**Designing Custom Carnot Batteries to Suit Your Exigencies: A Near-Optimal Approach** Objective Conducting near-optimal analyses to generate multiple A. Laterre<sup>1,2</sup>, D. Coppitters<sup>1</sup>, V. Lemort<sup>2</sup>, F. Contino<sup>1</sup> alternatives for the thermodynamic design of Carnot batteries, <sup>1</sup>UCLouvain and <sup>2</sup>ULiège (<u>antoine.laterre@uclouvain.be</u>) tailored to meet manufacturers technological preferences.

## The Optimum is Not Enough

- Different thermodynamic designs of Carnot batteries can achieve similar performance (efficiency  $\eta_{CB}^{elec}$ , density  $\rho_{CB}^{elec}$ ).
- Yet, they involve technological trade-offs, such as storage pressurisation, number of compressors, heat exchangers size, refrigerant type, etc.



## Identifying the Sub-Optimal Space

• Nine Carnot battery types are optimised with NSGA-II to maximise  $\eta_{CB}^{elec}$  and  $\rho_{CB}^{elec}$ .

|                    |                  |        | Heat Pump        |                       |                  |  |  |
|--------------------|------------------|--------|------------------|-----------------------|------------------|--|--|
|                    |                  |        | <b>S</b> ubc     | <b>T</b> ranscritical |                  |  |  |
|                    |                  |        | Basic            | <b>R</b> ecuperated   | Basic            |  |  |
| Organic<br>Rankine | <b>S</b> ubcrit. | Basic  | #1: SBHP + SBORC | #3: SRHP + SBORC      | #6: TBHP + SBORC |  |  |
| Rankine            |                  | Recup. | #2: SBHP + SRORC | #4: SRHP + SRORC      | #8: TBHP + SRORC |  |  |
| Cycle              | Transcrit.       | Basic  | #5: SBHP + TBORC | #7: SRHP + TBORC      | #9: TBHP + TBORC |  |  |

Resulting fronts are combined to create a global Pareto front.

electrical 3.74 energy



- These factors affect techno-economic outcomes and depend on manufacturers strategic choices, based on, e.g., supply chain, experience, service lifetime, maintenance needs, business model and risk tolerance.
- Near-optimal exploration can offer design alternatives to help manufacturers select the **best fit for their needs**.
- The sub-optimal space is then defined, allowing for nearoptimal designs with maximum **sub-optimality coefficients** of 15% for  $\eta_{CB}^{elec}$  and 30% for  $\rho_{CB}^{elec}$ .



|           | T <sup>ht</sup> <sub>TES</sub> [°C] < 100 | $T_{HP}^{comp, ex} [°C] < 180$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r <sub>v, HP</sub> [-] < 9 | $\Delta T_{HP}^{sc} [K] < 8$ | $\Delta T_{HP}^{crit}$ [K] > 10 | $\Delta T_{ORC}^{crit}$ [K] > 10 |
|-----------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------|
| Subset #1 | 1                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | ×                            | ✓                               | 1                                |
| Subset #2 | ×                                         | <ul> <li>Image: A set of the set of the</li></ul> | ✓                          | ×                            | ✓                               | <b>/</b>                         |
| Subset #3 | ×                                         | <ul> <li>Image: A set of the set of the</li></ul> | ✓                          | ×                            | ×                               | <b>/</b>                         |
| Subset #4 | ×                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | ✓                            |                                 | 1                                |
| Subset #5 | ×                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | ×                            | ✓                               | 1                                |
| Subset #6 | ×                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | ×                            | ✓                               | ×                                |
| Subset #7 | ×                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | ✓                            | ✓                               | 1                                |
| Subset #8 | ×                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                          | X                            | 1                               | 1                                |

## **Generating the Near-Optimal Designs**

The near-optimal designs are then generated for each type of Carnot battery, also using NSGA-II.

#### **Choosing the Design that Suits Your Needs**

- Manufacturers select designs based on their own criteria.
- In this case, designs are chosen with  $\eta_{CB}^{elec} > 27.5\%$  and meeting the following conditions:
  - 1. No pressurization required for storage  $T_{TES}^{ht} < 100^{\circ}C$  (cost reduction).
  - 2. Compressor discharge temperature  $T_{HP}^{comp,ex} < 180^{\circ}C$  (lubrication).
  - 3. Compression volume ratio  $r_{v,HP} < 9$  (limits machines in series).
  - 4. Sub-cooling in heat pump  $\Delta T_{HP}^{sc} < 8 \text{ K}$  (charge and condenser design).
- 5. Saturation temperatures far from critical point  $\Delta T_{HP,ORC}^{crit} > 10$  K (avoids) near-critical regimes).
- These maximise the Euclidean distance (i.e., the difference) from the nearest design of the corresponding Pareto front.



• No design meets all criteria simultaneously: different subsets are highlighted, along with their associated design choices (the so called 'real choices') and **fixed requirements** (the so called 'must-haves').

## Conclusion

Method to generate diverse Carnot battery designs beyond the single thermodynamic optimum, allowing for the inclusion of other performance indicators based on manufacturers needs.

# **UCLouvain LIÈGE** université





The first author acknowledges the support of Fonds de la Recherche Scientifique - FNRS [40021673 FRIA-B2]. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.