

 $\overline{}$

Conclusion

Method to generate diverse Carnot battery designs beyond the single thermodynamic optimum, allowing for the inclusion of other performance indicators based on manufacturers needs.

Acknowledgements

- These factors affect techno-economic outcomes and depend on **manufacturers strategic choices**, based on, e.g., supply chain, experience, service lifetime, maintenance needs, business model and risk tolerance.
- **Near-optimal exploration** can offer design alternatives to help manufacturers select the **best fit for their needs**.
- The **sub-optimal** space is then defined, allowing for nearoptimal designs with maximum **sub-optimality coefficients** of **15% for** η_{CB}^{elec} **and 30% for** ρ_{CB}^{elec} **.**

The first author acknowledges the support of Fonds de la Recherche Scientifique - FNRS [40021673 FRIA-B2]. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.

• Nine Carnot battery types are optimised with **NSGA-II** to **maximise** $\eta_{\text{CB}}^{\text{elec}}$ and $\rho_{\text{CB}}^{\text{elec}}$.

- **Different thermodynamic designs** of Carnot batteries can achieve **similar performance** (efficiency $\eta_{\text{CB}}^{\text{elec}}$, density $\rho_{\text{CB}}^{\text{elec}}$).
- Yet, they involve **technological trade-offs**, such as storage pressurisation, number of compressors, heat exchangers size, refrigerant type, etc.

Designing Custom Carnot Batteries to Suit Your Exigencies: A Near-Optimal Approach A. Laterre^{1,2}, D. Coppitters¹, V. Lemort², F. Contino¹ **Objective** Conducting near-optimal analyses to generate multiple alternatives for the thermodynamic design of Carnot batteries,

¹UCLouvain and ²ULiège [\(antoine.laterre@uclouvain.be](mailto:antoine.laterre@uclouvain.be))

The Optimum is Not Enough

• Resulting fronts are combined to create a **global Pareto front**.

electrical $3.74r$ energy

Identifying the Sub-Optimal Space

tailored to meet manufacturers technological preferences.

• The **near-optimal designs** are then generated for each type of Carnot battery, also using NSGA-II.

Generating the Near-Optimal Designs

- Manufacturers **select designs** based on **their own criteria**.
- In this case, designs are chosen with $\eta_{\mathrm{CB}}^{\mathrm{elec}} > 27.5\%$ and meeting the following conditions:
	- 1. No pressurization required for storage $T_{\rm TES}^{\rm ht} < 100^{\circ}{\rm C}$ (cost reduction).
	- 2. Compressor discharge temperature $T_{\rm HP}^{\rm comp, ex} < 180^{\circ}$ C (lubrication).
	- 3. Compression volume ratio $r_{v,HP} < 9$ (limits machines in series).
	- 4. Sub-cooling in heat pump $\Delta T_{HP}^{sc} < 8$ K (charge and condenser design).
- 5. Saturation temperatures far from critical point $\Delta T_{\rm HP,ORC}^{\rm crit}$ > 10 K (avoids near-critical regimes).
- These **maximise the Euclidean distance (i.e., the difference) from the nearest design** of the corresponding Pareto front.

• No design meets all criteria simultaneously: different **subsets are highlighted**, along with their **associated design choices** (the so called *'real choices*') and **fixed requirements** (the so called '*must-haves*').

Choosing the Design that Suits Your Needs