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ABSTRACT

Context. High-contrast imaging (HCI) is a technique designed to observe faint signals near bright sources, such as exoplanets and
circumstellar disks. The primary challenge in revealing the faint circumstellar signal near a star is the presence of quasi-static speckles,
which can produce patterns on the science images that are as bright, or even brighter, than the signal of interest. Strategies such as
angular differential imaging (ADI) or reference-star differential imaging (RDI) aim to provide a means of removing the quasi-static
speckles in post-processing.
Aims. In this paper, we present and discuss the adaptation of state-of-the-art algorithms, initially designed for ADI, to jointly leverage
angular and reference-star differential imaging (ARDI) for the direct HCI of circumstellar disks.
Methods. Using a collection of HCI datasets, we assessed the performance of ARDI in comparison to ADI and RDI based on iterative
principal component analysis (IPCA). These diverse datasets were acquired under various observing conditions and include the injec-
tion of synthetic disk models at various contrast levels. We also considered reference stars with different levels of correlation with the
science targets.
Results. Our results demonstrate that ARDI with IPCA improves the quality of recovered disk images and the sensitivity to planets
embedded in disks, compared to ADI or RDI individually. This enhancement is particularly pronounced when dealing with extended
sources exhibiting highly ambiguous structures that cannot be accurately retrieved using ADI alone, and when the quality of the refer-
ence frames is suboptimal, leading to an underperformance of RDI. We finally applied our method to a sample of real observations of
protoplanetary disks taken in star-hopping mode, and propose to revisit the protoplanetary claims associated with these disks. Among
eight proposed protoplanets claimed through velocity kinks or direct imaging, none of them were re-detected in our new processed
images.
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1. Introduction

High-contrast imaging (HCI) is a technique that aims to observe
faint signals near bright sources, such as exoplanets and circum-
stellar disks. After the majority of the starlight and aberrations
caused by atmospheric turbulence have been removed by the
coronagraph and the adaptive optics (AO), respectively, resid-
ual atmospheric speckles and quasi-static speckles not seen by
the AO system remain (Racine et al. 1999). These speckles must
be removed to reveal the faint circumstellar signal hiding in the
vicinity of the star. Several observing strategies aim to provide
a lever to distinguish the speckle field from the disk and planet
signal, such as spectral differential imaging (SDI, Racine et al.
1999; Marois et al. 2000) and polarimetric differential imaging
(PDI, Kuhn et al. 2001). In this paper, we focus on two strategies.
Firstly, angular differential imaging (ADI, Marois et al. 2006)
consists of capturing images over time while targeting a star and
fixing the orientation of the telescope pupil, causing the field
of view to rotate due to the Earth’s rotation. The discriminant
employed by the ADI strategy to differentiate the speckle from
⋆ F.R.S.-FNRS PhD Research Fellow.
⋆⋆ F.R.S.-FNRS Postdoctoral Fellow.
⋆⋆⋆ F.R.S.-FNRS Senior Research Associate.

actual signals is that, unlike the field of view that rotates accord-
ing to the parallactic angle, the speckle field resulting from
imperfections in the instrument remains mostly fixed. Angular
diversity is typically leveraged by discarding the static compo-
nent (which represents the speckle field) to retrieve the rotating
circumstellar signal. Secondly, reference-star differential imag-
ing (RDI, Mawet et al. 2009; Lafrenière et al. 2009; Ruane et al.
2019) involves using observations of reference star(s) that share
similar characteristics with the scientific target of interest, either
taken during data acquisition or selected from an archive library.
The primary goal is to acquire reference images that exhibit a
similar speckle pattern. References are leveraged as a model of
the speckle field, which is to be subtracted from the observed
data after being appropriately scaled in flux.

The choice of an appropriate observing strategy depends
on the specific scientific goals, the nature of the target being
observed, and the quality of available resources. Each of these
high-contrast imaging strategies has its strengths and limitations.
ADI is effective at distinguishing faint point-like sources, but
it does require a sufficient parallactic angle rotation to function
correctly and can cause deformations in extended sources due
to rotational invariance (Milli et al. 2012). These deformations
depend on the amount of rotation and the corresponding
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degree of rotational symmetry, considering the disk morphology
(Juillard et al. 2023). This limitation not only hampers most
face-on disks from being captured, but more generally applies
to any extended source morphology, leading to challenging-to-
correct deformations that can mislead the interpretation of the
astronomer. Meanwhile, RDI is efficient for stable speckle pat-
terns and can produce high-fidelity images of disks, but generally
requires dedicated observations of an appropriate reference star
in very similar observing conditions. It is less effective in the
case of particularly challenging datasets, such as faint disks,
time-varying speckle patterns, or when no well-suited reference
star is available, which can be the case for archival ADI datasets.

To best utilize the capabilities of each strategy, employing
a suitable post-processing algorithm is required. Principal com-
ponent analysis (PCA, Soummer et al. 2012; Amara & Quanz
2012) is widely used and can be applied to both ADI and RDI,
but it can suffer from overly aggressive PSF (point spread func-
tion) subtraction, resulting in deformations of the circumstellar
signal (Milli et al. 2012). In the case of ADI, PCA and other
PSF-subtraction algorithms such as median subtraction (c-ADI,
Marois et al. 2006) and LOCI (locally optimized combina-
tion of images, Lafrenière et al. 2007) work well for point-like
sources but generally struggle with extended structures such
as disks. Despite many efforts to compensate for these limi-
tations, more recent algorithms such as iterative PCA (IPCA
Pairet et al. 2021; Stapper & Ginski 2022) or inverse problem
(IP) approaches (MAYONNAISE, REXPACO, and MUSTARD;
Pairet et al. 2021; Flasseur et al. 2021; Juillard et al. 2022) are
still prone to deformations of extended structures, in particular
when these structures include signals that appear static through-
out the ADI image sequence. This means that angular diversity is
not a suitable discriminator to distinguish this type of signal from
the quasi-static speckle field. Regarding RDI, other algorithms
such as data imputation with sequential non-negative matrix fac-
torization (DI-sNMF, Ren et al. 2018) and the Karhunen-Loève
transform with data imputation (DIKL, Ren 2023) have demon-
strated efficiency in optimally extracting circumstellar signals
and mitigating the risk of over-subtraction. While RDI can be
highly effective, it necessitates that the speckle pattern remain
relatively stable over time, and requires sufficiently correlated
reference stars to produce high fidelity images.

Combining diverse observing strategies might assist in miti-
gating the distinct weaknesses of each approach, as exemplified
by Lawson et al. (2022), who combined RDI with PDI, or by
Wahhaj et al. (2013), Christiaens et al. (2019), and Flasseur
et al. (2022), who merged ADI with SDI (ASDI) for extended
sources. Previous studies in the scientific literature have explored
the simultaneous use of RDI and ADI. These attempts typically
involve using techniques such as median subtraction or PCA, and
applying them to the concatenation of the reference and science
cubes (e.g., Carter et al. 2023, Wallack et al. 2024). However,
there has not been a dedicated effort to identify the most effec-
tive method of combining ADI and RDI, especially in the context
of disk imaging. Previous research in this context was rather
focused on comparing the performance of ADI with RDI (Ruane
et al. 2019; Xie et al. 2022). In response to the described chal-
lenges and inspired by the many efforts made in the past few
years to develop efficient novel algorithms to retrieve extended
sources using ADI and RDI strategies separately, this paper aims
to explore how one can adapt the IPCA algorithm to jointly lever-
age angular and reference-star differential imaging (ARDI) in
a simultaneous approach. In Sect. 2, we explain the theoretical
foundation and limitations of state-of-the-art IPCA algorithms
employing ADI and RDI separately. In Sect. 3, we explain how

Table 1. Notations.

Notation Definition

Constants

m Width of an image (i.e., the number of pixels
on one side of the square images)

n Number of frames in the ADI cube
r Number of frames in the reference library
q Number of dimensions in the PCA low-rank

subspace (aka rank)

Matrices

Y ∈ Rn,m×m ADI dataset, i.e., a cube of vectorized images
Lr ∈ R

r,m×m Library of r reference stars
S̄ ∈ Rn,m×m Estimated speckle fields for each image in Y
d̄ ∈ R+,m×m Estimated circumstellar signal (forced to be

positive)
U · Σ · V Singular value decomposition of a matrix

Operators

∥_∥ Absolute value
Hq(Y) Operator (Rn,m×m 7→ Rn,m×m) returning the

estimated speckle fields via PCA using q
principal components.

H
Lr
q (Y) Operator (Rn,m×m 7→ Rn,m×m) returning the

estimated speckle fields via PCA using the q
principal components of a set of reference Lr

|_|1 l1-norm, sum of the absolute value of all
elements in a matrix

QY Rotation operator (Rm×m 7→ Rn,m×m) creating
a cube of n images where each frame con-
tains the same image rotated according to the
parallactic angles of the sequence of obser-
vations Y . This operator is used to inject
simulated disks or planets into the data.

Q−1
Y Median image of a cube after de-rotation

(Rn,m×m 7→ Rm×m)
[_ ; _] Concatenation of two collections of images

we adapted the IPCA algorithm to jointly leverage ADI and RDI.
We also explore the question of parameter optimization. For
Sect. 4, we conducted a comprehensive comparative evaluation
of ARDI against RDI and ADI, all using an IPCA-based algo-
rithm, and assessed their performance across diverse scenarios.
In Sect. 5, we explain how we tested IPCA with ARDI on a sam-
ple of real observations of protoplanetary disks, and reevaluated
the planet candidates claimed in these disks.

Notations. In the rest of the paper, we use the following
notations, which are shared with a previous publication (Juillard
et al. 2023): Y ∈ Rn,m×m denotes the ADI sequence (also known
as the ADI cube), with n being the number of frames, and where
each frame is a vectorized square image of size m×m pixels. The
ADI sequence is composed of the circumstellar signal d and the
speckle field S . The estimate of a parameter is written with an
over bar (e.g., S̄ ). We use S̄ ∈ Rn,m×m to denote the cube of the
estimated speckle field, which is composed of n unique frames.
We use d̄ ∈ R+,m×m to denote the estimation of the circumstellar
signal, which is one single positive image, commonly shared by
all frames of the cube. Finally, Lr ∈ Rr,m×m denotes the library of
reference stars containing r frames. Matrix products are written
using a dot symbol (·). A complete list of all the notation used in
this paper is presented in Table 1.
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2. IPCA algorithms for ADI and RDI processing

PCA is an unsupervised, model-less, statistical procedure that
involves creating an orthogonal subspace to describe data
through singular value decomposition (SVD). SVD general-
izes the eigendecomposition of a square normal matrix with an
orthonormal eigenbasis matrix. This decomposition is expressed
as Y = U · Σ · V , where Y ∈ Rn,m×m is a vectorized set of images,
Σ is a diagonal rectangle matrix (Rm,n) containing the singu-
lar values, and the two matrices U and V represent the left
and right singular vectors. In our specific application, U ∈ Rn,n

corresponds to the temporal principal components (PCs) of the
data and V ∈ Rm×m,m×m corresponds to the spatial PCs. They
are arranged such that the first PCs represent components that
explain most of the variance in the data cube (e.g., the more
static part, shared by most images), while the higher-rank PCs
represent the more unique features of the dataset, such as the
detector noise. To capture the quasi-static speckle field, we will
use the orthogonal subspace formed by V . It is composed of
principal components [v1, . . . , vm×m], each having the size of one
image (Rm×m). By retaining low rank PCs and discarding higher-
rank PCs, it is possible to create a subspace Vq ∈ R

q,m×m of
q images, forming a collection of PCs [v1, . . . , vq] that capture
the most spatially static and stable features of the data (i.e., the
quasi-static speckles). Then, projecting the ADI images onto this
subspace enables the extraction of the quasi-static speckle image
at each frame such that S̄ = Y · Vq · VT

q . We define the opera-
tor Hq(Y) = S̄ to encapsulate all operations described above to
estimate the speckle field. Finally, subtracting S̄ from the origi-
nal data creates a residual cube that hopefully still contains the
circumstellar signals. The disk estimate d̄ is obtained from the
median frame of the derotated residual cube.

Despite an appropriate choice for the number of PCs q used
to build the speckle field estimate S̄ , PCA systematically leads
to partial subtraction of extended signals (Esposito et al. 2014;
Christiaens et al. 2019). The causes of these deformations were
described by Pueyo (2016) as over-subtraction, which refers to
the partial projection of circumstellar signal onto a low-rank
subspace, and self-subtraction, which refers to the signal of
interest being partially captured in the PCA low-rank subspace.
While these effects can be attributed to the algorithms, they
are linked to the validity of the underlying model used in post-
processing. In particular, it has been observed through diverse
algorithms that constraining the positivity of the circumstellar
signal greatly prevents the risk of over-subtraction (Ren et al.
2018; Flasseur et al. 2021; Juillard et al. 2023). However, when
using ADI-only for extended sources, the self-subtraction effect
is partially caused by the inherent ambiguity of the model: the
rotation-invariant flux. The deformations caused by this ambigu-
ity cannot be corrected solely in post-processing if no additional
information is provided (Juillard et al. 2023).

Iterative PCA has demonstrated proficiency in preserving
disk signal when leveraging angular diversity (Pairet et al. 2021;
Stapper & Ginski 2022; Juillard et al. 2023). The iterative aspect
enables the usage of a model that constrains the positivity of
the estimates to enhance the performance of PCA. In this sec-
tion we reintroduce the IPCA method using either ADI or RDI.
These approaches will enable us to establish, in Sect. 4, a con-
sistent comparison with our proposed adaption of IPCA for
ARDI, as all three strategies, or combinations of strategies, make
use of an IPCA-based algorithm. Alongside the presentation of
these algorithms, we propose an explanation of the concept of
a fixed point, which is fundamental to IPCA algorithms. Under-
standing the concept of a fixed point is not only essential for

these algorithms, but also crucial for appreciating parameter
optimization.

2.1. ADI with IPCA

IPCA consists of iteratively performing PCA on the science data
cube Y while subtracting the previously estimated disk signal d̄i
at each step, while imposing positivity, thereby preventing over-
subtraction. The process starts with d̄0 = 0 (an image of zeros).
For a given rank q, one iterative step is detailed as follows:

S̄ i+1 = Hq(Y − QY (d̄i)),

d̄i+1 = ∥Q
−1
Y (Y − S̄ i+1)∥,

(1)

where QY : Rm×m 7→ Rn,m×m is the rotation operator associated
with the data cube Y , which creates a cube of n images where
each frame contains the same image rotated according to the par-
allactic angles of the sequence of observations Y . The inverse
operation Q−1

Y : Rn,m×m 7→ Rm×m corresponds to the median
image of the derotated input. The theoretical foundation of this
process hinges on the concept of a fixed-point algorithm. A
fixed point for a function f , is a point that remains unchanged
by the function, such that f (xfix) = xfix. The stationary point
can be found by iterating over the sequence xi+1 = f (xi). Opti-
mization methods, such as the well-established Newton’s method
to find roots or minima, rely on this principle. In our specific
application, the aim is to reach the following fix-point dfix, such
that dfix = ∥Q

−1
Y (Y − Hq(Y − QY (dfix)))∥, while finding the opti-

mal description of the quasi-static component via PCA using
q components: S̄ = ∥Hq(Y − QY (d̄)))∥. The rank q determines
the variability of the estimated speckle field. For rank q = 1,
the speckle field is considered to be morphologically static and
can only vary in intensity. Selecting a large value for q incor-
porates more high-variance components into the speckle field
description, providing a more intricate representation, capable
of capturing greater variability. However, it is crucial to main-
tain a low rank to avoid encapsulating astrophysical circumstellar
contributions in the speckle field estimation. This constraint is
commonly referred to as the low-rank approximation.

When performing an IPCA step, as described in Eq. (1), it
is possible to either keep the same rank q, or to increase q.
Subtracting the disk estimation from the original cube before
performing the next PCA operation enables more disk signal to
be preserved while increasing the rank. However, at each step,
the disk estimate will also contain noise and artifacts that will
then propagate through the iterations. Hence, wisely choosing
the starting rank q, when to increase it through the iterations,
and when to end the process, is required to obtain an optimal
result. The choice of parameters will influence the amount of
noise propagating in the early iterations, and depends on the
contrast and variability of the speckle field. When the low-rank
approximation is not suitable for capturing enough of the speckle
field, as is the case when the amplitude of the variations in the
speckle field is larger than the signal intensity, it is necessary to
set the starting rank q to a higher value to avoid the propaga-
tion of bright artifacts that appear in the first iterations. For the
same purpose, the number of iterations per rank should also be
limited, especially at a low rank. Theoretically, multiple sets of
parameters should lead to very similar results. In practice, this
statement holds true for well-behaved datasets (e.g., bright disks
observed under stable conditions), but it can be more sensitive
when strong residuals appear in early iterations. The estimate
reached after a few iterations has been observed to correct for
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Fig. 1. Best disk image, according to the SSIM metric, obtained with the IPCA algorithm leveraging ADI only while processing a synthetic dataset
(disk #B, cube #3 at a contrast of 10−3; see Sect. 4). The image on the left displays different apertures placed on (1) the brightest part of the disk, (2)
a region of the disk that is rotation invariant, (3) a noise region, and (4) the region near the coronagraphic region where the variation of the speckle
field is higher. On the right-hand side, we plot the evolution of the integrated flux computed in these different apertures through the IPCA iterations.
The red vertical line indicates the position of the best image among all iterations according to SSIM. Each curve in the figure is normalized by its
mean. The x-axis represents each iteration of the IPCA process, starting at rank 1, up to rank 10, with 10 iterations per rank. The gray horizontal
line, placed at y = 1, indicates the position where the flux is equal to its mean.

over-subtraction and recover the signal with its correct inten-
sity (Stapper & Ginski 2022; Juillard et al. 2023). However,
it is important to note that when using ADI-only for imaging
extended signals, the estimate will still suffer from deforma-
tion stemming from rotation-invariant components (Juillard et al.
2023). Indeed, algorithms like PCA are designed to remove all
signals that appear static and quasi-static. Therefore, without
a method to prevent ambiguous rotation-invariant signals from
being assigned to the speckle field, the contribution from the disk
will inevitably not be fully preserved.

In Fig. 1, we show the evolution of the disk estimate through
IPCA iterations on an example synthetic dataset. The IPCA is
parameterized such that it performs ten iterations per rank, while
starting at rank q = 1 and increasing the rank up to q = 10. The
image on the left provides the best estimation of the injected
disk according to the structural similarity index measure (SSIM,
Wang et al. 2004). This metric, which we also use in Sect. 4, is
particularly adapted for assessing image similarity. It evaluates
not only the pixel-wise differences between the images but also
considers structural information such as contrast, luminance, and
structure on various windows of the two images. Indeed, rank-
ing disk image estimations is a multifactorial problem that often
necessitates finding a satisfactory compromise between fewer
geometrical biases and fewer noise residuals or errors in the
overall restored flux.

We can observe that the flux in the aperture #1, placed in
the brightest part of the disk, converges rapidly and stays sta-
ble through the iterations, which is the desired behavior of a
reached fixed-point. In contrast, in other areas, such as those
with only noise or rotation-invariant flux, no convergence is
observed.

2.2. RDI with IPCA

The implementations of the RDI algorithm found in the scientific
literature (Schneider et al. 2009; Soummer et al. 2012; Ren et al.
2018) involves the subtraction of an estimated speckle pattern

based on a scaled version of the reference images. We propose
an adapted version of the IPCA algorithm that employs an itera-
tive process to optimize the projection of the estimated reference.
For a given set of references Lr ∈ R

r,m×m of r reference images,
we subsequently refer to V ref

q ∈ Rq,m×m as the collection of q
PCs estimated by PCA on the reference library. We define the
operatorHLr

q (Y), which, similarly toHq(Y), returns S̄ i+1 by pro-
jecting the science cube into the principal components, which are
now computed on the reference library. We note that Hq(Y) =
HY

q (Y). The subsequent iterative process can then be expressed
as:

S̄ i+1 = H
Lr
q (Y − QY (d̄i)) ,

d̄i+1 = ∥Q
−1
Y (Y − S̄ i+1)∥,

(2)

where S̄ i+1 is obtained by projecting the data cube Y onto the
subspace created from the references, while subtracting the pre-
vious disk estimation at each step. Unlike in ADI-based IPCA,
the PCs computed via the references are not updated throughout
the process. This approach seeks the optimal projection of the
reference star PCs on the dataset, while considering disk signal
as positive.

We display in Fig. 2 the convergence process to find the
optimal projection while using IPCA-RDI of rank q = 1. This
example was produced using the same test dataset as in Fig. 1. In
this example, we can observe that the flux exhibits a very clear
convergence, which is achieved in only a few iterations. This iter-
ative process enables the over-subtraction effect to be mitigated,
and significantly improves the results compared to classical PCA.
RDI however remains intrinsically sensitive to the stability of
the speckle pattern over time, and necessitates the availability of
sufficiently correlated reference stars.

Other algorithms, such as DI-sNMF (Ren et al. 2018), have
also demonstrated efficiency in preserving the disk signal and
preventing over-subtraction. However, for consistency in the test
pipeline used for performance comparisons in Sect. 4, we use the
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Fig. 2. Same as Fig. 1, but for RDI-only IPCA. The set of reference frames used here is presented in Sect. 4 and is referred to as “optimal”. The
x-axis represents each iteration of the IPCA process, for ten iterations using a rank-1 PCA.
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Fig. 3. Same as Fig. 1 but by leveraging the ARDI strategy with an IPCA algorithm, using the same reference frames as in Fig. 2.

IPCA implementation for RDI, similar to what we implemented
for the ADI and ARDI strategies.

3. Combining angular and reference-star
differential imaging (ARDI)

Simultaneously employing both RDI and ADI strategies is
expected to help mitigate the individual limitations of each strat-
egy. The combination of RDI with ADI holds the potential of
offering several advantages in the field of high-contrast imaging
for exoplanet and disk detection around stars. Here, our primary
focus is to adapt the IPCA approach, initially designed for ADI,
to leverage ARDI. Other advanced algorithms using both ADI
and RDI, including IP-based approaches, could also be consid-
ered, but are beyond the scope of this paper. In this section we
also explore the problem of parameter optimization for IPCA.

To combine RDI with ADI using IPCA, we propose inject-
ing the reference star(s) into the ADI cube to compute the PCA
low-rank subspace, by concatenating the most correlated refer-
ence frames to the ADI cube of images, so that both are used

simultaneously to build the speckle field estimate through PCA.
The process can be expressed as follows:

Ln+r,i = [Y − QY (d̄i); Lr],

S̄ i+1 = ∥H
Ln+r,i
q (Y − QY (d̄i))∥,

d̄i+1 = ∥Q
−1
Y (Y − S̄ i+1)∥,

(3)

where the operation [_ ; _] represents the concatenation of two
collections of images, creating a set of images (Ln+r,i) with a size
of Rn+r,m×m that contains both the data and reference images. The
ratio between the size r of the reference library and the number n
of frames in the ADI cube must be chosen carefully for optimal
results. We refer to r/n as the reference frame ratio. The proposed
algorithm can be classified as semi-supervised, as it simultane-
ously leverages reference frames for the speckle field (which can
be regarded as labeled data), and the actual (unlabeled) data to
provide an optimal estimation.

In Fig. 3, we monitor the evolution of the disk estimate
through the IPCA iterations while using the ARDI strategy, sim-
ilarly to the test presented in Fig. 1 with ADI only. We used
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Fig. 4. Evolution of the IPCA with ARDI estimate through the itera-
tions, using the same dataset as in Fig. 3. The blue curve relates to the
left y-axis and displays the value of the SSIM for each estimate. The
orange curve relates to the right y-axis and represents the gradient com-
puted over the full frame, as described in Eq. (4). The gtol has been set
to 10−2 and is represented on the figure by the two gray lines. The black
dot indicates the iteration where the gradient curve reaches the gtol and
does not exceed it in further steps. The x-axis represents each iteration,
where the minor ticks represent a single iteration, and the major ticks
represent a rank update.

identical parametrization (ten ranks, ten iterations per rank), and
a reference frame ratio (r/n) of one. Conversely to what we
observed with ADI only, three out of the four apertures seem
to converge when using reference images. Results obtained with
ARDI do not exhibit the deformation due to rotation invari-
ant flux (located in aperture #2). However, the background
noise in the final image increases throughout the iterations.
Consequently, determining where to stop the iterative process
involves choosing a good compromise between noise subtraction
(non-propagation), filtering, and recovery of extended signals
(convergence). A common criterion to assess convergence is set-
ting a stopping criterion based on the gradient of the iterate.
In our case, the criterion, based on the disk estimate, reads as
follows:∥∥∥∥∥∥ |d̄i|1 − |d̄i+1|1

|d̄i|1

∥∥∥∥∥∥ < gtol, (4)

where gtol stands for the gradient tolerance and defines the pre-
cision threshold to be reached to assess convergence. It is a
threshold to the gradient of the iterate, computed in our case by
comparing disk estimates between two consecutive iterations, i
and i + 1.

We show in Fig. 4 the evolution of the SSIM with respect
to the ground truth (the injected disk), as well as of the gradient
(Eq. (4)), as a function of the iterations. Additionally, we present
in Appendix A the evolution of the gradient across patches of
15 × 15 pixels. Firstly, we can observe that multiple iterations
achieve a similar SSIM, corresponding to different estimates
of equal quality. Secondly, the iteration where convergence is
reached according to the gradient criterion occurs close to the
iteration where the SSIM is the highest (even though the cri-
terion serendipitously falls into a local minimum in the SSIM
curve). The region over which the gradient is computed can
introduce bias, as it may not accurately represent the convergence
behavior of the signal of interest. Indeed, if the field of view is
too large or if the signal-to-noise ratio of the circumstellar sig-
nals is low, then the regions where there is no signal can become
dominant in the computation of the gradient. Conversely, a few
pixels of significantly higher intensity may dominate the gra-
dient computation, potentially masking the convergence of the

full disk, including its fainter components. When computing the
convergence criterion over patches (Fig. A.1), we observe that
only patches containing signal achieve convergence, and that the
brightest part of the disk converges faster than the fainter parts.
Overall, we conclude that monitoring the convergence curves
can provide a relevant indicator of the optimal iteration to be
chosen. Nevertheless, assessing the convergence of a numerical
method in computer science is a recurring problem for which
proposed solutions are known to lack reliability in some cases
(Nocedal et al. 2002). Moreover, it is particularly challenging in
our case of application, given that the iterative process is not
guaranteed to converge.

An alternative method for combining RDI and ADI is to uti-
lize the PCs computed via RDI as the initialization of IPCA
with the ADI cube. Hence, only the initialization differs and is
expressed by the following equations:

S̄ 0 = H
Lr
q (Y),

d̄0 = ∥Q
−1
Y (Y − S̄ 0)∥.

(5)

Then, the iterative steps are identical to the IPCA with ADI pre-
sented in Sect. 2.1. While we did not observe any significant nor
systematic improvement when choosing this method, it remains
relevant and can in some cases produce results consistent with
those obtained with IPCA-ARDI.

4. Testing algorithms

4.1. Tests based on simulated data

In this section we compare the three different strategies: RDI,
ADI, and ARDI, all utilizing the same core algorithm, IPCA.
We consistently employed the same evaluation pipeline as pre-
sented in Juillard et al. (2023), which was previously used to
compare three different algorithms for processing datasets using
ADI alone. This test pipeline consists of a total of 60 test datasets
composed of five different disk morphologies, injected at three
different contrast levels (10−3, 10−4, and 10−5), into four different
observing ADI sequences of stars without any known circum-
stellar signal, reflecting different observing conditions. The test
datasets are available on Zenodo1.

The datasets, obtained through the High-Contrast Data Cen-
ter (HCDC), were acquired using the Infrared Dual-Band Imager
and Spectrograph (IRDIS, Dohlen et al. 2008; Vigan et al. 2010)
camera of the Spectro-Polarimetric High-contrast Exoplanet
Research coronagraphic system on the Very Large Telescope
(VLT/SPHERE, Beuzit et al. 2019). The test datasets all consist
of the H2 channel from the dual-band H23 set. They were cho-
sen to exhibit a diverse range of characteristics, including low
Strehl ratio with a 26◦ rotation (ID#1), wind-driven halo (ID#2),
an unstable speckle field (ID#3), and good Strehl ratio with an
80◦ field rotation (ID#4). The raw data processed with the data
handling software (Pavlov et al. 2008) of the HCDC (Delorme
et al. 2017), which performs dark, flat, and bad pixel correction
on a coronagraphic sequence. For future reference, we computed
the mean and standard deviation of the Pearson correlation coef-
ficients (PCC) between each unique pair of frames in the ADI
cube. The mean PCC are as follows: Cube #1: µ = 0.99; Cube #2:
µ = 0.97; Cube #3: µ = 0.93; Cube #4: µ = 0.96, with standard
deviations below 0.001 for all the cubes.

The injected disks represent a range of scenarios
for both debris and protoplanetary disks. As detailed in

1 Datasets available at https://zenodo.org/records/11442267
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Fig. 5. Pearson correlation coefficient of the selected reference frames computed individually and averaged over each frame of the raw ADI data
before the injection of simulated disks or planets, for three different selections of references: (left) optimal references selected; (middle) a random
sample of each cube’s dedicated references, including the optimal references, in an even proportion; and (right) a random sample of references
excluding the optimal references. These coefficients were calculated within an annulus with an outer radius of 60 pixels and inner radius of
30 pixels, and are classified from the most correlated to the least correlated. The text box below each figure displays the mean PCC (µ) and the
variance (σ) of the reference sample relative to its associated data cube.

Juillard et al. (2023), this selection consists of two 75◦ inclined
disks with varying sharpness levels (A and B), a 45◦ inclined
disk with two concentric rings (C), a nearly face-on disk with
azimuthal flux variation (D), and a hydrodynamical simulation
of a disk with embedded spiral structures and a companion
(E). The contrast of the injected disks is determined by mea-
suring the integrated flux within a full width at half-maximum
(FWHM)-sized aperture, centered at the peak intensity of the
disk, and then dividing this value by the integrated flux within
an FWHM-sized aperture of the stellar point spread function.
However, we made an exception for the synthetic disk #E, where
we measured the flux at the companion location.

We performed two series of tests. In the first series, we
compared the performance of ADI, RDI and ARDI using an
IPCA-based algorithm on our 60 test datasets, while using an
optimal choice of reference stars. The reference frames were
selected from a set of archival IRDIS observations taken with
the same filter, coronagraph, and exposure time as the test
datasets. These reference targets were observed between 2014
December 11 and 2021 June 1, and the raw data were cali-
brated through the same process as the test datasets. For each
test dataset, the PCC was calculated between the frames of the
dataset and the reference targets, excluding any observations of
the dataset star taken at different epochs. The PCC was calcu-
lated within a circular annulus between 0.′′31 and 0.′′67, which
captures both the dominant speckle region and position of the
waffle pattern, used for precise star centering of a coronagraphic
sequence (Zurlo et al. 2014), if it was included in the observation.
For each frame in the dataset, the 300 best correlated reference
frames were identified, and those that appeared in this selection
for more than 30% of the dataset frames were selected for the
final reference library.

The left-hand side plot in Fig. 5 (“Optimal”) displays the
PCC for each frame of the reference library. The PCC value for
each reference frame corresponds to the average of the correla-
tion coefficients computed individually with each frame of the
ADI cube before disk injection. The reference frames are then
sorted from the most correlated to the least correlated following
this methodology.

For the second series of tests, we aimed to assess how
ARDI could assist in cases of inadequate reference stars. We
tested the ARDI-IPCA algorithm for three different qualities
of reference frames. In the “Optimal” case, we used the most
correlated frames, which is the same selection used in the first
series, where we compare ADI, RDI, and ARDI. In the “Shuf-
fled” case, we randomly selected a sample from the reference
libraries dedicated to each of our four ADI sequences into one
common reference library. In this test, the random selection con-
tains 25% of frames from the “Optimal” reference library. In
the “Excluded” case, we selected for each ADI cube a sample
only from references dedicated to the three other ADI cubes,
creating a selection that excludes optimal references. The PCC
computed for each of the three selections of references is pre-
sented in Fig. 5. For the IPCA processing in ADI, RDI, and
ARDI, we used our implementation of the GreeDS algorithm2

(Pairet et al. 2021; Juillard et al. 2023). This Python implemen-
tation utilizes PyTorch, enabling the processing of a dataset from
the test pipeline in less than a minute on a standard laptop. For
all tests, we used an identical parameterization: ten ranks and
a reference frame ratio (r/n) of one. The number of iterations
increases by one at each rank (e.g., one iteration is performed at
the first starting rank q, two at rank q+1, and so on). This enables
improved results compared to setting the number of iterations
per rank to 10, as proposed in Juillard et al. (2023), especially
for faint disks.

A table representing the best algorithm for each dataset
and for the three different strategies (ADI, RDI, and ARDI),
is shown in Fig. 6. The quality of the extracted disk images is
assessed using the SSIM metric. SSIM is chosen for its abil-
ity to cover multiple aspects of image similarity and its proven
capacity to approximate structural differences akin to human
visual perception (Wang et al. 2004). In Appendix B, we display
the same table including bar plots in each cell to indicate the
SSIM value obtained by each algorithm for each test case. How-
ever, given that assessing the quality of disk image estimation
involves a multifactorial challenge, often requiring a balanced

2 https://github.com/Sand-jrd/GreeDS
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Fig. 6. Results of our systematic tests comparing the three strategies RDI, ADI, and ARDI using the IPCA-based algorithm. Each cell represents
a different synthetic dataset, combining disk morphologies labeled along the x-axis with datasets before injection along the y-axis. Each figure
contains three tables representing three different levels of contrast: 10−3 (left), 10−4 (middle), and 10−5 (right). The color of the cell indicates
which algorithm performed best according to the SSIM metric. The white letters on a cell indicate which algorithm(s) did not detect the disk
(R−→ IPCA-RDI, A−→ IPCA-ADI, AR −→ IPCA-ARDI). Gray cells mean that no algorithm detected the disk. Black stars indicate that the five
metrics (SSIM, Spearman, Pearson, Euclidean, and SAD) selected the same winner.

Excluded

Shuffled

Optimal

Fig. 7. Results of our systematic tests comparing different qualities of references while utilizing ARDI for IPCA. The organization of this table is
identical to Fig. 6, except that the value of the SSIM of the disk estimation compared to the ground truth is also represented for each algorithm
within each cell.

trade-off between minimizing geometric biases and reducing
residual noise, we also consider four additional metrics – namely,
Pearson, Spearman, sum of absolute differences (SAD), and
Euclidean distance – in Appendix C.1. The cases where all these
metrics unanimously favor a specific algorithm are highly likely
to stand out as clearly superior and are marked with a black star
in the upper left corner of the table. The field of view considered
for calculating the metrics affects the results. We calculated the
metrics using a 1′′-radius aperture, excluding a 6-pixel radius
inner circle located behind the coronagraphic mask. Complete
results, including the estimated disks (d̄) for each algorithm and
residual plots in Appendix D are available on Zenodo3. The
results for the second series of tests, aiming to compare three
different selections of reference frames, are displayed in Fig. 7,
using a table with bar plots as in Appendix B.

4.2. Discussion of the test results

The results of the first series of tests show that using the com-
bined ARDI strategy, using optimal reference frames, is most
often selected as the best strategy according to the SSIM (as well
as other metrics). A significant visual improvement is observed
for disk #E, as shown in Figs. D.1E, D.2E, D.3E, and D.4E, par-
ticularly at a medium contrast of 10−4. At this contrast, RDI

3 Appendix D available at https://zenodo.org/records/
11442350

struggles to capture the planet, while ADI has difficulty cap-
turing the disk structure. We show in Fig. 8 the injected and
retrieved disk images in four cases where ARDI performed sig-
nificantly better than using either ADI or RDI individually. The
combination of both strategies proves to be the most relevant, as
the weaknesses of each algorithm are effectively compensated
for when used together. However, the degree of improvement
provided by ARDI is not uniform across all datasets, includ-
ing seven cases for which ADI or RDI alone perform better than
ARDI according to SSIM. We propose to examine each of these
specific cases:

– ADI outperforms ARDI in dataset #1 for disks A to C with
a contrast of 10−4, as shown in Figs. D.1A, D.1B, and D.1C.
We observe that ADI achieves superior performance in sce-
narios where the dataset has a low Strehl ratio. Interestingly,
this is also the same context where RDI shows lower perfor-
mance. This observation suggests that ADI performs better
when the information provided by the reference dataset is
largely irrelevant. dataset #1A (Fig. D.1A) with a contrast
of 10−3 is an exception, where ADI is selected as the best
method based on the SSIM metric in Fig. 6. However, it
is important to note that there is no consensus among the
metrics. In fact, three of the five metrics (SAD, Euclidean
and Pearson) favor ARDI, while one, Spearman correlation,
indicates a preference for RDI. Upon visual inspection, it
is obvious that ADI does not provide the most satisfactory
result in this particular case.
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Fig. 8. Four examples of IPCA disk estimations obtained using RDI, ADI, and ARDI strategies, for a test dataset where ARDI performed signifi-
cantly better than ADI and RDI. From top to bottom, the test dataset are cube #2 with disk A injected at a contrast of 10−3, cube #2 with disk E at a
contrast of 10−4, cube #1 with disk D at a contrast of 10−4, and cube #4 with disk C at a contrast of 10−4. From left to right, the images display the
injected disk and the results using RDI, ADI, and ARDI, utilizing the IPCA algorithm. These results were selected as they demonstrate ARDI’s
capability to compensate for the individual limitations of each strategy compared to using each method individually, in a variety of scenarios in
terms of observing conditions, disk morphologies, and contrasts.

– RDI seems to outperform ARDI in dataset #4D and #4E
(Figs. D.4D, D.4E) with a contrast of 10−3, as well as in
dataset #3A (Fig. D.3A) with a contrast of 10−4. We note
that RDI excells primarily in the case of face-on disks and
favorable observing conditions. For instance, datasets #4D
and #4E are almost perfectly recovered by RDI, suggest-
ing that the angular diversity does not provide significantly
more relevant information in these cases, as the information
contained in the reference frames is sufficient on its own.

In terms of the restoration of the planet in disk #E, we observe
that at a contrast of 10−3, the planet is detected within the disk
by all three strategies. However, ADI underperforms compared

to the two other strategies, and the flux is not correctly retrieved
as indicated by the error plots in Figs. D.1E, D.2E, D.3E, and
D.4E. However, at a contrast of 10−4, the planet is systematically
and clearly detected with ADI, while with RDI no clear point-
like feature stands out at the planet location. In fact, at a higher
contrast, RDI struggles to capture the planet, while ADI has diffi-
culty capturing the disk structure. ARDI captures the planet and
the disk structure for cubes #2, #3, and #4 but fails to recover
both the disk and the planet for cube #1. At lower contrast, nei-
ther ARDI nor ADI using IPCA seems to stand out for the task of
planet detection only. Moreover, note that point-like artifacts can
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be observed in other synthetic disk estimates where no planets
were injected, as in cube #3 disk #B at contrast 10−4 (Fig. D.1E).

Working with a comprehensive battery of tests that require
automation and standardization has the downside of potentially
missing the best results that a particular algorithm could provide
in specific cases. Indeed, while the behavior of these different
strategies across a broader variety of scenarios remain relevant
in most cases, a more specific optimization of the IPCA parame-
ters might have significantly improved the quality of some of the
disks, and potentially enabled more detections (e.g., by starting
at a higher rank and reducing iteration per rank when processing
the faintest disks of our test gallery).

In our second series of tests, we used the IPCA algorithm
with three different selections of reference stars with different
levels of quality according to PCC (see Fig. 5). The dataset #4
(very stable) seems more sensitive to the selection of reference
frames, while datasets showing more speckle variability (#3, #2,
#1) seem less sensitive. The mean PCC calculated for a nonop-
timal selection is significantly lower for cube #4 (mean PCC
µ < 0.6) compared to other cubes (mean PCC µ ∼ 0.8–0.5).
As a result, the estimates produced when using these subopti-
mal references significantly under-performed, with SSIM hardly
reaching 0.8 in most cases, while for other cubes, suboptimal
references could reach similar SSIM as the optimal and semi-
optimal selections (see Fig. 7). Most interestingly, the three
different selections achieved very similar results in terms of
SSIM in many cases. In more than 40% of cases, nonoptimal ref-
erences achieved a higher SSIM than the optimal selection. The
cases where the references contained 25% of optimal references
are very close to an optimal selection, even for a contrast of 10−5.
This suggests that selecting high-quality references, as assessed
via PCC, has limited impact on the results in the final post-
processed images using IPCA with ARDI. Instead, the outcomes
appear to be more sensitive to the stability of the dataset.

5. Demonstration on protoplanetary disk datasets

To test our algorithm on real observations, we used the prepro-
cessed datasets on protoplanetary disks from Ren et al. (2023).
The sample consists of 48 datasets including 29 unique different
young stars hosting protoplanetary disks with known substruc-
tures previously observed in scattered light. Among them, four
were reported to have exoplanet candidates (or claims thereof)
from high-contrast imaging: HD 100546 (Quanz et al. 2013,
2015; Currie et al. 2014), HD 169142 (Biller et al. 2014; Reggiani
et al. 2014; Gratton et al. 2019; Hammond et al. 2023), LkCa
15 (Kraus & Ireland 2012; Sallum et al. 2015), and MWC 758
(Reggiani et al. 2018; Wagner et al. 2019, 2023). Additionally,
localized deviations from Keplerian rotation possibly associ-
ated with the presence of planets were reported in HD 163296
(Izquierdo et al. 2022; Pinte et al. 2020, 2018) and HD 97048
(Pinte et al. 2019). All observations were made in the broad-band
Ks filter using the IRDIS camera of VLT/SPHERE. These disks
were previously presented by Ren et al. (2023) in both polar-
ized light using the IRDAP (van Holstein et al. 2020) pipeline
for polarimetric data processing, and in total intensity using RDI
through the DI-sNMF algorithm. The references were acquired
via the “star-hopping” mode (Wahhaj et al. 2021), which means
that the telescope is regularly pointed at a nearby reference
star during data acquisition, efficiently alternating science and
reference observations with minimal overhead. This observ-
ing strategy ensures maximal similarity between the respective
PSFs.

We present our reprocessing of the Ren et al. (2023) data
with IPCA using the ARDI strategy in Fig. 9. For most datasets,
a reference frame ratio (r/n) of one was employed, utilizing
the dedicated reference star observed in star-hopping mode. The
default parametrization method involves ten iterations per rank,
starting from rank one to rank ten. However, for some datasets,
the parametrization was individually optimized. In cases where
the signal was faint, the starting rank was set to a higher value,
and the number of iterations per rank was smaller. In situa-
tions where the angular diversity was too small, we increased
the reference frame ratio. When reference stars were unsatisfac-
tory (e.g., for HD 163296), we employed a combination of the
most correlated references available from the references acquired
in star-hopping mode from this sample of protoplanetary disk
observations. In these cases, we also utilized a higher reference
frame ratio (r/n) and used a higher starting rank. We manually
selected the best image from the estimates generated for these
parameters. IPCA parameters and the selected frame for each
dataset can be found in Appendix E. Table E.1 also provides the
mean and standard deviation of the PCC between the science
data and the references, following the same procedure detailed
in Sect. 4.1.

Among the 48 datasets, Ren et al. (2023) showcased high-
quality results for 23 datasets4 including 15 unique systems using
DI-sNMF, selectively discarding instances of non-detections and
very low quality images. In the context of this article, we present
all results processed with IPCA-ARDI, explicitly including the
non-high quality images. Among these images, 33 datasets
including 19 unique protoplanetary disks are visually recovered,
exhibiting a range of image qualities from excellent (e.g., V351
Ori, HD 36112, or V1366 Ori) to bare detection (e.g., GM Aur
or HD 163296). This variability is influenced by factors such as
the quality of the references, the brightness of the disk, and the
degree of angular diversity. Comparing the results, it is note-
worthy that for the 18 datasets analyzed with both DI-sNMF
(RDI) and IPCA (ARDI) detections, similar disk structures are
observed.

5.1. Inspecting protoplanet claims in individual systems

Among the systems presented above, four have unconfirmed pro-
toplanet claims from direct imaging observations (including two
such claims for MWC 758), and two exhibit kinematic signatures
that could indicate the presence of planets (including two candi-
dates for HD 163296). The different images showing the position
of the candidate(s) within their protoplanetary disk are provided
in Figs. 10 and 11. We propose to review the different candidates
in the following paragraphs.

HD 100546. A point-like feature, interpreted as a poten-
tial gas giant planet at 52 au from its star, was observed in
2013 with the NACO instrument installed at the VLT in the
L′ and M′ bands (Quanz et al. 2013, 2015; Currie et al.
2014, 2015, 2017). These observations were processed using
the ADI strategy with the PCA and LOCI algorithms. The
potential candidate is located within the broad-disk signal,
which was not recovered in the processed images shown in
these publications. Indeed, the disk was filtered out due to the
now well-known self-subtraction and over-subtraction effects
(Juillard et al. 2023, 2022; Milli et al. 2012), which worsen when
using a large number of principal components. Considering the
4 Only 18 datasets processed with DI-sNMF are presented in Ren et al.
(2023), but among the non-presented ones, five more can be considered
as clear detections (priv. comm.).
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Fig. 9. Gallery of protoplanetary disks datasets, originally described by Ren et al. (2023), and re-processed here with IPCA-ARDI. The images
have dimensions of 162 × 162 pixels (∼2′′) with logarithmic scale color bars. Images marked by a yellow star are those that were not presented in
Ren et al. (2023) due to the low quality of the produced disk estimation, but that we still consider as a detection in our IPCA-ARDI results. Images
marked with a red name are those that are not considered clear detection with IPCA-ARDI.

expected Keplerian motion on a circular orbit between 2013 and
2020, the candidate would have moved by approximately 8◦ in
position angle, which corresponds to a 6.5-pixel shift in the
image (see Fig. 10). No companion is recovered in our images
at those positions. In the ARDI images, as well as the DI-sNMF
results, an extended spiral-like structure stands out rather than
a point-like feature. Due to the presence of strong disk signal
dominating in the area where the candidate is located, we cannot
provide robust detection limits in the Ks filter for this candidate.

LkCa 15. Potential candidates were found using
observations in L′ and K bands taken with the near-infrared
imager NIRC2 of the Keck II telescope in 2009 and 2010

(Kraus & Ireland 2012), followed by several observations
between 2014 and 2015 using the Large Binocular Telescope
in L′, Ks, and Hα filters (Sallum et al. 2015). The detections
were interpreted as potential newly formed gas giant planets
surrounded by dusty material. However, it was mentioned that
the observed signal could represent a more complex structure
rather than a single point source (Kraus & Ireland 2012). In fact,
candidates buried within the disk pose a significant challenge
for detection. Additionally, limitations arise due to the high
variability of the speckle field in that specific image region
and due to the small working angle. Recent observations of
the disk support the hypothesis of a filtered disk signal, as
there are no discernible point-like features (PLF) in the disk
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HD 100546

LkCa 15 

HD 36112 (MWC 758) 

HD 169142 

Fig. 10. ARDI images processed with IPCA (left) and polarized images
processed with IRDAP (right) for all protoplanetary disks containing a
planet claimed via direct imaging (in logarithmic scales). An approxi-
mate position of the candidate is marked with a yellow square on the full
image, and a zoom on the candidate’s position is shown at the bottom
(30×30 pixels, linear scales). In each sub-image, the yellow cross marks
the candidate’s approximate position in the discovery paper, and the red
cross the expected position on the date of acquisition of the SPHERE
images presented in this work, considering a circular orbit. For LkCa 15,
given the multiple claimed point-like features at varying positions, we
only show two yellow orbits at 10 and 30 au defining the region where
the candidate(s) were proposed.

(Currie et al. 2019). The images provided by both DI-sNMF
and IPCA-ARDI corroborate this statement, since no PLF is
observable. The second row in Fig. 10 presents the approximate
positions where the diverse candidates should be located,
displaying two bound orbits at 10 and 30 au from the star.
Inferring detection limits for these candidates would be highly
unreliable, as they are located within an area of strong residual

HD 97048

HD 163296

Fig. 11. Same as Fig. 10, but for protoplanetary disks containing a planet
claim deduced via the observation of local deviations in Keplerian
velocity.

signals likely tracing a combination of inner disk and stellar
residuals.

HD 36112 (MWC 758). A first bright candidate was
reported by Reggiani et al. (2018) based on data acquired in 2015
and 2016 using Keck/NIRC2 in L′ band. The candidate, located
at 0.′′11 from its star, was captured from two ADI datasets pro-
cessed using PCA. The possibility that a bright artifact appeared
twice at the same location was considered, with an odds ratio of
approximately ∼1/1000. In the vicinity of the reported candidate,
the new images presented in this article and in Ren et al. (2023)
reveal a complex disk structure. However, it remains unclear
whether these structures are related to the PLF reported by
Reggiani et al. (2018), which was notably brighter than the rest
of the disk. An in-depth analysis is deferred to a future publi-
cation (Christiaens et al., in prep.). Additionally, a second, very
red protoplanet candidate was claimed by Wagner et al. (2019,
2023) near the tail of the northern spiral using observations
from 2016, 2017, 2018, and 2019 with LMIRCam mounted on
the Large Binocular Telescope Interferometer. Further analysis
of these two candidates, carried out by Boccaletti et al. (2021),
did not re-detect the candidates proposed by either Reggiani et al.
(2018) or Wagner et al. (2019), and did not find them consis-
tent with being spiral-driving planets assuming linear density
wave models. For these two candidates, the expected motion
between the first observation and the SPHERE Ks-band obser-
vations (shown in Fig. 10), according to Keplerian motion on
a circular orbit, would be respectively a 3.9-pixel shift and a
2.2-pixel shift. We do not re-detect them in our IPCA-ARDI
images, nor did Ren et al. (2023) using DI-sNMF. We performed
planet injection at the separation of the Wagner et al. (2019) can-
didate companion, and generated a contrast curve using PCA
with ADI-only in Appendix F.1. Our analysis reveals a detec-
tion threshold of approximately 2.6 × 10−5, which is consistent
with the contrast limit established by Grady et al. (2013) at
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this separation. According to the ATMO2020 model (Phillips
et al. 2020) and assuming no extinction, our contrast thresh-
old translates into a 1 Jupiter mass (MJup) sensitivity. This mass
sensitivity does not matches with the predicted mass of about 2–
3 MJup inferred by Wagner et al. (2019). This tension could be
explained by the usage of different planet evolution models, or
possibly by extinction or by the presence of a circumplanetary
disk (more details in Appendix F.1). Converting the contrast of
1 × 10−5 for the candidate in the L′ band as presented in Wagner
et al. (2019) into a mass using the ATMO2020 model for a con-
sistent comparison, we find a mass of 0.5 MJup, suggesting that
our detection limit would not allow us to detect the candidate.

HD 169142. Reggiani et al. (2014) and Biller et al. (2014)
independently observed a PLF in L′ band using independent ADI
datasets from VLT/NACO processed with PCA. Better images of
the disk obtained with SPHERE suggested that this candidate at
0.′′11 separation may rather trace filtered signal from the inner
ring of the disk (e.g., Ligi et al. 2019). Later, another candidate
was proposed using observations in polarized light from 2015,
along with two ASDI observations in 2017 and 2019 using the
IRDIS and multiple IFS observations between 2015 and 2019
(Gratton et al. 2019; Hammond et al. 2023). However, detect-
ing the candidate with ASDI required suppressing most of the
disk signal. The observations were conducted in J and Y JH
bands and the position of the candidate between 2015 and 2019
appeared to follow a Keplerian motion. The signal was inter-
preted as a gap-clearing Jovian-mass protoplanet surrounded by
a circumplanetary disk or envelope. Studies by Garg et al. (2021)
and Law et al. (2023) using ALMA observations revealed several
distinct chemical signatures that demonstrate a compelling link
to ongoing giant planet formation. Furthermore, compact CO
J = 2–1 and CO J = 3–2 emission counterparts were observed
that coincide with the location of the candidate planet. Yet, no
PLF appears in polarized light nor in total intensity for both
the DI-sNMF and IPCA-ARDI of the K-band images presented
here, at its predicted location at the epoch of the Ks observations
considered in this work (2021) assuming Keplerian motion. In
Appendix F.2, we attempt to infer the detectability of the can-
didate by injecting a fake planet at the same separation, using
the estimated contrast in Hammond et al. (2023). In this test, we
processed the dataset with IPCA-ARDI as well as plain PCA-
ADI. In addition, we provide the contrast curve obtained via
PCA-ADI in Fig. F.4. Our 5σ detection limit of 1 × 10−4 at
the expected location of the companion translates into 2 MJup
according to the ATMO2020 model, assuming no extinction.
In comparison, Hammond et al. (2023) report a Y JH contrast
of ∼1.5 × 10−5. Nevertheless, the detection of polarized inten-
sity colocated with the protoplanet suggests the measured Y JH
light is dominated by scattered light, making the mass conversion
using atmospheric models most probably irrelevant. Assuming
similar expected contrast in Ks band as in Y JH, our senitivity
limits do not allow us to confirm or refute the candidate.

HD 97048. A kinematic signature was detected in the gap
of the disk around HD 97048 using high-spectral and spatial-
resolution ALMA observations (Pinte et al. 2019). This signature
could be explained by the presence of a superjovian planet in
the disk, possibly at 130 au from the star. At this separation,
the motion of the candidate between the date of the first detec-
tion and our dataset would have been less than a 1-pixel shift.
Unfortunately, we were unable to directly observe any point-like
feature at this location in total intensity. We injected fake plan-
ets at the same separation as the candidate to assess the contrast

sensitivity of our reduction at its separation, and found that a can-
didate below a contrast of 1 × 10−5 in Ks-band would not have
been detected. Based on our contrast limit, the ATMO2020 mod-
els imply an upper mass limit of 0.5 MJ (see Appendix F.3). The
discrepancy with the kinematically inferred mass may suggest
the presence of extinction or the inadequacy of the ATMO2020
models for embedded protoplanets.

HD 163296. Using CO line observations, Pinte et al. (2018)
initially reported a local deviation from Keplerian velocity, sug-
gesting the presence of a massive body at approximately 260 au
from the star. Subsequently, Izquierdo et al. (2022) reobserved
the first candidate proposed by Pinte et al. (2018), along with a
second localized deviation from Keplerian rotation, potentially
associated with the presence of a giant planet at 94 au. The first
candidate proposed by Pinte et al. (2018) and Izquierdo et al.
(2022) at 260 au does not fit within the field of view of the images
presented in Figs. 11 and 9. At these separations, the motion
of the candidates between the date of the first detection and
the new dataset is negligible. We show another post-processed
image for the same dataset, with an uncropped field-of-view in
Appendix F.4 as well as contrast curve with PCA-ADI. No PLF
is observed at the locations of the two proposed sources in these
direct imaging observations with both IPCA-ARDI and PCA-
ADI, despite the estimated sensitivity reaching down to 3 × 10−4

in contrast (i.e., mass limit of 1 MJ) for the candidate at 260 au,
and 6 × 10−6 in contrast (i.e., mass limit of 4 MJ) at 94 au (see
details in Appendix F.4).

The direct observation of a protoplanet candidate within a
protoplanetary disk in direct imaging can necessitate the use
of aggressive post-processing techniques that lead to signifi-
cant disk flux loss and alterations to the apparent morphology
of the disk in order to reveal faint point-like sources. Many of
the directly imaged protoplanet claims presented in this sam-
ple rely on poor-quality images, exhibiting signs of self- and
over-subtraction. It remains unclear whether a PLF results from
filtered disk signal, from artifacts inefficiently corrected by post-
processing, or from an actual planet, especially for candidates
buried within the disk signal. This ambiguity makes it chal-
lenging to both confirm and refute these candidates. Indeed, the
absence of the proposed candidates cannot definitively discard
the claims, as the wavelengths might be inappropriate, the con-
trast could be too high, or the candidate might be buried within
the disk. Being able to capture high-quality images of the disk
using techniques such as ARDI with IPCA is still relevant to
prevent false candidates due to filtered disk signals.

6. Conclusion

We explored the possibility of combining the RDI and ADI
observing strategies by adapting the IPCA algorithm originally
designed for ADI datasets. Our main goal was to assess the
extent to which combining information from ADI and RDI could
enhance disk recovery compared to using each strategy inde-
pendently, while employing IPCA-based methods. Our analysis
encompassed systematic testing on a diverse set of 60 synthetic
datasets, covering a range of observing conditions and disk mor-
phologies. We tested our methods with both optimally chosen
reference stars and with a random mix of reference stars to assess
the impact of reference star quality on the estimated disk.

Our results revealed that ARDI consistently improves the
recovery of extended signals compared to using these tech-
niques individually. This improvement holds true across various

A185, page 13 of 21



Juillard, S., et al.: A&A, 688, A185 (2024)

scenarios, encompassing different observing strategies and disk
morphologies. A significant visual improvement from ARDI
occurs when a planet is hosted within a disk. At lower contrast
levels and for the more variable speckle pattern, RDI strug-
gled to capture the planet, while ADI had difficulty capturing
the disk structure, particularly due to the rotation-invariant flux,
which is an inherent ambiguity of the observing strategy. The
combination of these strategies emerges as a reliable approach
to mitigate the limitations of individual observing strategies,
addressing challenges that would otherwise be difficult to
overcome.

We also explored the problem of parameters’ optimization
for IPCA algorithms. While a good choice of parameters is
important, we found that multiple sets of parameters lead to
similar results. Nevertheless, we identified different scenarios
and matched them with specific parametrizations to provide opti-
mal results in each case. For the brightest disks with a stable
speckle field, it is better to start the iterative process at rank
one and have multiple iterations per rank before increasing the
rank (e.g., CPD-68 1894 or HD 36112 data presented in Sect. 5).
This ensures that most of the self-subtraction effects have been
mitigated before loosening the model of the speckle field by
increasing the rank. Conversely, when the disk is faint relative
to the speckle, it is necessary to start at a high rank and limit
the number of iterations per rank to avoid the bright artifacts
stemming from non-captured speckle field components from
being propagated in the subsequent iterations (e.g., V1094 Sco
or GM Aur datasets). Regarding the convergence of the itera-
tive process, we acknowledge the difficulty in building a reliable
stopping criterion, which is a common problem in computer sci-
ence (Nocedal et al. 2002). It is particularly challenging in our
case of application, as determining where to stop the iterative
process involves choosing a good compromise between noise
subtraction (non-propagation) as well as the filtering and recov-
ery of extended signals (convergence), and also because different
parts of the disk converge at different rates. Nevertheless, observ-
ing the convergence curves remains an interesting indicator of
the optimal iteration to be reached.

We applied our IPCA algorithm with ARDI to reprocess a
sample of 48 datasets that includes 29 different young stars sur-
rounded by protoplanetary disks exhibiting known substructures,
which were initially introduced by Ren et al. (2023) in both
polarized light and total intensity, using RDI through the DI-
sNMF algorithm. All disks from the 29 young protoplanetary
disk gallery published by Ren et al. (2023) that were successfully
recovered by DI-sNMF (RDI) were also successfully retrieved
with IPCA-ARDI. Under optimal conditions with ideal reference
stars, IPCA demonstrates capabilities comparable to those of DI-
sNMF in preventing over-subtraction. Furthermore, the usage of
ARDI enables the detection of fainter disks such as V1094 Sco.

While a few planet candidates were reported via direct imag-
ing among the sampled young stars, we did not reobserve any
of these candidates. This is at least partly due to limitations
in the achieved sensitivity in the considered filter (Ks), which
renders the detection of these companions challenging or unfea-
sible. While confirmed detections of protoplanets within disks
remain rare, with only a select number being reported in the lit-
erature (e.g., Keppler et al. 2018; Haffert et al. 2019), studying
young systems in their formative stages embedding protoplane-
tary disks housing nascent planets is crucial for understanding
the intricate process of planetary system formation. The applica-
tion of IPCA-ARDI holds promise in providing valuable insights
by preserving both the structures of the disk and clear images of
planets.
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Appendix A: Local convergence of IPCA-ARDI

Fig. A.1. Evolution of the IPCA with ARDI estimate through the iter-
ations. The dataset used is the same as in Fig. 3. The first grid of plots
(top) displays the final estimation segmented into patches of size 15×15
pixels. The second grid of plots (bottom) corresponds to the gradient
computed within these patches according to Eq. 4. The red lines indi-
cate the gtol threshold at ±10−2. If the threshold is reached, the curves
are displayed in green, and a black dot indicates at which iteration the
signal has converged. Otherwise, the curves are displayed in blue.

In this appendix, we study the evolution of the integrated flux
into different patches of the image through the IPCA iterative
process when using ARDI. Figure A.1 shows that the brightest
part of the disk converges faster than the rest of the image. We
can also observe that the parts of the image where no signal is
present do not seem to converge. It is important to note that the
observed non-convergence on the outer parts of the image where
there is no disk signal relates to the expression of the gradient.
Indeed, from Eq. (4) it is clear that for an estimate di that tends
toward zero, the quantity di−di+1

di
becomes more sensitive to minor

variations.

Appendix B: Comparison of the SSIM score
obtained by each algorithm

This appendix presents the results of the performance compari-
son for the three considered strategies (RDI, ADI, ARDI) using
the IPCA algorithm, for each test dataset, using the structural
similarity index measure (SSIM, Wang et al. 2004). For each
of the three 4 × 5-sized tables in Fig. B.1, each cell represents
a different test dataset (see Sect. 4 and Juillard et al. (2023)
for more details about the test datasets). In each cell, three bar
plots represent the SSIM obtained between the ground truth and
the final disk image obtained with each strategy using the IPCA
algorithm. White cells indicate that no strategy detected the disk.

Appendix C: Comparison of results for different
metrics

This appendix presents the performance of RDI, ADI, and
ARDI, using the IPCA algorithm, for each test dataset accord-
ing to four different metrics (see Fig. C.1: the Spearman rank
correlation coefficient, the Pearson correlation coefficient, the
Euclidean distance, and the sum of absolute differences (SAD).
A table using a fifth metric, the structural similarity index mea-
sure (SSIM, Wang et al. 2004), was already displayed in Fig. 6.
In all these figures, the color of the cell indicates which algo-
rithm performed the best according to the respective metrics.
White cells mean that no strategy detected the disk. White let-
ters on a cell indicate which strategy did not detect the disk
(R 7→RDI, A7→ADI, Ar7→ARDI). Black stars indicate that all five
metrics (Spearman, SSIM, Euclidean, Spearman, Pearson, and
SAD) agree on the strategy which achieved the best disk estima-
tion. Overall, it can be observed that the various metrics yield
relatively similar results. ARDI-IPCA is more frequently chosen
as the best reconstruction by all metrics, with an average selec-
tion rate of 67% across all metrics (considering detection only).
Among the tests where ARDI performed better, 45% of them are
unambiguously better as all metrics agreed. ADI tends to per-
form better for contrast 10−4 and for the sharpest disks (A, B)
where the deformations due to flux invariant to the rotation are
minimal. RDI seems more appropriate for low contrast (10−3),
stable datasets with well correlated references (#3) and for the
more face-on disks (C, D, E).

Appendix D: Results of disk estimations

This appendix presents the disk estimations obtained with RDI,
ADI, and ARDI, using IPCA, for all 60 test datasets considered
in this work (Figs. D.1A to D.4E).The figures of this appendix
are available on Zenodo: https://zenodo.org/records/
11442350.

Appendix E: IPCA parameters used to process the
images presented in Fig. 9

In this appendix, Table E.1 provides a comprehensive summary
of the parameters applied in the retrieval of the protoplanetary
disk gallery using ARDI-IPCA, as shown in Sect. 5.
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Excluded

Shuffled

Optimal

Fig. B.1. Results of our systematic tests comparing different strategies, namely RDI, ADI and ARDI with the IPCA algorithm. The organization of
this table is identical to Fig. 6, except that the value of the SSIM of the estimation obtained by each algorithm compared to the ground truth is also
represented within each cell by a colored histogram with RDI in yellow, ADI in blue, and ARDI in red.
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Fig. C.1. Same as Fig. 6 but for the four different metrics from top to bottom, respectively: Spearman’s rank, Pearson correlation, Euclidean
distance, and SAD.
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Table E.1. IPCA parameters used to reprocess each dataset from Ren
et al. (2023) in Sect. 5. For each dataset, this table provides the starting
rank and the number of iterations per rank. Regarding the number of
iterations per rank, “incr” stands for incremental and indicates that the
number of iterations increases by one at each rank (e.g., one iteration is
performed at the starting rank q, two at rank q+ 1, and so on). Addition-
ally, we also provide the number of iterations performed to obtain the
final frame selected from visual assessment (“final iter.”), the rank that
was reached at this iteration (“final rank”), and the mean and standard
deviation of the PCC between science images and references.

Star name Date Start. Iter. Final Final Mean STD
rank per iter. rank PCC PCC

rank
CI Tau 2021-12-09 10 incr 88 21 0.89 0.13
CQ Tau 2021-01-01 1 incr 85 8 0.83 0.02
CY Tau 2021-12-27 10 incr 10 13 0.93 0.04
CY Tau 2021-12-09 10 incr 10 13 0.94 0.02
DL Tau 2021-12-04 1 incr 10 1 0.96 0.01
DM Tau 2020-12-19 10 incr 105 23 0.80 0.05
DN Tau 2021-11-24 5 incr 6 7 0.79 0.25
DN Tau 2021-12-10 5 incr 6 7 0.88 0.05
DS Tau 2021-12-29 10 incr 6 12 0.85 0.07
GM Aur 2021-01-20 5 incr 8 9 0.80 0.04
HD 31648 2021-12-10 5 10 17 8 0.98 0.01
V1366 Ori 2020-11-28 1 10 41 4 0.70 0.36
V1366 Ori 2020-12-24 1 10 46 5 0.77 0.19
V1366 Ori 2020-12-27 1 10 41 4 0.74 0.18
HD 97048 2021-01-28 1 10 7 1 0.95 0.02
HD 100453 2022-06-09 1 10 85 8 0.45 0.06
HD 100546 2020-12-22 1 10 6 1 0.89 0.01
HD 143006 2021-06-30 1 10 85 8 0.75 0.11
HD 143006 2021-07-22 1 10 99 9 0.83 0.10
HD 163296 2022-06-11 15 10 145 28 0.87 0.06
HD 163296 2021-09-09 15 10 145 28 0.90 0.05
HD 163296 2021-09-26 15 10 145 28 0.92 0.03
HD 163296 2021-06-03 15 10 145 28 0.87 0.04
HD 163296 2021-04-06 15 10 145 28 0.88 0.03
HD 163296 2022-07-07 15 10 145 28 0.92 0.05
HD 169142 2021-09-06 1 10 31 3 0.79 0.26
IP Tau 2021-12-09 10 incr 105 23 0.94 0.02
IP Tau 2021-12-28 10 incr 105 23 0.91 0.03
IQ Tau 2022-01-06 10 incr 21 15 0.93 0.03
IQ Tau 2022-01-01 10 incr 91 22 0.94 0.03
IQ Tau 2022-01-03 10 incr 21 15 0.95 0.02
LkCa 15 2020-12-08 1 incr 12 2 0.76 0.03
LkCa 15 2020-11-27 1 incr 85 8 0.83 0.06
LkHA 330 2020-12-08 1 incr 54 10 0.89 0.01
HD 36112 2020-12-23 1 incr 22 2 0.93 0.01
HD 36112 2020-12-19 1 incr 23 3 0.93 0.01
HD 36112 2020-12-26 1 incr 51 5 0.92 0.01
CPD-68 1894 2021-06-04 1 incr 85 8 0.80 0.03
V351 Ori 2022-02-07 1 incr 85 8 0.78 0.02
CPD-36 6759 2021-06-04 1 incr 85 8 0.83 0.02
SR 20 2022-05-12 10 incr 22 15 0.98 0.01
SY Cha 2021-01-02 5 incr 151 19 0.72 0.06
SZ Cha 2020-12-29 1 incr 85 8 0.83 0.03
SZ Cha 2020-12-30 1 incr 12 2 0.83 0.03
V1094 Sco 2021-09-10 10 incr 65 20 0.80 0.05
V1247 Ori 2020-12-20 1 incr 85 8 0.75 0.04
V1247 Ori 2020-12-22 1 incr 11 1 0.75 0.06
V1247 Ori 2020-12-24 1 incr 18 2 0.72 0.06

Appendix F: Detectability of the protoplanet
candidates

This appendix presents further analysis for the candidate proto-
planets that are not mixed with coincident scattered light signal
from the circumstellar disk, thus enabling the possibility of com-
puting a reliable detection limit in terms of contrast, which
can then be converted into a mass detection limit. The mass
sensitivity is determined assuming no extinction, by convert-
ing our contrast limits using ATMO2020 evolutionary models
(Phillips et al. 2020).The contrast curves are computed for a
false positive probability equivalent to a 5σ detection in Gaus-
sian statistics, including the t-student correction for small sample
statistics, using routines from the Vortex Image Processing pack-
age5 (Gomez Gonzalez et al. 2017; Christiaens et al. 2023).
The different subsections of this appendix detail our protoplanet
detection limits and provide corresponding contrast curves and
translation to masses where relevant.

F.1. HD 36112 (MWC 758)

This section presents a test of detectability for the protoplanet
candidate proposed by Wagner et al. (2019) in the HD 36112
(MWC 758) system. The test involves injecting fake planets at
the same separation as the candidate, using contrasts of 8× 10−6,
1× 10−5 and 2× 10−5. Figure F.1 shows the results achieved with
IPCA (left) on the dataset with the injected planet, in compari-
son to a result using a rank-3 PCA based on ADI only (right).
Regarding the chosen rank for PCA, we processed the data for
ranks 1 to 10 and identified the most effective rank for retrieving
the fake companion through visual assessment. Additionally, in
Fig. F.2, we present a 5σ contrast curve computed with rank-3
PCA using ADI only. We observe that only the simulated candi-
date at 2×10−5 is successfully recovered. The injected simulated
planet is distinctly visible after post-processing the data with
PCA and ADI-only, but this approach also introduces numer-
ous point-like features attributable to the filtered disk. However,
this same injected companion at 2 × 10−5 is undetectable in the
image recovered with IPCA+ARDI considering the chosen rank
and iteration. This is because the feature becomes blended with
the brighter disk halo when the entire disk is recovered. The 5σ
contrast curve with the rank-3 PCA corroborates our observa-
tion and shows a sensitivity reaching a contrast of ∼2.6 × 10−5

at the separation of the candidate (0.′′6), which is consistent
with the 3 × 10−5 contrast limit established by Grady et al.
(2013) at this separation. According to the ATMO2020 model
and assuming no extinction, our contrast threshold translates into
a 1MJup sensitivity. This mass sensitivity does not match with
the predicted mass inferred by Wagner et al. (2019), which was
2 − 3MJup, using the COND “hot-start” model (Baraffe et al.
2003, 2015). Indeed, the ATMO2020 model primarily focuses
on the atmospheric properties of exoplanets, while the COND
hot-start model focuses on the early stages of giant planet for-
mation, particularly the rapid accretion of gas and dust from
a protoplanetary disk and the subsequent generation of inter-
nal heat. Nevertheless, to enable a consistent comparison, we
also convert the contrast of 1 × 10−5 for the candidate in the L′
band as presented in Wagner et al. (2019) into a mass using the
ATMO2020. We found a mass of 0.5MJup, suggesting that our
detection limit of 1MJup would not allow us to detect the candi-
date. All quoted mass conversions assume negligible extinction
from circumplanetary and circumstellar material, which is likely

5 https://github.com/vortex-exoplanet/VIP
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optimistic. Inclusion of extinction would inflate our mass limits,
affecting more the mass inferred from the Ks-band contrast than
the mass inferred from the L’ band.

Regarding the protoplanet proposed by Reggiani et al. (2018),
we can observe in the images that complex structures arise at the
separation of the candidate, including point-like features, espe-
cially when using PCA with ADI-only. This could be explained
by filtered disk signal.
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Fig. F.1. Results of IPCA (left) and 3-rank PCA with ADI only (right)
for the VLT/SPHERE dataset of HD 36112 (Ren et al. 2023). Three
simulated companions at a separation of 0.′′6 have been injected into the
cube, with contrasts of 8 × 10−6, 1 × 10−5, and 2 × 10−5. White lines
indicate their positions. Two squares are displayed to mark the locations
of the two claimed protoplanets: a red square at 0.′′1, indicating the can-
didate proposed by Reggiani et al. (2018), and a yellow square at 0.′′6,
referring to the candidate proposed by Wagner et al. (2019).
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Fig. F.2. Contrast curve at 5σ confidence for the HD 36112 dataset,
processed using rank-3 PCA with ADI only.

F.2. HD 169142

This section presents a test of detectability for the protoplanet
candidate proposed by Gratton et al. (2019) and Hammond et al.
(2023) in the HD 169142 system. The test involves injecting a
fake planet candidate at the same separation of 0.′′31, using a
contrast of 1.5 × 10−5 as estimated by Hammond et al. (2023).
Similarly as in Appendix F.1, Fig. F.3 shows the results of IPCA
and rank-3 PCA post-processing with ADI-only results for the
dataset with the injected planet. Figure F.4 presents the 5σ con-
trast curve using rank-3 PCA with ADI-only. In Fig. F.3, the
injected planet is barely visible, and only for the rank-3 PCA
processing. Although it is at the noise level, it is still discernible
due to its clear surrounding, likely a result of the over-subtraction
effect. According to the contrast curve in Fig. F.4, the sensitiv-
ity at the separation of 0.′′31, where the candidate is located, is
1 × 10−4. Moreover, PCA also reveals numerous point-like fea-
tures due to the filtered bright inner disk. No such PLF appears
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Fig. F.3. Results of IPCA with ARDI (left) and rank-3 PCA with ADI
only (right), for an injected companion at a separation of 0.′′31 into the
VLT/SPHERE dataset of HD 169142 (Ren et al. 2023), using a contrast
of 1.5 × 10−5. The position of the simulated candidate is indicated by
a red square, while the location of the actual candidate proposed by
Gratton et al. (2019); Hammond et al. (2023) is marked by a yellow
square
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Fig. F.4. Contrast curve at 5σ confidence for the HD 169142 dataset,
processed using PCA with ADI only. The separation of the candidate at
0.′′31 is indicated by a black vertical line. The yellow star indicate the
expected contrast of the candidate, inferred by Hammond et al. (2023).

at the location of the actual protoplanet candidate. Our detec-
tion limit of 1 × 10−4 translates to 2MJup, according to the
ATMO2020 model, assuming no extinction. In comparison, the
contrast in Y JH bands reported by Hammond et al. (2023) cor-
responds to 1MJup. Nevertheless, these results must be put into
perspective regarding the presence of signal at the location of the
protoplanet in polarized intensity images shown in Hammond
et al. (2023), suggesting the presence of circumplanetary dust.
Hence, the usage of the ATMO2020 model and the assumption
of no extinction might not be appropriate. Therefore, the sensi-
tivity limits in our data do not allow us to confirm or refute the
candidate.

F.3. HD 97048

This section presents a test to infer the detection limit in the
Ks-band for the protoplanet candidate deduced by Pinte et al.
(2019) using local deviations in the Keplerian velocity in the
disk surrounding HD 97048. The test involves injecting several
fake planet candidates at the same separation as the candidate.
For an injected planets at a contrast of 3 × 10−5, we observe a
marginal detection. Fake planets injected with a contrast below
1× 10−5 are not recovered, indicating that we cannot detect plan-
ets smaller than one Jupiter mass with our images, according
to the ATMO2020 model, assuming no extinction. Figure F.5
displays the image with the fake planet at contrast 3 × 10−5,
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Fig. F.5. Results of IPCA (left), and rank-3 annular-PCA (right) with
ADI only, for a fake companion at a separation of 0.′′45, using a contrast
of 3 × 10−5 injected into the VLT/SPHERE dataset of HD 97048 (Ren
et al. 2023). The location of the fake candidate is indicated by a red
square, while the location of the actual protoplanet candidate inferred
through the observation of kinks by Pinte et al. (2018) is indicated with
a yellow square.

obtained with IPCA (left) and with 3-rank PCA with ADI-only
(right). The injected simulated planet is visible with both PCA
with ADI-only and IPCA with ARDI results. The PCA estima-
tion also reveals numerous point-like features due to the filtered
bright inner disk. Notably, no such point-like feature appears
at the location of the actual protoplanet candidate. No contrast
curve is provided for this dataset, as there is a disk signal at the
same separation as the candidate.

F.4. HD 163296

This section presents the 6′′-width uncropped observations of
HD 163296 to check for any possible signal arising at the loca-
tion of the detected kinks at 260 au (2.′′2) from the star (Izquierdo
et al. 2022; Pinte et al. 2018). We present in Fig. F.6 the results
of the processed data using IPCA and PCA, both with ADI-only,
and contrast curve is shown in Fig. F.7, indicating an achieved
5σ contrast of 6 × 10−6 at a separation of 2.′′2. In Fig. F.6, no
signal is observed at the candidate location, suggesting that the
companion might have a contrast below the detection limit of
6 × 10−6. We injected multiple simulated companions at a sepa-
ration of 2.′′2, with contrasts ranging from 1 × 10−3 to 3 × 10−6.
We found that for a contrast below 6 × 10−6, the injected com-
panion is hardly differentiable from remaining speckle patterns
that have not been well subtracted. Additionally, the IPCA results
reveal a halo spanning approximately from 2.′′3 to 4.′′5. In a pre-
vious study using data from the Hubble Space Telescope, Grady
et al. (2000) reported extended signal between 2.′′9 and 3.′′2 in the
southeast and northeast of HD 163296. However, our observa-
tion exhibits a distinctively circular halo, which does not match
the disk inclination, suggesting that this signal may not originate
from a circumstellar source and may not be related to the signal
observed by Grady et al. (2000).

For the kink observed at a separation of 0.′′85, our detec-
tion limit at 5σ-contrast of 3 × 10−4, translates to an apparent
magnitude of MKs ∼ 13.6. According to the ATMO2020 evolu-
tionary models (Phillips et al. 2020), this magnitude corresponds
to a mass sensitivity of approximately 4 Jupiter masses, while
neglecting extinction. Hence, our observations may not reach
sufficient depth to detect a Ks-band counterpart for this particu-
lar kink.

For the kink situated at 2.′′2, our detection limit at 5σ-contrast
of 8×10−6 corresponds to an apparent magnitude of MKs ∼ 17.8.
This sensitivity level is lower than 1MJup (with MKs < 16.3)

based on the ATMO2020 evolutionary models and approxi-
mately 1 Jupiter mass (MJ ∼ 17.5) according to the BEX models
(Linder et al. 2019), assuming no extinction effects. Notably,
based on the amplitude of the kink, Pinte et al. (2018) suggested a
potential 2MJup planet, which would imply an expected apparent
magnitude of MKs ∼ 15.6 based on the BEX models. This dis-
crepancy suggests a significant extinction effect in the Ks band,
estimated to be AKs ≳ 2.0.

A185, page 20 of 21



Juillard, S., et al.: A&A, 688, A185 (2024)

-5.0 -2.5 0.0 2.5 5.0

-5.0

-2.5

0.0

2.5

5.0

1e 3

1e 4

1e 5

5e 6

3e 6

-5.0 -2.5 0.0 2.5 5.0

-5.0

-2.5

0.0

2.5

5.0

1e 3

1e 4

1e 5

5e 6

3e 6

Fig. F.6. Results of IPCA (left) and rank-2 PCA (right) both with ADI only, for the uncropped observations of HD 163296. The position of the
candidate, inferred by Izquierdo et al. (2022) and Pinte et al. (2018) from a local deviation in Keplerian velocity, is marked by the yellow square
with dimensions 60 × 60 pixels. A zoom into the 60 × 60 pixels aperture is displayed in the bottom left of each image, with the planet’s location
indicated by an arrow on the smaller images. Five simulated companions at a separation of 2.′′2 have been injected into the cube, with contrasts
ranging from 1 × 10−3 to 3 × 10−6. White circle indicate their positions.
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Fig. F.7. Contrast curve at 5σ confidence for the HD 163296 dataset,
processed using PCA with ADI only. The separation of the candidate,
inferred by Izquierdo et al. (2022) and Pinte et al. (2018) from a local
deviation in Keplerian velocity at 2.′′2, is indicated by a black vertical
line.
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