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Conclusion
Method to generate diverse Carnot battery designs beyond the
single thermodynamic optimum, allowing for the inclusion of
other performance indicators based on manufacturers needs.
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• Different thermodynamic designs of Carnot batteries can
achieve similar performance (efficiency 𝜂CB

elec, density 𝜌CB
elec).

• Yet, they involve technological trade-offs, such as storage
pressurisation, number of compressors, heat exchangers size,
refrigerant type, etc.

• These factors affect techno-economic outcomes and depend
on manufacturers strategic choices, based on, e.g., supply
chain, experience, service lifetime, maintenance needs,
business model and risk tolerance.

• Near-optimal exploration can offer design alternatives to help
manufacturers select the best fit for their needs.

The Optimum is Not Enough
• Nine Carnot battery types are optimised with NSGA-II to

maximise 𝜼𝐂𝐁
𝐞𝐥𝐞𝐜 and 𝝆𝐂𝐁

𝐞𝐥𝐞𝐜.

• Resulting fronts are combined to create a global Pareto front.

• The sub-optimal space is then defined, allowing for near-
optimal designs with maximum sub-optimality coefficients of
15% for 𝜼𝐂𝐁

𝐞𝐥𝐞𝐜 and 30% for 𝝆𝐂𝐁
𝐞𝐥𝐞𝐜.

Identifying the Sub-Optimal Space

Objective
Conducting near-optimal analyses to generate multiple
alternatives for the thermodynamic design of Carnot batteries,
tailored to meet manufacturers technological preferences.

• The near-optimal designs are then generated for each type of
Carnot battery, also using NSGA-II.

• These maximise the Euclidean distance (i.e., the difference)
from the nearest design of the corresponding Pareto front.

Generating the Near-Optimal Designs

Heat Pump
Subcritical Transcritical

Basic Recuperated Basic
Organic 
Rankine 

Cycle

Subcrit.
Basic #1: SBHP + SBORC #3: SRHP + SBORC #6: TBHP + SBORC

Recup. #2: SBHP + SRORC #4: SRHP + SRORC #8: TBHP + SRORC
Transcrit. Basic #5: SBHP + TBORC #7: SRHP + TBORC #9: TBHP + TBORC

• Manufacturers select designs based on their own criteria.
• In this case, designs are chosen with 𝜼𝐂𝐁

𝐞𝐥𝐞𝐜 > 𝟐𝟕. 𝟓% and
meeting the following conditions:

1. No pressurization required for storage 𝐓𝐓𝐄𝐒
𝐡𝐭 < 𝟏𝟎𝟎°𝐂 (cost reduction).

2. Compressor discharge temperature𝐓𝐇𝐏
𝐜𝐨𝐦𝐩,𝐞𝐱

< 𝟏𝟖𝟎°𝐂 (lubrication).
3. Compression volume ratio 𝐫𝐯,𝐇𝐏 < 𝟗 (limits machines in series).
4. Sub-cooling in heat pump 𝚫𝐓𝐇𝐏

𝐬𝐜 < 𝟖 𝐊 (charge and condenser design).
5. Saturation temperatures far from critical point 𝚫𝐓𝐇𝐏,𝐎𝐑𝐂

𝐜𝐫𝐢𝐭 > 𝟏𝟎 𝐊 (avoids
near-critical regimes).

• No design meets all criteria simultaneously: different subsets
are highlighted, along with their associated design choices
(the so called 'real choices') and fixed requirements (the so
called 'must-haves').

Choosing the Design that Suits Your Needs
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