
Astronomy
&Astrophysics

A&A, 692, A126 (2024)
https://doi.org/10.1051/0004-6361/202451242
© The Authors 2024

An alternating minimization algorithm with trajectory for direct
exoplanet detection

The AMAT algorithm

H. Daglayan1,2,⋆ , S. Vary3 , O. Absil4,⋆⋆ , F. Cantalloube5, V. Christiaens4 , N. Gillis6, L. Jacques1 ,
V. Leplat7 , and P.-A. Absil1

1 ICTEAM Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
2 Vlaamse Instelling voor Technologisch Onderzoek (VITO), 2400 Mol, Belgium
3 Department of Statistics, University of Oxford, Oxford, UK
4 STAR Institute, Université de Liège, 4000 Liège, Belgium
5 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
6 Deptartment of Mathematics and Operational Research, University of Mons, Mons, Belgium
7 Innopolis University, Innopolis, Russia

Received 25 June 2024 / Accepted 8 October 2024

ABSTRACT

Context. Effective image post-processing algorithms are vital for the successful direct imaging of exoplanets. Standard point spread
function (PSF) subtraction methods use techniques based on a low-rank approximation to separate the rotating planet signal from the
quasi-static speckles and rely on signal-to-noise ratio maps to detect the planet. These steps do not interact or feed each other, leading
to potential limitations in the accuracy and efficiency of exoplanet detection.
Aims. We aim to develop a novel approach that iteratively finds the flux of the planet and the low-rank approximation of quasi-static
signals in an attempt to improve upon current PSF subtraction techniques.
Methods. In this study, we extend the standard L2 norm minimization paradigm to an L1 norm minimization framework in order to
better account for noise statistics in the high contrast images. Then, we propose a new method, referred to as the alternating mini-
mization algorithm with trajectory (AMAT), that makes more advanced use of estimating the low-rank approximation of the speckle
field and the planet flux by alternating between them and utilizing both L1 and L2 norms. For the L1 norm minimization, we propose
using L1 norm low-rank approximation (L1-LRA), a low-rank approximation computed using an exact block-cyclic coordinate descent
method, while we use randomized singular value decomposition for the L2 norm minimization. Additionally, we enhance the visibility
of the planet signal using a likelihood ratio as a post-processing step.
Results. Numerical experiments performed on a VLT/SPHERE-IRDIS dataset show the potential of AMAT to improve upon the
existing approaches in terms of higher S/N, sensitivity limits (contrast curves), and receiver operating characteristic curves. Moreover,
for a systematic comparison, we used datasets from the exoplanet data challenge to compare our algorithm with other algorithms in the
challenge, and we find AMAT with a likelihood ratio map performs better than most algorithms tested on the exoplanet data challenge.

Key words. methods: data analysis – techniques: image processing – planets and satellites: detection

1. Introduction

High-contrast imaging (HCI) is an essential observing tech-
nique for exoplanet discovery, especially because of its ability
to directly observe young, massive planets orbiting their host
stars at large distances (Galicher & Mazoyer 2023). This direct
observation method is complementary to indirect techniques and
also provides crucial information such as bolometric luminos-
ity, effective temperature, surface gravity, composition of the
planets, and – assuming a formation and evolutionary model –
an estimate of their mass (Bowler 2016). Progress in this field
is supported by remarkable technological advances in extreme
adaptive optics (AO) systems (Guyon 2018) and coronagraphy,
which provide better atmospheric turbulence correction and raw
stellar light suppression, respectively. These technologies equip

⋆ Corresponding author; hazan.daglayan@uclouvain.be
⋆⋆ F.R.S.-FNRS Senior Research Associate.

new generation HCI instruments, such as VLT/SPHERE (Beuzit
et al. 2019), Gemini/GPI (Macintosh et al. 2014), and Sub-
aru/SCExAO (Martinache et al. 2009), with the ability to achieve
unprecedented raw contrasts. Despite these important steps,
direct imaging of exoplanets remains a challenging task, and
only 1% of known exoplanets have been discovered using this
method (NASA Exoplanet Archive 2024). This limitation under-
scores the inherent difficulty in distinguishing these faint planets
from the overwhelming brightness of their host stars. Resid-
uals of star light in the form of speckles, which are caused
by atmospheric turbulence and imperfections in telescopes and
instruments, are very similar in shape and contrast to planets,
posing a major challenge to direct imaging. To address this issue,
angular differential imaging (ADI) has emerged as a common
strategy (Marois et al. 2006). ADI involves capturing a sequence
of frames in pupil-stabilized mode, wherein the telescope tracks
the star’s motion over time, keeping it centered in the image.
This approach results in the star and the speckles appearing static
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or quasi-static, while planets exhibit movement as a function of
the parallactic angle due to Earth’s rotation. By exploiting this
differential motion, ADI enables the isolation and detection of
exoplanetary signals from the surrounding noise, increasing the
chances of successful direct imaging.

Using ADI sequences, several post-processing methods have
been proposed. Among the most common are those that build a
model for the stellar PSF (including the static and quasi-static
speckle field) and subtract it to detect planets. To build a PSF
model, methods such as principal component analysis (PCA;
Amara & Quanz 2012; Soummer et al. 2012) and non-negative
matrix factorization (NMF, Gomez Gonzalez et al. 2017; Ren
et al. 2018) aim to obtain a low-rank approximation of the
time-by-pixel matrix containing the ADI observing sequence.
After subtracting the PSF model from each frame, the resid-
ual matrix consists of both planetary signals and noise, which
includes some residual stellar signal. Some studies suggest mod-
eling the residual matrix as a sparse matrix and noise (LLSG
and LRPT, Gomez Gonzalez et al. 2016; Vary et al. 2023).
The locally optimized combination of images (LOCI) algorithm
(Lafreniere et al. 2007) employs a least-squares approach to con-
struct a model PSF and has variants such as TLOCI (Marois et al.
2010) and MLOCI (Wahhaj et al. 2015). Once the PSF model is
obtained and the residual matrix is derived, one must still use a
method to extract the planetary signal. The most popular way
to do so is to build a signal-to-noise ratio map (Mawet et al.
2014), with an alternative being the use of a standardized trajec-
tory intensity mean (STIM) map (Pairet et al. 2019). More recent
methods to extract the planetary signal from residual data cubes
include the regime-switching model (RSM, Dahlqvist et al.
2020), which attempts planetary detection using multiple PSF
subtraction techniques at the same time, and the likelihood ratio
map (LRM; Daglayan et al. 2022), which proposes a map con-
sisting of likelihood ratios based on maximum likelihood esti-
mation. Besides PSF model subtraction, other post-processing
methods are based on inverse problem approaches to estimate the
speckle field and planetary signal simultaneously in a maximum-
likelihood approach, such as ANDROMEDA (Cantalloube et al.
2015), FMMF (Ruffio et al. 2017), PACO (Flasseur et al. 2018),
and SNAP (Thompson & Marois 2021). Additionally, another
type of algorithm utilizes unsupervised machine learning for
planet detection, such as SODIRF and SODINN (Gonzalez et al.
2018) as well as their refined variant NA-SODINN (Cantero et al.
2023). As an aside, most of these post-processing methods are
designed or optimized to detect point sources around the target
star, and they generally struggle to reconstruct extended sources
such as circumstellar disks. Iterative versions of PSF-subtraction
methods, including iterative PCA, have recently been proposed
to address this shortcoming (Pairet et al. 2021; Stapper & Ginski
2022; Juillard et al. 2023).

One recurrent assumption made by the post-processing
methods described above is that residual noise after PSF sub-
traction is Gaussian. However, recent studies (Ruffio et al. 2017;
Pairet et al. 2019; Dahlqvist et al. 2020; Daglayan et al. 2022;
Cantero et al. 2023) have shown that the noise in the residual
cube and/or processed frame, particularly in the tails of the distri-
bution, tends to be non-Gaussian. In light of this, in Sect. 2, our
paper proposes a low-rank approximation based on the Lapla-
cian distribution, termed L1-LRA, that leverages the L1 norm.
We demonstrate that this approach more accurately fits the data.
On the other hand, the minimization of the L2 norm is compu-
tationally easier due to the smoothness of the objective function.
Subsequently, we present an iterative method named alternat-
ing minimization with trajectory (AMAT) that is designed to

enhance algorithmic performance and more effectively differen-
tiate between planetary signals and static or quasi-static signals
using both L1 and L2 norms. Additionally, we establish that
this iterative method, in its L2 norm version, slightly outper-
forms state-of-the-art methods for determining the planetary
flux. To assess the performance of our proposed algorithms, we
employ various benchmarks, such as S/N maps, contrast curves,
and receiver operating characteristic (ROC) curves in Sect. 3.
For these empirical analyses, we use an ADI cube obtained on
51 Eri with the VLT/SPHERE-IRDIS instrument, as used in
the Samland et al. (2017) publication, containing 256 frames
obtained in the K1 (2.11 µm) band over a parallactic angle
range of 42◦ (Samland et al. 2017). Additionally, we leverage
datasets from the exoplanet data challenge for comparative anal-
ysis against other state-of-the-art methods (Cantalloube et al.
2020). In Sect. 4, we propose to further improve the performance
of our method by computing an LRM based on the residual cube
processed with the AMAT algorithm, instead of using a standard
S/N map. Section 5 concludes the paper.

Preliminary results related to the present work appeared in
the proceedings of two machine learning conferences (Daglayan
et al. 2023a,b). Daglayan et al. (2023b) suggested the poten-
tial use of the L1 norm low-rank approximation for exoplanet
detection, while Daglayan et al. (2023a) provided a brief descrip-
tion of the AMAT algorithm and performed ablation studies to
evaluate its performance. Both studies evaluated the algorithms
using a single dataset. This paper expands on these descrip-
tions, offering a comprehensive explanation of the algorithms
and comparing them using various metrics. We demonstrate the
performance of the algorithm across different datasets to illus-
trate its data-independent capabilities. Additionally, we explore
the application of the AMAT algorithm for flux estimation and
compare its efficacy with existing methods.

2. The AMAT algorithm

In this section, we present a novel method that employs an
iterative technique for exoplanet detection that distinguishes
planetary signals from the star and its associated speckles as
well as from the sky background. This method aims to find a
low-rank matrix that better fits the quasi-static signal and reveals
the planetary signal more clearly and proposes the use of the
L1 norm as a solution to mitigate the effects of Laplacian noise.
Firstly, we describe the L1 low-rank approximation (L1-LRA) in
detail, explaining its reliance on the L1 norm. We then present
the AMAT algorithm, which is designed to accommodate both
L1 and L2 norm scenarios.

2.1. L1 low-rank approximation

We let M be a matrix in Rt×n2
containing observations of t

unfolded frames, where each row represents a single vector-
ized frame of size n × n. Assuming there is a single planet
located at position g ∈ [n] × [n] within the first frame, with
[n] = {1, 2, . . . , n}, the model for M can be written as

M = L + agPg + E, rank(L) ≤ k, Pg ∈ P, (1)

where L denotes the low-rank model for the stellar diffraction
pattern; E stands for the noise; ag is the intensity of the planet
referred to as the flux; Pg ∈ P ⊂ Rt×n2

is the planet signature
along the trajectory, illustrated in Fig. 1; and P is the set of
all feasible planet signatures. To construct Pg, we started from
a time-by-pixel matrix with zero entries, and in each unfolded
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PSF
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Fig. 1. Cube of the planet signature constructed by rotating the position
g of the PSF function along the trajectory.

frame (i.e., row of the matrix), we placed a copy of the nor-
malized reference PSF at the location occupied by a planet that
is at position g in the first frame. We normalized the reference
PSF using the method described in VIP (Gomez Gonzalez et al.
2017). This involves dividing the pixel values by the sum of
pixel intensities measured within a full-width half maximum
(FWHM) aperture. As a result, Pg is a constant matrix for one
single planet position g.

In models employing low-rank approximations, selecting the
appropriate rank value is critical. If the rank is too small, speckle
signals may persist in the residual M − L, making it challenging
to distinguish the signal of the planet from the speckles. In con-
trast, the signal of the planet may be absorbed by the low-rank
matrix if the rank is too large, making it more difficult to locate
the planet signal in the residual.

When the error E follows a Gaussian distribution, the maxi-
mum likelihood estimator for L is obtained by minimizing the L2
norm. Classical methods such as PCA and LLSG fit the low-rank
component as follows:

L̂ = arg min
L
∥M − L∥2 subject to rank(L) ≤ k, (2)

where ∥A∥2 denotes the entry-wise L2 norm of A (the Frobenius
norm), which can be solved using the truncated singular value
decomposition (SVD), according to the Eckart–Young–Mirsky
theorem (Eckart & Young 1936). Such an approach to estimate L
has been used in Amara & Quanz (2012); Soummer et al. (2012);
Gomez Gonzalez et al. (2016). Recent findings indicate that the

error term E exhibits heavy tails, aligning more closely with the
Laplacian distribution (Pairet et al. 2019; Cantero et al. 2023).
Consequently, we propose fitting the low-rank component using
the component-wise L1 norm:

L̂ = arg min
L
∥M − L∥1 subject to rank(L) ≤ k. (3)

This approach allows us to maintain a consistent noise assump-
tion across the low-rank speckle subtraction. Moreover, in PCA,
a common issue is the sensitivity to outliers when using the L2
norm. In contrast, the L1 norm demonstrates a robust approach to
outliers, leading to a better fit (Ke & Kanade 2003, 2005b; Song
et al. 2017). This makes the L1 norm a more suitable choice for
data with potential outliers.

The L1 low-rank approximation in Eq. (3), however, is an
NP-hard problem, even in the rank-one case (Gillis & Vavasis
2018). Hence, most algorithms to tackle Eq. (3), such as alter-
nating convex optimization (Ke & Kanade 2005a), the Wiberg
algorithm (Eriksson & Van Den Hengel 2010), and augmented
Lagrangian approaches (Zheng et al. 2012), do not guarantee
that a global optimal solution will be found, unlike in the case
of PCA. Moreover, the computed solutions are sensitive to the
initialization of the algorithms. We used Algorithm 1 (L1-LRA)
suggested by Gillis & Vavasis (2018) to solve Eq. (3). It solves the
problem using an exact block-cyclic coordinate descent method,
where the blocks of variables are the columns of Û and V̂ of
the low-rank approximation L̂ = ÛV̂⊤. This algorithm relies on
the fact that the columns of the matrix V̂ ∈ Rn2×k form a basis
of a subspace of Rn2

that best approximates the data frames in
the L1 sense, and for each data frame, the corresponding row of
Û ∈ Rt×k contains the weights of the L1-best approximation of
the data frame in this basis. Here, A j denotes the j-th column of
the matrix A.

Algorithm 1 L1-LRA (Gillis & Vavasis 2018)

Input: Image sequence M ∈ Rt×n2
, the initial components

Û ∈ Rt×k and V̂ ∈ Rn2×k of M (default initialization with the
randomized SVD), rank k, maximum number of iteration
ℓmax.
Output: The components Û and V̂ .

1: for ℓ = 1 : ℓmax do
2: R = M − ÛV̂⊤
3: for j = 1 : k do
4: R← R + Û jV̂⊤j
5: Û j ← arg min

u∈Rt
∥R − uV̂⊤j ∥1

6: V̂ j ← arg min
v∈Rn2

∥R⊤ − vÛ⊤j ∥1

7: R← R − Û jV̂⊤j
8: end for
9: end for

To solve the minimization problem in steps 5–6 of Algo-
rithm 1, we used the exact method from Gillis & Plemmons
(2011); these sub-problems are weighted median problems that
can be solved in closed form. In our experiments, we applied an
annular version, similar to annular PCA (AnnPCA, Absil et al.
2013; Gomez Gonzalez et al. 2017), that selects only the pixels
of M in a certain annulus. Indeed, as the intensities of pixels
decrease away from the star, it is usually better to calculate the
low-rank approximation of each annulus separately.

In order to analyze the suitability of different noise assump-
tions, we fit Gaussian and Laplacian distributions to the residual
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Fig. 2. Histograms of the residual cube after low-rank approximation is applied for small and large separations for a 51 Eri dataset.

data, that is, the data after subtracting the low-rank component
using PCA or L1-LRA. We looked at two different annuli sep-
arately, one that is close to the star at 4λ/D separation and one
more distant from the star at 8λ/D, and we measured the good-
ness of fit visually. In Fig. 2, we observed that the residual data
follows somewhere between Gaussian and Laplacian on the peak
and Laplacian on the tails of the distribution after applying PCA.
However, after applying L1-LRA, the Laplace distribution pro-
vides a better fit for the residual cube distribution in general
for both small and large separations. This supports that L1 is
the indicated norm in a noise model where the error follows a
Laplacian distribution (Gao et al. 2009).

2.2. The AMAT algorithm: Planet detection

Instead of traditional approaches of estimating first the low-
rank component L and then estimating the flux ag, we propose
estimating them simultaneously with the following optimization
problem:

min
L∈Rt×n2

,ag∈R

∥∥∥M − L − agPg
∥∥∥

# s.t. rank(L) ≤ k, Pg ∈ P, (4)

where ∥ · ∥# denotes either the L1 or L2 norm depending on the
assumed distribution of the error E in Eq. (1). The optimiza-
tion problem Eq. (4) is addressed by alternatingly solving the
following two sub-problems until a stopping criterion is met:

L(i) = arg min
L∈Rt×n2

∥M − L − a(i−1)
g Pg∥#, (5a)

a(i)
g = arg min

a∈R
∥M − L(i) − aPg∥#. (5b)

The stopping criterion is defined as either reaching a maximum
number of iterations or ensuring that the relative changes in the
intensity a(i)

g are less than a specified threshold.
When we select the norm L2 in (4) as given in Algo-

rithm 2, computing L(i) in Eq. (5a) amounts to a k-truncated
SVD, denoted by HSVD

k (·). In practice, in order to speed up
the computations, we compute L(i) by a randomized SVD of
M − a(i−1)

g Pg (Halko et al. 2011). We checked that the resulting
approximation does not affect the planet detection performance.
The optimal value of a(i)

g can be computed by cross correlating
the residual cube Rg = M − L(i) with the planet signature Pg:

a(i)
g =

∑
(θ,r)∈Ωg Rg(θ, r)Pg(θ, r)σ−2

Rg(r)∑
(θ,r)∈Ωg (Pg(θ, r))2σ−2

Rg(r)

, (6)

where σ2
R is the empirical variance of the residual frames com-

puted along the time dimension and we define the set Ωg as
the indices (θ, r) of pixels whose distance from the trajectory is
smaller than half the chosen aperture diameter ρλ/D, with ρ > 0.
This set can be expressed as:

Ωg =
{
(θ, r) ∈ [t]×[n]2

∣∣∣ ∥r − gt∥2 <
1
2
λ
Dρ

}
. (7)
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Algorithm 2 AMATL2

Input: Image sequence M ∈ Rt×n2
, possible trajectories

P, rank k, maximum number of iteration for AMAT imax,
threshold for relative change ϵ
Output: low-rank component L(i) and flux a(i)

g for each
trajectory.

1: for all trajectories Pg ∈ P do
2: a(0)

g = 0
3: for i = 1 : imax do
4: U̇, Ṡ , V̇⊤ = HSVD

k (M − a(i−1)
g Pg)

5: L(i) = U̇Ṡ V̇⊤
6: Compute a(i)

g using (6)
7: if |a(i)

g − a(i−1)
g |/|a(i)

g | < ϵ then
8: break
9: end if

10: end for
11: end for

If (4) is set with the norm L1, we solve the problem Eq. (5a)
with the algorithm suggested in Sect. 2.1. We initialize the algo-
rithm with the randomized SVD solution in Algorithm 3. Then,
we tackle the problem Eq. (5b) by

a(i)
g = arg min

a

∑
(θ,r)∈Ωg

|Rg(θ, r) − aPg(θ, r)|
σR(r)

. (8)

Solving Eq. (8) is an instance of the weighted least absolute
deviation (LAD) problem, which unlike least squares does not
have a closed form solution. In general, L1 minimization can
be solved by a number of efficient iterative methods. However,
in our specific case, it is possible to compute the solution even
more efficiently. Since the objective function is a convex piece-
wise linear function R → R with intervals between the points
R(θ, r)/Pg(θ, r), (θ, r) ∈ Ωg, its minimum is attained at one of
the (tn2) kink points. These kink points are the boundary points
where different linear segments of the piecewise function meet,
and they can be easily exhaustively searched.

As part of our evaluation of the performance of the AMAT
algorithms, we delve into the impact of iteration counts on its
results. Iterative processes are integral to the algorithm, making
it essential to investigate how its outcomes evolve over succes-
sive iterations. To illustrate the behavior of the algorithm, we
show in Fig. 3 how the estimated flux ag evolves in iterations
when the trajectory corresponds to the correct location of the
planet and when it does not. We simulated this scenario by inject-
ing a fake planet into the 51 Eri dataset in order to observe the
changes in the flux values at the planet pixels. The results for
both norms show that there is a considerable amount of change
in the flux ag for the Pg in the planet pixels, whereas the change
in the flux ag for the Pg in the pixels without a planet is very
small.

We defined the set G of positions of the planet as a collection
of all points excluding the pixels of the host star and the pixels in
the corners and edges of the images. In our algorithm, we apply
the following steps to construct the residual cube and the flux
map:
1. Select a pixel, denoted as (x, y) from the set G.
2. Take the pixels of the annulus centered on the star with an

inner radius of r-FWHM and an outer radius of r+FWHM,
where r represents the distance from the center of the star to
the point (x, y) resulting in an annulus width of 2FWHM.

Algorithm 3 AMATL1

Input: Image sequence M ∈ Rt×n2
, possible trajectories

P, rank k, maximum number of iteration for AMAT imax,
maximum number of iteration for L1-LRA ℓmax, threshold
for relative change ϵ
Output: Low-rank component L(i) and flux a(i)

g for each
trajectory.

1: for all trajectories Pg ∈ P do
2: a(0)

g = 0
3: U̇, Ṡ , V̇⊤ = HSVD

k (M − a(0)
g Pg)

4: U(0) = U̇Ṡ ; V (0) = V̇
5: for i = 1 : imax do
6: U(i),V (i) =
7: L1-LRA(M − a(i−1)

g Pg,U(i−1),V (i−1), k, ℓmax)
8: L(i) = U(i)V (i)⊤

9: Compute a(i)
g using (8)

10: if |a(i)
g − a(i−1)

g |/|a(i)
g | < ϵ then

11: break
12: end if
13: end for
14: end for
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Fig. 3. Intensity a of the planet against the number of iterations of
Eqs. (5a)–(5b). Top: intensity a(i)

g obtained using the L1 norm. Bottom:
intensity a(i)

g obtained using the L2 (Frobenius) norm. The blue plots
show how the intensity changes in each iteration when we choose Pg
in the location of the planet. The orange plots show how the intensity
changes in each iteration when we choose Pg in a location without a
planet.

3. Apply the AMAT algorithm: Iteratively estimate a low-
rank matrix that encapsulates the background, including
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ann

ann

ann

ann

ann

ann

Derotated 
residual cube

Flux map

Fig. 4. Representation of the residual cube and flux map construction. Example pixels, visualized in blue and green, have been selected from
possible trajectories. For each selected pixel, a low-rank matrix is obtained, which is used to construct a residual cube and calculate a flux value.
After de-rotating the residual cube, an array is produced. Combining these arrays from all possible trajectories forms the de-rotated residual cube.
Similarly, flux values from all points along the possible trajectories are combined to form the flux map.

quasi-static speckles, and the flux ag associated with the
exoplanet.

4. For residual cube:
(a) Subtract the low-rank matrix from the annulus pixels of

the original data matrix.
(b) Assign the residual values from each frame correspond-

ing to (x, y) into the same positions in an empty cube
referred to as the de-rotated residual cube.

(c) Repeat the processes 1–4(b) for all pixels in set G to fill
the de-rotated residual cube.

5. For flux map:
(a) Assign the flux ag to (x, y) into an empty frame while

ensuring it matches the dimensions of any frame in the
data cube.

(b) Repeat the processes 1–3 and 5(a) for all pixels in set G
in order to fill the flux map.

For every g in G, the flux ag can be interpreted as follows: If there
is a single planet located at g in the first frame (and assuming that
Eq. (5b) is solved exactly), then its flux that best explains the data
is ag. Since we apply this algorithm for each position g, we cal-
culate ag for each trajectory, regardless of whether there is more
than one planet or no planets at all. The entire process is illus-
trated in Fig. 4 and implemented in the AMAT Python package1.
From the flux map, detection is then performed by producing an
S/N map and applying a threshold, as described in Sect. 3.1. As
for the residual cube, it is made use of in Sect. 4.

In existing studies that employ iterative PCA for disk and
exoplanet detection (Pairet et al. 2021; Stapper & Ginski 2022;
Juillard et al. 2023), the process typically involves applying the
full process of PCA steps to generate a median frame. This
median frame is then rotated according to parallactic angles and
subtracted from each frame of the cube, leading to the creation
of a new residual cube and a new median frame. This cycle of

1 The AMAT algorithm Python package is available on GitHub:
https://github.com/hazandaglayan/AMAT

rotating, subtracting, and then creating new residual and median
frames is the part that is iteratively repeated. In contrast, when
using the AMAT algorithm, which is tailored for point source
detection, instead of subtracting the median frame, we subtract
a matricized cube Pg multiplied by the intensity ag identified
at each step, effectively isolating only the planetary signature
because the pixels outside the trajectory are zero. This approach
significantly enhances the separation performance between the
background signal and the planetary signature, improving overall
detection efficiency.

2.3. Flux estimation

The detection of exoplanets is followed by the characterization
of the planets, which encompasses estimating their positions and
the intensity relative to the host star. Different algorithms, such
as the negative fake companion (NEGFC) method (Lagrange
et al. 2010; Marois et al. 2010; Wertz et al. 2017), ANDROMEDA
via maximum likelihood estimation (Cantalloube et al. 2015),
PACO estimation (Flasseur et al. 2018) are employed for this
purpose. In our work, when using the AMAT algorithm, we pro-
duced a flux map consisting of the intensities ag corresponding
to each trajectory. Following planet detection, we used this flux
map to estimate the intensity of the planet at its detected loca-
tion. We obtained these intensity values directly from the flux
map without accounting for sub-pixel precision.

To test this method, we injected a fake planet into the 51
Eri dataset. In this scenario, we already know the intensity of
the injected planet. In Fig. 5, we apply the L2 norm version of
the AMAT algorithm (AMATL2) for different ranks from two
to 20. Although we observed that the algorithm requires more
iterations at large ranks, the algorithm approximates the injected
intensity for many rank possibilities. Similarly, we applied the L1
norm version of the AMAT algorithm (AMATL1) in Fig. 6. How-
ever, unlike AMATL2, AMATL1 only gets close to the injected
intensity at small ranks and not at all when using large ranks. The
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Fig. 5. AMATL2 for the flux estimation of an exoplanet. Black dashed
line represents the intensity of the injected planet. The algorithm is
applied with different ranks ranging from 2 to 20. The iteration num-
ber for each rank varies (terminated before reaching the maximum
iteration), as the changes in intensity become smaller than the given
threshold.

Fig. 6. AMATL1 for the flux estimation of an exoplanet. Same inputs as
Fig. 5.

underlying reason for this is traced back to AMATL1’s initial-
ization process; it begins with a randomized SVD for its initial
approximation but subsequently relies on the outcomes of pre-
ceding steps for further initialization within its iterative process.
This dependency introduces a sensitivity to the initial conditions,
which coupled with the inability of the algorithm to guarantee
recovery of the global optimum, restricts the effectiveness of
AMATL1 to accurately capture the injected intensity.

Our aim was also to assess the effect of injecting a planet at
different positions within the pixel. Initially, we injected a planet
with an intensity of 100 at the center of the pixel, which resulted
in an intensity of 100.07 after the AMATL2 algorithm ran. Next,
we injected planets with the same intensity at each of the four
corners of the pixel in four separate instances. Upon analysis of
the trajectories originating from this pixel in the algorithm, the
resulting intensities were observed to be 97.23, 96.31, 97.19, and
96.36, respectively. We attribute this flux loss to the intra-pixel
variation of flux in the injected PSF, considering the fact that the
flux map is only estimated at the center of each pixel.

3. Performance evaluation

In this section, we perform a comprehensive performance eval-
uation of the proposed algorithms by using S/N maps for
visual comparison, contrast curves to assess sensitivity lim-
its, and receiver operating characteristic (ROC) curves derived

from datasets into which synthetic planets were injected. These
approaches allow for a detailed comparison of algorithmic effec-
tiveness. We first made use of the SPHERE-IRDIS 51 Eri dataset
described in Sect. 1, cropping frames to 100-by-100 pixels to
reduce computation time for S/N maps and ROC curves. For con-
trast curves, we used a larger frame size of 200-by-200 pixels to
evaluate the performance at angular separations up to the edge
of the SPHERE well-corrected field. Our analysis then extends
to the Exoplanet Imaging Data Challenge (EIDC) datasets, using
S/N maps as a comparison metric. This evaluation strategy was
designed to rigorously assess the performance of algorithms for
distinguishing planetary signals from noise in different datasets,
allowing us to compare them on different well-characterized
observational datasets. Finally, we present a comparative study to
showcase the efficacy of the AMAT algorithm in flux estimation
in Sect. 3.4.

3.1. Signal-to-noise ratio and sensitivity limits

To begin our comparison, we aimed to assess the performance
of various algorithms in detecting the real planet within the
51 Eri dataset. To do so, we compared the S/N map obtained
after AnnPCA and after the annular version of the L1-LRA algo-
rithm (AnnL1-LRA) described in Sect. 2.1, with the S/N maps
built from the output of the annular version of the AMATL1 and
AMATL2 algorithms. To build these S/N maps, we paved the
annulus containing the pixel of interest with non-overlapping
apertures, and we extracted the central pixel of each aperture,
as proposed by Bonse et al. (2023). This ensured that the signal
and noise were defined in the same way (pixel-wise) for AMAT
algorithms and that the pixels used to build the noise estima-
tion were not correlated. We also obtained S/N maps using the
VIP package Gomez Gonzalez et al. (2016); Christiaens et al.
(2023), which is a more common version using the concept of
S/N computation of Mawet et al. (2014). Figure 7 shows the S/N
maps generated using the median frame obtained from AnnPCA
and AnnL1-LRA as well as the flux map obtained from AMAT
algorithms. The S/N map after AMATL1 outperforms the other
three algorithms on both S/N map versions. For each algorithm,
the S/N maps proposed by Bonse et al. (2023) yield higher val-
ues than the VIP version at the location of the planet. However,
in AnnPCA and AnnL1-LRA, this version causes more false
positives, which can be seen in Appendix C.1–C.2. Therefore,
we used the VIP package for S/N map after (Ann)PCA and
AnnL1-LRA in the following sections of this paper.

A more comprehensive way to assess the sensitivity of vari-
ous algorithms is to build contrast curves (Mawet et al. 2014).
To do so, we relied on the VIP package. In Fig. 8, we com-
pare full-frame PCA, AnnPCA, AnnL1-LRA, and our AMAT
algorithm using both norms. To generate the AnnPCA contrast
curves, we used VIP with its default values except for the rank.
We used the same intensities, which are used to obtain the con-
trast curve of AnnPCA, for the injected planets. Because the
different ranks might yield varying results, we applied each algo-
rithm at various ranks, increasing from five to 30 in five steps.
For each algorithm, we selected the deepest contrast curve to
represent the best outcome. The optimal ranks were found to
be 25 for full-frame PCA, 15 for AnnPCA and AMATL2, and
20 for AnnL1-LRA and AMATL1. The intensities of the injected
planets used to build the contrast curve for each algorithm are
based on the noise values in each annulus obtained when apply-
ing AnnPCA with default values other than rank. This ensured
that the contrast curves were obtained using the dataset with
the same injected planets. As can be observed in Fig. 8, the
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Fig. 7. Signal-to-noise ratio maps after (from left to right) AnnPCA, AnnL1-LRA, AMATL2, and AMATL1, respectively. Top: S/N maps calculated
using VIP package. Bottom: S/N maps proposed by Bonse et al. (2023). The white circles highlight the location of the planet.

2 4 6 8 10 12 14 16 18
Angular separation ( /D)

10 6

10 5

10 4

5
 c

o
n
tr

a
st

AMAT 1

AMAT 2

PCA

AnnPCA

L1-LRA

L

L

Fig. 8. Contrast curves for full-frame PCA, AnnPCA and AnnL1-LRA,
AMATL2, and AMATL1 for the 51 Eri dataset.

performance using full-frame PCA tends to be the worst among
the compared methods. It is followed by AnnPCA, which shows a
slightly better performance. AMATL2 outperforms AnnPCA by a
small margin. The performance of AnnL1-LRA fluctuates based
on the separation, indicating a performance where it sometimes
outperforms or underperforms compared to the other methods.
Finally, the AMATL1 algorithm demonstrates increased efficacy,
outperforming other algorithms across all separations.

3.2. ROC curves

While S/N and contrast curves are useful to illustrate the gain
provided by AMAT, they do not explore the behavior of the
algorithms as a function of the detection threshold, which can
be done through ROC curves. Building ROC curves relies on
injecting a large quantity of synthetic planets into the chosen
dataset. Our process began with the removal of the real planet
present in the dataset using the VIP package (Gomez Gonzalez
et al. 2017; Christiaens et al. 2023). Subsequently, we injected
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Fig. 9. Receiver operating characteristic curve of S/N maps. We
compare full-frame PCA, AnnPCA and AnnL1-LRA, AMATL2, and
AMATL1 for the 51 Eri dataset. We used the square root to scale the
axes in order to better see the low FPR regime.

synthetic planets with an intensity of 1.5 times the standard devi-
ation of the values in the cube at a distance of 2λ/D from the
star. The injections were placed methodically, starting from 0
to 360 degrees in increments of 3.6 degrees and placing a syn-
thetic planet per scenario. This approach resulted in a total of
100 different cases for evaluation, effectively covering the entire
360-degree span around the star. For each scenario, we applied
the algorithms and then examined the location where the planet
was injected. A detection within a specified aperture exceeding a
predefined threshold was counted as a true positive (TP). Then,
we checked the other apertures for the presence of the signal. If
a signal above the threshold was found within these apertures, it
was classified as a false positive (FP), and the absence of such a
signal resulted in a true negative (TN) classification. This exam-
ination across all apertures facilitated the construction of a ROC
curve. Given the critical importance of maintaining a low num-
ber of FPs in exoplanet detection, our analysis primarily focuses
on achieving a high true positive rate (TPR) without incurring
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Fig. 10. Signal-to-noise ratio maps after AMATL1. In these S/N maps, white circles represent TP, red squares denote FP, and red circles signify FN.

false positives. To better visualize and compare the ROC curves,
especially to highlight the performance at the minimal false pos-
itive rate (FPR), we employed a transformed plot of the square
root of TPR versus FPR, allowing for an enhanced representation
of algorithmic efficiency.

We compared our AMAT algorithms with the results of
the full-frame PCA, AnnPCA, and AnnL1-LRA algorithms. We
used the ranks where we obtained the best contrast curves for
each algorithm. The results displayed in Fig. 9 show that our
method consistently outperforms the results of full-frame PCA,
AnnPCA, and AnnL1-LRA in terms of ROC curves. Moreover,
similar to the findings for the S/N map, the results obtained using
the L1 norm are better than those obtained with the L2 norm.

Furthermore, AnnL1-LRA shows a slightly better performance
compared to both AnnPCA and the full-frame PCA.

3.3. EIDC results

As part of our evaluation process, we utilized the datasets from
EIDC (Cantalloube et al. 2020), as specified in Table A.1,
to provide varying datasets for comparing and assessing our
algorithm alongside state-of-the-art HCI algorithms. This chal-
lenge encompasses a diverse array of ADI sequences, including
nine ADI datasets, with a total of 20 injected planet signals.
These signals exhibited varying contrasts and positional
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Fig. 11. Signal-to-noise ratio maps after AMATL2. In these S/N maps, white circles represent TP, red squares denote FP, and red circles signify FN.

coordinates to create an evaluation from three differ-
ent instruments: VLT/SPHERE-IRDIS, Keck/NIRC2, and
LBT/LMIRCam, with each providing three datasets.

As with the EIDC, our assessment involves the generation
of detection maps by each algorithm for every ADI sequence. A
detection map refers to applying a threshold for detection to the
S/N maps or LRMs detailed in Sect. 4. In the result report of
EIDC, a set of standard metrics were employed to compare the
performance of these detection maps. Therefore, to apply a com-
mon metric for comparing the EIDC algorithms, we calculated
the F1 scores using the same definition:

F1 score =
2TP

2TP + FP + FN
. (9)

To determine the values of TP, FP, and FN, we needed to
decide on a threshold value, as this can significantly impact per-
formance. To determine the appropriate threshold, we injected
synthetic planets into the 51 Eri dataset. We created three distinct
datasets, illustrated in Appendix D, and each set was injected
with three, two, or four planets, respectively, placed at different
locations. Subsequently, we ran our algorithm. We experimented
with varying the thresholds in order to identify the threshold
yielding the highest F1 score. Fig. B.1 illustrates the plot of the
F1 score against the threshold for the 51 Eri dataset with syn-
thetic planets. Based on this analysis, if we selected a threshold
between 6.6 and 7.7 for the S/N maps after AMATL1, we could
detect all planets without false positives, and this allowed us to
achieve the highest F1 score.
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Fig. 12. Box plot for flux estimation for planets that are injected in 4λ/D (left) and 10λ/D (right) separation. The dashed red line represents the
injected flux value.

In the published results report, we have knowledge of the
locations of the planets, and we evaluated various threshold val-
ues as evidenced by the F1 scores presented in Fig. B.2. Since we
also established our threshold range by testing injections into the
51 Eri dataset, we conducted a posteriori verification to ensure
that the thresholds also yield a high F1 score when applied to the
EIDC datasets. Participating in the EIDC, where we had multi-
ple opportunities to submit and observe the F1 score, allowed us
to undergo a similar process. Selecting the value that yields the
highest F1 score represents a fair and comparable approach. In
our comparison, we used the threshold of 7.5 within the 6.6–7.7
range in which we obtained the highest F1 score for the 51 Eri
dataset.

The effectiveness of the AMATL1 algorithm is illustrated in
Fig. 10 through S/N maps. The analysis of the VLT/SPHERE-
IRDIS datasets showcases the proficiency of the algorithm,
where it successfully identified all six planets, with only one
false positive. In the Keck/NIRC2 dataset, the algorithm accu-
rately detected four out of seven planets with three false posi-
tives, and in the LBT/LMIRCam dataset five out of seven planets
without any false positives. The results of our experiments using
AnnPCA on the EIDC dataset are shown in Fig. C.1 for ref-
erence, to illustrate the significant gain provided by AMAT in
terms of TPR. Additionally, the AMATL2 algorithm exhibits
a performance between AMATL1 and AnnPCA in Fig. 11. It
detects five out of six planets with one false positive in the
VLT/SPHERE-IRDIS datasets, three out of seven planets in the
Keck/NIRC2 dataset with one false positive, and five out of
seven planets with two false positives in the LBT/LMIRCam
dataset. We compute F1 scores based on these maps and com-
pare them with the best results of the published results report
in Fig. B.2.

3.4. Flux estimation performance

For the purpose of flux estimation, we conducted a comparative
analysis of our AMATL2 algorithm against the NEGFC method,
which uses AnnPCA, implemented in VIP, where the compan-
ion parameters are estimated either through a Nelder Mead
minimization method or through a Markov chain Monte Carlo
(MCMC) method (Wertz et al. 2017). Some other forward mod-
eling or inverse problem approaches (Cantalloube et al. 2015;
Wang et al. 2016) also have the potential to provide accurate
flux measurements and may outperform both NegFC and AMAT.
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Fig. 13. Receiver operating characteristic curve of LRMs. We compare
full-frame PCA, AnnPCA and AnnL1-LRA, AMATL2, and AMATL1.

However, a full comparison of these methods is beyond the scope
of this paper. We designed two distinct sets of comparisons, one
with the synthetic planets injected at a small separation (4λ/D)
and the other at a large separation (10λ/D). In both scenarios,
we created various cases by rotating the position of the injected
planet from 0 to 350 degrees in increments of 10 degrees. This
resulted in 36 different cases for each scenario. This systematic
approach was applied to both the 4λ/D and the 10λ/D separa-
tions, thereby ensuring a comprehensive evaluation. Planets were
injected at specified radii and angles without consideration for
whether the location falls precisely in the center or on the edge
of the pixel, ensuring consistency across all cases. To decide on
the rank for each algorithm, we used the approach suggested in
VIP (Christiaens et al. 2023; Gomez Gonzalez et al. 2017), which
finds the optimal number of principal components in terms of
S/N using PCA. In the AMAT algorithm, after a maximum of
50 iterations or when the relative change of the intensity a(i)

g is
minor (i.e., when |a(i)

g − a(i−1)
g |/|a(i)

g | < 10−3), we simply stopped
the algorithm.

In Fig. 12, the AMATL2 algorithm demonstrates excellent
accuracy in flux estimations for both small and large separa-
tions, as evidenced by the median line of the boxplots precisely
aligning with the injected intensities. In contrast, the boxplots
for the Nelder-Mead and MCMC methods exhibit the presence
of outliers, indicating lower precision in their flux estimations.
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Fig. 14. Likelihood ratio maps after AMATL1 for EIDC Datasets. In these maps, white circles represent TP, red square denotes FP, and red circles
signify FN.

Specifically, the Nelder-Mead method tends to produce higher
flux values, often deviating significantly from the injected val-
ues, while the MCMC method frequently results in lower flux
estimations.

4. Improving detection performance with likelihood
ratio maps

In Daglayan et al. (2022), we presented an enhanced approach for
exoplanet detection utilizing LRMs, which offers improvements
over traditional S/N maps. The LRM is derived through a maxi-
mum likelihood estimation that employs Laplacian distributions.
It consists of the ratio of the maximum likelihood Lg(âg|R) to
the likelihood of the null hypothesis Lg(0|R), which corresponds

to the absence of a planet:

logΛg(R) = log
(
Lg(âg|R)
Lg(0|R)

)
= −

∑
(θ,r)∈Ωg

|R(θ, r) − âgPg(θ, r)| − |R(θ, r)|
σR(r)

,
(10)

where R is the residual cube and âg is the estimated flux derived
from solving the following optimization problem:

âg = argmaxa logLg(a|R)

= argmina

∑
(θ,r)∈Ωg

|R(θ, r) − aPg(θ, r)|
σR(r)

. (11)
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Fig. 15. Ranking based on the F1 score of the different algorithms
in the EIDC results report. The algorithms are classified as AMAT
algorithms with S/N maps and LRMs (purple), classical speckle sub-
traction providing residual maps (red), advanced speckle subtraction
building detection maps (orange), inverse problems (blue), and super-
vised machine learning (green). The light, medium, and dark col-
ors correspond to the three VLT/SPHERE-IRDIS, Keck/NIRC2, and
LBT/LMIRCam datasets, respectively.

In light of this information, we combined the AMAT algorithm
with the LRM. After obtaining the residual cube, we applied the
LRM algorithm to our results.

We obtained the ROC curve using the residual cubes pre-
sented in Sect. 3.2 and applied the LRM instead of the S/N
map in Fig. 13. Each algorithm except AMATL2 demonstrated
a higher performance compared to the S/N map results in Fig. 9.
We believe this discrepancy arises from AMATL2 being based
on a Gaussian distribution, while LRM relies on a Laplacian
distribution. Among the algorithms, AMATL1 showed the best
performance, while AnnL1-LRA also exhibited strong results.
Both algorithms are Laplacian-based, which likely contributes
to their superior performance.

To decide on the threshold, we used the same method as
described in Sect. 3.2 for finding the threshold of S/N maps.
Based on this analysis, if we choose a value between 67 and 77
for the LRMs after AMATL1, we get the highest F1 score for the
51 Eri dataset, and as for the case of AMAT-S/N, we checked that
the threshold for LRMs after AMATL1 is indeed in this range in
order to maximize the F1 score on the EIDC datasets.

Figure 14 shows that the version AMATL1 using LRM profi-
ciently identifies all exoplanets within the VLT/SPHERE-IRDIS
datasets and accurately detects four out of seven planets and six
out of seven planets in the LBT/LMIRCam datasets without any
false positive in any dataset. These findings showcase the algo-
rithm’s high success rate, especially when compared with other
algorithms reported in the EIDC results.

In the paper reporting on the EIDC results (Cantalloube
et al. 2020), the algorithms are classified into four categories:
classical speckle subtraction providing residual maps, advanced
speckle subtraction building detection maps, inverse problems,
and supervised machine learning. A comparison of the most suc-
cessful of these methods in their categories, focusing on the
F1 score, is presented in Fig. 15. Our AMATL1 method with
both S/N map and LRM comes out as the most effective within

the category of classical speckle subtraction methods. Further-
more, the AMATL1 method with LRM exhibits a level of success
comparable to that of advanced algorithms such as RSM and
FMMF. This underlines the significant potential and robustness
of AMATL1 in the realm of exoplanet detection.

5. Conclusions

In this paper, we have investigated AMAT, a new exoplanet
detection method designed to improve the separation of plan-
etary flux from static and quasi-static signals using iterative
techniques. The method enhances models based on low-rank
approximations such as PCA. Current approaches typically
assume Gaussian noise, but recent studies suggest that residuals
often follow a Laplacian distribution. Most low-rank approxima-
tion techniques still rely on PCA, which assumes Gaussian noise.
To address this inconsistency, we proposed L1-LRA, which is
based on assuming Laplace-distributed noise, and integrated it
within the AMAT algorithm.

The AMAT algorithm, which has an open-source implemen-
tation, was thoroughly tested with various approaches. First, we
compared sensitivity limits using S/N comparisons and contrast
curves on the 51 Eri dataset acquired with the VLT/SPHERE-
IRDIS instrument. We evaluated the performance of AMAT
alongside AnnPCA and AnnL1-LRA, and our results demon-
strated significant performance improvements. This was sup-
ported by ROC curve comparisons. We then benchmarked
AMAT against state-of-the-art algorithms using EIDC datasets.
When comparing similar speckle subtraction algorithms, AMAT
delivered a competitive performance, achieving results compa-
rable to the most successful algorithms in its category. By uti-
lizing the LRM based on Laplacian noise, we further enhanced
the algorithm’s performance, allowing AMATL1 with LRM to
achieve the highest F1 score among all categories. Addition-
ally, the flux map generated by the AMAT algorithm provided
accurate planetary flux measurements, even for faint planets.

One limitation of this study is the high computational cost
due to the iterative nature of the algorithm and the need to
apply it to each pixel, given the possibility of the planet appear-
ing in any pixel. The computations were performed on a server
equipped with an Intel CPU with 18 cores and 125 GB of
RAM. While AnnPCA takes only a few minutes to process
the 51 Eri dataset, AMATL1 takes approximately a day to
complete the same task. The AMATL1 algorithm, while produc-
ing better results, relies on L1-LRA, which is computationally
more demanding than PCA. Future studies should explore faster
implementations of L1-LRA in order to improve the algorithm’s
speed and applicability. Another limitation involves determining
the threshold for the LRM, which should be standardized rather
than observation based, ensuring a more automated and reliable
method.
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Appendix A: Datasets

The properties of the datasets which we used in this paper are
given in Table A.1. Nine of these datasets are from the EIDC,
while the final dataset, 51 Eri, is used in all experiments except
those specific to the EIDC results.

Table A.1: Properties of the datasets.

ID Telescope/Instr Nimg Nt ∆ f ield Np
(px × px) (◦)

sph1 VLT/SPHERE-IRDIS 160×160 252 40.3 1
sph2 VLT/SPHERE-IRDIS 160×160 80 31.5 0
sph3 VLT/SPHERE-IRDIS 160×160 228 80.5 5
nrc1 Keck/NIRC2 321×321 29 53.0 4
nrc2 Keck/NIRC2 321×321 40 37.3 3
nrc3 Keck/NIRC2 321×321 50 166.9 0
lmr1 LBT/LMIRCam 200×200 4838 153.4 2
lmr2 LBT/LMIRCam 200×200 3219 60.6 2
lmr3 LBT/LMIRCam 200×200 4620 91.0 3

51 Eri VLT/SPHERE-IRDIS 200×200 256 42.0 1

Notes. Nimg is the size of the images, Nt is the number of frames, ∆ f ield
is the total field rotation of the planets, and Np is the number of the
injected planet for EIDC datasets and the number of the real planet for
51 Eri dataset.
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Appendix B: F1 score versus threshold for AMATL1
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Fig. B.1: F1 score of AMATL1 algorithm with S/N map using various thresholds for 51 Eri datasets (left) and EIDC datasets (right).
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Fig. B.2: F1 score of AMATL1 algorithm with LRM using various thresholds for 51 Eri datasets (left) and EIDC datasets (right).
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Appendix C: EIDC results after AnnPCA

Fig. C.1: Signal-to-noise ratio maps after AnnPCA using VIP package. In these S/N maps, white circles represent TP, red squares denote FP, and
red circles signify FN.
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Fig. C.2: Signal-to-noise ratio maps proposed by Bonse et al. (2023), after AnnPCA. In these S/N maps, white circles represent TP, red squares
denote FP, and red circles signify FN.
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Fig. C.3: Likelihood ratio maps after AnnPCA for EIDC datasets. In these maps, white circles represent TP, red squares denote FP, and red circles
signify FN.
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Appendix D: The location of injected planets
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Fig. D.1: Signal-to-noise ratio maps for 51 Eri datasets with injected planets. In these S/N maps, white circles represent TP.
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Fig. D.2: Likelihood ratio maps for 51 Eri datasets with injected planets. In these maps, white circles represent TP.
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