities
and testing the model could be done analytically. Nowadays, with the increase in compu-
tational power and advances in algorithmics for numerical approximations, it is possible to
deal with models that do not allow analytical inference and testing. In addition, as we keep
refining models to capture all aspects, such complex models are often needed. While those
advances allow the construction of more accurate models, hidden quantity inference and
model testing are now often done approximately. This raises questions as to how it impacts
the Popperian falsification procedure. Can a model or hidden quantities be reliably refuted
by an approximate inference or testing procedure? It could be that our procedure leads to
refutation only because of approximations and that if that same procedure was applied
without approximations, refutation could not be obtained. Incorrect refutation of models
could then ultimately prevent scientists from exploring valid models and lead them in the
wrong direction.

In this thesis, we aim to adapt modern scientific reasoning to take into account the approx-
imations made. At the root of this adapted methodology is the inclusion of the additional
source of uncertainty brought by those approximations. Statistical methods are modified
to produce inflated uncertainty estimates based on how the approximations are likely to
affect the end result. In particular, we argue that underestimating the uncertainty is more
harmful than overestimating it for Popperian falsification. Indeed, underestimation of un-
certainty can lead to incorrect refutation, while overestimation can only lead to failing to
refute a model. With this in mind, we design new statistical methods to try to avoid under-
estimation of the uncertainty and, hence, overconfidence. These methods can then be used
more reliably for scientific analyses, and more trust can be given to conclusions drawn.
We focus on models that take the form of a simulator. Simulators are becoming heavily
used in science as they can model complex phenomena. Examples include agent-based
models that can be found in the fields of epidemiology or economics. Simulators are also
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used in many fields of physical sciences, such as cosmology or particle physics, as well
as in biology. Stochastic simulators are inherently complex to deal with as they involve
many stochastic steps to model the full phenomena. If we consider agent-based models,
they involve the stochastic actions of all those agents or the stochastic consequences of
those actions. In addition, we focus on the problem of inferring hidden quantities of those
models and on machine learning based methods for approximate inference.

The thesis is outlined as follows. In Chapter 2 and 3, we provide background in statis-
tical modeling and simulation-based inference, respectively. In Chapter 4, we showcase
how simulation-based inference methods can lead to overconfidence. In Chapter 5, we in-
troduce balancing, the first improvement of simulation-based inference methods toward
more reliability, and in Chapter 6, we extend balancing to a broader range of methods. We
show in Chapter 7 that Bayesian neural networks can be used to improve the reliability of
simulation-based inference methods, even in low-data regimes. We conclude and provide
additional discussions in Chapter 8.





2
S TAT I S T I C A L M O D E L I N G

Statistical modeling is about specifying relationships between one or more random vari-
ables and non-random variables. Those relationships usually come from a combination of
prior knowledge and inference from data. In this chapter, we describe different ways of
reasoning about those relationships. We will also illustrate the concept of model using the
example of a feather falling due to gravity.

2.1 probability and statistical models

A probability model is a mathematical representation, that includes randomness, of a phe-
nomenon. It is defined in the following way.

Definition 2.1.1. A probability model is defined by three components: a sample space Ω,
a space of possible events A within the sample space, and a mapping P from an event
A ⊂ Ω to a probability P (A).

Hence, it encapsulates all the information about the probabilities of experiment outcomes
regarding that random phenomenon. In all generality, statistics is concerned with inferring
from an outcome of a probabilistic experiment interesting things about the data generating
process. For example, one might be interested in extracting, from a family of models, the
probability model that is the most consistent with the experimental outcome (point esti-
mation), a range of models that are consistent with this outcome could also be extracted
(interval estimation). Another interesting piece of information is whether or not a hypoth-
esis can be refuted from data with some probability (hypothesis testing). To answer such
questions, we start with a statistical model.

Definition 2.1.2. A statistical model is a mathematical model that embodies a set of statis-
tical assumptions concerning the generation of sample data.

It often takes the form of a parametric family of probability models. In the remainder of
this thesis, we will denote those parameters by θ. The statistical model with parameter
values then jointly defines a probability model.

As an illustration, we will take the example of a feather falling. In this setting, we observe
the time it takes for the feather to fall from a given height, and we want to model the fall.

5



6 statistical modeling

This is illustrated in Figure 2.1. We assume that the fall follows Newtonian dynamics and
that the gravitational force applied to the feather is

F = m g e, (2.1)

where m is the mass of the feather, g is the gravity constant, and e is a unit vector pointing
towards the earth. If no other forces are applied to the object, it takes

√
2h
g seconds to fall

from a height h.

We will model the measurement error as a normal distribution centered at 0:

measurement error ∼ N (0,σmeasurement). (2.2)

If we combine the two, it gives the following statistical model for the measured fall time

measured time ∼ N
(√

2h
g

,σmeasurement

)
. (2.3)

In this setting, if we assume that σmeasurement and height h are known, there is only one
parameter θ = g.

2.2 frequentist and bayesian statistics

There are two main approaches to statistical inference: the frequentist and Bayesian para-
digms. At the root of those two paradigms is the interpretation of probability. Frequentist
statistics are based on the frequency interpretation of probability. The probability of an
event is the observed frequency of that event in the limit of infinite observations. Bayesian
statistics interpret probability as a degree of belief rather than observed frequencies.

The most direct consequence of those two philosophical approaches to probability is that,
in the frequentist philosophy, we cannot assign a probability to the parameters θ of the
statistical model as those are not random events that can be observed. In the example of a
feather falling, it is not possible to design a random experiment that would yield several
values for g. It is an unknown parameter that is not random, and it would then make no
sense to assign a probability to g in the frequentist philosophy. However, one can have a
belief about what g could be, based on observations, and a probability can then be assigned
to parameters in the Bayesian philosophy.

In the remainder of this thesis, we will denote the observations by x and by p the prob-
ability density function or probability mass function for continuous and discrete random
variables, respectively. The data-generating process that models the fact of performing an
experiment will be denoted as p∗(x). Performing an experiment is, hence, equivalent to
sampling an observation from this data-generating process x ∼ p∗(x). A central compo-
nent of statistical inference is the likelihood p(x|θ). It defines the probability of observing
x according to the statistical model with parameters θ. In our example, it defines the prob-
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measured
time

F = m g e

height

Figure 2.1: Illustration of the experiment of a feather falling. A gravitational force F = m g e is
applied on the feather and the fall time is measured.

ability of observing some fall time (x) given a gravity constant g (= θ). The likelihood is
used in both frequentist and Bayesian statistics.

In the Bayesian philosophy, we can go a step further and define a belief over parameters θ

given the observations x. This belief is called the posterior, p(θ|x), and is defined through
the Bayes rule

p(θ|x) = p(x|θ)p(θ)
p(x)

. (2.4)

The term p(θ) is called the prior and is a part of the statistical model that represents the
belief about the parameters before observing x. The term p(x) is called the evidence and
is the marginal probability of observing x. It can be computed through the law of total
probability

p(x) =
∫
p(x|θ)p(θ)dθ. (2.5)

The posterior is a central component of Bayesian inference as it defines all the information
we have about the parameters θ. It will be used to derive all the other quantities of interest.
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2.3 point estimation

Point estimation corresponds to the task of finding the parameters that lead to an appro-
priate probability model according to the data. In other words, we aim to find parameter
values θ such that p(x|θ) is close to p∗(x). If we measure how close those distributions are
using the KL-divergence and assume we have access to N samples x1, ..., xN ∼ p∗(x), we
aim for

arg min
θ

KL [p∗(x)||p(x|θ)] = arg min
θ

∫
log

(
p∗(x)

p(x|θ)

)
p∗(x)dx

≃ arg min
θ

1
N

N∑
i=1

log
(
p∗(xi)

p(xi|θ)

)

= arg max
θ

1
N

N∑
i=1

log (p(xi|θ)) − 1
N

N∑
i=1

log (p(xi))

= arg max
θ

N∑
i=1

log (p(xi|θ))

= arg max
θ

N∏
i=1

p(xi|θ).

(2.6)

In the remainder, we will use x to represent both single and multiple observations from
a phenomenon. The model is then a model for a single or multiple observations from the
phenomenon. A model for multiple observations can be obtained from a model for single
observations. p(x1, ..., xN |θ) =

∏N
i=1 p(xi|θ). An appropriate probability model can then

be the one that maximizes the likelihood. This leads to the maximum likelihood estimator
(MLE) of those parameters.

Definition 2.3.1. The maximum likelihood estimator θMLE is defined as

θMLE = arg max
θ

p(x|θ). (2.7)

Let us assume that we make a feather falling experiments for heights 3m, 5m and 7m
and observe measured falling time of 4.68s, 6.97s and 9.69s respectively. The probability of
those observations given our model is then
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p(x|g) = 1
σmeasurement

√
2π

exp

−

(
4.68 −

√
6
g

)2

2σ2
measurement


× 1
σmeasurement

√
2π

exp

−

(
6.97 −

√
10
g

)2

2σ2
measurement


× 1
σmeasurement

√
2π

exp

−

(
9.69 −

√
14
g

)2

2σ2
measurement


=

( 1
σmeasurement

√
2π

)3
exp

−
(
4.68 −

√
6
g

)2
−
(
6.97 −

√
10
g

)2
−
(
9.69 −

√
14
g

)2

2σ2
measurement

 .

(2.8)
We have that

log p(x|g) ∝ −
(

4.68 −
√

6
g

)2

−
(

6.97 −
√

10
g

)2

−
(

9.69 −
√

14
g

)2

. (2.9)

From that we can compute the maximum likelihood estimator

gMLE = arg max
g

p(x|g)

= arg max
g

log p(x|g)

= arg max
g

−
(

4.68 −
√

6
g

)2

−
(

6.97 −
√

10
g

)2

−
(

9.69 −
√

14
g

)2

≃ 0.1849.

(2.10)

In Bayesian philosophy, it would make sense to consider instead the probability model
corresponding to the parameters in which we have the highest belief. The belief over model
parameters is the posterior. This leads to the maximum a posteriori estimator (MAP) of
those parameters.

Definition 2.3.2. The maximum a posteriori estimator θMAP is defined as

θMAP = arg max
θ

p(θ|x) = arg max
θ

p(x|θ)p(θ). (2.11)

Let us assume that we have the a priori belief that log g should follow a uniform distribu-
tion between log(0.01) and log(1000). We have

p(g) =
1

g(log(1000) − log(0.01)) . (2.12)
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Consequently,

log p(g|x) ∝ log p(x|g) + log p(g)

= −3 log(σmeasurement
√

2π) +
−
(
4.68 −

√
6
g

)2
−
(
6.97 −

√
10
g

)2
−
(
9.69 −

√
14
g

)2

2σ2
measurement

− log(g) − log(log(1000) − log(1)).
(2.13)

If we assume that σmeasurement = 0.5s, then the maximum a posteriori is

gMAP = arg max
g

p(g|x) ≃ 0.1838. (2.14)

The parameters θMLE and θMAP could then optionally be used to obtain a probability model.
This probability model can then be used to make predictions on future observations. If
we consider the maximum likelihood estimator gMLE = 0.1849, we can predict that the
measured fall time from a height h = 6m would follow the distribution N (µ =

√
2h
gMLE

=

8.056,σ = σmeasurement).

2.4 interval estimation

Instead of a point estimation, we might often want to obtain a range of models that are
consistent with the observation. This is done through interval or region estimation. In
frequentist statistics, these are called confidence regions or intervals.

Definition 2.4.1. A level α confidence region generation function Cα(.) is a function such
that

P (θ ∈ Cα(X)) ≥ α, ∀θ, (2.15)

where X is the random variable associated with the observation generated according to
the model with parameter θ.

A level α confidence region generation function is then a function that, when given as
input a random variable associated with the observation according to the model with some
parameters θ, outputs a random region that contains those parameters with probability α.
The probability statement is then on the constructed region and not on the parameters θ

that are not random variables. When evaluated on an observation x, this yields a level α
confidence region Cα(x).

Such regions are sometimes hard to construct analytically and must be approximated. This
leads to the definition of coverage of a region generation function.
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Definition 2.4.2. The frequentist coverage probability of a region generator function is the
probability that generated regions based on some observations generated from the model
with some parameters contain those parameters,

coverage(C, θ) = P (θ ∈ C(X)). (2.16)

It follows that if a region generation function has coverage greater of equal to α for all θ,
then this is a valid level α confidence region generation function. The coverage probability
can then be used to measure the validity of a region generation function.

When the parameters θ are one-dimensional and the generated regions are contiguous,
those regions correspond to confidence intervals. Confidence intervals are defined by a
lower function Lα and an upper function Uα such that

P (Lα(X) ≤ θ ≤ Uα(X)) ≥ α, ∀θ. (2.17)

In the Bayesian setting, we assign a belief probability on parameters, and credible regions
are constructed.

Definition 2.4.3. A level α credible region is defined as a region Cα such that∫
Cα

p(θ|x)dθ = α. (2.18)

It is a region in which we have a belief that the parameters have a probability α to be in-
cluded in. This is then a probability statement about the unknown parameters themselves.
Similarly to confidence intervals, when the parameters θ are one-dimensional and we con-
sider contiguous regions, those regions are defined by an upper and lower bound and are
called credible intervals. There are many regions satisfying this property depending on
which part of the parameter space is prioritized to be included. Although not the only
valid choice, a common choice is to consider the highest posterior density credible region.
This is defined as a credible region for which all included elements of the parameter space
have a higher posterior density than the ones excluded. In other words, it prioritizes high
posterior density elements to be included in the credible region.

While the maximum a posteriori could be computed using only the likelihood p(x|θ)
and the prior p(θ), computing a credible region requires the knowledge of the posterior
p(θ|x) explicitly. Computing the posterior requires computing the evidence term p(x),
which involves the computation of the integral

∫
p(x|θ)p(θ)dθ that might be hard to solve

analytically. Therefore, we often have to rely on approximations of the posterior to derive
credible regions. Two widely used techniques to approximate the posterior are Markov
Chain Monte-Carlo and Variational Inference techniques.
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markov chain monte-carlo Markov Chain Monte-Carlo (MCMC) techniques con-
sist in building a Markov chain whose stationary distribution is the posterior. A Markov
chain defines a stochastic transition between states represented by a probability distribu-
tion over the next states, given the current state. In this setting, states are parameter values,
and the transitions are also conditioned on the observation. The Markov chain then defines
the transition p(θi+1|θi, x). A stationary distribution of a Markov chain is a distribution
over θ such that applying the transition on elements from that distribution returns ele-
ments following the same distribution. In other words, π is a stationary distribution if, for
every parameter values θ̃, ∫

π(θ)p(θ̃|θ, x)dθ = π(θ̃). (2.19)

It follows that if this stationary distribution is the posterior and convergence to that sta-
tionary distribution is guaranteed, then parameters sampled from that Markov chain will
asymptotically follow the posterior distribution.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) constructs a
Markov chain that asymptotically follows the posterior distribution. It uses a proposal
distribution g(θ̃|θi, x) that is then corrected to get transitions leading to the posterior
distribution. The transitions are defined as follows.

1. Sample θ̃ ∼ g(θ̃|θi, x).

2. With probability min
(
1, p(θ̃|x)g(θ|θ̃,x)

p(θ|x)g(θ̃|θ,x)

)
set θi+1 = θ̃, otherwise set θi+1 = θi.

To show that such transitions lead to the stationary distribution being the posterior, let us
first show that a distribution π is a stationary distribution if it satisfies the detailed balance
equation

π(θ)p(θ̃|θ, x) = π(θ̃)p(θ|θ̃, x). (2.20)

If that is the case, then∫
π(θ)p(θ̃|θ, x)dθ =

∫
π(θ̃)p(θ|θ̃, x)dθ = π(θ̃)

∫
p(θ|θ̃, x)dθ = π(θ̃). (2.21)

and π is then a stationary distribution. If we assume that the transitions are built using a
proposal distribution g(θ̃|θ, x) and an acceptance probability A(θ̃, θ, x), then

p(θ̃|θ, x) ∝ g(θ̃|θ, x)A(θ̃, θ, x). (2.22)

To satisfy the detailed balance equation, we need

A(θ̃, θ, x)

A(θ, θ̃, x)
=
π(θ̃)g(θ|θ̃, x)

π(θ)g(θ̃|θ, x)
. (2.23)

This is satisfied by the following acceptance probability

A(θ̃, θ, x) = min
(

1, π(θ̃)g(θ|θ̃, x)

π(θ)g(θ̃|θ, x)

)
. (2.24)
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as there is always one of A(θ̃, θ, x) or A(θ, θ̃, x) that is equal to one and the other is equal
to the right-hand side of equation 2.23 or its inverse. We aim to build a Markov chain that
has the posterior as a stationary distribution and set π(θ) = p(θ|x). The posterior ratio
can be easily computed as the evidence cancels out:

p(θ̃|x)
p(θ|x)

=
p(x|θ̃)p(θ̃)
p(x|θ)p(θ)

. (2.25)

MCMC can, therefore, be used to draw samples from the posterior p(θ|x) while only
being able to evaluate the likelihood p(x|θ) and the prior p(θ). Those samples can then
be used to construct approximate credible regions. Let us note that the samples drawn
from the Markov chain are not independently and identically distributed (i.i.d.) due to
the correlation between consecutive samples and that a sufficient number of steps must
be performed before reaching the stationary distribution. Those two elements hence add
error to the credible region approximations. With this in mind, it is a good practice to
run an MCMC algorithm with multiple chains, i.e., multiple instances of the algorithm,
to decrease the correlation between samples. It is also a good practice to discard the first
samples produced by each chain when the stationary distribution has not yet been attained.
This is called the burn-in period.

The algorithm is correct for any proposal distribution g(θ|θ̃, x). However, the closer this
distribution is to the posterior, the higher the acceptance rate. In addition, the less consec-
utive samples are correlated, the fewer steps will be required to visit many regions of the
posterior space. Much of the research in MCMC has then been directed towards finding
the best proposals. Some proposals do not use information about the posterior (Goodman
and Weare, 2010; Nelson et al., 2013) while others leverage quantities such as the gradient
of the unnormalized posterior (Welling and Teh, 2011; Neal, 2012).
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Figure 2.2: Histogram of samples obtained by running an MCMC algorithm on the feather falling
model with measured time 4.68s, 6.97s and 9.69s for heights of 3m, 5m and 7m respec-
tively.

As an illustration, Figure 2.2 shows a histogram of samples obtained by running an MCMC
algorithm on the feather falling model with the same observations as for point prediction.
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This histogram then approximates the posterior density. We can observe that there is a
single mode and that there are samples roughly between g = 0.14 and g = 0.25.

variational inference While MCMC only allows drawing samples from the pos-
terior and does not provide an analytical form of it, variational inference (VI) optimizes
a family of distributions to find a member of that family that is close to the actual poste-
rior. The idea is to start with a family of distributions over θ, also called variational family,
which we will denote by πϕ(θ). That family has parameters ϕ that will be optimized to find
a distribution close to the posterior. For example, if we assume that the parameters follow
a multivariate Normal distribution, θ ∼ N (µ, Σ), then the parameters are ϕ = (µ, Σ).

We optimize those parameters to minimize the KL divergence between the variational
distribution and the posterior:

ϕ∗ = arg min
ϕ

KL [πϕ(θ)||p(θ|x)] . (2.26)

Because the posterior p(θ|x) is unknown, the KL divergence cannot be computed, and an
alternative objective will be used. We first rewrite the objective as

KL [πϕ(θ)||p(θ|x)] =
∫
πϕ(θ) log πϕ(θ)

p(θ|x)
dθ

=
∫
πϕ(θ) log πϕ(θ)

p(x|θ)p(θ)
dθ + log(p(x)).

(2.27)

By reorganizing the terms, we have that

log(p(x)) = KL [πϕ(θ)||p(θ|x)] +
∫
πϕ(θ) log p(x|θ)p(θ)

πϕ(θ)
dθ, (2.28)

and because KL [πϕ(θ)||p(θ|x)] ≥ 0,

log(p(x)) ≥
∫
πϕ(θ) log p(x|θ)p(θ)

πϕ(θ)
dθ = Eπϕ(θ)

[
log p(x|θ)p(θ)

πϕ(θ)

]
. (2.29)

For that reason, the term Eπϕ(θ)

[
log p(x|θ)p(θ)

πϕ(θ)

]
is often called the evidence lower bound

(ELBO). From Equation 2.28, we observe that, by maximizing the ELBO and hence making
it closer to log(p(x)), we push the term KL [πϕ(θ)||p(θ|x)] towards zero and hence mini-
mize it. Maximizing the ELBO is hence equivalent to minimizing KL [πϕ(θ)||p(θ|x)]. The
ELBO can be approximated using Monte-Carlo

Eπϕ(θ)

[
log p(x|θ)p(θ)

πϕ(θ)

]
≃ 1
N

N∑
i=1

log p(x|θi)p(θi)
πϕ(θi)

, θi ∼ πϕ(θ), (2.30)

and is, hence, a valid training objective.

Once the variational parameters have been optimized, the distribution πϕ∗(θ) can be used
as a drop-in replacement for p(θ|x) in the downstream computations. By running varia-
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tional inference on the feather falling simulator with the same observations as for point
prediction and MCMC, we obtain the approximate posterior density shown in Figure 2.3.
We used a log normal distribution as variational family. It is parametrized by two parame-
ters ϕ = (µ,σ) such that log g follows approximately a posteriori the distribution N (µ,σ).
By maximizing the ELBO, we obtain the parameters µ = −1.6873 and σ = 0.0829. It
should, however, be kept in mind that it only constitutes an approximation as, on the one
hand, the posterior p(θ|x) might not be contained in the variational family, and on the
other hand, the optimization might not be perfect.
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Figure 2.3: Approximate posterior density obtained by running a variational inference algorithm on
the feather falling model with measured time 4.68s, 6.97s and 9.69s for heights of 3m,
5m and 7m respectively. The plotted variational distribution is a log normal distribution
with parameters µ = −1.6873 and σ = 0.0829.

2.5 hypothesis testing

Hypothesis testing is the task of assessing the compatibility between observed data and a
hypothesis. The hypothesis to test is often called the null hypothesis and is denoted by H0.
The alternative hypothesis corresponds to cases where the null hypothesis does not hold
and is denoted H1. Of interest for this thesis is the fact that the hypothesis to test may be
linked to a scientific theory. For example, one could want to test if the hypothesis g = 0.5
could be rejected from data or not. In that case, the null hypothesis is H0 : g = 0.5, and the
alternative hypothesis is H1 : g ̸= 0.5. We may also want to test if the observations made
are indeed coherent with our model or not.

In the frequentist setting, we compute the adequacy between the observations and the null
hypothesis. There are two outcomes from this test. If the observations are likely under the
null hypothesis, no conclusion can be drawn regarding this hypothesis. Otherwise, if the
observations are unlikely under the null hypothesis, we can conclude that the null hypoth-
esis is likely not to hold and hence reject it. To test if the observations are likely under
the null hypothesis, we first compress the observations to a single real number through
a summary statistic function that we will call T (.) . That function should be designed to
be, on average, higher if observations are drawn under the alternative hypothesis than
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under the null hypothesis. The null hypothesis is then rejected if that summary statistic is
sufficiently high, i.e. above a given threshold c. The rejection region is then of the form

R = {x : T (x) > c}. (2.31)

The threshold c is chosen to match a given acceptable false rejection rate α, often called the
level of a test. A level α test is then a test such that the probability of erroneously rejecting
the null hypothesis is lower than α. The threshold c must then satisfy

P (reject H0|H0) = P (T (X) > c|H0) ≤ α. (2.32)

If the null hypothesis takes the form H0 : θ ∈ Θ0, then this must hold for all possible
values of θ in Θ0:

P (T (X) > c|θ) ≤ α, ∀θ ∈ Θ0. (2.33)

For example, we could test if the observed measured times are indeed likely to be sampled
from our model with θ = θMLE. If that is the case, then the residuals

measured time −
√

2h
gMLE

are sampled from the distribution N (0,σmeasurement). We can compute the following resid-
uals for the observations made:

4.68 −
√

6
gMLE

= −1.016, 6.97 −
√

10
gMLE

= −0.384, 9.69 −
√

14
gMLE

= 0.988.

To test the hypothesis, we perform a Kolmogorov-Smirnov test that uses as test statistic, T ,
the maximum absolute difference between the empirical cumulative distribution function
(c.d.f.) defined by the residuals and the c.d.f. of the distribution N (0,σmeasurement). We
obtain a p-value of 0.47, meaning that we could only reject the hypothesis that the samples
come from that distribution at a level α equal or higher to 0.47. Therefore, we cannot
confidently reject that hypothesis from the observations at hand. Let us note that it does
not mean that this hypothesis is correct. It could potentially be rejected by collecting more
observations.

There is a direct link between hypothesis tests and confidence regions. Let us call by Rα(θ0)

the rejection region of a test H0 : θ = θ0 and H1 : θ ̸= θ0 at level α. Then the region

C1−α(x) = {θ : x /∈ Rα(θ)} (2.34)

is a valid level (1 − α) confidence region. Similarly, the rejection region

Rα(θ0) = {x : θ0 /∈ C1−α(x)}, (2.35)
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is a valid rejection region for the test. To prove it, let us first observe that

P (θ0 ∈ C1−α(X)|θ = θ0) = P (X /∈ Rα(θ0)|θ = θ0) = 1 − P (X ∈ Rα(θ0)|θ = θ0). (2.36)

As P (X ∈ Rα(θ0)|θ = θ0) ≤ α by definition of an hypothesis test, we have

P (θ0 ∈ C1−α(X)|θ = θ0) ≥ 1 − α. (2.37)

Similarly, if P (θ0 ∈ C1−α(X)|θ = θ0) ≥ 1 − α., then

P (X ∈ Rα(θ0)|θ = θ0) ≤ α. (2.38)

These properties then link the problem of finding a confidence region to the problem of
testing a hypothesis. In addition to linking the two tasks, it also provides a way to approx-
imate confidence regions by constructing a series of hypothesis test rejection regions. This
method is called the Neyman construction (Neyman, 1937). To determine if some parame-
ter values θ0 should be included in the confidence region at level α, a critical value c is
computed such that P (T (X) > c|θ = θ0) ≤ α. If the observation x is such that T (x) ≤ c,
then θ0 is included in the confidence region. Otherwise, it is not. By repeating this proce-
dure for a fine grid of parameter values spanning the support of possible parameter values,
an approximate confidence region can be constructed.

In the Bayesian setting, hypothesis testing takes a different form. As for the parameters of
a statistical model, we can assign a probability to the different hypotheses corresponding
to our belief that these hypotheses are true. The belief we have about a hypothesis is
summarized by its posterior probability

p(H0|x) = p(x|H0)p(H0)

p(x)
. (2.39)

Hypothesis testing then boils down to choosing a hypothesis according to our belief. A
common decision rule is then to favor H0 over H1 if

P (H0|x) ≥ P (H1|x). (2.40)

Depending on the application, rejecting H0 while it is valid or accepting it while invalid
might have different consequences, and we may want to avoid a given type of error as
much as possible. An example that will drive this thesis is that refuting a scientific theory
that is valid is much more harmful than failing to reject an invalid theory. In those cases,
we can assign a cost to each error type and find the decision rule that minimizes the
expected cost. We denote by C10 the cost of rejecting H0 (choosing H1) while it is valid and
by C01 the cost of selecting H0 while it is invalid. The expected cost is then expressed

C = C10P (reject(H0|H0)) +C01P (not rejectH0|H1). (2.41)
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It is minimized when favoring H0 over H1 if

P (H0|x)C10 ≥ P (H1|x)C01. (2.42)



3
S I M U L AT I O N - B A S E D I N F E R E N C E

Simulators are being used more and more in science to describe complex systems that
evolve in an iterative manner. For example, simulators are used in astrophysics to describe
the evolution of stellar streams with various dark matter masses (Jo and Jason, 2017),
to model gravitational waves (Hannam et al., 2014), or to model gravitational lensing
(Wagner-Carena et al., 2024). Simulators are also used in biology to model brain activ-
ity (Destexhe and Huguenard, 2000), in epidemiology (Weligampola et al., 2023), and for
particle physics (ATLAS et al., 2012). It allows for the simulation of phenomena under
varying conditions and the comparison of those simulations to what is observed in reality.
If we take back the example of a feather falling from the previous chapter, we can quickly
identify that the proposed model is oversimplistic as it only takes gravity into account and
not other forces that may be applied to the feather. We will improve that model by taking
into account the drag due to the friction with air. Drag acts in the opposite direction to the
fall, and its magnitude is given by the following equation

FD =
1
2 ρ v2 CD A, (3.1)

where ρ is the air density, v is the speed of the feather, CD is a drag coefficient, and A is
the cross-sectional area, i.e., the area of the projection of the object on the plane orthogonal
to the fall direction. There are three quantities in this equation that are not constant over
time. The speed evolves over time due to gravity, and the cross-sectional area evolves as the
object’s orientation changes during the fall. If we consider that there are air movements,
air density under the feather is not constant either. It is then hard to find an analytical
formula for the fall time. However, we can simulate the fall by discretizing time and by
modeling the fall as a succession of time steps for which different forces apply. This is
illustrated in Algorithm 3.1. At every time step, forces are calculated based on current
conditions. Speed and position are then updated based on the current forces applied, and
a new object orientation and air density are computed. This is repeated until the feather
has fallen from a given height, and the measurement of falling time is simulated.

19
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Algorithm 3.1 Feather falling simulator.

Inputs: gravity constant g, drag coefficient CD, height h, mass m and
measurement error standard deviation σmeasurement.

Outputs: The measured fall time.
hyper-parameters: Duration of a step ∆t

distance = 0
speed = 0
elapsed_time = 0
ρ = 1.225
orientation = initial_orientation
repeat
A = cross_sectional_area(orientation)
drag_acceleration = speed2 ρ CD A

2m
next_speed = speed + ∆t(g− drag_acceleration)
distance = distance + ∆t speed+next_speed

2
orientation = rotation(orientation, ∆t)
ρ = air_movement(ρ, ∆t)
speed = next_speed
elapsed_time = elapsed_time + ∆t

until distance ≥ h
measured_time ∼ N (elapsed_time,σmeasurement)
return measured_time

3.1 simulators as statistical models

In the example of a feather falling, stochasticity arises in the measurement as a random
measurement error is made. It may also be hard to model the change of orientation of
the feather and air movement. We might want to model those as random processes where
random rotations and air movements are performed at each step. Both these elements lead
to a stochastic simulator that would generate different measured fall times if run several
times with the same parameters. Examples of simulator runs are provided in Figure 3.1
for various values of gravity constant g and drag coefficient CD.

A stochastic simulator is a form of statistical model that includes latent random variables
corresponding to the stochastic steps during observation generation. We will denote those
latent variables by z. In the example of the feather falling simulator, those latent variables
correspond to the random rotations and air movements performed at each time step. The
simulator is also conditioned on some parameters θ that are g and CD in the example.
Formally, the simulator defines the distributions p(x|z, θ) and p(z|θ). Consequently, it
also defines the distribution p(x, z|θ) = p(x|z, θ)p(z|θ). The distribution p(x|θ) cannot be
computed analytically because it would require marginalizing and, hence, integrating over
all possible latent variables, which is, in most cases, impossible. In the Bayesian setting, if
we were to perform inference with variational inference or Markov chain Monte Carlo, we
could use the known distributions p(x|z, θ) and p(z, θ) = p(z|θ)p(θ) to produce either a
variational approximation or sample from p(z, θ|x). If the variational distribution is such
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t = 0s t = 1s t = 3s t = 5s t = 10s t = 20s t = 50s

g = 1
CD = 1

g = 9.81
CD = 1

g = 9.81
CD = 10

g = 9.81
CD = 1000

g = 100
CD = 1000

Figure 3.1: Example of feather falling simulations using various gravity and friction parameters.
The feather is dropped from the same height in all those configurations, and the feather
position is reported at various time steps.

that analytical marginalization is possible, the distribution p(θ|x) can then be obtained
through marginalization

p(θ|x) =
∫
p(z, θ|x) dz. (3.2)

To obtain samples from the marginal, samples from p(z, θ|x) can be used where the z

component is removed. However, to have a good enough simulator, it is usually necessary
to have many internal latent variables. In the example of the feather falling, if we want
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Parameters
θ ∼ p(θ)
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Figure 3.2: Bayesian simulation-based inference overview

an accurate simulator, we need to choose ∆t sufficiently small and hence perform many
iterations and random rotations. This means that z is typically high-dimensional, and this
is an issue to ensure good optimization with VI and good posterior landscape coverage
with MCMC.

3.2 simulation-based inference

To obtain more accurate inferences, we can use the fact that sampling from the likelihood
p(x|θ) is possible by sampling from p(z|θ) and then from p(x|θ, z). In most settings,
we are only interested in p(θ|x), not in p(θ, z|x). Then, if we have inference methods
that only rely on samples and not on likelihood evaluation, we can completely ignore
the latent variables z. This leads to the development of simulation-based inference (SBI)
methods, also called likelihood-free inference (LFI), that only rely on simulations from
the likelihood p(x|θ) and not on likelihood evaluations. An overview of simulation-based
inference in the Bayesian setting is provided in Figure 3.2.

A common simulation-based inference method uses histograms. This method is illustrated
in Figure 3.3. The idea is to approximate a likelihood evaluation by building a histogram
from samples from the likelihood. For any given configuration of parameters θi, a his-
togram can be constructed from samples x ∼ p(x|θi) to produce an approximation p̂(x|θi).
For a given observation xo. An approximate of the likelihood evaluated in θi is then given
by p̂(xo|θi). Histograms provide approximate likelihood evaluations and can hence be
used in any likelihood-based inference procedure. They are usually used for the Neyman
construction of confidence regions. It uses the link between hypothesis tests and confidence
intervals. Parameters θi are included in the confidence region if xo is not in the rejection
region of the test H0 : θ = θi,H1 : θ ̸= θi. This rejection region can be approximated
using the histograms p(x|θi). By repeating this procedure for many θi, an approximated
confidence region can be computed. They are also often used to compute approximate
likelihood ratios p̂(x|θ1)

p̂(x|θ2)
that is a key ingredient for hypothesis tests. In some cases, the

observable x is high dimensional. Consequently, high-dimensional histograms must be
constructed, and a too-large amount of samples might be needed to obtain good enough
density approximations. To circumvent this issue, the observables can be replaced by low-
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Figure 3.3: Simulation-based inference with histograms. For both configurations θ = θ1 and θ =
θ2, samples are drawn from the simulator. Those samples are then used to construct
histograms approximating the densities p(x0|θ1) and p(xo|θ2).

dimensional summary statistics that can either be handcrafted or learned. Histograms have
been used, for example, for the discovery of the Higgs boson (ATLAS et al., 2012).

In the Bayesian setting, a popular method for simulation-based inference is Approximate
Bayesian Computation (ABC) (Donald B. Rubin, 1984; Pritchard et al., 1999). The main idea
is to perform simulations with many parameter values θ sampled from the prior and to
retain parameter values that lead to synthetic observations close to the real observation. In
the limit where synthetic observations precisely equal to the real observation are retained,
then the retained parameters are samples from the posterior. The algorithm in its most
simple form is presented in Algorithm 3.2.

Many improvements can be made to the ABC algorithm. We provide a non-exhaustive
list of those. See Beaumont (2019) for a more detailed review. If the observable x is high-
dimensional, it can be compressed into automatically constructed summary statistics be-
fore being passed to the distance function (Fearnhead and Prangle, 2012). Beaumont, W.
Zhang, and Balding (2002) give more weight to parameters that lead to synthetic observa-
tion closer to the real observation. Marjoram et al. (2003) extend MCMC algorithms to the
simulation-based setting by replacing the likelihood-based acceptance rule with an accep-
tance rule computed from samples like in ABC. Toni and Stumpf (2009), Sisson, Fan, and
Tanaka (2007), and Beaumont, Cornuet, et al. (2009) propose a sequential version of the
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Algorithm 3.2 Approximate Bayesian Computation (ABC)

Inputs: distance function d, distance threshold ϵ, number of simulations n_sim
and real observation xo.

Outputs: The retained parameters, approximately sampled from the posterior.

retained_parameters = List()
n_run_sim = 0
while n_run_sim < n_sim do

θ ∼ p(θ)
x ∼ p(x|θ)
if d(x, xo) < ϵ then

retained_parameters.append(θ)
end if
n_run_sim = n_run_sim + 1

end while
return retained_parameters

ABC algorithm. An initial population of parameter values is generated from the prior p(θ).
The algorithm then iteratively refines that population to match the posterior distribution.
At each step, synthetic observations are simulated using each of those parameter values.
Parameter values that lead to the synthetic observations closest to the real observation are
kept, and a new population is built by applying random perturbations to the kept para-
meter values. This procedure allows us to avoid doing simulations with parameters that
are known to produce synthetic observations far from the real observation and to focus on
more promising parts of the parameters space iteratively.

3.3 machine learning for simulation-based inference

ABC and histogram-based techniques suffer from several limitations. The main limitation
of histograms is the inability to scale. If the observation x is high dimensional, good sum-
mary statistics need to be constructed in order to use histograms. If the parameters θ

are high dimensional, then an unmanageable number of histograms are required to cover
the parameter space. In its most simple form, ABC suffers from the same limitations as
histograms. Combining sequential versions of ABC with the use of summary statistics
alleviates those issues but makes the algorithm non-amortized, as opposed to amortized
algorithms.

Definition 3.3.1. An amortized inference algorithm is an algorithm that, once run, allows
to perform inference for any observation x without requiring heavy computations.

When using sequential versions of ABC, a population is iteratively built to match the pos-
terior for a given observation. If we were to then perform inference on another observation,
we would need to start over again from a fresh population sampled from the prior and reit-
erate with that new population. It would then require heavy computations as the previous
computations cannot be reused. Sequential versions of ABC are hence non-amortized. In
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addition, handcrafted summary statistics might not contain all the information of the ob-
servation necessary to constrain the parameters. In such cases, both ABC and histograms
do not yield the correct posterior asymptotically. While there exist methods for learning
summary statistics, machine learning-based methods do not require the explicit construc-
tion of summary statistics to deal with high-dimensional observations.

Amortized algorithms are desired for several reasons. The first obvious scenario is when
inference for observations generated in different settings is needed. If amortized, the al-
gorithm can be run only once and not for each observation. A second scenario where
amortized inference is desired is when real-time inference is required. For example, we
took advantage of amortization to study gravitational waves emitted by the merge of two
black holes, where real-time inference would allow to set up measurement systems to cap-
ture other types of signals from this event (Delaunoy, Wehenkel, et al., 2020). Finally, the
most important advantage of amortized algorithms is that their quality can be evaluated
by performing inferences on many test synthetic observations. This is of high importance
to increase the trust that can be given to those approximation techniques.

Machine learning-based techniques can be designed to not suffer from the same limita-
tions as ABC and histogram-based techniques. It allows the training of a model on several
observations to then generalize to any observation and perform amortized inference. The
development of neural network architectures that work with complex data such as images,
time series, text, and graphs by providing appropriate inductive biases also allows the de-
velopment of methods that can deal with high-dimensional observations and, to some ex-
tent, high-dimensional parameters. For those reasons, machine learning-based techniques
are interesting for simulation-based inference but could also be of broad interest for statis-
tical inference. In the remainder of this chapter, we will focus on machine learning-based
methods.

neural posterior and likelihood estimation Neural Posterior Estimation
(NPE) refers to all the methods that aim to build a model approximating the posterior
distribution p(θ|x). To that end, a parametric conditional density estimator p̂ϕ(θ|x) is
trained, where ϕ are the parameters of the density estimator, which is usually a neural
network. This density estimator can be trained through variational inference to minimize
expected KL divergence between the approximate and true posteriors.

ϕ∗ = arg min
ϕ

Ep(x) [KL [p(θ|x)||p̂ϕ(θ|x)]] (3.3)

= arg min
ϕ

Ep(x)

[
Ep(θ|x)

[
log p(θ|x)

p̂ϕ(θ|x)

]]
(3.4)

= arg min
ϕ

Ep(θ,x)

[
log p(θ|x)

p̂ϕ(θ|x)

]
(3.5)

= arg max
ϕ

Ep(θ,x) [log p̂ϕ(θ|x)] (3.6)
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This objective can be approximated using Monte-Carlo

Ep(θ,x) [log p̂ϕ(θ|x)] ≃ 1
N

N∑
i=1

log p̂ϕ(θi|xi), (θi, xi) ∼ p(θ, x). (3.7)

Samples from the joint distribution p(x|θ) can be obtained by first sampling parameters
from the prior p(θ) and then observations using the simulator p(x|θ). The density estima-
tor can be of various nature. It can simply be a neural network that takes the observation x

as input and outputs the parameters of a normal distribution conditioned on that observa-
tion x. However, to have the flexibility to model complex distributions, normalizing flows
(Dinh, Krueger, and Bengio, 2015; Rezende and Mohamed, 2015) are often used in prac-
tice. Normalizing flows are composed of a base probability distribution q(z) and a neural
network fϕ defining a transformation from that base distribution to the target distribution.
This distribution can be conditioned on x by giving it as input to the neural network per-
forming the transformation. By the change of variable formula, the approximate posterior
distribution is computed as

p̂ϕ(θ|x) = q(f−1
ϕ (θ; x))

∣∣∣∣∣det
∂f−1

ϕ (θ; x)

∂θ

∣∣∣∣∣ (3.8)

Note that the neural network-based transformation must be chosen such that the inverse
f−1

ϕ (.; x) exists and the Jacobian
∣∣∣∣det

∂f−1
ϕ

(θ;x)
∂θ

∣∣∣∣ can easily be computed. Normalizing flows

then allow approximate posterior density evaluation, but it is also possible to sample pa-
rameters from that approximate posterior distribution. To do so, samples are first sampled
from the base distribution z ∼ q(z) and then transformed into samples from the target
distribution fϕ(z; x) ∼ p̂ϕ(θ|x).

Neural Likelihood Estimation (NLE) refers to all the methods that aim to build a model
approximating the likelihood distribution p(x|θ). Similarly to NPE, such models can be
trained by minimizing the expected KL divergence

ϕ∗ = arg min
ϕ

Ep(θ) [KL [p(x|θ)||p̂ϕ(x|θ)]] (3.9)

= arg min
ϕ

Ep(θ)

[
Ep(x|θ)

[
log p(x|θ)

p̂ϕ(x|θ)

]]
(3.10)

= arg min
ϕ

Ep(θ,x)

[
log p(x|θ)

p̂ϕ(x|θ)

]
(3.11)

= arg max
ϕ

Ep(θ,x) [log p̂ϕ(x|θ)] . (3.12)

The model p̂ϕ(x|θ) can again be a normalizing flow or another density estimator. As NLE
only provides the likelihood and not the posterior, likelihood-based inference techniques
such as VI or MCMC must be applied using the approximate likelihood.
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neural ratio estimation In the Bayesian setting, Neural Ratio Estimation (NRE)
refers to the methods that aim to build a model for the ratio between two quantities that
can then be used to approximate the posterior. The first version, often referred to as NRE-A
or NRE (Hermans, Begy, and Louppe, 2020), builds a model for the likelihood to evidence
ratio r(θ, x) = p(x|θ)

p(x) . If we have access to an approximation r̂(θ, x), we can construct an
approximate posterior density by multiplying it by the prior

p̂(θ|x) = r̂(θ, x)p(θ), (3.13)

because
p(θ|x) = p(x|θ)p(θ)

p(x)
= r(θ, x)p(θ). (3.14)

To obtain an approximation of the likelihood-to-evidence ratio, a classifier d̂(θ, x) is trained
to distinguish pairs (θ, x) sampled from the joint distribution (θ, x) ∼ p(θ, x), with class
label y = 1, from pairs sampled from the marginal distributions (θ, x) ∼ p(θ)p(x), with
class label y = 0. It can be shown that the output of the optimal classifier trained with the
binary cross-entropy loss is

d(θ, x) =
p(θ, x)

p(θ, x) + p(θ)p(x)
. (3.15)

Consequently,
d(θ, x)

1 − d(θ, x)
=

p(θ, x)

p(θ)p(x)
=
p(x|θ)
p(x)

= r(θ, x). (3.16)

An approximation of the likelihood-to-evidence ratio is then given by

r̂(θ, x) =
d̂(θ, x)

1 − d̂(θ, x)
= exp(σ−1(d̂(θ, x))), (3.17)

where σ is the sigmoid function. To avoid numerically unstable computations, the approx-
imate log posterior can be computed as

log(p̂(θ|x)) = log(r̂(θ, x)) + log(p(θ)) = σ−1(d̂(θ, x)) + log(p(θ)), (3.18)

where σ−1(d̂(θ, x)) can be obtained by evaluating the neural network without the final sig-
moid activation layer. This formulation allows us to evaluate the approximate log posterior
density. To obtain samples from this distribution, running an additional MCMC algorithm
is required.

NRE-B (Durkan, Murray, and Papamakarios, 2020) employs a contrastive learning scheme
by considering several samples from the product of marginal distributions. They build a
model f̂(θ, x) trained on the following contrastive loss

L(f̂) = − 1
B

B∑
b=1

log exp(f̂(θ(b), x(b)))∑K
k=1 exp(f̂(θ(k), x(b)))

, (3.19)
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where (θ(b), x(b)) are sampled from the joint distribution p(θ, x) and the K contrastive
parameters θ(k) are each time composed of θ(b) and K − 1 parameters set sampled inde-
pendently from the prior p(θ). When trained at the optimum, the output of the model
is

f(θ, x) = log(p(θ|x)) − log(p(θ)) +C(x), (3.20)

where C(x) is an unknown constant. We can, therefore, recover an approximation for the
unnormalized posterior density

log p̂(θ|x)C(x) = f̂(θ, x) + log(p(θ)). (3.21)

NRE-C (Benjamin K Miller, Weniger, and Forré, 2022) aim to improve over NRE-B by re-
moving the unknown constant. They do that by sampling all the pairs from the contrastive
set independently from x with probability p0 instead of always having one of the parame-
ter sets sampled jointly with x. They train their model on the following loss function

L(f̂) = − 1
B
(1 − p0)

B∑
b=1

log
1−p0
p0

exp(f̂(θ(b), x(b)))

K + 1−p0
p0

∑K
k=1 exp(f̂(θ(k)x(b)))

− 1
B
p0

2B∑
b=B+1

log K

K + 1−p0
p0

∑K
k=1 exp(f̂(θ(k), x(b)))

,
(3.22)

, where (θ(b), x(b)) ∼ p(θ, x) for b = (1, ...,B) and (θ(b), x(b)) ∼ p(θ)p(x) for b = (B +

1, ..., 2B). Again, the K contrastive parameters θ(k) are each time composed of θ(b) and K−
1 parameters set sampled independently from the prior p(θ). In this case, when trained at
the optimum, the output of the model is

f(θ, x) = log(p(θ|x)) − log(p(θ)). (3.23)

We can recover an approximation for the normalized posterior density

log p̂(θ|x) = f̂(θ, x) + log(p(θ)). (3.24)

Let us note that NRE-A is a special case of NRE-C when p0 = 1/2 and K = 1. In the limit
of p0 → 0, NRE-C approaches NRE-B.

In the frequentist setting, K. Cranmer, Pavez, and Louppe (2015) trains a classifier to ap-
proximate likelihood ratios. Those can then be used for likelihood ratio hypothesis tests or
to construct confidence intervals using Wilk’s theorem or through a Neyman construction
(ATLAS et al., 2024). Brehmer, Mishra-Sharma, et al. (2019) show how to use the joint score
∇θ log p(x, z|θ), where z are the latent variables to improve the inference quality. Stoye et
al. (2018) present an improved cross-entropy estimator to train the classifier. Dalmasso,
Izbicki, and Lee (2020) show how other statistics could be used and present a framework
for constructing confidence sets with bounded error and performing diagnostics.
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neural posterior score estimation Neural Posterior Score Estimation (NPSE)
(Geffner et al., 2022; Sharrock et al., 2022; Linhart, Cardoso, et al., 2024) aim to compute
a diffusion model score such that produced samples are approximately sampled from the
posterior. As illustrated in Figure 3.4, diffusion models aim to inverse a diffusion process,
also called a forward process. The diffusion process takes a sample from the target distri-
bution as input and iteratively adds noise to it until there is only noise left. The inverse
process, also called the backward process, takes a sample from the noise distribution as
input and iteratively denoises it to obtain a sample from the target distribution. In our case,
the target distribution is the posterior p(θ|x). The denoising process uses a score function
∇θ log pT−t(θ̄|x) to control how the samples are denoised. To obtain samples from the ap-
proximate posterior p̂(θ|x), an approximation of the score is learned s(θt, x, t) and this
score is used to denoise samples drawn from the noise distribution.

Figure 3.4: Visualization of a diffusion model applied on the two moons simulation-based infer-
ence benchmark. A backward process is learned to inverse a forward diffusion process.
Applying the backward process to noise can then recover samples from the posterior
distribution. Figure reproduced from Sharrock et al. (2022).

Diffusion techniques have some advantages over NPE techniques. First, diffusion models
work well at modeling high-dimensional distributions. Those models are then useful to
obtain high-quality approximations when θ is high-dimensional. Second, the score of mul-
tiple observations can be expressed as a composition of scores for a single observation
(Geffner et al., 2022; Linhart, Cardoso, et al., 2024). The key observation is that

p(θ|x1, ..., xn) ∝ p(θ)1−n
n∏
i=1

p(θ|xi). (3.25)

Geffner et al. (2022) define the forward diffusion process such that the intermediate densi-
ties are

pft (θ|x1, ..., xn) ∝ (p(θ)1−n)
T −t

T

n∏
i=1

pt(θ|xi), (3.26)

where pt(θ|xi) is the distribution obtained after applying progressively some Gaussian
noise for a time t. The score is then expressed

∇θ log pft (θ|x1, ..., xn) =
(1 − n)(T − t)

T
∇θ log p(θ) +

n∑
i=1

∇θ log pt(θ|xi). (3.27)

As a consequence, score-based models trained on single observations could be used to
approximate the posterior for any number of conditioning observations without having
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to retrain a model for each case. This method has the drawback of requiring Langevin
dynamics to run the denoising process. This is due to the way intermediate densities
are defined. To improve on that aspect, Linhart, Cardoso, et al. (2024) use the following
diffusion process

θt =
√
αtθ0 +

√
1 − αtϵt, (3.28)

where αt is a parameter controlling noise intensity at different stages of the diffusion
process, and ϵt are sampled from a Normal distribution. In this, case the score can be
written as

∇θ log pt(θ|x1, ..., xn) = (1 −n)∇θ log pλt (θ) +
n∑
i=1

∇θ log pt(θ|xi) +∇θ logLλ(θ, x1, ..., xn),

(3.29)
where, λ is the prior, pλt is the diffused prior and ∇θ logLλ(θ, x1, ..., xn) is a term that
needs to be approximated.

Gloeckler, Toyota, et al. (2024) showed that this compositional property of scores can be
used when dealing with arbitrary length time series that satisfies the Markov property.
Under that hypothesis, an arbitrary length time series can be viewed as a collection of one-
step transitions of arbitrary size. The score for multiple transitions can then be recovered
from the score for a single transition.

The main drawback of score-based methods compared to NPE with normalizing flows is
that the denoising process only provides a way for drawing samples from an approximate
posterior distribution but does not allow for approximate posterior density evaluation.
This density can be computed by running the corresponding probability flow ordinary
differential equation, but this has to be approximated using many neural network calls
(Song et al., 2020).

illustrative example We apply the NPE, NRE, NLE, and NPSE algorithms on the
feather falling simulator to infer both the gravitational constant g and the drag coefficient
Cd. We consider the same observations as in Chapter 2, being measured falling time of
4.68s, 6.97s and 9.69s for heights 3m, 5m and 7m respectively. Results are shown in Figure
3.5. Density plots are provided for NPE and NRE as those two methods allow for pos-
terior density evaluation. For NLE and NPSE, 500 samples are drawn from the posterior
by running MCMC for NLE and diffusion for NPSE. From those plots, we can see that
inferring the product of g and Cd seems to be easy, but it is hard to distinguish between
both g and Cd being low or both being high. All methods provide similar results, but some
visible differences remain. All methods are trained on the same 10, 000 samples from the
simulator (θ, x) ∼ p(x|θ)p(θ).

sequential machine learning techniques Sequential methods aim to reduce
the amount of computations required when we are interested in the posterior for a single
given observation xo. In such cases, we aim to construct an approximation of the posterior
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NPE NRE NLE NPSE
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Figure 3.5: Approximate posteriors for the feather falling simulator with measured falling time of
4.68s, 6.97s and 9.69s for heights 3m, 5m and 7m respectively.

p̂(θ|x) that is close to the true posterior when x = xo but can be a poor approximation
when x ̸= x0. To efficiently construct this approximation, the main idea is to favor sam-
pling in regions likely to provide observations close to x0 in order for the model to be
trained on many samples in the region of interest. To that end, the model training pro-
cedure operates in rounds where, at each round, the previously obtained approximate
posterior is used to construct a proposal distribution p̃(θ) that should lead to simulations
close to x0. In each round, a new training set is then sampled by drawing parameters
θ from the proposal p̃(θ) and observations using the simulator p(x|θ). An overview of
sequential algorithms is shown in Algorithm 3.3.

Algorithm 3.3 Sequential simulation-based inference

Inputs: A prior p(θ), a simulator p(x|θ) and a target xo

Outputs: An approximate posterior p̂(θ|x) with focused training on xo

Hyperparameter: Number rounds n_rounds and number of samples per round n_samples

p̃(θ) = p(θ)
current_round = 0
while current_round < n_rounds do

dataset = List()
current_sample = 0
while current_sample < n_samples do

θ ∼ p̃(θ)
x ∼ p(x|θ)
dataset.append(x, θ)
current_sample = current_sample + 1

end while
p̂(θ|x) = train(dataset, p̃(θ))
p̃(θ) = p̂(θ|x = xo)
current_round = current_round + 1

end while
return p̂(θ|x)

Sequential training can be performed in combination with neural likelihood estimation
(Papamakarios, Sterratt, and Murray, 2019), neural ratio estimation (Hermans, Begy, and
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Louppe, 2020; Durkan, Murray, and Papamakarios, 2020; Benjamin K Miller, Weniger, and
Forré, 2022), neural posterior estimation (Papamakarios and Murray, 2016; Lueckmann,
Goncalves, et al., 2017; Greenberg et al., 2019) and neural posterior score estimation (Shar-
rock et al., 2022). When directly approximating posteriors or posterior scores, the training
procedure should take into account the fact that the parameters θ are not sampled from
the prior p(θ) but from the proposal p̃(θ). For neural posterior estimation, this can be
taken into account by reweighting the approximate posterior after the training procedure
(Papamakarios and Murray, 2016), reweighting the importance of each sample in the loss
(Lueckmann, Goncalves, et al., 2017) or training the model with a contrastive learning
scheme (Greenberg et al., 2019). Sharrock et al. (2022) adapts those methods to the case of
posterior scores.

The major drawback of sequential machine learning methods is that, as the sequential ver-
sions of the ABC algorithm, they are not amortized. This means that the trained model
cannot be used to perform inference on observations x ̸= xo as the model has not been
trained on samples from that part of the observation space. Consequently, the quality of
the model cannot be evaluated by performing inference on several synthetic test observa-
tions. In an attempt to get the best of both worlds, Benjamin K Miller, Cole, et al. (2021)
introduced truncated marginal neural ratio estimation. The key idea is to train the model
to be valid for a small subspace around xo generated by a truncated version of the prior.
The training is then still faster than training on the full observation space, and the result-
ing model is what they call locally amortized. The model can then be tested locally on
synthetic observations generated using parameters drawn from the truncated prior. This
idea has then been adapted to neural posterior estimation (Deistler et al., 2022) and neural
posterior score estimation (Sharrock et al., 2022).

additional contributions to sbi In this paragraph, we non-exhaustively pro-
vide short descriptions of some other pieces of work from the SBI literature. We reviewed
above the use of normalizing flows for likelihood and posterior estimation, classifiers for
likelihood-to-evidence ratio estimation, and the use of posterior score estimation mod-
els. Other generative models can be used. Ramesh et al. (2022) and Pacchiardi and Dutta
(2022a) explore the use of generative adversarial networks. Glaser et al. (2022) propose
to use energy-based models, Schmitt, Pratz, et al. (2023) explore the use of consistency
models, and Wildberger et al. (2024) use flow matching. Häggström et al. (2024) use an
inverse regression approach via Gaussian locally linear mappings that has the benefit of
being lightweight compared to neural network approaches.

Glöckler et al. (2021), Radev et al. (2023), Schmitt, Ivanova, et al. (2024) and Häggström
et al. (2024) consider jointly approximating the posterior and likelihood. Glöckler et al.
(2021) leverage both approximations to avoid the need for proposal corrections in sequen-
tial methods and still enable direct posterior estimation. Radev et al. (2023) show that
having both approximations allows one to run new types of tests to verify the quality of
the approximations. Schmitt, Ivanova, et al. (2024) show that jointly training likelihood
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and posterior approximation by enforcing consistency between each other improves ap-
proximation quality in low-data regimes. Häggström et al. (2024) show that an inverse
regression approach via Gaussian local linear mapping provides both the posterior and
likelihood.

P. L. Rodrigues et al. (2021) and Heinrich et al. (2023) apply simulation-based inference
to hierarchical Bayesian models. In those settings, both local and global parameters need
to be inferred, where local parameters affect individual events and global parameters are
shared by a set of events. P. L. Rodrigues et al. (2021) consider the Bayesian case and do
this by learning an approximation for the posterior over global parameters given a set
of observations and an approximation for the posterior over local parameters given the
local observation and global parameters. Heinrich et al. (2023) adapts this methodology to
frequentist inference.

Rozet and Louppe (2021a), Benjamin K Miller, Cole, et al. (2021), Rozet and Louppe (2023),
and Gloeckler, Deistler, Weilbach, et al. (2024) aim to improve the flexibility of simulation-
based inference methods by training models that can yield multiple distribution approx-
imations. Rozet and Louppe (2021a) train a neural ratio estimation model that can yield
any parameter marginals on the fly. Benjamin K Miller, Cole, et al. (2021) shows that us-
ing truncated sequential algorithms allows the training of an additional model for any
parameter marginals using the truncated prior from the last round without restarting the
sequential procedure from scratch. Gloeckler, Deistler, Weilbach, et al. (2024) use diffu-
sion model with the transformer architecture to construct a model that can be queried to
sample from all conditionals of the joint distribution p(θ, x). Rozet and Louppe (2023) con-
sider the problem of data assimilation where state trajectories are inferred from arbitrary
observations.

3.4 diagnosing simulation-based inference

We reviewed how different quantities, such as the posterior, likelihood, likelihood-to-
evidence ratio, and posterior scores, could be approximated using samples from a simula-
tor. Those approximations can then be used to make hypothesis tests or construct credible
or confidence regions. However, those approximations can be of poor quality for many
reasons. If the simulator is complex, many samples might be required to capture its behav-
ior fully. If too few samples are used due to computational constraints, then the trained
model might be of poor quality. Poor quality approximations could also happen if the
machine learning model is not flexible enough or poorly optimized. For all those reasons,
the quality of the obtained approximations should always be checked before relying on it
in downstream tasks.

The first thing to do is visually inspect the obtained posteriors on some test simulations
for which the simulator’s parameters are known. We sample parameters from the prior
θ∗ ∼ p(θ) and then synthetic observations from the simulator using those parameters x∗ ∼
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p(x|θ∗). We plot in Figure 3.6 the approximates posteriors p̂(θ|x∗) and the parameters θ∗

used to simulate the observations x∗ for the feather falling problem. We observe that there
is usually a high approximate posterior mass p̂(θ|x∗) around the parameters θ∗, indicating
that the approximations do not look too bad.
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Figure 3.6: Visual inspection of the posterior quality. Either the approximate posterior density
p̂(θ|x) or samples from it are shown. The black star represents the parameters θ∗ that
were used to generate the synthetic test observation.

The validity of an approximation can also be tested by performing a hypothesis test of the
form

• H0 : p̂(θ|x) = p(θ|x), ∀θ, x

• H1 : ∃ θ, x : p̂(θ|x) ̸= p(θ|x).

The Simulation-Based Calibration (SBC) algorithm (Talts et al., 2018) constructs a his-
togram of ranks of samples from the true posterior compared to L samples from the
approximate posterior. Ranks are constructed as follow:
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θ∗ ∼ p(θ)

x∗ ∼ p(x|θ∗)

{θ1, ..., θL} ∼ p̂(θ|x∗)

rank =
L∑
i=1
1[f(θi) < f(θ∗)],

where f is a function compressing parameters θ into a single real value. Ranks are then
integer in [0,L]. It should be noted that sampling θ∗ ∼ p(θ), x∗ ∼ p(x|θ∗) is equivalent to
x∗ ∼ p(x), θ∗ ∼ p(θ|x∗). The algorithm then compares a sample from p(θ|x∗) to L samples
from p̂(θ|x∗). If p̂(θ|x) = p(θ|x), ∀θ, x, then the ranks should be distributed uniformly in
[0,L] as the two distributions are the same. If the histogram of ranks obtained empirically
is too far from a uniform distribution, we can then conclude that H0 can be rejected and
that the approximation is not perfect.

By running the SBC diagnostic for the different tested methods on the feather falling
simulator, we obtain p-values of 0.000033 for NPE, 0.22 for NRE, 0.0086 for NLE and
0.0087 for NPSE. This means that we could reject the null hypothesis at a level α = 0.01
for all the approximations but the one obtained with NRE. Note that it does not mean that
NRE’s approximation is trustworthy but only that the others are not. Being able to reject 3
out of the 4 approximations highlights the fact that approximations should not always be
trusted and that careful analysis of their quality is required. For this analysis, 1000 samples
(θ∗, x∗) ∼ p(θ, x) were used, and for each observation x∗, 100 samples were drawn from
the approximate posterior. Parameters are compressed into a single real value through the
function f : g,Cd → g×Cd.

The "Tests of Accuracy with Random Points" (TARP) algorithm (Lemos, Coogan, et al.,
2023) considers the special case of f being the distance to a random reference point. They
show that, in this case, asymptotic uniformity of the histogram implies that the posterior
approximation is perfect. This is then not just a necessary condition but also a sufficient
condition.

Linhart, Gramfort, and P. L. Rodrigues (2022) consider the special case of p̂(θ|x) being
modeled by a normalizing flow with a normal distribution as base distribution. Instead
of comparing the approximate and true posteriors in the space of parameters θ. They
project those in the space of the base distribution of the normalizing flow by using the
transformation defined by this flow. In this space, the approximate posterior is a normal
distribution by definition. We can obtain samples from the true posterior in this space by
applying the normalizing flow transformation on those, and they can then be compared
to a normal distribution. They use the fact that the c.d.f. of a normal variable can be
computed analytically to compute the c.d.f. for each dimension of the projected samples
of the true posterior. If the approximation of the posterior is perfect, then those computed
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c.d.f. should be uniformly distributed, and all the dimensions should be independent of
each other. Those two elements are then tested.

When the true posterior distribution is known, e.g., on toy problems for benchmarking pur-
poses, the classifier two samples test (C2ST) can be used (Lopez-Paz and Oquab, 2017). It
consists in training a classifier to discriminate between samples θ ∼ p̂(θ|x) and θ ∼ p(θ|x).
If the approximate posterior is equal to the true posterior, then even a perfectly trained clas-
sifier should have an accuracy of 50%. If we assume that a sufficient amount of samples
are used to assess the accuracy and that the accuracy is not 50%, then we can conclude
that the approximation is not perfect. Linhart, Gramfort, and P. Rodrigues (2024) extends
this algorithm to only require samples from the joint distribution p(θ, x) and hence be ap-
plicable in a general simulation-based inference setting. In this setting, the classifier takes
both observations x and parameters θ as input and is trained to discriminate between
θ, x ∼ p(θ, x) and θ, x ∼ p̂(θ|x)p(x). The deviation of the output of a classifier trained
in such a way, from uniformity between both classes can then be used as a test statistic.
Critical values for this test can be computed empirically by training classifiers on identi-
cal distributions, obtained by merging the samples from each distribution and randomly
assigning a class to each sample.

Hypothesis tests provide a way to potentially reject the fact that the approximation is
perfect. However, it should be kept in mind that failing to reject the null hypothesis does
not necessarily mean that it is likely valid. Consequently, those tests do not guarantee the
validity of the approximation. Moreover, the p-values associated with such tests should not
be interpreted as distances between the true posterior and the approximation. To obtain a
notion of distance, one could consider approximating the expected KL divergence between
the true and approximate posteriors.

Ep(x) [KL [p(θ|x)||p̂(θ|x)]] = Ep(x)

[
Ep(θ|x)

[
log p(θ|x)

p̂(θ|x)

]]
(3.30)

= Ep(x,θ)

[
log p(θ|x)

p̂(θ|x)

]
(3.31)

∝ −Ep(x,θ) [log p̂(θ|x)] (3.32)

≃ − 1
N

N∑
i=1

log p̂(θi|xi), (θi, xi) ∼ p(θ, x). (3.33)

While Ep(x,θ) [log p̂(θ|x)] values are hard to interpret, we can conclude that an ap-
proximation p̂1(θ|x) is better on average than an approximation p̂2(θ|x), accord-
ing to the KL divergence, if Ep(x,θ) [log p̂1(θ|x)] > Ep(x,θ) [log p̂2(θ|x)] and hence
Ep(x) [KL [p(θ|x)||p̂1(θ|x)]] < Ep(x) [KL [p(θ|x)||p̂2(θ|x)]]. On the feather falling simulator,
we have that Ep(x,θ) [log p̂(θ|x)] is equal to 1.55 for the NPE approximation and to 0.897
for the NRE approximation. We can conclude that, according to the KL divergence, the
NPE approximation is closer to the posterior than the one obtained with NRE, although
we were able to reject NPE’s approximation and not NRE’s. It cannot be evaluated for NLE
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and NPSE as those only provide sampling from the approximate posterior and not density
evaluation.

Alternatively, if the true posterior is known for benchmarking purposes, the Maximum
Mean discrepancy (MMD) (Gretton et al., 2012) can be used. The squared MMD can be
expressed

MMD2(p(θ|x), p̂(θ|x)) = Eθ,θ′∼(p(θ|x) [(k(θ, θ′)]

− 2Eθ∼(p(θ|x),θ′∼p̂(θ|x) [(k(θ, θ′)]

+ Eθ,θ′∼(p̂(θ|x) [(k(θ, θ′)] ,

(3.34)

where k is a kernel. The expectations can be approximated through Monte Carlo.





4
A C R I S I S I N S I M U L AT I O N - B A S E D I N F E R E N C E ?

Prologue

This chapter is based on the following publication: Hermans, J.∗, Delaunoy, A.∗, Rozet,
F., Wehenkel, A., & Louppe, G. (2022). A crisis in simulation-based inference? beware, your
posterior approximations can be unfaithful. Transactions on Machine Learning Research.
This paper is both a position and an empirical paper. We acknowledge the fact that pos-
terior approximations in simulation-based inference will never be perfect and discuss
the impact of using those for scientific reasoning. Scientific reasoning in the tradition of
Popperian falsification does not aim to verify hypotheses but to disprove false ones. Our
position is that, in this setting, failing to disprove a false theory is much less detrimental
than erroneously disproving a theory that might be true. By translating this to posterior
approximations, an underconfident posterior approximation is much less detrimental
than an overconfident approximation. While perfect approximations of posteriors are
an unfeasible goal, we argue that trying to avoid overconfidence as much as possible
is more realistic and is a goal that should be pursued to allow the reliable use of such
approximations for scientific reasoning.
We propose to quantify the overconfidence of an approximation through a quantity that
we call expected coverage. To understand how existing methods perform in that regard,
we perform a large-scale empirical evaluation of the expected coverage associated with
approximations from state-of-the-art methods on a wide variety of benchmarks. The
first version of this paper has been published in 2021. Consequently, only methods from
the ABC, NLE, NRE, and NPE families are considered. Score-based methods and other
types of generative models were introduced later in the context of simulation-based in-
ference. Similarly, only classical sequential methods are considered, as truncated meth-
ods were introduced later on.

4.1 introduction

Many scientific disciplines rely on computer simulations to study complex phenomena
under various conditions. Although modern simulators can generate realistic synthetic
observables through detailed descriptions of their data generating processes, they make
statistical inference more challenging. The computer code describing the data generating
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processes defines the likelihood function p(x|θ) only implicitly, and its direct evaluation
requires the often intractable integration of all stochastic execution paths. In this problem
setting, statistical inference based on the likelihood becomes impractical. However, approx-
imate inference remains possible by relying on likelihood-free approximations thanks to
the increasingly accessible and effective suite of methods and software from the field of
simulation-based inference (K. Cranmer, Brehmer, and Louppe, 2020).

While simulation-based inference targets domain sciences, advances in the field are mainly
driven from a machine learning perspective. The field, therefore, inherits the quality as-
sessments (Lueckmann, Boelts, et al., 2021) customary to the machine learning literature,
primarily targeting the exactness of the approximation. In fact, domain sciences, and more
specifically the physical sciences, are not necessarily interested in the exactness of an ap-
proximation. Instead, in the tradition of Popperian falsification, they often seek to constrain
parameters of interest as much as possible at a given confidence level. Scientific examples
include frequentist confidence intervals on the mass of the Higgs boson (Aad et al., 2012),
Bayesian credible regions on cosmological parameters (Gilman et al., 2018; Aghanim et al.,
2020), constraints on the intrinsic parameters of binary black hole coalescences (B. P. Abbott
et al., 2016), or characterizing the space of circuit configurations giving rise to rhythmic ac-
tivity in the crustacean stomatogastric ganglion (Gonçalves et al., 2020). Wrongly excluding
plausible values could drive the scientific inquiry in the wrong direction, whereas failing to
exclude implausible values because of too conservative estimations is much less detrimen-
tal. This implies that statistical approximations in simulation-based inference should ide-
ally come with conservative guarantees to not produce credible regions smaller than they
should be, even when the approximations are not faithful. Despite recent developments
of post hoc diagnostics to inspect the quality of likelihood-free (K. Cranmer, Pavez, and
Louppe, 2015; Brehmer, Mishra-Sharma, et al., 2019; Dalmasso, Izbicki, and Lee, 2020; Talts
et al., 2018; Lueckmann, Boelts, et al., 2021; Brehmer, K. Cranmer, et al., 2018; Hermans,
Banik, et al., 2021) and likelihood-based (Talts et al., 2018; Geweke et al., 1991; Gelman and
Donald B Rubin, 1992; Raftery and Lewis, 1991; A. Dixit and Roy, 2017) approximations,
assessing whether approximate inference results are sufficiently reliable for scientific in-
quiry remains largely unanswered whenever fitting criteria are not globally optimized or
whenever the data is limited.

In this work, we measure and discuss the quality of the credible regions produced by
various algorithms for Bayesian simulation-based inference. We frame our main contri-
bution as the collection of extensive empirical evidence requiring months of compu-
tation, demonstrating that all benchmarked techniques may produce non-conservative
credible regions. Our results emphasize the need for a new class of methods: conser-
vative approximate inference algorithms. In addition, we provide empirical evidence
that using an ensemble of models in place of a single model tends to produce more
reliable approximations. The structure of the paper is outlined as follows. Section
4.2 describes the statistical formalism, necessary background and includes a thorough
motivation for coverage. Section 4.3 highlights our main results. Section 4.4 presents
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several avenues of future research to enable drawing reliable scientific conclusions
with simulation-based inference. All code related to this manuscript is available at
https://github.com/montefiore-ai/trust-crisis-in-simulation-based-inference.

4.2 background

4.2.1 Statistical formalism

We evaluate posterior estimators that produce approximations p̂(θ|x) with the following
semantics.

Target parameters θ denote the parameters of interest of a simulation model, and are
sometimes referred to as free or model parameters. We make the reasonable assumption
that the prior p(θ) is tractable.

An observable x denotes a synthetic realization of the simulator, or the observed data
xo we would like to do inference on. We assume that the simulation model is correctly
specified and hence is an accurate representation of the real data generation process.

The likelihood model p(x|θ) is implicitly defined by the simulator’s computer code. While
we cannot evaluate the density p(x|θ), we can draw samples through simulation.

The ground truth θ∗ specified to the simulation model whose forward evaluation pro-
duced the observable xo, i.e., xo ∼ p(x|θ = θ∗).

A credible region is a space Θ within the target parameters domain that satisfies∫
Θ
p(θ|x = xo)dθ = 1 − α (4.1)

for some observable xo and confidence level 1 − α. Because many such regions exist, we
compute the credible region with the smallest volume. In the literature this credible region
is known as the highest posterior density region (Box and Tiao, 1973; Hyndman, 1996). In
our evaluations, we determine the credible regions by evaluating the approximated pos-
terior density function in a discretized and empirically normalized grid of the parameter
space. The credible region is the set of parameters whose density is greater than a given
threshold fitted to achieve the desired credibility level 1 − α.

4.2.2 Statistical quality assessment

Common metrics for evaluating the quality of a posterior surrogate include the Classifier
Two-sample Test (Lopez-Paz and Oquab, 2017; Lehmann and Romano, 2006) and Maxi-
mum Mean Discrepancy (Gretton et al., 2012; Bengio et al., 2014; Dziugaite et al., 2015).
The main problem with these metrics is that they assess exactness of an approximation
through a divergence with respect to the posterior. All approximations will diverge from

https://github.com/montefiore-ai/trust-crisis-in-simulation-based-inference
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Figure 4.1: A classifier-based metric measures the divergence between posterior approximations
and a ground truth by means of evaluating the classifier’s discriminative performance
through Area Under the Receiver Operating Characteristics curve (auroc). The metric
indicates that both the overconfident and the conservative approximations are equally
accurate as it yields auroc = 0.7 for both of them. From an inference perspective how-
ever, the conservative approximation is more suitable because it produces credible re-
gions larger than they should be.

the posterior and there are no criteria to what constitutes an acceptable estimator. For this
reason, we argue that metrics evaluating the reliability for scientific inquiry should be used
alongside the divergence evaluation when evaluating estimators.

To clarify this point, consider the demonstration in Figure 4.1. A binary classifier is trained
to discriminate between samples from a posterior approximation and the true posterior,
as in a classifier two-sample test. The discriminative performance of the classifier is ex-
pressed through Area Under the Receiver Operating Characteristics curve (auroc) and
serves as a measure for divergence between both densities. An auroc = 0.5 suggests an
approximation that is indistinguishable from the true posterior, while auroc = 1.0 implies
that both distributions do not overlap. Although both the overconfident and the conser-
vative approximations are of equal quality according to the auroc metric (auroc = 0.7),
credible regions that are biased or smaller than they should be could result in the wrong
exclusion of actually plausible parameter values for a given significance level, and hence
to erroneous scientific conclusions. By contrast, conservative approximations, which leads
to credible regions that are larger than they should be, are more scientifically reliable since
they would not wrongly reject plausible parameters values but only fail to reject actually
implausible parameter values. For this reason, we take the position that posterior approxi-
mations should produce overdispersed credible regions for any simulation budget. Poste-
rior approximations do not have to closely match the true posterior to draw meaningful
inferences, but they should however be conservative.

Instead of measuring the exactness of an approximation, this work directly assesses the
quality of credible regions through the notion of expected coverage which probes the
consistency of the posterior approximations and can be used to diagnose conservative
and overconfident approximations. Similar usages of coverage diagnostics can be found
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in the context of standard statistical inference (Schall, 2012) and approximate Bayesian
computation (Prangle et al., 2014).

Definition 4.2.1. The expected coverage probability of the 1 −α highest posterior density
regions derived from the posterior estimator p̂(θ|x) is

Ep(θ,x)

[
1
(
θ ∈ Θp̂(θ|x)(1 − α)

)]
, (4.2)

where the function Θp̂(θ|x)(1 − α) yields the 1 − α highest posterior density region of
p̂(θ|x).

Note that Equation 4.2 can be expressed either as

Ep(θ)Ep(x|θ)

[
1
(
θ ∈ Θp̂(θ|x)(1 − α)

)]
, (4.3)

which is the expected frequentist coverage probability, or alternatively as the expected
Bayesian credibility

Ep(x)Ep(θ|x)

[
1
(
θ ∈ Θp̂(θ|x)(1 − α)

)]
, (4.4)

whose inner expectation reduces to 1 − α whenever the posterior estimator p̂(θ|x) is well-
calibrated.

The expected coverage probability can be estimated empirically given a set of n i.i.d. sam-
ples (θ∗

i , xi) ∼ p(θ, x) as
1
n

n∑
i=1
1
(
θ∗
i ∈ Θp̂(θ|xi)(1 − α)

)
. (4.5)

Definition 4.2.2. A conservative posterior estimator is an estimator that has coverage at
the credibility level of interest, i.e., whenever the expected coverage probability is larger or
equal to the credibility level.

While coverage is necessary to assess conservativeness, it is limited in its ability to deter-
mine the information gain a posterior (approximation) has over its prior. Consider an esti-
mator whose posteriors are identical to the prior. In this case, there is no gain in informa-
tion and the expected coverage probability is equal to the credibility level. For this reason,
a complete analysis should be complemented with measures such as the expected infor-
mation gain Ep(θ,x) [log p(θ|x) − log p(θ)] or classifier two-sample tests when the ground-
truth posterior is available. This work is concerned with conservative inference and will,
therefore, mainly focus on the evaluation of expected coverage. Finally, it should be noted
that expected coverage is a statement about the credible regions in expectation and, there-
fore, does not provide any guarantee on the quality of a single posterior approximation.
However, the quality of a single posterior approximation can itself be approximated with
a local coverage test (Zhao et al., 2021).
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4.3 empirical observations

This section covers our main contribution: the collection of empirical evidence to deter-
mine whether some simulation-based inference algorithms are conservative by nature. We
are particularly interested in determining whether certain approaches should be favored
over others. We do so by estimating the expected coverage of posterior estimators pro-
duced by these approaches across a broad range of hyperparameters and benchmarks of
varying complexity, including two real problems. As in real use cases, the true posteriors
are effectively intractable and, therefore, unknown.

4.3.1 Methods

We make the distinction between two paradigms. Non-amortized approaches are designed
to approximate a single posterior, while amortized methods aim to learn a general-purpose
estimator that attempts to approximate all posteriors supported by the prior.

4.3.1.1 Amortized

Neural Ratio Estimation (NRE) is an established approach in the simulation-based infer-
ence literature both from a frequentist (K. Cranmer, Pavez, and Louppe, 2015) and Bayesian
(Hermans, Begy, and Louppe, 2020; Durkan, Murray, and Papamakarios, 2020; Thomas
et al., 2016) perspective. In a Bayesian analysis, an amortized estimator r̂(x|θ) of the in-
tractable likelihood-to-evidence ratio r(x|θ) can be learned by training a binary classifier
d̂(θ, x) to distinguish between samples of the joint p(θ, x) with class label 1 and samples
of the product of marginals p(θ)p(x) with class label 0, with equal label marginal prob-
ability. Similar to the density-ratio trick (Hermans, Begy, and Louppe, 2020; K. Cranmer,
Pavez, and Louppe, 2015; Sugiyama et al., 2012; Goodfellow et al., 2014), the Bayes optimal
classifier d(θ, x) for the cross-entropy loss is

d(θ, x) =
p(θ, x)

p(θ, x) + p(θ)p(x)
= σ

(
log p(θ, x)

p(θ)p(x)

)
, (4.6)

where σ(·) is the sigmoid function. Given a target parameter θ and an observable x sup-
ported by p(θ) and p(x) respectively, the learned classifier d̂(θ, x) approximates the log
likelihood-to-evidence ratio log r(x|θ) through the logit function because σ−1(d̂(θ, x)) ≈
log r(x|θ). The approximate log posterior density function is log p(θ) + log r̂(x|θ).

Neural Posterior Estimation (NPE) (Rezende and Mohamed, 2015) is concerned with di-
rectly learning an amortized posterior estimator p̂ψ(θ|x) with normalizing flows. Nor-
malizing flows define a class of probability distributions pψ(·) built from neural network-
based bijective transformations (Dinh, Krueger, and Bengio, 2015; Rezende and Mohamed,
2015; Dinh, Sohl-Dickstein, and Bengio, 2017) parameterized by ψ. They are usually opti-
mized using variational inference, by solving arg minψ Ep(x) [kl(p(θ|x) || p̂ψ(θ|x)], which
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is equivalent to arg maxψ Ep(θ,x) [log p̂ψ(θ|x)]. Once trained, the density of the modeled
distribution can directly be evaluated and sampled from.

Ensembles of models constitute a standard method to improve predictive performance.
In this work, we consider an ensemble model that averages the approximated posteriors
of n posterior estimators that are either trained independently on the same dataset (deep
ensemble) (Lakshminarayanan et al., 2017) or on bootstrap replicates of the learning set
(bagging) (Breiman, 1996). While this formulation is natural for NPE, averaging likelihood-
to-evidence ratios is equivalent since 1

n

∑n
i=1 p̂i(θ|x) = p(θ) 1

n

∑n
i=1 r̂i(x|θ). We show in

Section 4.3 that ensembles lead in average to a higher expected coverage than individual
models and hence constitute a straightforward mitigation strategy against overconfidence.

4.3.1.2 Non-amortized

Rejection Approximate Bayesian Computation Rej-ABC (Donald B. Rubin, 1984;
Pritchard et al., 1999) numerically estimates a single posterior by collecting samples
θ ∼ p(θ) whenever x ∼ p(x|θ) is similar to xo. Similarity is expressed by means of a
distance function ρ. For high-dimensional observables, the probability density of simu-
lating an observable x such that x = xo is extremely small. For this reason, ABC uses
a summary statistic s and an acceptance threshold ϵ. Using these components, ABC ac-
cepts samples into the approximate posterior whenever ρ(s(x), s(xo)) ≤ ϵ. Improvements
include regression adjustment (Beaumont, W. Zhang, and Balding, 2002) of the sampled
parameters using local linear regression, combining ABC with MCMC (Marjoram et al.,
2003) and the automatic construction of summary statistics (Fearnhead and Prangle, 2012).
In our experiments, we apply Rej-ABC in its simplest form and use the identity func-
tion as a sufficient summary statistic, use no regression adjustment and set ϵ such that
max(100, simulation budget/100) samples are accepted.

Sequential methods for simulation-based inference aim to approximate a single posterior
by iteratively improving a posterior approximation. These methods alternate between a
simulation and an exploitation phase. The latter is designed to take current knowledge
into account such that subsequent simulations can be focused on parameters that are more
likely to produce observables x similar to xo.

Sequential Monte-Carlo ABC (SMC-ABC) (Toni and Stumpf, 2009; Sisson, Fan, and
Tanaka, 2007; Beaumont, Cornuet, et al., 2009) iteratively updates a set of proposal states
to match the posterior distribution. At each iteration, accepted proposals are ranked by
distance. The rankings determine whether a proposal is propagated to the next iteration.
New candidates are generated by perturbing the selected ranked proposals.

Sequential Neural Posterior Estimation (SNPE) (Papamakarios and Murray, 2016; Lueck-
mann, Goncalves, et al., 2017; Greenberg et al., 2019) iteratively improves a normalizing
flow that models the posterior. Our evaluations will specifically use the SNPE-C (Green-
berg et al., 2019) variant.
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Sequential Neural Likelihood (SNL) (Papamakarios, Sterratt, and Murray, 2019) models
the likelihood p(x|θ). A numerical approximation of the posterior is obtained by plugging
the learned likelihood estimator into a Markov Chain Monte Carlo (MCMC) sampler as
a surrogate likelihood. Similarly, Price et al., 2018; Frazier, Nott, et al., 2022 construct a
synthetic normal approximation of the likelihood over summary statistics.

Sequential Neural Ratio Estimation (SNRE) (Hermans, Begy, and Louppe, 2020; Durkan,
Murray, and Papamakarios, 2020) iteratively improves the modelled likelihood-to-evidence
ratio.

4.3.2 Benchmarks

We consider 7 benchmarks, ranging from a toy problem to real scientific use cases covering
various disciplines. All benchmarks and priors are available in the codebase.

The SLCP simulator models a fictive problem with 5 parameters. The observable x ∈ R8

represents the 2D-coordinates of 4 points. The coordinate of each point is sampled from the
same multivariate Gaussian whose mean and covariance matrix are parametrized by θ. We
consider an alternative version of the original task (Papamakarios, Sterratt, and Murray,
2019) by inferring the marginal posterior density of 2 of those parameters. In contrast to
its original formulation, the likelihood is not tractable due to the marginalization.

The Weinberg problem (K. Cranmer, Heinrich, et al., 2017) concerns a simulation of high
energy particle collisions e+e− → µ+µ−. The angular distribution of the particles can be
used to measure the Weinberg angle x in the standard model of particle physics. From the
scattering angle, we are interested in inferring Fermi’s constant θ.

The Spatial SIR model involves a grid-world of susceptible, infected, and recovered in-
dividuals. Based on initial conditions and the infection and recovery rate θ, the model
describes the spatial evolution of an infection. The observable x is a snapshot of the grid-
world after some fixed amount of time.

M/G/1 (Blum and François, 2010) models a processing and arrival queue. The problem is
described by 3 parameters θ that influence the time it takes to serve a customer, and the
time between their arrivals. The observable x is composed of 5 equally spaced quantiles
of inter-departure times.

The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes a process of
interactions between a predator and a prey species. The model is conditioned on 4 para-
meters θ which influence the reproduction and mortality rate of the predators and preys.
We infer the marginal posterior of the predator parameters from time series representing
the evolution of both populations over time.

Stellar Streams form due to the disruption of spherically packed clusters of stars by the
Milky Way. Because of their distance from the galactic center and other visible matter,
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distant stellar streams are considered to be ideal probes to detect gravitational interactions
with dark matter. The model (Banik et al., 2018) evolves the stellar density x of a stream
over several billion years and perturbs the stream over its evolution through gravitational
interactions with dark matter subhaloes parameterized by the dark matter mass θ.

Gravitational Waves (GW) are ripples in space-time emitted during events such as the
collision of two black-holes. They can be detected through interferometry measurements x

and convey information about celestial bodies, unlocking new ways to study the universe.
We consider inferring the masses θ of two black-holes colliding through the observation of
the gravitational wave as measured by ligo’s dual detectors (LIGO Scientific Collaboration,
2018; Biwer et al., 2019).

4.3.3 Setup

Our evaluations consider simulation budgets ranging from 210 up to 217 samples and con-
fidence levels from 0.05 up to 0.95. Within the amortized setting we train, for every sim-
ulation budget, 5 posterior estimators for 100 epochs. The expected coverage probability
is estimated on at least 5,000 unseen samples from the joint p(θ, x) and for all confidence
levels under consideration. In addition, we repeat the expected coverage evaluation for
ensembles of 5 estimators as well. Special care for non-amortized approaches is necessary
because they approximate a single posterior and can therefore not reasonably evaluate ex-
pected coverage in the same way. Our experiments for non-amortized approaches estimate
the expected coverage by repeating the inference procedure on 300 distinct observables for
every simulation budget. The expected coverage probabilities are subsequently estimated
based on the resulting posterior approximations. Our experiments with NPE, SNPE, SNL,
SNRE, Rej-ABC and SMC-ABC rely on the implementation in the SBI package (Tejero-
Cantero et al., 2020), while a custom implementation for NRE is used.

We emphasize the computational requirements necessary to generate our main contribu-
tion: the experimental observations, whose generation took months of computation. The
average CPU time for evaluating an amortized procedure on all common benchmark prob-
lems is in order of 200 CPU days, while for a non-amortized approach this increases to
2800 CPU days. The bulk of the cost was associated with the repeated optimization pro-
cedure and execution of the simulator. While we considered benchmarks with low di-
mensional parameter spaces (up to 3 parameters), we stress that the cost for computing
credible regions would grow exponentially with the number of parameters, making cover-
age diagnostics expensive for high-dimensional problems. Note that when using NPE, the
procedure for computing the coverages could be modified to scale to higher dimensions
(Rozet and Louppe, 2021a; Rozet and Louppe, 2021b). However, this procedure cannot be
applied to all simulation-based inference algorithms. Nevertheless, we expect the observed
behaviours to be similar or accentuated in a high-dimensional setting.
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Figure 4.2: Evolution of the expected coverage w.r.t the simulation budget. A perfectly calibrated
posterior has an expected coverage probability equal to the credibility level and pro-
duces a diagonal line. Conservative estimators on the other hand produce curves above
the diagonal and overconfident models underneath. All algorithms can lead to non-
conservative estimators. This pathology tends to be accentuated for small simulation
budgets and non-amortized methods. Finally, the computationally prohibitive results in-
dicate that the computational requirements did not allow for a coverage analysis. In the
case of SNL, this was mostly due to high dimensional observables. For the astronomy
benchmarks, the simulation model was simply too expensive to reasonably evaluate
coverage for non-amortized methods.

4.3.4 Results

Figures 4.2 and 4.4 highlight our main results. Through these plots, we can directly assess
whether a posterior estimator is conservative at a given confidence level and simulation
budget. The figures should be interpreted as follows: a perfectly calibrated posterior has
an expected coverage probability equal to the credibility level. Plotting this relation pro-
duces a diagonal line. Conservative estimators on the other hand produce curves above the
diagonal and overconfident models underneath. The plots highlight an unsettling obser-
vation: all benchmarked approaches produce non-conservative posterior approximations
on at least one problem setting. In general, this pathology is especially prominent in non-
amortized approaches with a small simulation budget; a regime they have been specifically
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Figure 4.3: Evolution of the predicted log posterior probability of the nominal parameters with re-
spect to the simulation budget. We evaluate the log posterior probability on 100, 000 test
samples for amortized algorithms and 300 for non-amortized algorithms. We report the
0.25; 0.5; 0.75 quantiles of this quantity over the test set. We observe that the predictive
performance increases in general with the simulation budget. Exceptions are the MG1
benchmark with the SNRE algorithm and the lowest quantile of the streams benchmark.

designed for. A large simulation budget does not guarantee that a posterior estimator is
conservative either. More importantly, as the reliability of the approximations computed
through sequential approaches cannot practically be determined, it leaves practitioners
uncertain about the reliability of their approximations. To complement this analysis, an
evaluation of the predictive performance of the approximate posteriors is provided in Fig-
ure 4.3. We observe that, on most benchmark/method pairs, the predictive performance
increases with the simulation budget. However, this is not the case for SNRE applied to
MG1 which explains the strange behaviour of the coverage curves.

In sequential approaches, overconfidence could be explained by the alternating simulation
and exploitation phases. One potential failure mode is that a non-conservative posterior
approximation at a previous iteration forces the subsequent simulation phases to not pro-
duce observables that should in fact be associated with a higher posterior density, causing
the posterior estimator to increase its overconfidence at each iteration.

Despite the fact that all ABC approaches use a sufficient summary statistic (by definition,
the identity function), our results demonstrate that this alone is no guarantee for conser-
vative posterior approximations. In fact, using a sufficient summary statistic with ϵ > 0
does not always correspond to conservative approximations either. In such cases, ABC
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Figure 4.4: Analysis of coverage between ensemble and individual models w.r.t the various simula-
tion budgets. The blue line represents the mean expected coverage of individual models
over 5 runs, the shaded area represents its standard deviation. The black line represents
the expected coverage of a single ensemble composed of 5 models. We observe that deep
ensembles consistently have a higher expected coverage probability compared to the av-
erage individual model. A similar effect is not always observed with bagging, indicated
by the red line. Ensembles are only evaluated for amortized approaches such as NPE
and NRE.

accepts samples with larger distances, permitting the procedure to shift the mass of the
approximated posterior elsewhere. In addition, a limited number of posterior samples can
negatively affect the quality of the credible regions, e.g., when approximating the posterior
density function with kernel density estimation. Both cases can cause the observed behav-
iour. ABC should therefore be applied with caution to scientific applications. Even though
a handcrafted, albeit sufficient, summary statistic provides some insight into the approx-
imated posterior, it does not imply that ABC approximations are conservative whenever
the threshold ϵ > 0.
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In Figure 4.4, we observe that the expected coverage probability of deep ensemble models
is consistently larger than the expected coverage probability of an individual posterior esti-
mator. This highlights the fact that ensembling constitutes an immediately applicable and
easy way to mitigate the overconfidence issue and build more reliable posterior estimators.
However, the deep ensemble model can still be non-conservative. We hypothesize that the
increase in coverage is linked to the added uncertainty captured by the ensemble model,
leading to inflated credible regions. In fact, individual estimators only capture data uncer-
tainty, while an ensemble is expected to partially capture the epistemic uncertainty as well.
Surprisingly, we find that ensembles built using bagging do not always produce higher
coverage than individual models while they should also capture part of the epistemic un-
certainty. We could potentially attribute this behaviour to the reduced effective dataset size
used to train each member of the ensemble. Figures 4.5 and 4.6 show a positive effect with
respect to ensemble size.

Not evident from the figures 4.2 and 4.4 are the computational consequences of a coverage
analysis on non-amortized methods. Although the figures mention a certain simulation
budget, the total number of simulations for non-amortized methods should be multiplied
by the number of approximated posteriors (300) to estimate the coverage. This highlights
the simulation cost associated with diagnosing non-amortized approaches. This issue is not
limited to coverage. Simulation-Based Calibration (SBC) (Talts et al., 2018) relies on sam-
ples of arbitrary posterior approximations as well. Diagnosing non-amortized estimators
with SBC therefore requires a similar approach as we have taken in our coverage analyses.
In fact, other benchmark papers such as Lueckmann, Boelts, et al. (2021) restrain from
evaluating SBC because the diagnostic is computationally prohibitive for non-amortized
approaches.

Our results illustrate a clear distinction between the amortized and non-amortized par-
adigms. Amortized methods do not require retraining or new simulations to determine
the empirical expected coverage probability of a posterior estimator, while non-amortized
methods do. For this reason, a global coverage analysis of non-amortized approaches
is computationally prohibitive and mostly impractical. More importantly, the coverage
analysis of a non-amortized approach only measures the quality of the training procedure,
whereas a coverage analysis of an amortized approach diagnoses the posterior estimator
itself. In addition, a global coverage analysis not only serves as diagnostic but also allows
to partially alleviate the issue by performing post-training calibration. A simple way for
calibrating level α credible regions is to replace those by credible regions at a level that has
the desired expected coverage. Finally, non-amortized sequential algorithms have to repeat
the entire simulation-training pipeline whenever architectural or hyperparameter changes
are made, while amortized methods reuse previously simulated datasets. All of the above
lead us to conclude that while sequential methods have the benefit of being faster to train,
amortized methods should be considered for sensitive applications requiring detailed sta-
tistical validation.
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Observation 1 All benchmarked algorithms may produce non-conservative posterior
approximations. This pathology tends to be accentuated with small simulation budgets
in both paradigms.

Observation 2 Amortized approaches tend to be more conservative in contrast to non-
amortized approaches.

Observation 3 The expected coverage probability of an ensemble model is larger than
the average individual model. The ensemble size positively affects the expected coverage
probability as well.

Observation 4 Amortized methods are simulation-efficient, especially when taking
hyper-parameter tuning and the evaluation of the expected coverage diagnostic into
account.

4.4 discussion

As demonstrated empirically, simulation-based inference can be unreliable, especially
whenever its approximations cannot be diagnosed. The problem of determining whether
a posterior approximation is correct, or rather, suitable to a use case, is in fact not re-
stricted to simulation-based inference specifically; the concern occurs in all of approximate
Bayesian inference. The MCMC literature deals with this exact same problem in the form
of determining whether a set of Markov chain samples have converged to the target distri-
bution (Lin, 2014; Hogg and Foreman-Mackey, 2018). In this regard, empirical diagnostic
tools have been proposed over the years (Talts et al., 2018; Geweke et al., 1991; Gelman
and Donald B Rubin, 1992; Raftery and Lewis, 1991; A. Dixit and Roy, 2017) and have
helped practitioners to apply MCMC reliably. While, we are not aware of any coverage
studies similar to ours for MCMC, we would expect similar results to be found. Nonethe-
less, there is currently no clear solution to determine convergence with absolute certainty
(A. U. Dixit, 2018; Roy, 2020), even if the likelihood function is tractable. This issue has
also been studied in the ABC literature. Prangle et al. (2014) present a way for approxi-
mating the coverage in ABC by reusing the same simulations in different runs. Xing et al.
(2020) provides a diagnostic for the quality of the approximation for a given observation
by the mean of distortion maps. Finally, Frazier, Martin, et al. (2018) provide condition
on the threshold ϵ such as to produce posterior estimates that asymptotically have proper
frequentist coverage. However, the quality of the posterior estimates remains uncertain in
a practical non-asymptotic regime.

We are of the opinion that theoretical and methodological advances within the field of
simulation-based inference will strengthen its reliability and thereby promote its applic-
ability in sciences. First, although all benchmarked algorithms recover the true posterior
under specific optimal conditions, it is generally not possible to know whether those con-
ditions are satisfied in practice. Therefore, the study of new objective functions that would
force posterior estimators to always be conservative, regardless of optimality conditions,
constitutes a valuable research avenue. From a Bayesian perspective, Rozet and Louppe
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(2021b) propose using the focal and the peripheral losses to weigh down strongly classi-
fied samples as a means to tune the conservativeness of a posterior estimator. However,
the technique is empirical and requires tuning to attain the desired properties in practice.
Dalmasso, Izbicki, and Lee (2020) on the other hand consider the frequentist setting and
introduce a theoretically-grounded algorithm for the construction of confidence intervals
that are guaranteed to have calibrated coverage, regardless of the quality of the used sta-
tistic. Dalmasso, Zhao, et al. (2021) extends this work with finite sample guarantees.

Second, in light of our results that ensembles produce more conservative posteriors, model
averaging constitutes another promising direction of study as a simple and directly applic-
able method to produce reliable posterior estimators. However, a deeper understanding of
the behaviour we observe is certainly first required to further develop these methods.

Third, post-training calibration can be used to improve the reliability of posterior estima-
tors and should certainly be considered as a way toward more conservative inference. To
some extent, this has already been considered for amortized methods (K. Cranmer, Pavez,
and Louppe, 2015; Brehmer, K. Cranmer, et al., 2018; Hermans, Banik, et al., 2021) and
would be worth exploring further, especially for non-amortized approaches.

In this work, we assumed that the simulator perfectly models the real data generating
process and focused on the computational faithfulness of the inference engine. In practice,
there might be a gap between the simulation and reality. This issue, orthogonal to our
work, should also be taken into account for making reliable simulation-based inference, as
already initiated by several authors (Schmon et al., 2020; Matsubara et al., 2022; Pacchiardi
and Dutta, 2022b; Dellaporta et al., 2022).

In summary, we show that current algorithms for simulation-based inference can produce
overconfident posterior approximations, making them possibly unreliable for scientific use
cases and falsificationist inquiry. Nevertheless, we remain confident and optimistic and
advocate that our results are only a stepping stone toward more reliable simulation-based
inference and its wider adoption in the sciences.
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Figure 4.5: Evolution of the empirical expected coverage of deep ensembles with respect to en-
semble size for various confidence levels. The results are obtained by training ratio
estimators (nre) on the slcp benchmark. A positive effect is observed in terms of em-
pirical expected coverage and ensemble size, i.e., a larger ensemble size correlates with
a larger empirical expected coverage. This is unsurprising, because a larger ensemble is
expected to capture more of the uncertainty that stems from the training procedure.
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Figure 4.6: Evolution of the empirical expected coverage of bagging ensembles with respect to en-
semble size for various confidence levels. The results are obtained by training ratio
estimators (nre) on the slcp benchmark. A positive effect is observed in terms of em-
pirical expected coverage and ensemble size, i.e., a larger ensemble size correlates with
a larger empirical expected coverage. This is unsurprising, because a larger ensemble is
expected to capture more of the uncertainty that stems from the training procedure.
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Epilogue

In this work, we have introduced the notion of expected coverage to quantify the con-
servativeness of posterior approximations. From an extensive empirical evaluation, we
observed that all the methods yielded overconfident posterior approximations on at
least one benchmark. While not surprising, this observation illustrates some concerns
with using simulation-based inference algorithms for scientific reasoning. When apply-
ing simulation-based inference algorithms in this setting, we advocate that coverage
diagnostics are necessary. We observed that, nowadays, a lot of applicative simulation-
based inference papers include expected coverage to analyze the quality of the produced
posterior approximations (Dimitriou et al., 2023; Vasist et al., 2023; Berteaud et al., 2024;
Reza et al., 2024; Swierc et al., 2024; Morandini et al., 2024).
We highlighted that such diagnostics can only be performed with amortized algorithms
and raised caution regarding the use of sequential algorithms. Nowadays, this statement
is no longer valid with the introduction of truncated sequential algorithms that allow lo-
cal coverage testing. However, similar caution can be raised regarding newly developed
models that only allow sampling from the approximate posterior, such as score-based
models and generative adversarial networks. Indeed, computing the expected coverage
requires posterior density estimation, which is not immediately available for such mod-
els.
In addition to diagnosing posterior approximations, it would be desired to develop al-
gorithms that yield approximations passing the coverage diagnostic. As an attempt to
easily improve conservativeness, we showed that ensembling several models empirically
leads more often to conservative models. However, there are no guarantees, and ensem-
bling leads to heavier computations. This paper also serves as a call to develop more
conservative algorithms for simulation-based inference to increase its applicability to
scientific domains.
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B A L A N C E D N E U R A L R AT I O E S T I M AT I O N

Prologue

This chapter is based on the following publication: Delaunoy, A.∗, Hermans, J.∗, Rozet, F.,
Wehenkel, A., & Louppe, G. (2022). Towards reliable simulation-based inference with balanced
neural ratio estimation. Advances in Neural Information Processing Systems, 35, 20025-20037.
This piece of work is an attempt to increase the conservativeness of neural ratio esti-
mation. We aim to derive conditions under which the trained classifier yields conserv-
ative posterior approximations and enforce those conditions during training. We intro-
duce the notion of balanced classifier and show empirically that a balanced classifier
yields more conservative approximations than a non-balanced classifier. Additionally,
we derive properties of balanced classifier, providing intuition about why more conser-
vative approximations are observed. We introduce the Balanced Neural Ratio Estimation
(BNRE) algorithm, a variant of NRE that aims to produce balanced classifiers. BNRE is
implemented in the LAMPE (Rozet, François, 2023) and SBI (Tejero-Cantero et al., 2020)
libraries.

5.1 introduction

Many areas of science and engineering use parametric computer simulations to describe
complex stochastic generative processes. In this setting, Bayesian inference provides a prin-
cipled framework to identify parameters matching empirical observations. Computer sim-
ulations, however, define the necessary likelihood function only implicitly, which prevents
its evaluation and the use of classical inference algorithms. To overcome this obstacle, re-
cent simulation-based inference (SBI) algorithms (K. Cranmer, Brehmer, and Louppe, 2020)
build upon deep learning surrogates to approximate parts of the Bayes rule and enable ap-
proximate inference. For example, Papamakarios, Sterratt, and Murray (2019) and Glöckler
et al. (2021) build a surrogate of the likelihood function while Hermans, Begy, and Louppe
(2020), Durkan, Murray, and Papamakarios (2020), K. Cranmer, Pavez, and Louppe (2015),
Benjamin K Miller, Cole, et al. (2021), and Thomas et al. (2016) approximate the likelihood-
to-evidence ratio. The posterior can also be targeted directly with variational inference, as
proposed by Papamakarios and Murray (2016), Greenberg et al. (2019), and Glöckler et
al. (2021). These algorithms are either amortized or run sequentially to drive the training
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towards a target observation and improve the simulation efficiency of the procedure (Her-
mans, Begy, and Louppe, 2020; Durkan, Murray, and Papamakarios, 2020; Papamakarios,
Sterratt, and Murray, 2019; Papamakarios and Murray, 2016; Lueckmann, Goncalves, et al.,
2017; Greenberg et al., 2019; Glöckler et al., 2021). However, sequential methods have the
drawback of being computationally expensive to diagnose as the surrogates are only valid
for the target observation (Hermans, Delaunoy, et al., 2022). Truncated marginal neural
ratio estimation (Benjamin K Miller, Cole, et al., 2021) alleviates this issue by introducing
a sequential algorithm that builds a surrogate valid in a local region around the target.

Since modern simulation-based inference algorithms rely on deep learning surrogates, con-
cerns naturally arise regarding their computational faithfulness and whether they are suffi-
ciently adequate for the inference task of interest. In Bayesian inference, these concerns can
be at least partially addressed with diagnostics designed to probe the correct behaviour
of the inference method, such as R̂ diagnostics for MCMC (Gelman and Donald B Rubin,
1992), or to assess the quality of posterior approximations directly. The latter include di-
agnostics such as simulation-based calibration (SBC) (Talts et al., 2018) or coverage-based
diagnostics (Zhao et al., 2021; Hermans, Delaunoy, et al., 2022). As discussed by Hermans,
Delaunoy, et al. (2022), posterior approximations must be conservative to guarantee reli-
able inferences, even when approximations are not faithful. For example, in the physical
sciences, where the goal is often to constrain parameters of interest, wrongly excluding
plausible values could drive the scientific inquiry in the wrong direction, whereas failing
to exclude implausible values because of (too) conservative estimations is much less detri-
mental. Unfortunately, the same authors also demonstrate that current simulation-based
inference algorithms can lead to overconfident surrogates and therefore false inferences.

Scientific use cases requiring conservative inference include for example the study of dark
matter models in particle physics and astrophysics (Hermans, Banik, et al., 2021), which
could be cold, warm, or hot dark matter. In general, thermal dark matter models are de-
scribed by a single parameter, the dark matter thermal relic mass, which can be intuitively
thought of as the energy the dark matter particle had in the Early Universe. Small values
correspond to warm or hot dark matter, while high values are descriptive of cold dark
matter. Applying an inference algorithm without diagnosing the learned estimator could
lead to constraints that are tighter than they should be. For example, whenever an overcon-
fident estimator produces posterior estimates that favor cold dark matter models, it could
simultaneously reject alternative models, such as the extensively studied Sterile Neutrino,
a potential candidate for the Warm Dark Matter particle. Making a scientific statement in
this direction therefore requires the uttermost care to not wrongly exclude values of the
thermal relic mass that are actually plausible.

In this work, we develop a novel algorithm that not only converges to exact inference
as the simulation budget increases, but which is also more likely to produce conservative
surrogates in small simulation budget regimes. Toward this objective, we propose a variant
of the NRE algorithm called Balanced Neural Ratio Estimation (BNRE), which enforces a
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balancing condition on the binary neural classifier to increase the reliability of its posterior
approximations.

The structure of the manuscript is outlined as follows. Section 5.2 describes the formalism
and the necessary background. Section 5.3 describes BNRE and provides theoretical argu-
ments towards its conservativeness and reliability. Section 5.4 illustrates our main results
and provides insights regarding the behavior of the method. Finally, Section 5.5 discusses
related work while Section 5.6 summarizes our contributions and hints at future work.

5.2 background

5.2.1 Statistical formalism

This work is concerned with simulation-based inference algorithms that produce posterior
approximations p̂(θ|x) under the following semantics. Target parameters θ denote the
parameters of the model and we make the reasonable assumption that the prior p(θ) is
tractable. The model is generically expressed as a computer program, a simulator, that
describes the forward dynamics of interest based on the input parameters θ. The simulator
implicitly defines the likelihood function p(x|θ). While we cannot directly evaluate the
likelihood p(x|θ), we can execute the computer program to generate synthetic observables
x ∼ p(x|θ). Every observable xo is tied to ground truth parameters θ∗ whose forward
evaluation within the simulator produced x∗.

Of special importance to Bayesians is the notion of a credible region, which is a domain
Θ within the target parameter space that satisfies

∫
Θ p(θ|x = x∗)dθ = 1 − α for some

observable x∗ and confidence level 1 − α. Because many such regions exist, we target the
credible region with the smallest volume, also known as the highest posterior density
region (Box and Tiao, 1973; Hyndman, 1996).

5.2.2 Neural ratio estimation

Neural Ratio Estimation (NRE) is an established approach in the simulation-based infer-
ence literature both from frequentist (K. Cranmer, Pavez, and Louppe, 2015) and Bayesian
(Hermans, Begy, and Louppe, 2020; Durkan, Murray, and Papamakarios, 2020; Benjamin
K Miller, Cole, et al., 2021; Thomas et al., 2016) perspectives. In essence, all protocols
rely on the density-ratio trick (K. Cranmer, Pavez, and Louppe, 2015; Sugiyama et al.,
2012; Goodfellow et al., 2014) to construct a surrogate of the likelihood ratio. In this work,
we consider an amortized estimator r̂(x|θ) of the intractable likelihood-to-evidence ratio
r(x|θ) = p(θ, x)/p(θ)p(x) = p(x|θ)/p(x) that can be learned by training a binary classi-
fier d̂ : X × Θ 7→ [0, 1] to distinguish between samples of the joint p(θ, x) with class label
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1 and samples of the product of marginals p(θ)p(x) with class label 0, with equal label
marginal probability. For the binary cross-entropy loss, the Bayes optimal classifier is

d(θ, x) =
p(θ, x)

p(θ, x) + p(θ)p(x)
= σ

(
log p(θ, x)

p(θ)p(x)

)
, (5.1)

where σ(·) is the sigmoid function. Given target parameters θ and an observable
x supported by p(θ) and p(x) respectively, the learned classifier d̂ provides an ap-
proximation for the log likelihood-to-evidence ratio log r(x|θ) because log r(x|θ) =

σ−1(d(θ, x)) ≈ σ−1(d̂(θ, x)) = log r̂(x|θ). The log posterior density function is approx-
imated as log p̂(θ|x) = log p(θ) + log r̂(x|θ).

5.3 balanced binary classification for neural ratio estimation

Following Hermans, Delaunoy, et al. (2022), let us first define the expected coverage prob-
ability of the 1 − α highest posterior density regions derived from the posterior estimator
p̂(θ|x) as

Ep(θ,x)

[
1
(
θ ∈ Θp̂(θ|x)(1 − α)

)]
, (5.2)

where the function Θp̂(θ|x)(1 − α) yields the 1 − α highest posterior density region
of p̂(θ|x). This diagnostic probes the conservativeness of the posterior estimator
(or the lack thereof) and can be interpreted as the expected frequentist coverage
Ep(θ)Ep(x|θ)

[
1
(
θ ∈ Θp̂(θ|x)(1 − α)

)]
.

In this work, a posterior estimator has coverage at the confidence level 1 −α whenever the
expected coverage probability is larger or equal to the nominal coverage probability, 1 −α.
We say that a posterior estimator is conservative when it has coverage for all confidence
levels. The expected coverage probability can be plotted for various levels α, which allows
to visually identify conservative posterior estimators.

The expected coverage can also be shown to be a special case of the Simulation-based
calibration (SBC) diagnostic (Talts et al., 2018), further motivating the usage of expected
coverage. SBC provides a way to diagnose the faithfulness of an approximate posterior
distribution p̂(θ|x). Given an observation x∗ ∼ p(x), Talts et al. (2018) prove that, for any
one-dimensional statistic f : Θ 7→ R, the rank statistic

r(θ∗) = Ep(θ|x∗)

[
1[f(θ) ≤ f(θ∗)]

]
(5.3)

of posterior samples θ∗ ∼ p(θ|x∗) is uniformly distributed over the interval [0, 1]. Conse-
quently, any deviation from the uniform distribution for the approximate rank statistic

r̂(θ∗) = Ep̂(θ|x∗)

[
1[f(θ) ≤ f(θ∗)]

]
(5.4)

indicates some error in the approximate posterior p̂(θ|x∗). As this holds for any statistic
f , it also holds for f(θ) = p̂(θ|x∗). In this special case, if r̂(θ∗) = α, a proportion 1 − α of
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samples θ ∼ p̂(θ|x∗) have an approximate posterior density larger than θ∗. In other words,
it means that θ∗ resides within the 1 − α highest posterior density region Θp̂(θ|x∗)(1 − α)

of p̂(θ|x∗). Therefore, we have

P (r̂(θ∗) ≥ α) = Ep(θ∗|x∗)

[
1[θ∗ ∈ Θp̂(θ|x∗)(1 − α)]

]
(5.5)

and since r̂(θ∗) should be uniformly distributed, P (r̂(θ∗) ≥ α) should be equal to 1 − α.
In practice, this test cannot be performed locally for a given x∗ as we cannot sample from
the unknown posterior distribution p(θ|x∗). Instead, SBC checks globally that r̂(θ∗) is
uniformly distributed over pairs (θ∗, x∗) ∼ p(θ, x) sampled from the joint distribution,
which, in the special case f(θ) = p̂(θ|x∗), comes down to check that

Ep(θ∗, x∗)

[
1[θ∗ ∈ Θp̂(θ|x∗)(1 − α)]

]
= 1 − α (5.6)

is satisfied for all α ∈ [0, 1]. We recognize here the expected coverage diagnostic used in
Hermans, Delaunoy, et al. (2022) and this work.

Our main objective is to restrict the hypothesis space of the approximate classifiers d̂ to
those leading to conservative posterior estimators, hence solving the reliability concerns of
NRE. Towards this goal, we construct a hypothesis space of balanced classifiers and show
both theoretically and empirically that they lead to posterior estimators that tend to be
more conservative.

5.3.1 Balanced binary classification

Definition 5.3.1. A classifier d̂ is balanced if Ep(θ,x)

[
d̂(θ, x)

]
= Ep(θ)p(x)

[
1 − d̂(θ, x)

]
, or

Ep(θ,x)

[
d̂(θ, x)

]
+ Ep(θ)p(x)

[
d̂(θ, x)

]
= 1. (5.7)

Theorem 5.3.2. Any balanced classifier d̂ satisfies Ep(θ,x)

[
d(θ, x)

d̂(θ, x)

]
≥ 1.

Proof. The integral form of the balancing condition∫∫ (
p(θ, x) + p(θ)p(x)

)
d̂(θ, x)dθdx = 1 (5.8)
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implies that
(
p(x, θ) + p(θ)p(x)

)
d̂(θ, x) is a valid density, both integrating to 1 and pos-

itive everywhere. Therefore, its Kullback-Leibler (KL) divergence with p(θ, x) is positive.
Through Jensen’s inequality, we obtain

0 ≤ KL
(
p(θ, x)

∣∣∣∣∣∣(p(θ, x) + p(θ)p(x)
)
d̂(θ, x)

)
≤ Ep(θ,x)

log p(θ, x)(
p(θ, x) + p(θ)p(x)

)
d̂(θ, x)


≤ Ep(θ,x)

[
log d(θ, x)

d̂(θ, x)

]

⇒ 1 ≤ Ep(θ,x)

[
exp

(
log d(θ, x)

d̂(θ, x)

)]
= Ep(θ,x)

[
d(θ, x)

d̂(θ, x)

]
.

Theorem 5.3.3. Any balanced classifier d̂ satisfies Ep(θ)p(x)

[
1 − d(θ, x)

1 − d̂(θ, x)

]
≥ 1.

Proof. From the integral form of the balancing condition, we have

1 =
∫∫ (

p(θ, x) + p(θ)p(x)
)
d̂(θ, x)dθdx

= 2 −
∫∫ (

p(θ, x) + p(θ)p(x)
)
d̂(θ, x)dθdx

=
∫∫

p(θ, x)dθdx +
∫∫

p(θ)p(x)dθdx −
∫∫ (

p(θ, x) + p(θ)p(x)
)
d̂(θ, x)dθdx

=
∫∫ (

p(θ, x) + p(θ)p(x)
)(

1 − d̂(θ, x)
)
dθdx,

which implies that
(
p(x, θ)+ p(θ)p(x)

)(
1 − d̂(θ, x)

)
is a valid density, integrating to 1 and

positive everywhere. Therefore, its Kullback-Leibler divergence with p(θ)p(x) is positive
and, using Jensen’s inequality, we have

0 ≤ KL
(
p(θ)p(x)

∣∣∣∣∣∣(p(θ, x) + p(θ)p(x)
)(

1 − d̂(θ, x)
))

≤ Ep(θ)p(x)

log p(θ)p(x)(
p(θ, x) + p(θ)p(x)

)(
1 − d̂(θ, x)

)


≤ Ep(θ)p(x)

[
log 1 − d(θ, x)

1 − d̂(θ, x)

]

⇒ 1 ≤ Ep(θ)p(x)

[
exp

(
log 1 − d(θ, x)

1 − d̂(θ, x)

)]
= Ep(θ)p(x)

[
1 − d(θ, x)

1 − d̂(θ, x)

]
.

Theorem 5.3.2 shows that, in expectation over the joint distribution p(θ, x), a balanced
classifier d̂ tends to make predictions whose probability values d̂(θ, x) are smaller than
the exact probability values d(θ, x). In other words, a balanced classifier d̂ tends to be
less confident than the Bayes optimal classifier d. Similarly, Theorem 5.3.3 shows that, in
expectation over the product of the marginals p(θ)p(x), a balanced classifier tends to make
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predictions whose probability values 1 − d̂(θ, x) are smaller than the exact probability
values 1 − d(θ, x), hence showing that a balanced classifier d̂ tends to also be less confident
than the Bayes optimal classifier d. We note however that these two theorems hold only
in expectation, which implies that neither d̂(θ, x) ≤ d(θ, x) for all θ, x nor 1 − d̂(θ, x) ≤
1 − d(θ, x) for all θ, x can generally be guaranteed.

Theorem 5.3.4. The Bayes optimal classifier d(θ, x) is balanced.

Proof. Replacing the Bayes optimal classifier

d(θ, x) ≜
p(θ, x)

p(θ, x) + p(θ)p(x)
(5.9)

in the integral form of the balancing condition, we have∫∫
(p(θ, x) + p(θ)p(x))d(θ, x)dθdx

=
∫∫ (

p(θ, x) + p(θ)p(x)
)
p(θ, x)

p(θ, x) + p(θ)p(x)
dθdx

=
∫∫

p(θ, x)dθdx = 1.

Theorem 5.3.4 states that the Bayes optimal classifier is balanced. Therefore, minimizing
the cross-entropy loss while restricting the model hypothesis space to balanced classi-
fiers results in the same Bayes optimal classifier of Eqn. 5.1.

5.3.2 Balanced neural ratio estimation

We now extend the NRE algorithm to enforce the balancing condition. The previous results
show that enforcing the condition should result in more conservative classifiers d̂ and
therefore to dispersed posterior approximations. Let us first note that Theorem 5.3.2 can
be expressed as Ep(x)[Ep(θ|x)[d(θ, x)/d̂(θ, x]] ≥ 1, which can (ideally) be achieved when
the inner expectation is larger than 1 for all x. In this case, the classifier d̂ will be such that
d̂(θ, x) ≤ d(θ, x) in regions of high posterior density. Then,

d̂(θ, x)

1 − d̂(θ, x)
≤ d(θ, x)

1 − d(θ, x)
, which is equivalent to r̂(x|θ) ≤ r(x|θ), (5.10)

and p̂(θ|x) ≤ p(θ|x) since p̂(θ|x) = p(θ)r̂(x|θ). Similarly, Theorem 5.3.3 implies 1 −
d(θ, x) ≥ 1 − d̂(θ, x) in regions of high prior density, which results in p(θ|x) ≤ p̂(θ|x).
Between those two opposite effects, the constraint on p̂(θ|x) that will dominate depends
on whether p(θ|x) > p(θ) or p(θ|x) < p(θ). If p(θ|x) > p(θ), then p̂(θ|x) ≤ p(θ|x),
whereas if p(θ|x) < p(θ) then p(θ|x) ≤ p̂(θ|x). Overall, imposing the balancing condition
will therefore result in approximate posteriors that lie between the prior and the exact
posterior, without being more confident than they should.
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Practically, the balancing condition can be targeted through a regularization penalty. For
the binary cross-entropy L[d̂] ≜ −Ep(θ,x)[log d̂(θ, x)]− Ep(θ)p(x)[log(1 − d̂(θ, x))] and given
that the balancing condition only depends on samples from p(x)p(θ) and p(x, θ), the full
loss functional including the balancing condition can be expressed as

Lb
[
d̂
]
≜ L

[
d̂
]
+ λ

(
Ep(θ)p(x)

[
d̂(θ, x)

]
+ Ep(θ,x)

[
d̂(θ, x)

]
− 1

)2
, (5.11)

where λ is a (scalar) hyper-parameter controlling the strength of the balancing condition’s
contribution. The training procedure is summarized in Algorithm 5.1. Since a classifier
is balanced if the balancing condition cancels out, λ could, in principle, be set arbitrarily
large. However, as the balancing condition is estimated via Monte Carlo sampling, setting
λ to a large value could impair the classifier’s learning ability. We found that λ = 100
works well across many problem domains with varying simulation budgets.

Algorithm 5.1 Training algorithm for Balanced Neural Ratio Estimation (BNRE).

Inputs: Implicit generative model p(x|θ) (simulator) and prior p(θ)
Outputs: Approximate classifier d̂ψ(θ, x) parameterized by ψ
hyper-parameters: Balancing condition strength λ (default = 100) and batch-size n

repeat
Sample data from the joint {θi, xi ∼ p(θ, x), yi = 1}n/2

i=1
Sample data from the marginals {θi, xi ∼ p(θ)p(x), yi = 0}ni=n/2+1
L[d̂ψ] = − 1

n

∑n
i=1 yi log d̂ψ(θi, xi) + (1 − yi) log(1 − d̂ψ(θi, xi))

B[d̂ψ] = 2
n

∑n/2
i=1 d̂ψ(θi, xi) +

2
n

∑n
i=n/2+1 d̂ψ(θi, xi)

ψ = minimizer_step(params=ψ, loss=L[d̂ψ] + λ(B[d̂ψ] − 1)2)
until convergence
return d̂ψ(θ, x).

5.4 experiments

We start by providing an extensive validation of BNRE on a broad range of benchmarks
demonstrating that the proposed method alleviates the problem. Section 5.4.2 follows up
with an illustrative demonstration on the behaviour of BNRE and its hyper-parameters.
Code is available at https://github.com/montefiore-ai/balanced-nre.

5.4.1 Extensive validation

setup We evaluate the expected coverage of posterior estimators produced by both
NRE and BNRE on various problems. Those benchmarks cover a diverse set of problems
from particle physics (Weinberg), epidemiology (Spatial SIR), queueing theory (M/G/1),
population dynamics (Lotka Volterra, and astronomy (Gravitational Waves). They are rep-
resentative of real scientific applications of simulation-based inference.

https://github.com/montefiore-ai/balanced-nre
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The SLCP simulator models a fictive problem with 5 parameters. The observable x is com-
posed of 8 scalars which represent the 2D-coordinates of 4 points. The coordinate of each
point is sampled from the same multivariate Gaussian whose mean and covariance matrix
are parametrized by θ. We consider an alternative version of the original task (Papamakar-
ios, Sterratt, and Murray, 2019) by inferring the marginal posterior density of 2 of those
parameters. In contrast to its original formulation, the likelihood is not tractable due to the
marginalization.

The Weinberg problem (K. Cranmer, Heinrich, et al., 2017) concerns a simulation of high
energy particle collisions e+e− → µ+µ−. The angular distributions of the particles can be
used to measure the Weinberg angle x in the standard model of particle physics. From the
scattering angle, we are interested in inferring Fermi’s constant θ.

The Spatial SIR model (Hermans, Delaunoy, et al., 2022) involves a grid-world of suscepti-
ble, infected, and recovered individuals. Based on initial conditions and the infection and
recovery rate θ, the model describes the spatial evolution of an infection. The observable
x is a snapshot of the grid-world after some fixed amount of time.

M/G/1 (Shestopaloff and Neal, 2014) models a processing and arrival queue. The problem
is described by 3 parameters θ that influence the time it takes to serve a customer, and the
time between their arrivals. The observable x is composed of 5 equally spaced quantiles
of inter-departure times.

The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes a process of
interactions between a predator and a prey species. The model is conditioned on 4 para-
meters θ which influence the reproduction and mortality rate of the predator and prey
species. We infer the marginal posterior of the predator parameters from time series repre-
senting the evolution of both populations over time. The specific implementation is based
on a Markov Jump Process as in Papamakarios, Sterratt, and Murray (2019).

Gravitational Waves (GW) are ripples in space-time emitted during events such as the colli-
sion of two black-holes. They can be detected through interferometry measurements x and
convey information about celestial bodies, unlocking new ways to study the universe. We
consider inferring the masses θ of two black-holes colliding through the observation of the
gravitational wave as measured by LIGO’s dual detectors (LIGO Scientific Collaboration,
2018; Biwer et al., 2019).

Our evaluation considers simulation budgets of increasing size, ranging from 210 = 1024
to 217 = 131, 072 samples, and credibility levels from 0.05 to 0.95. For every simulation
budget, we train 5 posterior estimators for 500 epochs and determine the credible region
by evaluating the approximated posterior density function in a discretized and empirically
normalized grid of the parameter space with sufficient resolution. The subsequent credible
region is the set of parameters whose estimated (and normalized) posterior density is
higher or equal to an inclusion threshold fitted to obtain the desired credibility level 1 −α.
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The expected coverage probability is estimated on 10000 unseen samples from the joint
p(θ, x), for each considered credibility level.

Table 5.1 summarizes the architectures and hyper-parameters used for each benchmark.
The classifier architectures are separated into two parts: the embedding and the head
networks. The embedding network ϕ compresses the observable into a set of features.
The head network f then uses those features ϕ(x) concatenated with the parameters θ to
predict the class,

d̂(θ, x) = f(θ,ϕ(x)).

The learning rate is scheduled during training. Table 5.1 provides the initial learning rates.
Those are then divided by 10 each time no improvement was observed on the validation
loss for 10 epochs. Further details can be found in the code repository attached to this
manuscript.

Table 5.1: Architectures and training hyper-parameters

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW

Embedding network None None None CNN Resnet-18 CNN
Embedding layers / / / 8 / 13
Embedding channels / / / 8 / 16
Convolution type / / / Conv1D Conv2D Dilated

Conv1D
Head network MLP MLP MLP MLP MLP MLP
Head layers 6 6 6 3 3 3
Head hidden neurons 256 256 256 128 256 128
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Epochs 500 500 500 500 500 500
Batch size 256 256 256 256 256 256

expected coverage The expected coverage curves and their interpretation are de-
tailed in Figure 5.1. We observe that NRE often produces posterior estimators that are over-
confident, especially for small simulation budgets. However, NRE’s reliability increases
with the availability of training data. By contrast, BNRE produces posterior estimators
that are conservative on all benchmarks for all simulation budgets. Figure 5.2 explores the
same phenomena through a quantity which we call the coverage AUC, highlighting the
effect of the simulation budget. Coverage AUC corresponds to the integrated signed area
between the expected coverage curve and the diagonal of a particular simulation. From
this quantity it is evident there is a clear distinction between NRE and BNRE with respect
to the available simulation budget. Both methods have the tendency to converge towards
0, indicating both methods are moving closer to the Bayes optimal classifier. However, the
difference between these methods lies with how this solution is approached. While NRE
can approach this limit from both sides, BNRE consistently produces coverage AUC’s
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above 0, corresponding to conservative posterior approximations, and therefore exhibits
the desired behaviour (in expectation).

SLCP Weinberg Spatial SIR M/G/1 Lotka Volterra Gravitational Waves
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Figure 5.1: Expected coverage for increasing simulation budgets. A perfectly calibrated posterior
has an expected coverage probability equal to the nominal coverage probability and
hence produces a diagonal line. A conservative estimator has an expected coverage
curve at or above the diagonal line, while an overconfident estimator produces curves
below the diagonal line. The diagnostic therefore provides an immediate visual interpre-
tation. We observe that NRE can produce overconfident estimators, while BNRE always
produces coverage curves above the diagonal line and therefore the desired behaviour:
conservative posterior approximations. The means over 5 runs are reported.

statistical performance In addition to the reliability of the posteriors, we eval-
uate and compare the statistical performance of the posterior approximations pro-
duced by NRE and BNRE. We estimate the expected approximate log posterior density
Ep(θ,x)

[
log p̂(θ|x)

]
over a large number of pairs θ, x. It captures how well the poste-

rior surrogates p̂(θ|x) approximate the true posteriors p(θ|x) since Ep(θ,x) [log p̂(θ|x)] =
−Ep(x)KL [p(θ|x) || p̂(θ|x)] + Ep(x)Ep(θ|x) [log p(θ|x)] (Lueckmann, Boelts, et al., 2021).

Figure 5.3 shows our results. We observe that enforcing the balancing condition for λ = 100
is associated with a loss in statistical performance. However, the loss in statistical perfor-
mance is eventually recovered by increasing the simulation budget. In fact, practitioners
might be inclined to favor reliability over statistical performance (Hermans, Delaunoy, et
al., 2022), although it is always a trade-off that depends on the use case. Nevertheless, it is
possible to improve the statistical performance by tuning the surrogate, or by increasing
the available simulation budget as we have demonstrated.

5.4.2 In-depth analysis

In this section, we consider the Weinberg benchmark. The quality of the posterior approx-
imations produced by BNRE is initially discussed with respect to the simulation budget.
Afterwards, the effects of the hyper-parameter λ are studied.
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Figure 5.2: Coverage AUC measures the integrated signed area between the expected coverage
curve and the diagonal. A perfectly calibrated posterior has an expected coverage prob-
ability equal to the nominal coverage probability, producing a diagonal line and has a
coverage AUC of 0, as shown on the left subplot. A conservative estimator on the other
hand has a coverage AUC larger than 0 and an overconfident estimator smaller than 0.
We observe that while NRE can produce coverage AUC both below or above 0, BNRE
always produces a coverage AUC larger than 0, implying that its posterior approxi-
mations are conservative on average. The means over 5 runs are reported. A complete
overview, including standard deviations, are provided in Section 5.7.
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Figure 5.3: Expected value Ep(θ,x)

[
log p̂(θ|x)

]
of the approximate log posterior density of the nom-

inal parameters with respect to the simulation budget. We observe that BNRE produces
log posterior densities lower than NRE. This shows that enforcing the balancing con-
dition to have more reliable posterior approximates comes at the price of a small loss
in information gain. However, BNRE improves over the prior and eventually converges
towards NRE as the simulation budget increases. Solid lines represent the mean over 5
runs and shaded areas represent the standard deviation.

quality assessment Because the expected coverage does not capture the quality of
an approximation in terms of information gain, we complement our assessment with a
bias and variance analysis of the posterior approximations. Let us consider the expected
squared error over the approximate posterior Ep̂(θ|x)

[
(θ − θ∗)2

]
, where θ∗ is the ground

truth parameter value. With θ̄(x) = Ep̂(θ|x) [θ], we decompose Ep̂(θ|x)

[
(θ − θ∗)2

]
as

Ep̂(θ|x)

[
(θ − θ̄(x))

2
]
+ 2 (θ̄(x) − θ∗)Ep̂(θ|x) [(θ − θ̄(x))]︸ ︷︷ ︸

=0

+Ep̂(θ|x)

[
(θ̄(x) − θ∗)

2
]

= Ep̂(θ|x)

[
(θ − θ̄(x))

2
]
+ (θ̄(x) − θ∗)

2 .
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Figure 5.4: Comparison between NRE and BNRE in terms of expected coverage, bias and variance
on the Weinberg benchmark. On the left side, the coverage is shown with respect to the
simulation budget represented by the colormap. The bias and variance are represented
on the right side of the plot. BNRE is run with λ = 100. Consistent with our previous
observations in Figure 5.3, we observe that the gap in both bias and variance reduces
as the simulation budget increases. Furthermore, in contrast with NRE, the posterior
approximations of BNRE are tending towards being increasingly calibrated while at the
same time being conservative. Solid lines represent the mean over 5 runs and shaded
areas represent the standard deviation.

The expectation over the joint distribution p(θ∗, x) of the expected squared error can hence
be decomposed in a bias term defined as

bias(p̂(θ|x)) ≜ Ep(θ∗, x)

[
(θ̄(x) − θ∗)

2
]

, (5.12)

which can be interpreted as the expected discrepancy between the nominal value θ∗ and
the expected posterior value θ̄. The variance term is

variance(p̂(θ|x)) ≜ Ep(θ∗, x)

[
Ep̂(θ|x)

[
(θ − θ̄(x))

2
]]

(5.13)

and measures the dispersion of the posterior approximations. Note that these terms differ
from the typical statistical bias and variance of point estimators since we are consider-
ing full posterior estimators. In particular, the bias of the Bayes optimal model does not
necessarily reduce to 0.

Figure 5.4 shows the evolution of expected coverage, bias and variance with respect to
the available simulation budget. By taking all plots into consideration with respect to the
simulation budget, we can validate that – as suggested by theorems 5.3.2 and 5.3.3 – the
increase in expected coverage is tied to an increase in variance. However, this increase
comes at the price of a slight increase in bias. Consistent with our previous observations
in Figure 5.3, we observe that the gap in both bias and variance reduces as the simulation
budget increases. The bias gets close to 0 for high simulation budgets, showing that the
bias induced by BNRE vanishes as the simulation-budget increases. A bias and variance
analysis for all remaining benchmarks is discussed in Section 5.7.
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Figure 5.5: Effect of the hyper-parameter λ for a fixed simulation budget of 1024. The first plot from
left to right shows the evolution of the approximate posterior for a given observation
at a fixed θ∗, indicated by the red vertical line. This approximate posterior is compared
to NRE trained on a large simulation budget, shown in yellow and serving as a proxy
for the true posterior. The second plot illustrates the empirical expected coverage. The
third plot provides a summarized view of the second plot using the coverage AUC as
summary statistic. The fourth plot shows that classifiers are becoming increasingly more
balanced as λ increases. In addition, the plots show that λ is directly tied to the statisti-
cal performance and reliability of the posterior approximations. Classifiers trained with
small λ’s are associated with (relatively) tight posteriors and overconfident approxima-
tions, while classifiers trained with larger values of λ are increasingly more dispersed
and conservative until the posterior approximations reduce to the prior due to inflated
statistical noise of the Monte Carlo estimation of the balancing condition. Furthermore,
the expected coverage plot shows the estimator is almost perfectly calibrated and im-
plicitly balanced. Immediately visible from the various posterior approximations in the
leftmost subplot, is the fact that BNRE produces overconfident and biased approxima-
tions in the presence of a small simulation budget and a small λ, indicated by their dark
blue color. However, the balancing condition can be applied to the underlying estimator
to improve its reliability by increasing λ. Ideally, λ should be as small as possible to
maximize predictive performance, while at the same time remain sufficiently large to
guarantee coverage. From the 3th subplot from the left, in this particular problem set-
ting, that happens at the point where the coverage AUC transitions from being negative
to positive (λ ≈ 25.0).

effects of λ Finally, Figure 5.5 shows the effect the hyper-parameter λ on the poste-
rior approximations, their expected coverage and the balancing condition. BNRE is run 5
times for λ ranging from 1 to 215 and for a fixed simulation budget of 1024. Initially, the
effect on the posterior approximations is limited for small values of λ. However, once λ
increases, the balancing condition forces the posterior approximations to become increas-
ingly dispersed and conservative. Eventually, at least for this specific simulation budget,
the posterior approximation reduces to the prior as the balancing condition becomes dom-
inant over the cross-entropy term. Although the global optimum remains unchanged as
stated by Theorem 5.3.4, large λ values are likely to impair the training procedure. In
particular, a large λ can inflate the statistical noise of the Monte Carlo estimation of the
balancing condition and make the classifier d̂ degenerate to a classifier that is trivially bal-
anced such as the random classifier d̂(θ, x) = 0.5 for all θ, x. In this case, r̂(x|θ) = 1 for all
θ, x and the approximate posterior degenerates to the prior. This effect is directly evident
from Figure 5.5, starting from λ ≃ 1000. In practice, λ should be sufficiently large such
that the approximate classifier is balanced, while maximizing the statistical performance
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of the posterior estimator. Therefore, we recommend to start with a small value for λ and
to gradually increase λ until the posterior estimator becomes conservative. We empirically
found λ = 100 to be a reasonably good default value leading to good performance across
all considered benchmarks with various model architectures.

5.5 related work

In the Bayesian setting, BNRE improves the reliability of NRE by constraining the classi-
fier hypothesis space to balanced classifiers, which results in more conservative posteriors.
Towards the same objective of conservative and reliable approximate posteriors, Hermans,
Delaunoy, et al. (2022) have shown empirically that ensembling posterior estimators in-
creases their expected coverage. Since the two solutions are complementary, we suggest
that ensembling BNRE is a safe practice to follow. To the best of our knowledge, no other
related work exists to make Bayesian simulation-based inference algorithms more conser-
vative and reliable.

In the frequentist setting, K. Cranmer, Pavez, and Louppe (2015) make use of neural ra-
tio estimation to learn likelihood ratio test statistics. They show that the classifier d̂ does
not need to be exact for the statistic to remain the most powerful, provided that the ap-
proximate likelihood ratio is monotonic with exact likelihood ratio. When this is not the
case, robust inference remains possible by calibrating the classifier, at the price of a loss
in statistical power. Similarly, for frequentist likelihood-free inference, Dalmasso, Izbicki,
and Lee (2020) use classifiers to estimate likelihood ratio statistics and propose a proce-
dure for guaranteeing valid hypothesis tests and confidence sets. Finally, Dalmasso, Zhao,
et al. (2021) propose a practical procedure for the Neyman construction of confidence sets
with finite-sample guarantees of nominal coverage as well as diagnostics that estimate
conditional coverage over the entire parameter space.

In this work, we make the assumption that the simulator is well-specified, in the sense that
it accurately models the real data generation process. However, this assumption is often
violated. To overcome this issue, Generalized Bayesian inference (GBI) extends Bayesian in-
ference by replacing the likelihood term by with arbitrary loss function (Bissiri et al., 2016).
Those loss functions can be designed to mitigate specific types of misspecifications and en-
able robust inference, even with intractable likelihoods (Schmon et al., 2020; Matsubara et
al., 2022; Pacchiardi and Dutta, 2021). Power likelihood losses have also been shown to in-
crease robustness to model misspecification (Grünwald and Van Ommen, 2017). It consists
in raising the likelihood to a power to control the impact it has over the prior. The lower the
power of likelihood, the lower the importance given to the data and the higher the uncer-
tainty of the posterior. It can either be set based on practitioner knowledge or derived from
observed data (Holmes and Walker, 2017). Following the same objective, J. W. Miller and
D. B. Dunson (2018) introduce coarsened posteriors that condition on a neighborhood of
the empirical data distribution rather than on the data itself. This neighborhood is derived
from a distance function that, when set to the relative entropy, allows the approximation
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of coarsened posteriors by a power posterior. Recently, Dellaporta et al. (2022) applied
Bayesian non-parametric learning to SBI, making inference with misspecified simulator
models both robust and computationally efficient.

5.6 conclusions and future work

In this work, we introduced Balanced Neural Ratio Estimation (BNRE), a variation of
neural ratio estimation designed to produce more conservative posterior estimators, even
when the likelihood-to-evidence ratio estimator is not computationally faithful. We provide
theoretical arguments suggesting that enforcing the balancing condition should lead to
more conservative posteriors without sacrificing exactness in the large simulation budget
regime. Our theoretical results are experimentally validated on benchmarks of varying
complexity.

Nevertheless, our inference algorithm comes with limitations that practitioners should
keep in mind. First, we emphasize that theorems 5.3.2 and 5.3.3 hold only in expectation,
which means that we cannot provide any guarantee at the level of single inferences. Second,
the balancing condition is enforced through a regularization penalty that is not estimated
exactly. This implies that the classifier d̂ is rarely strictly balanced, although close to be,
in which case theorems 5.3.2 and 5.3.3 do not hold. Third, the benefits of BNRE remain
to be assessed in high-dimensional parameter spaces. In particular, the posterior density
must be evaluated on a discretized grid over the parameter space to compute credibility
regions, which currently prohibits the accurate computation of expected coverage in the
high-dimensional setting. In conclusion, BNRE should not be viewed as a way to obtain
conservative posterior estimators with 100% reliability, but rather as a way to increase the
reliability of the posterior estimators with minimal effort and no computational overhead.

Looking forward, the balancing condition could potentially be applied to other simulation-
based inference algorithms. Future works could include a generalization to neural poste-
rior estimation (NPE). In fact, the likelihood-to-evidence ratio can be extracted from an
approximate posterior by removing its dependence on the prior, log r̂(x|θ) = log p̂(θ|x) −
log p(θ), which in turn can be expressed as a classifier d̂(θ, x) = σ(log r̂(x|θ)) on which the
balancing condition can be evaluated and enforced. Although our work focuses on amor-
tized approximate inference, the balancing condition could also be applied to sequential
inference algorithms to increase their reliability.

Finally, although our initial motivation is framed within the field of simulation-based in-
ference, our theoretical results are directly applicable to any binary classification task by
replacing the joint and marginal distributions in the balancing condition with the distribu-
tions of the two considered classes. Therefore, it provides an easy-to-implement modifica-
tion for high-risk classification problems.
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5.7 additional results

Figure 5.6 shows the coverage AUC for various simulation budgets. The mean and stan-
dard deviation over 5 runs are reported.
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Figure 5.6: Coverage AUC measures the integrated signed area between the expected coverage
curve and the diagonal. A perfectly calibrated posterior has an expected coverage prob-
ability equal to the nominal coverage probability, producing a diagonal line and has a
coverage AUC of 0, as shown on the left subplot. A conservative estimator on the other
hand has a coverage AUC larger than 0 and an overconfident estimator smaller than 0.
We observe that while NRE can produce coverage AUC both below or above 0, BNRE
always produces a coverage AUC larger than 0, implying that its posterior approxima-
tions are conservative. Solid lines represent the mean over 5 runs and shaded areas
represent the standard deviation.

Figure 5.7 shows the evolution of the bias and variance w.r.t. the simulation budget on a
wide variety of benchmarks. We observe that observations made on Weinberg in Section 5.4
generalize to all benchmarks. The variance obtained with BNRE is always higher or equal
than the one obtained with NRE as suggested by Theorems 5.3.2 and 5.3.3. In addition, as
suggested by Theorem 5.3.4, the bias and variance obtained with BNRE converge, as NRE,
to the Bayes optimal solution.
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Figure 5.7: Evolution of the bias and variance w.r.t. the simulation budget. The bias and variance are
estimated as described in Section 5.4 and are scaled to account for the prior’s spread, per-
mitting a direct comparison between the benchmarks. Marginals are considered when
dealing with multidimensional parameter spaces. Those are denoted by an index fol-
lowing the benchmark name.
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Epilogue

We introduced the Balanced Neural Ratio Estimation (BNRE) algorithm that enforces
the balancing condition through regularization. Empirical evaluation shows that enforc-
ing the balancing condition leads to more conservative posterior approximations. This
comes at the cost of slightly hurting the predictive performance, as computed by the
expected nominal log posterior density. Nevertheless, we showed that enforcing the bal-
ancing condition does not prevent attaining the Bayes optimum as the Bayes optimal
classifier is always balanced. This is also observed empirically as we see that BNRE
achieves similar predictive performance as NRE as the simulation budget increases. In
addition to empirical results, we present in Theorems 5.3.2 and 5.3.3 some properties of
balanced classifiers that provide intuition about why enforcing balancing leads to more
conservative approximations. However, those properties only give intuition and do not
guarantee conservativeness as they only hold in expectation, are not statements on the
coverage directly, and involve expectations of ratios that are not equal to ratios of expec-
tations. While not guaranteeing conservativeness, BNRE is very easy to implement as
it only involves adding a few lines of code in the loss function to switch from NRE to
BNRE, and it does not introduce any computational overhead. BNRE is, hence, a simple
fix to try to improve the expected coverage of posterior approximations. However, NRE
is rarely used in practice as most applicative pieces of work approximate the posterior
directly with normalizing flows.
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B A L A N C I N G S I M U L AT I O N - B A S E D I N F E R E N C E

Prologue

This chapter is based on the following publication: Delaunoy, A.∗, Miller, B. K.∗, Forré, P.,
Weniger, C., & Louppe, G. Balancing Simulation-based Inference for Conservative Posteriors. In
Fifth Symposium on Advances in Approximate Bayesian Inference.
Previous work has shown that balancing classifiers in NRE algorithms leads to more
conservative posterior approximations. However, the most widely used methods at the
time of writing are NPE methods. This piece of work aims to extend the applicability of
balancing to other types of algorithms, including NPE and NRE-C.

6.1 introduction

Simulation-based inference (SBI) (K. Cranmer, Brehmer, and Louppe, 2020) is a statistical
inference framework that solves the inverse problem of identifying which parameter θ

generated observation x by approximating the posterior p(θ | x) with a surrogate model
p̂(θ | x). p̂ is constructed from simulated pairs (θ, x) produced by a generative model
where the likelihood p(x | θ) is only implicitly defined. A classic method to produce sam-
ples from the surrogate is a rejection sampling technique called Approximate Bayesian
Computation (Sisson, Fan, and Beaumont, 2018). Recently, there has been significant devel-
opment of algorithms using machine learning for estimating the posterior (Geffner et al.,
2022; Sharrock et al., 2022; Papamakarios and Murray, 2016; Lueckmann, Goncalves, et al.,
2017; Greenberg et al., 2019; Glöckler et al., 2021), which we call Neural Posterior Estima-
tion (NPE); the likelihood (Papamakarios, Sterratt, and Murray, 2019; Gratton, 2017); or
the likelihood-to-evidence ratio (Hermans, Begy, and Louppe, 2020; Durkan, Murray, and
Papamakarios, 2020; Benjamin K Miller, Weniger, and Forré, 2022; Benjamin K Miller, Cole,
et al., 2021; Thomas et al., 2016; D. Tran et al., 2017), which we call Neural Ratio Estimation
(NRE).

It has been demonstrated that the estimated surrogate p̂(θ | x) can be more confident than
p(θ | x) using common SBI algorithms (Hermans, Delaunoy, et al., 2022). This poses a
problem for the reliability of SBI in a scientific setting where surrogates must be conser-
vative, i.e. avoid inaccurately excluding parameters at a given credibility level. There has

77
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been development in testing for overconfidence using empirical expected coverage and
related methods (Talts et al., 2018; Hermans, Delaunoy, et al., 2022; Cook et al., 2006).
Lemos, Coogan, et al. (2023) extend expected coverage testing to be a sufficient condition
for posterior surrogate correctness, using only samples from the posterior surrogate. In
an algorithmic approach to encourage conservativeness, Delaunoy, Hermans, et al. (2022)
found that the so-called balance condition regularizes overconfidence in expectation in
surrogates trained with NRE (Hermans, Begy, and Louppe, 2020). Similarly, it has been
shown that ensembling reduces overconfidence (Hermans, Delaunoy, et al., 2022; Alsing
et al., 2019). Zhao et al. (2021) rather test for valid local coverage. Linhart, Gramfort, and
P. L. Rodrigues (2022) focuses on normalizing flows and extends this method to the mul-
tivariate setting. In a similar fashion (Dalmasso, Izbicki, and Lee, 2020; Dalmasso, Zhao,
et al., 2021; Masserano et al., 2023) aim to produce valid frequentist coverage. Cannon
et al. (2022) empirically show that model misspecification leads to overconfident poste-
rior approximations and that this can be mitigated using ensembling or sharpness-aware
minimization techniques.

contribution After providing some background, we generalize the balancing con-
dition to NPE methods and Contrastive Neural Ratio Estimation (NRE-C) (Benjamin K
Miller, Weniger, and Forré, 2022). We provide empirical evidence of the regularizing effect
of the balance condition in all of these settings and the first expected coverage tests of NRE-
C. Additionally, we relate the balance condition to the χ2-divergence. Code is available at
https://github.com/ADelau/balancing_sbi.

6.2 background

posterior estimation (npe) A density estimator qw(θ | x) with weights w, such as
a mixture density network (Bishop, 1994) or normalizing flow (Papamakarios, Nalisnick,
et al., 2019), approximates p(θ | x) when the expected Kullback-Leibler divergence

Ep(x) [KL(p(θ | x) | qw(θ | x)] , (6.1)

is minimized. In NPE, the surrogate model is directly p̂(θ | x) := qw(θ | x).

ratio estimation (nre) The likelihood-to-evidence ratio r(θ, x) := p(x | θ)
p(x) = p(θ,x)

p(θ)p(x)

is estimated through a supervised learning task using classifier ϖ(y = 1 | θ, x). The target
conditional distribution π(y = 1 | θ, x) comes from π(θ, x, y) := π(θ, x | y)π(y) where the
marginals are set to π(y = 0) := π(y = 1) := 1

2 and the remaining conditional is defined as

π(θ, x | y) :=


p(θ)p(x) y = 0

p(θ, x) y = 1
. (6.2)

https://github.com/ADelau/balancing_sbi
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The classifier ϖ(y = 1 | θ, x) := σ ◦ fw(θ, x) is parameterized by a neural network fw(θ, x)

and σ is the sigmoid. ϖ(y = 1 | θ, x) approximates π(y = 1 | θ, x) when the NRE loss

Eπ(θ,x)

[
KL(π(y | θ, x) ∥ϖ(y | θ, x))

]
, (6.3)

is minimized. Let p̂(θ | x) := exp ◦fw(θ,x)
Zw(x) p(θ), with Zw(x) :=

∫
exp ◦fw(θ, x)p(θ)dθ, define

the surrogate model. When the loss is zero fw(θ, x) = log r(θ, x), recovering the posterior.

contrastive neural ratio estimation (nre-c) (Benjamin K Miller, Weniger,
and Forré, 2022) introduce NRE-C, an algorithm featuring a flexible, multiclass distribution
π̃(y) for y = 0, 1, . . . ,K.

We let marginal distribution π̃(y) with y ∈ {0, 1, . . . ,K} have probabilities π̃(y = k) := π̃K

for all k ≥ 1 and π̃(y = 0) := π̃0 which yields the relationship π̃0 = 1 − Kπ̃K . The
remaining conditional is

π̃(Θ, x | y = k) :=


p(θ1) · · · p(θK)p(x) k = 0

p(θ1) · · · p(θK)p(x | θk) k = 1, . . . ,K
, (6.4)

where Θ := (θ1, ..., θK) are contrastive parameters, sampled from the prior p(θ). We fit
the variational, multiclass classifier

ϖ̃(y = k | Θ, x) :=


K

K+
∑K

i=1 exp ◦hw(θi,x)
k = 0

exp ◦hw(θk,x))
K+
∑K

i=1 exp ◦hw(θi,x)
k = 1, . . . ,K

(6.5)

by minimizing Eπ̃(Θ,x) [KL(π̃(y | Θ, x) | ϖ̃(y | Θ, x))], where hw is a neural network para-
meterized by weights w. We write the loss function out explicitly:

L[ϖ̃] := − 1
1 + γ

Eπ̃(Θ,x | y=0) [log ϖ̃(y = 0 | Θ, x)]

− γ

1 + γ
Eπ̃(Θ,x | y=K) [log ϖ̃(y = K | Θ, x)] ,

(6.6)

where we introduced γ := π̃(y≥1)
π̃(y=0) = Kπ̃K

π̃0
. There are only two terms in this sum because

we exploited symmetries in the conditionals π̃(Θ, x | y = k) when k ̸= 0. We define the
surrogate model as p̂(θ | x) := exp ◦hw(θ,x)

Zw(x) p(θ) with Zw(x) :=
∫

exp ◦hw(θ, x)p(θ) dθ.

When the objective (6.6) becomes zero, the NRE-C surrogate model recovers the posterior.
NRE-C represents a strict generalization of classifier-based, likelihood-to-evidence ratio es-
timation methods (Hermans, Begy, and Louppe, 2020; Durkan, Murray, and Papamakarios,
2020). In the experiments we took γ := 1 and K := 5.
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conservative surrogates Undesirably, simulation-based inference algorithms can
produce overconfident surrogate models (Hermans, Delaunoy, et al., 2022). We define over-
confidence in terms of the (1 −α) expected coverage probability of the posterior surrogate
p̂(θ | x),

1 − α̂[p̂;α] := Ep(θ,x)

[
1(θ ∈ Θp̂(θ | x)(1 − α))

]
, (6.7)

where 1 is an indicator function, and Θp̂(θ | x)(1 − α) yields the (1 − α) highest posterior
density region (HPDR) of p̂(θ | x) with α ∈ [0, 1]. The quantity (1 −α) is called the nominal
coverage probability. When ∃α′ : 1 − α̂[p̂;α′] < 1 − α′, we say that p̂(θ | x) is overconfident.
Overconfidence is problematic because the surrogate tends to exclude parameter values
that are actually plausible at the considered credibility level. On the other hand, extremely
underconfident surrogates are not informative. Although there is a tradeoff, scientific ap-
plications take a cautious approach by favoring underconfidence. Therefore, we encourage
conservative surrogates at credibility level α′, which have 1 − α̂[p̂;α′] ≥ 1 − α′. We im-
precisely define the relative conservativeness of one posterior to another: One surrogate
is more conservative than another when there are “more credibility levels” at which it is
conservative than the other.

balance condition In an effort to produce conservative surrogates, Delaunoy, Her-
mans, et al. (2022) introduced the balance condition. It holds for any classifier ϖ(y =

1 | θ, x) that satisfies

1 = Ep(θ)p(x) [ϖ(y = 1 | θ, x)] + Ep(θ,x) [ϖ(y = 1 | θ, x)] . (6.8)

Delaunoy, Hermans, et al. (2022) show that Ep(θ,x)

[
π(y=1 | θ,x)
ϖ(y=1 | θ,x)

]
≥ 1 and

Ep(θ)p(x)

[
π(y=0 | θ,x)
ϖ(y=0 | θ,x)

]
≥ 1 for balanced classifiers. In expectation, it implies the balanced

classifier’s probabilities ϖ(y | θ, x) are closer to uniform than the target, encouraging
r̂(θ, x) to be closer to 1. This brings to surrogate closer to the prior, p(θ), which is con-
servative.

6.3 extending the balance condition

We clarify and generalize the balance criterion: Identifying it with the χ2-divergence, and
applying it to models that can evaluate the approximate posterior density.

balance as divergence We encourage balance during training by regularizing the
loss with a Lagrange multiplier; penalizing solutions that do not satisfy the balance crite-
rion

B[ϖ] := B(w) :=
(

Ep(θ)p(x) [ϖ(y = 1 | θ, x)] + Ep(θ,x) [ϖ(y = 1 | θ, x)] − 1
)2

, (6.9)
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where w are the classifier weights. The effects of balance are clearer when (6.9) is rewritten
in the form of a χ2-divergence. The χ2-divergence (Sason and Verdú, 2016) is defined as

χ2(π(y) ∥ϖ(y)) :=
∫ (

ϖ(y)

π(y)
− 1

)2
π(y) dy, (6.10)

where ϖ(y) :=
∫
ϖ(y | θ, x)π(θ, x)dθ dx is the marginal classifier. With the following steps,

we identify that B[ϖ] = χ2(π(y) ∥ϖ(y)).

χ2(π(y) ∥ϖ(y)) :=
∫ (

ϖ(y)

π(y)
− 1

)2
π(y) dy

=

(
ϖ(y = 0)
π(y = 0) − 1

)2
π(y = 0) +

(
ϖ(y = 1)
π(y = 1) − 1

)2
π(y = 1)

=
(ϖ(y = 0) − π(y = 0))2

π(y = 0) +
(ϖ(y = 1) − π(y = 1))2

π(y = 1)

=
(ϖ(y = 1) − π(y = 1))2

π(y = 0) +
(ϖ(y = 1) − π(y = 1))2

π(y = 1)

= (ϖ(y = 1) − π(y = 1))2
( 1
π(y = 0) +

1
π(y = 1)

)
= 4(ϖ(y = 1) − π(y = 1))2

= (2ϖ(y = 1) − 1)2

=

(
2
∫
ϖ(y = 1 | θ, x)π(θ, x)dθ dx − 1

)2

=

(
2
∫
ϖ(y = 1 | θ, x)

(∫
π(θ, x | y)π(y)dy

)
dθ dx − 1

)2

=

(∫
ϖ(y = 1 | θ, x)(π(θ, x | y = 0) + π(θ, x | y = 1))dθ dx − 1

)2

=
(

Ep(θ)p(x) [ϖ(y = 1 | θ, x)] + Ep(θ,x) [ϖ(y = 1 | θ, x)] − 1
)2

(6.11)

where we used π(y = 0) = π(y = 1) = 1
2 and ϖ(θ, x) := π(θ, x). Therefore, a balanced

classifier satisfies ϖ(y) = π(y), i.e. balancing regularizes the marginal classifier towards
the target distribution for y.

balance criterion for alternative models The balance criterion regularizes
marginal distribution ϖ(y); this makes sense for NRE which defines ϖ(y) and target mar-
ginal π(y). However, we are interested in regularizing objectives L(w) that either do not
introduce a binary auxiliary variable y, or use an alternative. In order to apply the bal-
ance criterion, we propose to use the same target distribution π(θ, x, y) as NRE does
and define a classifier in terms of the variational (unnormalized) posterior approximant
q̂w(θ | x). We approximate r(θ, x) := p(θ,x)

p(θ)p(x) = p(θ | x)
p(θ) with q̂w(θ | x)

p(θ) which yields the clas-

sifier ϖ(y = 1 | θ, x; q̂w) := q̂w(θ | x)/p(θ)
1+q̂w(θ | x)/p(θ) and regularize L(w) with B(w) and Lagrange

multiplier λ
L(w) + λB(w). (6.12)



82 balancing simulation-based inference

The main contribution is reformulating B(w) to be expressed in terms of q̂w, which gen-
eralizes the balance condition to models which allow for approximate density evaluation!
We consider losses L(w) that go to zero if and only if q̂w(θ | x) = p(θ | x). When this is
true, the balance condition (6.8) also holds since B(w) becomes zero:

B(w) :=
(∫

(π(θ, x | y = 0) + π(θ, x | y = 1))ϖ(y = 1 | θ, x; q̂w)dθ dx − 1
)2

=

(∫
(p(θ)p(x) + p(θ, x))

q̂w(θ | x)/p(θ)
1 + q̂w(θ | x)/p(θ)

dθ dx − 1
)2 (6.13)

That means for loss L(w) = 0 the regularized version (6.12) also goes to zero; just like
BNRE. As advised in Delaunoy, Hermans, et al. (2022), we use λ = 100. In practice, this
value should be tuned for best performance.

balanced neural posterior estimation (bnpe) We propose BNPE which reg-
ularizes NPE’s objective (6.1) with the balance criterion to train a normalized density
estimator. We have q̂w(θ | x) := qw(θ | x). The corresponding classifier becomes ϖ(y =

1 | θ, x; q̂w) := qw(θ | x)/p(θ)
1+qw(θ | x)/p(θ) . Training minimizes (6.12), substituting the appropriate loss

and classifier.

balanced contrastive neural ratio estimation (bnre-c) We propose
BNRE-C which regularizes NRE-C’s objective (6.6) with the balance criterion to train a
ratio estimator. The density estimator is q̂w(θ | x) := exp ◦hw(θ, x)p(θ). The correspond-
ing classifier becomes ϖ(y = 1 | θ, x; q̂) := exp ◦hw(θ,x)p(θ)/p(θ)

1+exp ◦hw(θ,x)p(θ)/p(θ) = σ ◦ hw(θ, x). Training
minimizes (6.12), substituting the appropriate loss and classifier.

6.4 refining balanced neural posterior estimation

We observe that BNPE sometimes struggles to minimize the balance criterion for low sim-
ulation budgets. In this section, we provide a way to simplify learning.

6.4.1 Improving Balanced Neural Posterior Estimation

Let us first observe that the prior p(θ) is balanced:∫
(π(θ, x | y = 0) + π(θ, x | y = 1))ϖ(y = 1 | θ, x)dθ dx (6.14)

=
∫
(p(θ)p(x) + p(θ, x))

p̂(θ|x)/p(θ)
1 + p̂(θ|x)/p(θ)

dθ dx (6.15)

=
∫
(p(θ)p(x) + p(θ, x))

p(θ)/p(θ)
1 + p(θ)/p(θ)

dθ dx = 1 (6.16)

BNRE can easily model the prior as this is achieved for ϖ(y = 1 | θ, x) = 0.5 ∀θ, x. In
opposition, BNPE has to explicitly learn a balanced distribution. In order to ease the task
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of learning a balanced distribution, we propose to initialize the posterior surrogate to the
prior distribution. We will refer to this algorithm as Initialized Balanced Neural Posterior
Estimation (BNPE Init).

6.4.2 Intializing neural spline flows to the prior distribution

In this work, we use Neural Spline Flows (Durkan, Bekasov, et al., 2019). We here discuss
how to initialize this architecture to the prior. A normalizing flow models a complex distri-
bution as a sequence of transformations of some base distribution. Consequently, the flow
models the prior in the two following scenarios. The transformations are all identity trans-
formations and the base distribution is the prior, or the transformations are all identity
transformations and a fixed transformation that maps the base distribution to the prior is
added at the end of the flow.

In the following, we describe how to obtain the two core components: identity transforma-
tions and a transformation that maps the base distribution to the prior. We then discuss
the advantages and drawbacks of the two methods. In the experiments, we used a trans-
formation from the base distribution to the prior.

neural spline transformations (Durkan, Bekasov, et al., 2019) are transforma-
tions defined by K rational-quadratic functions, with boundaries set by K + 1 knots
denoted by (x(k), yk)Kk=0. The boundaries are defined by (x(0), y0) = (−B, −B) and
(x(K), yK) = (B,B). The knots are parametrized by two vectors θw and θh of length K.
Those vectors are passed through a softmax and multiplied by 2B to define the bins’ width
and height.

The rational-quadratic in the kth bin is defined as

α(k)(ξ)

β(k)(ξ)
= y(k) +

(y(k+1) − y(k))[s(k)ξ2 + δ(k)ξ(1 − ξ)]

s(k) + [δ(k+1) + δ(k) − 2s(k)]ξ(1 − ξ)
. (6.17)

The terms
{
δ(k)

}K−1

k=1
define the derivatives at the internal points and are parametrized by

the vector θd of length K − 1. The other terms are defined as sk = (yk+1 − yk)/(xk+1 − xk)

and ξ = (x− xk)/(xk+1 − xk).

initializing transformations to identity To let the spline transformation be
close to identity, we need to initialize the knots such that all the weights and widths are the
same. This can be done by initializing the vectors θw and θh to zeros for all conditionings.
In addition, all s(k) are then equal to 1. We also need δ(k) = 1, ∀k. In the implementation
used (Rozet, 2022), the vector θd models the log derivatives and hence must be initialized
to a vector full of zeros.

To achieve the identity transform, the outputs of the neural network θh, θw and θd must
be zeros at initialization for all conditionings. This is achieved when biases and weights
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are all set 0. However, this initialization is not optimal for learning via stochastic gradient
descent, so we aim for a trade-off between ease of training and closeness to the prior. We
initialize the neural network using some standard initialization, set the biases to 0 and
divide the weights by 5 to obtain a function close to an identity transformation.

mapping the base distribution to the prior In our case, the base distribution
is a normal distribution N (0, 1) and the priors are uniform in all the benchmarks consid-
ered. Therefore, we need to define a mapping from a Uniform distribution U(a, b), which
p.d.f. is denoted by pu(u), to a normal distribution N (0, 1), which p.d.f. is denoted by
pn(n) and c.d.f denoted Fn(n). Let us first consider an intermediate mapping to a Uni-
form distribution U(0, 1) which p.d.f is denoted pũ(ũ). Going from u to ũ can be achieved
with the following transformation

ũ =
u+ a

b− a
. (6.18)

The Jacobian linked to this transformation is then

1
b− a

(6.19)

Going from ũ to n can be achieved with the following transformation

ũ = Fn(n) ⇔ n = F−1
n (ũ). (6.20)

The Jacobian linked to this transformation is then

∣∣∣(F−1
n )′(ũ)

∣∣∣ = ∣∣∣∣∣ 1
F ′
n(F

−1
n (ũ))

∣∣∣∣∣ (6.21)

=
1

pn(F
−1
n (ũ))

. (6.22)

comparison of the different initialization schemes We have considered
two initialization schemes: using the prior as base distribution or adding a transformation
that maps the base distribution to the prior distribution. Using the prior distribution as
base distribution has the advantage to be easy to implement as it does not require defining
a mapping between both distributions. However, we have empirically observed that modi-
fying the base distribution can lead to worse performance. We hypothesize that this is due
to the fact that all the considered benchmarks have a uniform prior while flows work bet-
ter with a Gaussian base. Let us note that using such a transformation could be beneficial
in the more general setting as it solves leakage! Leakage is the fact that NPE algorithms
can lead to a posterior surrogate that has density outside of the prior support. This is a
problem in sequential settings where this surrogate is used as a proposal for simulating
new data points. The transformation from a normal distribution to the prior is a trans-
formation that maps any distribution with infinite support to a distribution that has the
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same support as the prior. Therefore, leakage cannot happen when such a transformation
is applied.

6.5 experiments

We investigate whether our proposed algorithms BNPE and BNRE-C lead to more conserv-
ative surrogate models compared to their non-balanced counterparts. Our diagnostics test
the empirical expected coverage probability (6.7) of considered algorithms trained with
(λ > 0) and without (λ = 0) the balance criterion. We also benchmark BNRE (Delaunoy,
Hermans, et al., 2022), an algorithm that trains a neural network to minimize (6.12) using
(6.3) as L(w). The empirical expected coverage tests are performed on the following set of
benchmarks of varying difficulty.

The SLCP simulator models a fictive problem with 5 parameters. The observable x is com-
posed of 8 scalars which represent the 2D-coordinates of 4 points. The coordinate of each
point is sampled from the same multivariate Gaussian whose mean and covariance matrix
are parametrized by θ. We consider an alternative version of the original task (Papamakar-
ios, Sterratt, and Murray, 2019) by inferring the marginal posterior density of 2 of those
parameters. In contrast to its original formulation, the likelihood is not tractable due to the
marginalization.

The Weinberg problem (K. Cranmer, Heinrich, et al., 2017) concerns a simulation of high
energy particle collisions e+e− → µ+µ−. The angular distributions of the particles can be
used to measure the Weinberg angle x in the standard model of particle physics, leading
to an observable composed of 20 scalars. From the scattering angle, we are interested in
inferring Fermi’s constant θ.

The Spatial SIR model (Hermans, Delaunoy, et al., 2022) involves a grid-world of suscepti-
ble, infected, and recovered individuals. Based on initial conditions and the infection and
recovery rate θ, the model describes the spatial evolution of an infection. The observable
x is a snapshot of the grid-world after some fixed amount of time. The grid used is of size
50 by 50.

The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes a process of
interactions between a predator and a prey species. The model is conditioned on 4 para-
meters θ which influence the reproduction and mortality rate of the predator and prey
species. We infer the marginal posterior of the predator parameters from time series of
2001 steps representing the evolution of both populations over time. The specific imple-
mentation is based on a Markov Jump Process as in Papamakarios, Sterratt, and Murray
(2019).

The Two Moons (Greenberg et al., 2019) simulator models a fictive problem with 2 parame-
ters. The observable x is composed of 2 scalars which represent the 2D-coordinates of a
random point sampled from a crescent-shaped distribution shifted and rotated around the



86 balancing simulation-based inference

origin depending on the parameters’ values. Those transformations involve the absolute
value of the sum of the parameters leading to a second crescent in the posterior and hence
making it multi-modal.

Table 6.1 summarizes the architectures and hyper-parameters used for each benchmark.
The architectures are separated into two parts: the embedding and the head networks. The
embedding network compresses the observable into a set of features. The head network
then uses those features concatenated with the parameters to produce the target quantity.
The head can either be a classifier or a normalizing flow depending on the algorithm
considered. The learning rate is scheduled during training. Table 6.1 provides the initial
learning rates. Those are then divided by 10 each time no improvement was observed on
the validation loss for 10 epochs.

SLCP Weinberg Lotka-V. Spatial SIR Two Moons

Embedding network None None CNN CNN None
Embedding layers / / 8 8 /
Embedding channels / / 8 16 /
Convolution type / / Conv1D Conv2D /
Classifier Head MLP MLP MLP MLP MLP
Classifier layers 6 6 6 6 6
Classifier hidden neurons 256 256 256 256 256
Flow Head NSF NSF NSF NSF NSF
Flow layers 3 3 3 3 3
Flow hidden neurons 256 256 256 256 256
Learning rate 0.001 0.001 0.001 0.001 0.001
Epochs 500 500 500 500 500
Batch size 256 256 256 256 256
λ (balanced algorithms) 100 100 100 100 100
γ (NRE-C) 1 1 1 1 1
K (NRE-C) 5 5 5 5 5

Table 6.1: Architectures and training hyper-parameters

Expected coverage for these benchmarks are shown in 6.1. For both BNPE and BNRE-C,
enforcing the balance criterion tends to produce conservative surrogates on most of the
benchmarks, just as it did with BNRE. The only exception was Two Moons, which con-
sistently produced overconfident surrogates for all algorithms. Taken as a whole, this pro-
vides some evidence that regularizing models allowing posterior density evaluation with
the balance criterion makes them more conservative. Our results suggest that enforcing the
balance criterion did not negatively impact the informativeness of the surrogate for higher
simulation budgets. This is quantified in Figure 6.2 where we estimate the information
contained in the surrogates through the nominal log posterior, defined as

Ep(θ,x) [log p̂(θ | x)] .
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Figure 6.1: Empirical expected coverage for increasing simulation budgets. A perfectly calibrated
surrogate has an expected coverage probability equal to the nominal coverage probabil-
ity and produces a diagonal line. A conservative surrogate has an expected coverage
curve at or above the diagonal line. An overconfident surrogate produces curves below
the diagonal line. Balanced algorithms tend to produce conservative surrogates. 5 runs
are performed for each simulation budget with the median α̂ at each nominal credibility
reported.

We observe that balanced algorithms have a lower nominal log posterior than their corre-
sponding non-balanced algorithms. However, they have similar nominal log posterior as
the simulation budget increases. Figure 6.3 shows the balancing error, defined as∣∣∣∣∫ (p(θ)p(x) + p(θ, x))ϖ(y = 1 | θ, x) dθ dx − 1

∣∣∣∣
=

∣∣∣∣∫ (p(θ)p(x) + p(θ, x))
p̂(θ|x)/p(θ)

1 + p̂(θ|x)/p(θ)
dθ dx − 1

∣∣∣∣ .
Without surprise, we observe that enforcing the balancing condition leads to more bal-
anced surrogates. Non-balanced algorithms show a high balancing error for low simu-
lation budgets but this balancing error diminishes as the simulation budget gets higher.
This is due to the fact that the posterior surrogate gets closer to the true posterior as the
simulation increases and that the true posterior is always balanced. We also observe that
normalizing flows struggle to minimize the balance criterion on the SLCP and Weinberg
benchmarks for low simulation budgets. Normalizing flows must learn the prior as a mul-
tiplicative component in their density estimate, while likelihood-to-evidence ratio methods
use the ground truth prior to construct the surrogate. It can be observed that initializing
the posterior surrogate to the prior (BNPE init) indeed leads to a lower balancing error. Let
us note that although the posterior surrogate is initialized to the prior, with a high enough
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Figure 6.2: Nominal log posterior for increasing simulation budgets. 5 runs are performed for each
simulation budget. Solid lines represent the median and the shaded areas represent the
minimum and maximum. Larger values are desirable.

NRE BNRE NRE C BNRE C NPE RNPE BNPE BNPE Init

S
L

C
P

W
ei

nb
er

g
S

pa
ti

al
S

IR
L

ot
ka

V
ol

te
rr

a
T

w
o

M
oo

ns

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

103 104 105

Simulation budget

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

B
al

an
ci

ng
E

rr
or

103 104 105 103 104 105 103 104 105 103 104 105 103 104 105 103 104 105 103 104 105

Figure 6.3: Balancing error for increasing simulation budgets. 5 runs are performed for each sim-
ulation budget. Solid lines represent the median and the shaded areas represent the
minimum and maximum. Smaller values are desirable.
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simulation budget, it is able to learn a balanced surrogate that carries information about
the parameter as seen from the log posterior quantity in Figure 6.2.

6.6 conclusions

In this work, we have shown that balancing can be applied to any simulation-based infer-
ence algorithm that yields a posterior density estimator, hence extending the applicability
of balancing. We have also shown that the balancing condition can be expressed as a χ2

divergence. We believe that this reformulation is a stepping stone towards a better under-
standing of the balancing condition and could inspire novel algorithms.

Let us note that there exist algorithms that do not directly provide the posterior density
and hence do not fall into this framework. Some algorithms only aim to provide an unnor-
malized posterior approximation. This is the case of algorithms that model the likelihood
(Papamakarios, Sterratt, and Murray, 2019) or an unnormalized version of the likelihood-
to-evidence ratio (Durkan, Murray, and Papamakarios, 2020). A direct consequence is that
those algorithms are not necessarily balanced at optimum. Enforcing the balancing condi-
tion may hence prevent reaching the optimal solution. Some algorithms also only allow
sampling from the posterior surrogate. This is the case of score-based methods (Geffner et
al., 2022; Song et al., 2020). In such a setting, the balancing condition cannot be computed.
Future work would then include a reformulation of the balancing condition that uses only
samples from the posterior surrogate.

Epilogue

We showed that the balancing condition can be applied to any algorithm providing ex-
plicit posterior density estimation. This includes NPE methods and NRE variants that
produce normalized posterior densities, such as NRE-A and NRE-C. However, balanc-
ing is more difficult to enforce for NPE methods. To circumvent this issue, we proposed
a new initialization procedure for normalizing flows, leading to balanced approxima-
tions at initialization. We observed empirically that using this initialization led to more
balanced approximations. With the rise of diffusion models allowing the modeling of
high-dimensional distributions, adapting balancing to methods that only provide pos-
terior sampling could be beneficial for reliable simulation-based inference with high-
dimensional parameter spaces.
While balancing has gained attention from the community and is cited in subsequent
methodological papers, most applicative papers that report overconfidence do not mod-
ify the used algorithms to address the issue (Reza et al., 2024; Swierc et al., 2024; Moran-
dini et al., 2024). This issue is not only about balancing, but all papers aiming at increas-
ing conservativeness are at the time of writing, not used in practice. However, this line
of work is still very recent. We hope that field scientists will become aware of it in the
future and make use of those new tools to produce more reliable results.
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S I M U L AT I O N - B A S E D I N F E R E N C E W I T H
B AY E S I A N N E U R A L N E T W O R K S

Prologue

This chapter is based on the following publication: Delaunoy, A.∗, Bonardeaux, M. D. L.
B.∗, Mishra-Sharma, S., & Louppe, G. (2024). Low-Budget Simulation-Based Inference with
Bayesian Neural Networks. arXiv preprint arXiv:2408.15136.
While balancing provides a simple way to improve the conservativeness of many
simulation-based inference algorithms, it needs to be enforced through regularization.
We show that this can be problematic in settings where very few simulations are avail-
able for training. In addition, the demonstrated properties of balanced classifiers only
provide intuition about why increased conservativeness is observed, but no direct link
with coverage or posterior uncertainty has been established.
In this piece of work, we take a different approach and hypothesize that overconfidence
is observed in classical methods because the uncertainty linked to approximation errors
is not taken into account. We propose to use Bayesian neural networks to explicitly take
this uncertainty into account. As opposed to the balancing line of work, this works with
very low simulation budgets and, hence, has an increased range of applicability.

7.1 introduction

Simulation-based inference aims at identifying the parameters of a stochastic simulator
that best explain an observation. In its Bayesian formulation, simulation-based inference
approximates the posterior distribution of the model parameters given an observation.
This approximation usually takes the form of a neural network trained on synthetic data
generated from the simulator. In the context of scientific discovery, Hermans, Delaunoy,
et al. (2022) stressed the need for posterior approximations that are conservative – not
overconfident – in order to make reliable downstream claims. They also showed that com-
mon simulation-based inference algorithms can produce overconfident approximations
that may lead to erroneous conclusions.

In the data-poor regime (Villaescusa-Navarro et al., 2020; Y. Zhang and Mikelsons, 2023;
Zeng et al., 2023), where the simulator is expensive to run and only a small number of sim-
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ulations are available, training a neural network to approximate the posterior can easily
lead to overfitting. With small amounts of training data, the neural network weights are
only loosely constrained, leading to high computational uncertainty (Wenger et al., 2022).
That is, many neural networks can fit the training data equally well, yet they may have very
different predictions on test data. For this reason, the posterior approximation is uncertain
and, in the absence of a proper quantification of this uncertainty, potentially overconfi-
dent. Fortunately, computational uncertainty in a neural network can be quantified using
Bayesian neural networks (BNNs) (Gal et al., 2016), which account for the uncertainty in
the neural network weights. Therefore, in the context of simulation-based inference, BNNs
can provide a principled way to quantify the computational uncertainty of the posterior
approximation.

Hermans, Delaunoy, et al. (2022) showed empirically that using ensembles of neural net-
works, a crude approximation of BNNs (Lakshminarayanan et al., 2017), does improve the
calibration of the posterior approximation. A few studies have also used BNNs as density
estimators in simulation-based inference (Cobb et al., 2019; Walmsley et al., 2020; Lemos,
M. Cranmer, et al., 2023). However, these studies have remained empirical and limited in
their evaluation. This lack of theoretical grounding motivates the need for a more prin-
cipled understanding of BNNs for simulation-based inference. In particular, the choice of
prior on the neural network weights happens to be crucial in this context, as it can strongly
influence the resulting posterior approximation. Yet, arbitrary priors that convey little or
undesired information about the posterior density have been used so far.

Our contributions are twofold. Firstly, we provide an improved understanding of BNNs in
the context of simulation-based inference by empirically analyzing their effect on the result-
ing posterior approximations. Secondly, we introduce a principled way of using BNNs in
simulation-based inference by designing meaningful priors. These priors are constructed
to produce calibrated posteriors even in the absence of training data. We show that they
are conservative in the small-data regime, for very low simulation budgets. The code is
available at https://github.com/ADelau/low_budget_sbi_with_bnn.

7.2 background

simulation-based inference We consider a stochastic simulator that takes para-
meters θ as input and produces synthetic observations x as ouput. The simulator implic-
itly defines the likelihood p(x|θ) in the form of a forward stochastic generative model
but does not allow for direct evaluation of its density due to the intractability of the mar-
ginalization over its latent variables. In this setup, Bayesian simulation-based inference
aims at approximating the posterior distribution p(θ|x) using the simulator. Among pos-
sible approaches, neural simulation-based inference methods train a neural network to
approximate key quantities from simulated data, such as the posterior, the likelihood, the
likelihood-to-evidence ratio, or a score function (K. Cranmer, Brehmer, and Louppe, 2020).

https://github.com/ADelau/low_budget_sbi_with_bnn
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Recently, concerns have been raised regarding the calibration of the approximate posteriors
obtained with neural simulation-based inference. Hermans, Delaunoy, et al. (2022) showed
that, unless special care is taken, common inference algorithms can produce overconfident
posterior approximations. They quantify the calibration using the expected coverage

EC(p̂,α) = Ep(θ,x)[1(θ ∈ Θp̂(α))] (7.1)

where Θp̂(α) denotes the highest posterior credible region at level α computed using the
posterior approximate p̂(θ|x). The expected coverage is equal to α when the posterior
approximate is calibrated, lower than α when it is overconfident and higher than α when
it is underconfident or conservative.

The calibration of posterior approximations has been improved in recent years in various
ways. Delaunoy, Hermans, et al. (2022) and Delaunoy, Benjamin Kurt Miller, et al. (2023)
regularize the posterior approximations to be balanced, which biases them towards conser-
vative approximations. Similarly, Falkiewicz et al. (2024) regularize directly the posterior
approximation by penalizing miscalibration or overconfidence. Masserano et al. (2023) use
Neyman constructions to produce confidence regions with approximate Frequentist cov-
erage. Patel et al. (2023) combine simulation-based inference and conformal predictions.
Schmitt, Ivanova, et al. (2024) enforce the self-consistency of likelihood and posterior ap-
proximations to improve the quality of approximate inference in low-data regimes.

bayesian deep learning Bayesian deep learning aims to account for both the
aleatoric and epistemic uncertainty in neural networks. The aleatoric uncertainty refers
to the intrinsic randomness of the variable being modeled, typically taken into account by
switching from a point predictor to a density estimator. The epistemic uncertainty, on the
other hand, refers to the uncertainty associated with the neural network itself and is typ-
ically high in small-data regimes. Failing to account for this uncertainty can lead to high
miscalibration as many neural networks can fit the training data equally well, yet they may
have very different predictions on test data.

Bayesian deep learning accounts for epistemic uncertainty by treating the neural network
weights as random variables and considering the full posterior over possible neural net-
works instead of only the most probable neural network (Papamarkou et al., 2024). For-
mally, let us consider a supervised learning setting in all generality, where x denotes
inputs, y outputs, D a dataset of N pairs (x, y), and w the weights of the neural network.
The likelihood of a given set of weights is

p(D|w) ∝
N∏
i=1

p(yi|xi, w), (7.2)
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where p(yi|xi, w) is the output of the neural network with weights w and inputs xi. The
resulting posterior over the weights is

p(w|D) =
p(D|w)p(w)

p(D)
, (7.3)

where p(w) is the prior. Once estimated, the posterior over the neural network’s weights
can be used for predictions through the Bayesian model average

p(y|x, D) =
∫
p(y|x, w)p(w|D)dw ≃ 1

M

M∑
i=1

p(y|x, wi), wi ∼ p(w|D). (7.4)

In practice, the Bayesian model average can be approximated by Monte Carlo sampling,
with M samples from the posterior over the weights. The quality of the approximation
depends on the number of samples M , which should be chosen high enough to obtain a
good enough approximation but small enough to keep reasonable the computational costs
of predictions.

Estimating the posterior over the neural network weights is a challenging problem due to
the high dimensionality of the weights. Variational inference (Blundell et al., 2015) opti-
mizes a variational family to match the true posterior, which is typically fast but requires
specifying a variational family that may restrict the functions that can be modeled. Markov
chain Monte Carlo methods (Welling and Teh, 2011; Chen et al., 2014), on the other hand,
are less restrictive in the functions that can be modeled but require careful tuning of the
hyper-parameters and are more computationally demanding. The Bayesian posterior can
also be approximated by an ensemble of neural networks (Lakshminarayanan et al., 2017;
Pearce et al., 2020; He et al., 2020). Laplace methods leverage geometric information about
the loss to construct an approximation of the posterior around the maximum a posteriori
(MacKay, 1992). Similarly, Maddox et al. (2019) use the training trajectory of stochastic
gradient descent to build an approximation of the posterior.

7.3 bayesian neural networks for simulation-based inference

In the context of simulation-based inference, treating the weights of the inference network
as random variables enables the quantification of the computational uncertainty of the
posterior approximation. Considering neural networks taking observations x as input and
producing parameters θ as output, the posterior approximation p̂(θ|x) can be modeled as
the Bayesian model average

p̂(θ|x) =
∫
p(θ|x, w)p(w|D)dw, (7.5)

where p(θ|x, w) is the posterior approximation parameterized by the weights w and eval-
uated at (θ, x), and p(w|D) is the posterior over the weights given the training set D.
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Remaining is the choice of prior p(w). While progress has been made in designing better
priors in Bayesian deep learning (Fortuin, 2022), we argue that none of those are suitable
in the context of simulation-based inference. To illustrate our point, let us consider the case
of a normal prior p(w) = N (0,σ2I) on the weights, in which case

p̂normal prior(θ|x) =
∫
p(θ|x, w) N (w|µ = 0, Σ = σ2I)dw. (7.6)

As mentioned in Section 7.2, a desirable property for a posterior approximation is to be
calibrated. Therefore we want EC(p̂normal prior,α) = α, ∀α. Although it might be possible
for this property to be satisfied in particular settings, this is obviously not the case for all
values of σ and all neural network architectures. Therefore, and as illustrated in Figure 7.1,
the Bayesian model average is not even calibrated a priori when using a normal prior on
the weights. As the Bayesian model average is not calibrated a priori, it cannot be expected
that updating the posterior over weights p(w|D) with a small amount of data would lead
to a calibrated a posteriori Bayesian model average.

7.3.1 Functional priors for simulation-based inference

We design a prior that induces an a priori-calibrated Bayesian model average. To achieve
this, we work in the space of posterior functions instead of the space of weights. We
consider the space of functions taking a pair (θ, x) as input and producing a posterior
density value f(θ, x) as output. Each function f is defined by the joint outputs it asso-
ciates with any arbitrary set of inputs, such that a posterior over functions can be viewed
as a distribution over joint outputs for arbitrary inputs. Formally, let us consider M ar-
bitrary pairs (θ, x) represented by the matrices Θ = [θ1, ..., θM ] and X = [x1, ..., xM ]

and let f = [f1, ..., fM ] be the joint outputs associated with those inputs. The distribu-
tion p(f |Θ, X) then represents a distribution over posteriors f = [p̃(θ1|x1), ..., p̃(θM |xM )].
The functional posterior distribution over posteriors for parameters Θ and observations
X given a training dataset D is then p(f |Θ, X, D) and the Bayesian model average is
obtained through marginalization, that is

p(θi|xi, D) =
∫
fi p(f |Θ, X, D)df , ∀i. (7.7)

Computing the posterior over functions requires the specification of a prior over functions.
We first observe that the prior over the simulator’s parameters is a calibrated approxima-
tion of the posterior. That is, for the prior function pprior : (θ, x) → p(θ), we have that
EC(pprior,α) = α, ∀α (Delaunoy, Benjamin Kurt Miller, et al., 2023). It naturally follows
that the a priori Bayesian model average with a Dirac delta prior around the prior on the
simulator’s parameters is calibrated

p̂(θi|xi) =
∫
fi δ([fj = pprior(θj , xj)]) df , ∀i

=
∫
fi δ(fi = p(θi)) dfi, ∀i ⇒ EC(p̂,α) = α, ∀α.

(7.8)
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However, this prior has limited support, and the Bayesian model average will not converge
to the posterior p(θ|x) as the dataset size increases. We extend this Dirac prior to include
more functions in its support while retaining the calibration property, which we propose
defining as a Gaussian process centered at pprior.

A Gaussian process (GP) defines a joint multivariate normal distribution over all the out-
puts f given the inputs (Θ, X). It is parametrized by a mean function µ that defines the
mean value for the outputs given the inputs and a kernel function K that models the co-
variance between the outputs. If we have access to no data, the mean and the kernel jointly
define a prior over functions as they define a joint prior over outputs for an arbitrary set
of inputs. In order for this prior over functions to be centered around the prior pprior, we
define the mean function as µ(θ, x) = p(θ). The kernel K, on the other hand, defines the
spread around the mean function and the correlation between the outputs f . Its specifica-
tion is application-dependent and constitutes a hyper-parameter of our method that can
be exploited to incorporate domain knowledge on the structure of the posterior. For exam-
ple, periodic kernels could be used if periodicity is observed. Kernel’s hyperparameters
can also be chosen such as to incorporate what would be a reasonable deviation of the
approximated posterior from the prior. We denote the Gaussian process prior over func-
tion outputs as pGP(f |µ(Θ, X),K(Θ, X)). Proposition 7.3.1 shows that a functional prior
defined in this way leads to a calibrated Bayesian model average.

Proposition 7.3.1. The Bayesian model average of a Gaussian process centered around the prior
on the simulator’s parameters is calibrated. Formally, let pGP be the density probability function
defined by a Gaussian process, µ its mean function, and K the kernel. Let us consider M arbitrary
pairs (θ, x) represented by the matrices Θ = [θ1, ..., θM ] and X = [x1, ..., xM ] and represent
by the vector f = [f1, ..., fM ] the joint outputs associated with those inputs. The Bayesian model
average on the ith pair is expressed

p̂(θi|xi) =
∫
fi pGP(f |µ(Θ, X),K(Θ, X)) df

If µ(θ, x) = p(θ), ∀θ, x, then,
EC(p̂,α) = α, ∀α,

for all kernel K.

Proof. As pGP is, by definition of a Gaussian process, a multivariate normal, the expecta-
tions of the marginals are equal to the mean parameters

p̂(θi|xi) = µ(θi, xi) = p(θi).

The joint evaluation of the Bayesian model average of the Gaussian process is hence equiv-
alent to the joint evaluation of the prior for any matrices Θ and X . We can therefore con-
clude that p̂ is equivalent to pprior : (θ, x) → p(θ). Since EC(pprior,α) = α, ∀α (Delaunoy,
Benjamin Kurt Miller, et al., 2023), then, EC(p̂,α) = α, ∀α.
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7.3.2 From functional to parametric priors

In this section, we now discuss how the functional GP prior over posterior density func-
tions proposed in Section 3.1 can be used in the simulation-based inference setting. We
follow Flam-Shepherd et al. (2017) and Sun et al. (2018) for mapping the functional prior
to a distribution over neural network weights. We note that other methods for functional
Bayesian deep learning have been proposed in the literature. These methods could also be
used in our setting and are discussed at the end of the section.

Let us first observe that a neural network architecture and a prior on weights jointly de-
fine a prior over functions. We parameterize the prior on weights by ϕ and denote this
probability density over function outputs by

pBNN(f | ϕ, Θ, X) =
∫
p(f | w, Θ, X) p(w|ϕ) dw

=
∫
δ([fi = p(θi|xi, w)]) p(w|ϕ) dw.

(7.9)

To obtain a prior on weights that matches the target GP prior, we optimize ϕ such
that pBNN(f | ϕ, Θ, X) matches pGP(f |µ(Θ, X),K(Θ, X)). Following Flam-Shepherd et al.
(2017), given a measurement set M = {θi, xi}Mi=1 at which we want the distributions to
match, the KL divergence between the two priors can be expressed as

KL [pBNN(f | ϕ, M) || pGP(f |µ(M),K(M))]

=
∫
pBNN(f | ϕ, M) log pBNN(f | ϕ, M)

pGP(f |µ(M),K(M))
dy

= − H [pBNN(f | ϕ, M)] − EpBNN(f | ϕ,M) [log pGP(f |µ(M),K(M))] ,

(7.10)

where the second term EpBNN(f | ϕ,M) [log pGP(f |µ(M),K(M))] can be estimated using
Monte-Carlo. The first term H [pBNN(f | ϕ, M)], however, is harder to estimate as it re-
quires computing log pBNN(f | ϕ, M), which involves the integration of the output over all
possible weights combinations. To bypass this issue, Sun et al. (2018) propose to use Spec-
tral Stein Gradient Estimation (SSGE) (Shi et al., 2018) to approximate the gradient of the
entropy as

∇H [pBNN(f | ϕ, M)] ≃ SSGE (f1, ..., fN ∼ pBNN(f | ϕ, M)) . (7.11)

We note that the measurement set M can be chosen arbitrarily but should cover most of
the support of the joint distribution p(θ, x). If data from this joint distribution are available,
those can be leveraged to build the measurement set. To showcase the ability to create a
prior with limited data, in this work, we derive boundaries of the support of each marginal
distribution and draw parameters and observations independently and uniformly over this
support. If the support is known a priori, this procedure can be performed without (expen-
sive) simulations. We draw a new measurement set at each iteration of the optimization
procedure. If a fixed measurement set is available, a subsample of this measurement set
should be drawn at each iteration.
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Figure 7.1: Visualization of the prior tuned to match the GP prior on the SLCP benchmark. Left:
examples of posterior functions sampled from the tuned prior over neural network’s
weights. Right: expected coverage of the prior Bayesian model average with the tuned
prior and normal priors for varying standard deviations.

As an illustrative example, we chose independent normal distributions as a variational
family p(w|ϕ) over the weights and minimize (7.10) w.r.t. w. In Figure 7.1, we show the
coverage of the resulting a priori Bayesian model average using the tuned prior, p(w | ϕ),
and normal priors for increasing standard deviations σ, for the SLCP benchmark. We
observe that while none of the normal priors are calibrated, the trained prior achieves near-
perfect calibration. This prior hence guides the obtained posterior approximation towards
more calibrated solutions, even in low simulation-budget settings.

The attentive reader might have noticed that pBNN(f | ϕ, Θ, X) and
pGP(f |µ(Θ, X),K(Θ, X)) do not share the same support, as the former distribution
is limited to functions that represent valid densities by construction, while the latter
includes arbitrarily shaped functions. This is not an issue here as the support of the first
distribution is included in the support of the second distribution, and functions outside
the support of the first distribution are ignored in the computation of the divergence.

Note that there are various methods that can be used to perform inference on the neural
network’s weights with our GP prior. Instead of minimizing the KL-divergence, the para-
meters ϕ can be optimized using an adversarial training procedure by treating both priors
as function generators and training a discriminator between the two (B.-H. Tran et al.,
2022). Another approach to performing inference using a functional prior is to directly
use it during inference by modifying the inference algorithm to work in function space.
Variational inference can be performed in the space of function (Sun et al., 2018; Rudner
et al., 2022). The stochastic gradient Hamiltonian Monte Carlo algorithm (Chen et al., 2014)
could also be modified to include a functional prior Kozyrskiy et al., 2023. Alternatively, a
variational implicit process can be learned to express the posterior in function space (Ma
and Hernández-Lobato, 2021).
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7.4 experiments

In this section, we empirically demonstrate the benefits of replacing a regular neural
network with a BNN equipped with the proposed prior for simulation-based inference.
We consider both Neural Posterior Estimation (NPE) with neural spline flows (Durkan,
Bekasov, et al., 2019) and Neural Ratio Estimation (NRE) (Hermans, Begy, and Louppe,
2020), along with their balanced versions (BNRE and BNPE) (Delaunoy, Hermans, et al.,
2022; Delaunoy, Benjamin Kurt Miller, et al., 2023) and ensembles (Lakshminarayanan et
al., 2017; Hermans, Delaunoy, et al., 2022). BNNs-based methods are trained using mean-
field variational inference (Blundell et al., 2015). As advocated by Wenzel et al. (2020), we
also consider cold posteriors to achieve good predictive performance. More specifically, the
variational objective function is modified to give less weight to the prior by introducing a
temperature parameter T ,

Ew∼p(w|τ )

[∑
i

log p(θi|xi, w)

]
− T KL[p(w|τ )||p(w|ϕ)], (7.12)

where τ are the parameters of the posterior variational family and T is a parameter called
the temperature that weights the prior term. In the following, we call BNN-NPE, a Bayesian
Neural Network posterior estimator trained without temperature (T = 1), and BNN-NPE
(T = 0.01), an estimator trained with a temperature of 0.01, assigning a lower weight to
the prior.

setup All the NPE-based methods use a Neural Spline Flow (NSF) (Durkan, Bekasov,
et al., 2019) with 3 transforms of 6 layers, each containing 256 neurons. Meanwhile, all
the NRE-based methods employ a classifier consisting of 6 layers of 256 neurons. For the
spatialSIR and Lotka Volterra benchmarks, the observable is initially processed by an em-
bedding network. Lotka Volterra’s embedding network is a 10 layers 1D convolutional
neural network that leads to an embedding of size 512. On the other hand, SpatialSIR’s
embedding network is an 8 layers 2D convolutional neural network resulting in an em-
bedding of size 256. All the models are trained for 500 epochs which we observed to be
enough to reach convergence.

Bayesian neural network-based methods use independent normal distributions as a vari-
ational family. During inference, 100 neural networks are sampled to approximate the
Bayesian model average. Ensemble methods involve training 5 neural networks indepen-
dently.

We evaluate the different methods of the SLCP, Two Moons, Lotka-Volterra and Spatial SIR
benchmarks.

The SLCP (Simple Likelihood Complex Posterior) benchmark (Papamakarios, Sterratt, and
Murray, 2019) is a fictive benchmark that takes 5 parameters as input and produces an
8-dimensional synthetic observable. The observation corresponds to the 2D coordinates of
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4 points that are sampled from the same multivariate normal distribution. We consider the
task of inferring the marginal over 2 of the 5 parameters.

The Two Moons simulator (Greenberg et al., 2019) models a fictive problem with 2 parame-
ters. The observable x is composed of 2 scalars, which represent the 2D coordinates of a
random point sampled from a crescent-shaped distribution shifted and rotated around the
origin depending on the parameters’ values. Those transformations involve the absolute
value of the sum of the parameters leading to a second crescent in the posterior and, hence
making it multi-modal.

The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes a process of
interactions between a predator and a prey species. The model is conditioned on 4 para-
meters that influence the reproduction and mortality rate of the predator and prey species.
We infer the marginal posterior of the predator parameters from a time series of 2001 steps
representing the evolution of both populations over time. The specific implementation is
based on a Markov Jump Process, as in Papamakarios, Sterratt, and Murray (2019).

The Spatial SIR model (Hermans, Delaunoy, et al., 2022) involves a grid world of suscepti-
ble, infected, and recovered individuals. Based on initial conditions and the infection and
recovery rate, the model describes the spatial evolution of an infection. The observable is
a snapshot of the grid world after some fixed amount of time. The grid used is of size 50
by 50.

In the experiment, The kernel K used in the GP prior is a combination of two Radial
Basis Function (RBF) kernels. If more information on the structure of the target posterior
is available, more informed kernels may be used to leverage this prior knowledge. The
kernel is defined by

K(θ1, θ2, x1, x2) =
√

RBF(θ1, θ2) ∗
√

RBF(x1, x2). (7.13)

such that the correlation between outputs is high only if θ1 and θ2 as well as x1 and x2

are close. The RBF kernel is defined as

RBF(x1, x2) = σ2 exp
(

− 1
N

N∑
i

(x1,i − x2,i)2

2l2i

)
, (7.14)

where σ is the standard deviation and li is the lengthscale associated to the ith feature. The
lengthscale is derived from the measurement set. To determine li, we query observations x

from the measurement set and compute the 0.1 quantile of the squared distance between
different observations for each feature. We then set li such that 2l2i equals this quantile. All
the benchmarks have a uniform prior over the simulator’s parameters. The mean function
is then equal to a constant C for all input values. The standard deviation is chosen to be
C/2.



7.4 experiments 101

Following Delaunoy, Hermans, et al. (2022), we evaluate the quality of the posterior ap-
proximations based on the expected nominal log posterior density and the expected cov-
erage area under the curve (coverage AUC). The expected nominal log posterior density
Eθ,x∼p(θ,x) [log p̂(θ|x)] quantifies the amount of density allocated to the nominal parameter
that was used to generate the observation. The coverage AUC

∫ 1
0 (EC(p̂,α) −α) dα quanti-

fies the calibration of the expected posterior. A calibrated posterior approximation exhibits
a coverage AUC of 0. A positive coverage AUC indicates conservativeness, and a negative
coverage AUC indicates overconfidence.
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Figure 7.2: Comparison of simulation-based inference methods through the nominal log probability
and coverage area under the curve. The higher the nominal log probability, the more
performant the method is. A calibrated posterior approximation exhibits a coverage
AUC of 0. A positive coverage AUC indicates conservativeness, and a negative coverage
AUC indicates overconfidence. 3 runs are performed, and the median is reported. The
plot at the top shows the results for NPE simulation-based inference methods, and the
one at the bottom shows NRE methods.
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bnn-based simulation-based inference Figure 7.2 compares simulation-based
inference methods with and without accounting for computational uncertainty. We ob-
serve that BNNs equipped with our prior and without temperature show positive, or
only slightly negative, coverage AUC even for simulation budgets as low as O(10). Nega-
tive coverage AUC is still observed, and hence conservativeness is not strictly guaranteed.
However, this constitutes a significant improvement over the other methods in that regard.
The coverage curves are reported in Section 7.6. We conclude that BNNs can hence be more
reliably used than the other benchmarked methods when the simulator is expensive and
few simulations are available. We observe that increasing the reliability comes with the
drawback of requiring more simulations than the other methods to reach similar nominal
log posterior density values. Without temperature, a few orders of magnitude more sam-
ples might be needed. However, in theory, as the amount of sample increases, the effect
of the prior diminishes, and BNNs should reach the same nominal log posterior density
as standard methods. By adding a temperature to the prior, its effect is diminished and
better nominal log posterior density values are observed From these observations, general
guidelines to set the temperature include increasing T if overconfidence is observed and
decreasing it if low predictive performance is observed.

Examples of posterior approximations obtained with and without using a Bayesian neural
network are shown in Figure 7.3. Wide posteriors are observed for low budgets for BNN-
NPE, while NPE produces an overconfident approximation and excludes most of the rele-
vant parts of the posterior. As the simulation budget increases, BNN-NPE converges slowly
towards the same posterior as NPE. BNN-NPE (T = 0.01) converges faster than BNN-NPE
but, for low simulation budgets, excludes parts of the region that should be accepted ac-
cording to high budget posteriors. Yet, the posterior approximate is still less overconfident
than NPE’s. Finally, Figure 7.2 shows that BNN-NRE is more conservative than BNN-NPE.
This comes at the cost of lower nominal log posterior density for a given simulation budget
while still reaching comparable values as the simulation budgets grow.
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Figure 7.3: Examples of 95% highest posterior density regions obtained with various algorithms
and simulation budgets on the SLCP benchmark for a single observation. The black star
represents the ground truth used to generate the observation.

comparison of different priors on weights We analyze the effect of the prior
on the neural network’s weights on the resulting posterior approximation. The posterior
approximations obtained using our GP prior are compared to the ones obtained using in-



7.4 experiments 103

dependent normal priors on weights with zero means and increasing standard deviations.
In Figure 7.4, we observe that when using a normal prior, careful tuning of the standard
deviation is needed to achieve results close to the prior designed for simulation-based in-
ference. The usage of an inappropriate prior can lead to bad calibration for low simulation
budgets or can prevent learning if it is too restrictive.

Coverage AUC Nominal log posterior
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Figure 7.4: Comparison of posterior approximations obtained using a prior tuned to match the
Gaussian process-based prior and using independent normal priors on weights with
zero means and various standard deviations on the SLCP benchmark. 3 runs are per-
formed, and the median is reported.

uncertainty decomposition We decompose the uncertainty quantified by the dif-
ferent methods. Following Depeweg et al. (2018), the uncertainty can be decomposed as

H [p̂(θ|x)] = Eq(w) [H [p̂(θ|x, w)]] + I(θ, w), (7.15)

where Eq(w) [H [p̂(θ|x, w)]] quantifies the aleatoric uncertainty, I(θ, w) quantifies the epis-
temic uncertainty, and the sum of those terms is the predictive uncertainty. Figure 7.5
shows the decomposition of the two sources of uncertainty, in expectation, on the SLCP
benchmark. Other benchmarks can be found in Section 7.6. We observe that BNN-NPE and
NPE ensemble methods account for the epistemic uncertainty while other methods do not.
BNPE artificially increases the aleatoric uncertainty to be better calibrated. The epistemic
uncertainty of BNN-NPE is initially low because most of the models are slight variations
of pΘ. The epistemic uncertainty then increases as it starts to deviate from the prior and de-
creases as the training set size increases. BNN-NPE (T = 0.01) exhibits a higher epistemic
uncertainty for low budgets as the effect of the prior is lowered.

infering cosmological parameters from N -body simulations To show-
case the utility of Bayesian deep learning for simulation-based inference in a practical
setting, we consider a challenging inference problem from the field of cosmology. We
consider Quijote N -body simulations (Villaescusa-Navarro et al., 2020) tracing the spatial
distribution of matter in the Universe for different underlying cosmological models. The
resulting observations are particles with different masses, corresponding to dark matter
clumps, which host galaxies. We consider the canonical task of inferring the matter den-
sity (denoted Ωm) and the root-mean-square matter fluctuation averaged over a sphere of
radius 8h−1 Mpc (denoted σ8) from an observed galaxy field. Robustly inferring the values
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Figure 7.5: Quantification of the different forms of uncertainties captured by the different NPE-
based methods on the SLCP benchmark. 3 runs are performed, and the median is re-
ported.
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Figure 7.6: Comparison of the posterior approximations obtained with and without a Bayesian
neural network on the cosmological application. First plot: An example observation: par-
ticles representing galaxies in a synthetic universe. Second plot: example of 95% highest
posterior density regions for increasing simulation budgets. The black star represents
the ground truth used to generate the observation. Third plot: Expected coverage with
and without using a Bayesian neural network for increasing simulation budgets. Fourth
plot: The nominal log posterior.

of these parameters is one of the scientific goals of flagship cosmological surveys. These
simulations are very computationally expensive to run, with over 35 million CPU hours re-
quired to generate 44100 simulations at a relatively low resolution. Generating samples at
higher resolutions, or a significantly larger number of samples, is challenging due to com-
putational constraints. These constraints necessitate methods that can be used to produce
reliable scientific conclusions from a limited set of simulations – when few simulations are
available, not only is the amount of training data low, but so is the amount of test data that
is available to assess the calibration of the trained model.

In this experiment, we use 2000 simulations processed as described in Cuesta-Lazaro and
Mishra-Sharma (2023). These simulations form a subset of the full simulation suite run
with a uniform prior over the parameters of interest. 1800 simulations are used for train-
ing and 200 are kept for testing. We use the two-point correlation function evaluated at 24
distance bins as a summary statistic. The observable is, hence, a vector of 24 features. We
observed that setting a temperature lower than 1 was needed to reach reasonable predic-
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tive performance with Bayesian neural networks in this setting. Figure 7.6 compares the
posterior approximations obtained with a single neural network against those obtained
with a BNN trained with a temperature of 0.01. We observe from the coverage plots that
while a single neural network can lead to overconfident approximations in the data-poor
regime, the BNN leads to conservative approximations. BNN-NPE also exhibits higher
nominal log posterior probability. Additionally, we observe that it provides posterior ap-
proximations that are calibrated and have a high nominal log probability with only a few
hundred samples.

7.5 conclusion

In this work, we use Bayesian deep learning to account for the computational uncertainty
associated with posterior approximations in simulation-based inference. We show that the
prior on neural network’s weights should be carefully chosen to obtain calibrated posterior
approximations and develop a prior family with this objective in mind. The prior family
is defined in function space as a Gaussian process and mapped to a prior on weights.
Empirical results on benchmarks show that incorporating Bayesian neural networks in
simulation-based inference methods consistently yields conservative posterior approxima-
tions, even with limited simulation budgets of O(10). As Bayesian deep learning contin-
ues to rapidly advance (Papamarkou et al., 2024), we anticipate that future developments
will strengthen its applicability in simulation-based inference, ultimately enabling more
efficient and reliable scientific applications in domains with computationally expensive
simulators.

Using BNNs for simulation-based inference also comes with limitations. The first observed
limitation is that the Bayesian neural network based methods might need orders of magni-
tude more simulated data in order to reach a predictive power similar to methods that do
not use BNNs, such as NPE. While we showed that this limitation can be mitigated by tun-
ing the temperature appropriately, this is something that might require trials and errors.
A second limitation is the computational cost of predictions. When training a BNN using
variational inference, the training cost remains on a similar scale as standard neural net-
works. At prediction time, however, the Bayesian model average described in Equation 7.4
must be approximated, and this requires a neural network evaluation for each Monte Carlo
sample in the approximation. The computational cost of predictions then scales linearly
with the number M of Monte Carlo samples. Finally, although our method significantly
improves the reliability over standard methods for low simulation budgets, conservative-
ness is not strictly guaranteed. There are no theoretical guarantees and negative coverage
AUC may still be observed.
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7.6 additional experiments

In this section, we provide complementary results. Figures 7.7 and 7.8 display the coverage
curves, demonstrating that a higher positive coverage AUC corresponds to coverage curves
above the diagonal line. Figures 7.9 and 7.10 present the uncertainty decomposition of all
methods on all the benchmarks. Figures 7.11 and 7.12 illustrate how the performance of
the different algorithms varies across different runs.
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Figure 7.7: Coverage of different NPE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal
indicates conservativeness and a curve below the diagonal indicates overconfidence. 3
runs are performed, and the median is reported.
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Figure 7.8: Coverage of different NRE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal
indicates conservativeness and a curve below the diagonal indicates overconfidence. 3
runs are performed, and the median is reported.
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Figure 7.9: Quantification of the different forms of uncertainties captured by the different NPE-
based methods. 3 runs are performed, and the median is reported.



110 simulation-based inference with bayesian neural networks

P
re

di
ct

iv
e

un
ce

rt
ai

nt
y

E
pi

st
em

ic
un

ce
rt

ai
nt

y
A

le
at

or
ic

un
ce

rt
ai

nt
y

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−4

−3

−2

−1

0

1

101 102 103 104 105 106
1.0

1.2

1.4

1.6

1.8

2.0

2.2

101 102 103 104 105 106

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

101 102 103 104 105 106

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

101 102 103 104 105 106

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−4

−3

−2

−1

0

1

101 102 103 104 105 106

1.0

1.2

1.4

1.6

1.8

2.0

2.2

101 102 103 104 105 106

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

NRE BNRE NRE ensemble BNN-NRE BNN-NRE (T = 0.01)

Figure 7.10: Quantification of the different forms of uncertainties captured by the different NRE-
based methods. 3 runs are performed, and the median is reported.
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Figure 7.11: Comparison of different NPE simulation-based inference methods through the nom-
inal log probability and coverage area under the curve. The higher the nominal log
probability, the more performant the method is. A calibrated posterior approximation
exhibits a coverage AUC of 0. A positive coverage AUC indicates conservativeness, and
a negative coverage AUC indicates overconfidence. 3 runs are performed. The median
run is reported in plain, and the shaded lines represent the other two runs.
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Figure 7.12: Comparison of different NRE simulation-based inference methods through the nom-
inal log probability and coverage area under the curve. The higher the nominal log
probability, the more performant the method is. A calibrated posterior approximation
exhibits a coverage AUC of 0. A positive coverage AUC indicates conservativeness, and
a negative coverage AUC indicates overconfidence. 3 runs are performed. The median
run is reported in plain, and the shaded lines represent the other two runs.
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Epilogue

We showed that using Bayesian neural networks allows to take computational uncer-
tainty into account and leads to more conservative posterior approximations. We illus-
trated the importance of the prior choice for Bayesian neural networks in the context
of simulation-based inference and defined a family of priors tailored for this field. Lim-
itations of this work include the increased computational cost as a prior must first be
optimized, a posterior over neural networks must be approximated, and several neural
network evaluations are required to make predictions. However, in settings where the
simulator is very expensive to run, this cost will be negligible compared to the cost of
making many more simulations. Another limitation is the loss of predictive power, re-
quiring much more data to reach a predictive power similar to NPE. We showed that
this can be improved by tuning the prior temperature. In addition, as the focus was
on discussing the use of Bayesian deep learning for simulation-based inference and the
design of an appropriate prior, we used mean field variational inference, a rather sim-
ple Bayesian deep learning algorithm that requires little tuning. Using more advanced
inference algorithms and careful tuning could improve results in that regard. We also
hope that BNNs’ predictive power improves with new advances in the field of Bayesian
deep learning.



8
D I S C U S S I O N

Throughout this thesis, we motivated the need for conservative posterior approximations,
introduced the expected coverage to diagnose conservativeness, and introduced two ways
to improve conservativeness: balancing and the use of Bayesian neural networks. In this
chapter, we discuss other lines of work related to the conservativeness of posterior ap-
proximations and some limitations that remain with current simulation-based inference
algorithms. We end the discussion with a general conclusion.

8.1 related work

Another way of improving conservativeness in cases where the expected coverage can be
approximated is to perform explicit calibration on the coverage. If we are solely interested
in credible regions and not in the posterior itself, this can be done post-training. The
expected coverage of a posterior approximation can be computed for a range of levels
using a calibration set sampled from p(θ, x), yielding a coverage plot. Given a posterior
approximation p̂(θ|x), to obtain credible intervals with expected coverage approximately
of α, credible intervals at level α̃ can be used, where α̃ is such that

EC(p̂, α̃) = α, (8.1)

where EC denotes the expected coverage. If an infinite amount of calibration samples are
used, then the produced credible regions at level α̃ have an expected coverage of exactly
α. For a finite amount of calibration samples, correct coverage is not guaranteed.

Patel et al. (2023) proposed to use conformal prediction as a way to produce regions with
some guarantees about the expected coverage for a finite calibration set. Specifically, they
use inductive conformal prediction that selects points to include in a region by comparing
their non-conformity score to the ones of others in the calibration set. In this case, the
authors propose to use

s(x, θ) =
1

p̂(θ|x)
(8.2)

as non-conformity score. This score is computed for all samples from the calibration set
(θ, x) ∼ p(θ, x). If we aim for a region generator that leads to an expected coverage of
α, the threshold sC(α) is the ⌈(Nc + 1)/(1 − α)⌉/Nc score quantile on the calibration set,
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where Nc is the size of the calibration set. The prediction region for an observation x is
then constructed as

C(x) = {θ : s(θ, x) ≤ sC(α)}. (8.3)

If the calibration samples and the observation used for prediction are all sampled indepen-
dently from the same distribution (i.i.d.), the expected coverage of this prediction region
generator is guaranteed to not be lower than ϵ with some probability above δ, with ϵ and δ

being varying with the size of the calibration set Nc (Vovk, 2012). Inductive conformal pre-
diction then bounds miscoverage with some probability. Note that this statement is about
expected coverage and that those prediction regions might not be valid credible regions
for all observations x or valid confidence region generators for all parameters θ.

In order to obtain not only calibrated credibility regions in expectation but posterior ap-
proximations leading to such regions, Falkiewicz et al. (2024) propose to add a regulariza-
tion term based on the coverage that penalizes for either overconfidence or miscalibration.
This is then similar to what is done for balanced algorithms, with the exception that regu-
larization is directly performed on coverage instead of enforcing the balancing condition.
While regularizing for coverage is more desirable than balancing, approximating the cov-
erage at each batch introduces a computational overhead, while the balancing condition is
cheap to approximate.

K. Cranmer, Pavez, and Louppe (2015) show that an approximate likelihood ratio can be
calibrated to converge to the real likelihood ratio provided that the approximation is a
monotonic function of the likelihood ratio. Under this condition, they show that

r(x; θ0, θ1) =
p(x|θ0)

p(x|θ1)
=
p(r̂(x; θ0, θ1)|θ0)

p(r̂(x; θ0, θ1)|θ1)
, (8.4)

where p(r̂(x; θ0, θ1)|θ0) and p(r̂(x; θ0, θ1)|θ1) can be approximated on a calibration set.

Dalmasso, Izbicki, and Lee (2020) and Masserano et al. (2023) aim for tractable valid fre-
quentists coverage for all parameter values θ. They base their method on the Neyman
construction that uses the relationship between confidence regions and hypothesis tests
presented in Equation 2.34. A classical Neyman construction requires estimating critical
values of a hypothesis test for each parameter value on a fine grid, which can be compu-
tationally intensive. Instead of estimating critical values for each parameter value in the
grid independently, they propose to train a quantile regressor on test statistics computed
on (θ, x) pairs sampled from p(θ, x). The regressor then takes parameters θ as input and
outputs approximate quantiles of the distribution of test statistics for various observations
x ∼ p(x|θ). If the regressor is assumed to be perfectly trained, those quantiles are valid
critical values, and the Neyman construction using such critical values yields valid Confi-
dence regions. Zhao et al. (2021) introduce a local coverage test. Similarly to expected cov-
erage computation, test pairs are sampled θ∗, x∗ ∼ p(θ, x), and the rank, i.e., the minimal
confidence level α required for the approximate credible region based on x∗ to include the
nominal parameters θ∗, is computed. Instead of reporting the marginal rank distributions,
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they train regressors for various confidence levels α, taking x∗ as input and outputting 1
if the rank is lower than α, 0 otherwise. They use this regressor to construct a statistic for
testing local coverage.

8.2 limitations

In this thesis, we focused on the conservativeness aspect of approximate posteriors. While
we provided ways to improve the conservativeness of current methods, limitations remain
both on these aspects and on other aspects to obtain reliable simulation-based inference.
One of those limitations is the lack of theoretical guarantees regarding conservativeness.
Of all the discussed methods, conformal prediction (Patel et al., 2023) is the only one
providing guarantees in the finite samples regime. These guarantees are, however, in ex-
pectation, and the produced regions are neither valid credible regions for all x nor valid
confidence regions for all θ. Vovk (2012) showed that object conditional coverage cannot be
guaranteed for rich observational spaces, such as R, without any distributional assump-
tions. In the remainder of this section, we expand on two other limitations, namely the
non-invariance to reparametrization of expected coverage based on high posterior density
regions and possible misspecification of the simulator.

High posterior density regions are not invariant to reparametrizations. Let us assume a
transformation f applied to parameters θ, then p(f(θ)|x) is not necessarily equivalent to
p(θ|x). For example, if we consider the transformation f : θ → 2θ, then we have

p(f(θ)|x) = p(θ|x)
2 , ∀θ. (8.5)

In this case, the density is divided by 2 but the resulting high posterior density region
would remain the same. This is not the case if the transformation f is such that some
parts of the space are more dilated or contracted than others. In those cases, we might
have p(f(θ)|x) > p(θ|x) for some parameters θ and p(f(θ)|x) < p(θ|x) for some other
parameters θ. Consequently, high posterior density regions might be different after ap-
plying the reparametrization. Figure 8.1 shows an example of this for the transformation
f : θ → exp(θ). The 95% high posterior density credible interval for θ is [−1.95, 1.95]
and the one for exp(θ) is [0.03, 5.23]. We have that exp(−1.95) = 0.14 ̸= 0.03 and
exp(1.95) = 7.02 ̸= 5.23. Different parts of the parameter space are then included in
the high posterior density credible interval depending on the used parametrization.

This raises some questions regarding the definition of a conservative posterior approxima-
tion. Indeed, any conservative posterior approximation can be turned into an overconfident
approximation by reparametrizing θ, according to the definition based on high posterior
density region expected coverage. To make sense of this definition of conservativeness, we
argue that parametrization should be chosen by taking domain knowledge into account
such that flat distributions correspond to distributions that domain experts would con-
sider uncertain. To obtain quantities that are invariant to reparametrization, ideas can be



116 discussion

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

10 5 0 5 10
exp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8.1: Comparison of high posterior density credible intervals obtained using various parame-
terizations. We consider that one parametrization is the exponential of the other. The
blue lines represent the p.d.f. and the black lines represent the 95% high posterior den-
sity credible intervals.

taken from the objective Bayesian inference literature. In particular, high-posterior density
regions can be replaced by low-loss credible regions that favor parts of the parameters
space that have a low loss value according to some loss function (Bernardo, 2005). If that
loss function is invariant to a reparametrization, then so are the resulting credible regions.

In addition to issues linked to posterior approximations, scientific models can be misspec-
ified, in the sense that it does not perfectly model reality. Let us consider that real obser-
vations are drawn from the data-generating process p∗(x). Following Cannon et al. (2022),
a model is misspecified if there are no parameters θ such that p∗(x) = p(x|θ). A conse-
quence of misspecification when using machine learning models for approximate inference
is that the machine learning model is used to make predictions on observations from the
distribution p∗(x) while being trained on samples from the distribution

∫
p(x|θ)p(θ)dθ.

The model might then perform poorly on observations from p∗(x). This is illustrated by
Gloeckler, Deistler, and Macke (2023), showing that machine learning models are vulnera-
ble to adversarial attacks in the context of simulation-based inference. Adversarial attacks
are small perturbations to the observation x such that the resulting posterior approxima-
tion changes drastically. Those can then be seen as a worst-case scenario of model misspec-
ification. Model misspecification may be detected by making posterior predictive checks,
i.e., by comparing samples xo ∼ p∗(x) to samples from

∫
p(x|θ)p(θ|xo)

Wehenkel et al. (2024) consider an alternative definition. They assume that this data gener-
ation process can be expressed as p∗(x) =

∫
p(θ)p∗(x|θ)dθ, where p(θ) is a known prior

and p∗(x|θ) is an unknown process. They then define a misspecified model as a model
such that

p∗(θ|x) = p∗(x|θ)p(θ)
p∗(x)

̸= p(x|θ)p(θ)
p(x)

= p(θ|x). (8.6)

They assume having some samples from the process p∗(x|θ) through, for example, more
costly procedures and use those samples to correct the posterior approximation.
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8.3 conclusion

The use of approximate methods for statistical inference raises questions about the reli-
ability of the obtained results for scientific reasoning. In particular, it might lead to the
incorrect refutation of scientific models and lead scientists in the wrong direction. In chap-
ter 4, we shed light on the impact of approximate methods for scientific reasoning and
provided the expected coverage diagnostic as a way to identify issues with approxima-
tions. We defined approximations passing the expected coverage diagnostic, i.e., having
an expected coverage higher than the desired credibility level as conservative, and argued
that conservative approximations are desired for more reliable scientific reasoning. An em-
pirical evaluation showed that state-of-the-art methods, at that time, did not always lead
to conservative approximations. We introduced in Chapters 5 and 6 balancing as a way
to increase the conservativeness of the resulting approximations. Balancing is a technique
that is simple to implement and does not highly increase computational requirements. It
is a simple first thing to try to improve conservativeness if overconfident approximations
are observed. Balancing can fall short in cases where very few samples from a simulator
model are available to approximate the desired quantities. In Chapter 7, we used Bayesian
neural networks to improve the conservativeness of simulation-based inference algorithms
in such regimes.

While we proposed methods for improving conservativeness, the limitations shown in
Section 8.2 highlight that the resulting methods still do not guarantee reliable Popperian
falsification. The proposed methods aim for conservativeness as defined by the expected
coverage but expected coverage only provides information about produced credible re-
gions in expectation and is not invariant to reparametrization unless special care is taken.
While we believe improving expected coverage conservativeness increases the reliability,
those considerations suggest taking a step back and defining stronger objectives to aim
for, with the objective of achieving reliable scientific reasoning with numerical approxima-
tions. For example, conservativeness should ideally not only be achieved in expectation. It
should be ensured for the particular observation at hand.

It might, however, be unrealistic to aim for conservativeness guarantees for a given observa-
tion and, in general, to create algorithms having sufficiently strong guarantees to be used
for Popperian falsification while dealing with numerical approximations. Most current
methods aiming for conditional coverage guarantees involve another machine learning
model for calibration that itself leads to another layer of approximations. A more realistic
aim could be to make the scientific method evolve to deal with the presence of approxi-
mations while at the same time improving those approximations. A way would be to no
longer consider that models can be definitively refuted, as the procedure leading to refu-
tation involves approximations. Such models that would be considered as refuted under
the hypothesis that approximations are perfect could, however, be considered as improb-
able. The quality of the approximations could then themselves be criticized, leading to
considering those models again.
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This thesis focused on the implications of numerical approximations on the process of
scientific discovery and aimed to improve the reliability of approximate statistical inference
methods in that regard. It should be noted that what constitutes an appropriate scientific
methodology is a complex open philosophical debate even when no approximations are
made in the statistical pipeline. Our work is only a stepping stone for improving an aspect
of the scientific methodology. Drawing reliable scientific conclusions goes beyond having
high-quality approximations, and the definition of reliable is up for debate.
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