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Abstract

The primary aim of this thesis was to enhance the modeling of hadronic

interactions at high and ultra-high energies. This research delved into

the complex dynamics of hadronic interactions, specifically focusing on

proton-proton pp and proton-antiproton pp̄ scattering. The central issue

addressed was the unitarity of the S-matrix, with an emphasis on selecting

the most accurate unitarity condition for composite particle interactions

at high energies.

To achieve this, two unitarization schemes were thoroughly examined:

the eikonal and the U -matrix schemes. These schemes were rigorously

tested for their effectiveness in predicting crucial hadronic observables

such as total, elastic, inelastic, and diffractive cross-sections, as well as

multiplicity distributions. The first study evaluated the implications of

high-energy collider data (up to
√
s = 13 TeV) on these cross-sections,

demonstrating that the U -matrix scheme provides a fit to the data com-

parable to the eikonal scheme, with some differences that could impact

Monte Carlo simulations.

The second study extended this analysis by incorporating diffractive

interactions within a two-channel model, showing that both schemes fit

the data well, with a slight preference for the U -matrix. This study also

highlighted that the extended versions of these schemes, though slightly

improved, still faced challenges in fitting the single diffractive cross-section

accurately.

In the third study, a multi-channel model was explored, primarily us-

ing the U -matrix scheme. This model accurately described various cross-

sections but underperformed in estimating the double-diffractive cross-

section, suggesting that an additional pomeron interaction might be nec-

essary. It was also found that the U -matrix scheme better accounts for

potential pomeron correlations, which could influence predictions for ultra-

high energy cosmic rays.

The fourth study introduced a phenomenological model for multi-particle

production based on the geometrical approach and U -matrix scheme. The

model provided a reasonable description of multiplicity distributions across
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a broad energy range but revealed violations of geometrical and KNO scal-

ing. The study highlighted the role of the U -matrix scheme in understand-

ing the impact of collision geometry on multi-particle production.

Lastly, the fifth study focused on the Pomeron topological cross-section

and multiplicity distribution using the Kancheli formalism. It was ob-

served that in the U -matrix scheme, pomerons exhibit geometric correla-

tions, which were not present in the eikonal scheme. This finding could

resolve discrepancies between Gribov-Regge theory and string models.

In summary, this thesis contributes to the field of high-energy hadronic

interactions by demonstrating the utility of the U -matrix scheme in pro-

viding improved predictions and insights into complex phenomena such as

multi-particle production and pomeron exchange. The scheme’s reliable

extrapolation to ultra-high energy regimes makes it a promising candidate

for future research and applications, particularly in Monte Carlo event

generators for particle colliders and cosmic-ray physics.

This research establishes a solid foundation for further exploration of

hadronic interactions at ultra-high energies and offers valuable theoreti-

cal perspectives and techniques for advancing particle physics and astro-

physics. The thesis marks a significant step in addressing the ongoing

challenges in this field.



Résumé

L’objectif principal de cette thèse était d’améliorer la modélisation des

interactions hadroniques à haute et très haute énergie. Cette recherche

a exploré les dynamiques complexes des interactions hadroniques, en se

concentrant spécifiquement sur les interactions proton-proton pp et proton-

antiproton pp̄. La question centrale abordée était l’unité de la matrice S,

avec un accent sur le choix de la condition d’unité la plus précise pour les

interactions des particules composites à haute énergie.

Pour ce faire, deux schémas de unitarisation ont été examinés en pro-

fondeur : le schéma éikonal et le schéma U -matrice. Ces schémas ont

été rigoureusement testés pour leur efficacité à prédire des observables

hadroniques cruciales telles que les sections efficaces totales, élastiques,

inélastiques et diffractives, ainsi que les distributions de multiplicité. La

première étude a évalué les implications des données des colliders à haute

énergie (jusqu’à
√
s = 13 TeV) sur ces sections efficaces, démontrant que

le schéma U -matrice fournit un ajustement des données comparable à celui

du schéma éikonal, avec certaines différences susceptibles d’affecter les sim-

ulations de Monte Carlo.

La deuxième étude a étendu cette analyse en incorporant des inter-

actions diffractives dans un modèle à deux canaux, montrant que les

deux schémas ajustent bien les données, avec une légère préférence pour

le schéma U -matrice. Cette étude a également souligné que les versions

étendues de ces schémas, bien que légèrement améliorées, rencontrent tou-

jours des difficultés pour ajuster avec précision la section efficace diffractive

unique.

Dans la troisième étude, un modèle multi-canaux a été exploré,

principalement en utilisant le schéma U -matrice. Ce modèle a décrit avec

précision diverses sections efficaces mais a sous-performé dans l’estimation

de la section efficace double-diffractive, suggérant qu’une interaction

supplémentaire de pomeron pourrait être nécessaire. Il a également été

constaté que le schéma U -matrice rend mieux compte des corrélations

potentielles des pomerons, ce qui pourrait influencer les prévisions pour

les rayons cosmiques à très haute énergie.
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La quatrième étude a introduit un modèle phénoménologique pour la

production de multiparticules basé sur l’approche géométrique et le schéma

U -matrice. Le modèle a fourni une description raisonnable des distribu-

tions de multiplicité sur une large gamme d’énergies, mais a révélé des

violations du scaling géométrique et du scaling KNO. L’étude a mis en

évidence le rôle du schéma U -matrice dans la compréhension de l’impact

de la géométrie de collision sur la production de multiparticules.

Enfin, la cinquième étude s’est concentrée sur la section efficace

topologique des pomerons et la distribution de multiplicité en utilisant le

formalisme de Kancheli. Il a été observé que, dans le schéma U -matrice,

les pomerons présentent des corrélations géométriques, ce qui n’est pas le

cas dans le schéma éikonal. Cette découverte pourrait résoudre les écarts

entre la théorie de Gribov-Regge et les modèles de cordes.

En résumé, cette thèse contribue au domaine des interactions

hadroniques à haute énergie en démontrant l’utilité du schéma U -matrice

pour fournir des prévisions améliorées et des aperçus sur des phénomènes

complexes tels que la production de multiparticules et l’échange de

pomeron. La capacité fiable du schéma à extrapoler aux régimes d’énergie

ultra-haute en fait un candidat prometteur pour les recherches et applica-

tions futures, notamment dans les générateurs d’événements Monte Carlo

pour les collisionneurs de particules et la physique des rayons cosmiques.

Cette recherche établit une base solide pour une exploration plus ap-

profondie des interactions hadroniques à très haute énergie et offre des

perspectives théoriques et des techniques précieuses pour faire progresser

la physique des particules et l’astrophysique. La thèse marque une étape

significative dans le traitement des défis en cours dans ce domaine.
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1 Introduction

1.1 Statement of the problem

The universe is constantly experiencing violent phenomena that result in

the production of certain particles whose energy ranges from a few GeV to

extremely high energies exceeding 1019 eV, namely cosmic rays, neutrinos,

and gamma rays. Since these particles are detected on Earth, they are of-

ten regarded as excellent astrophysical ”messengers” carrying information

that could potentially provide solutions to a wide range of physics and

astronomy-related concerns.

In particular, cosmic rays incessantly strike the Earth’s atmosphere.

These high-energy particles are mostly made up of 90% protons. Research

has indicated that the cosmic ray flux declines sharply as energy increases.

In fact, at energies above 1014 eV, the direct detection of these particles is

unfeasible. Instead, they are investigated indirectly either by observing the

cascades of particles stemming from their interaction with the Earth’s at-

mosphere, commonly known as air showers, or by measuring the secondary

particles reaching the ground. Ultra-high-energy cosmic rays (UHECRs),

on the other hand, refer to cosmic rays with energies above 1018 eV (1

EeV). Their interaction with air nuclei in the upper atmosphere gives rise

to extensive air showers (EAS).

The study of these UHECRs has considerably evolved with the advent

of large detector arrays. For instance, IceTop, LOFAR, the Pierre Auger

Observatory, and the Telescope Array are renowned air shower experiments

covering cosmic-ray energies exceeding 1016 eV.

In spite of the considerable progress with respect to the detection and

characterization of cosmic rays over the last few years, many questions

about UHECRs still need to be answered, mainly with regard to their

origins, mass composition, as well as the mechanisms accelerating these

particles to such extreme energies.

It is worth noting that the observation of these messengers does not only

provide valuable information about distant and violent places, but it also

checks our understanding of particle physics since the process involving the
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CHAPTER 1. INTRODUCTION 2

production of these messengers at the source, their propagation across the

space, till their arrival at Earth, is governed by the laws of particle physics.

Cosmic ray physics, for example, uses these particles as a means to probe

hadronic interactions at an energy level that goes beyond that possible

in terrestrial experiments, such as those conducted at the Large Hadron

Collider (LHC). Specifically, as the energy of the UHECRs is significantly

higher than that obtained by man-made accelerators, this makes them an

ideal laboratory for investigating hadronic interactions at extremely high

energies.

Therefore, by extending the energy range of observed interactions, cos-

mic ray data supplement collider experiments and allow for the study of

hadronic interactions, spanning several orders of magnitude. This thor-

ough coverage of energy ensures continuity in the understanding of energy

dependence and helps in the improvement of hadronic models.

Air shower data is collected through ground-based detectors, such as

those at the Pierre Auger Observatory and the IceCube Neutrino Obser-

vatory, which enables the reconstruction of early hadronic interactions.

Monte Carlo (MC) simulation codes, based on different hadronic interac-

tion models, such as QGSJET, EPOS, and SIBYLL, are fundamental in

this reconstruction process.

It is worthwhile to note that although we have a strong grasp of electro-

magnetic interactions in the process of cosmic-ray air shower formation,

modelling hadronic interactions remains a challenging task. This is mainly

due to the paucity of accelerator data within the relevant phase space for

air showers, especially in forward particle physics and to the necessity of

extrapolating theoretical or phenomenological descriptions of accelerator

data to considerably higher energies.

Moreover, modelling hadronic interactions is not devoid of uncertainties,

as results vary depending on the specific model employed, and there is a

notable discrepancy between predictions and measurements in the descrip-

tion of cosmic-ray observables. For instance, the muon puzzle, referring

to the divergence between model predictions and the observed number of

muons produced in extensive atmospheric air showers, is one of the long-

standing problems in air-shower physics. The reason for this disparity

is that the simulation results are not in line with actual measurements.

Furthermore, an initial investigation [40] revealed significant variations in

the muon spectra predicted by distinct hadronic interaction models at the

atmospheric depth where the IceTop surface array of IceCube is located.
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Hadronic interactions, involving particles that undergo strong inter-

actions, are at the core of Particle Physics. They are mainly described

through Quantum Chromodynamics (QCD), which is now widely recog-

nized as the theory of strong interactions. It is a sophisticated and highly

nonlinear quantum field theory describing how quarks and gluons, which

are the fundamental building blocks of hadrons, such as protons and neu-

trons, interact and bind together to create observable particles.

Nevertheless, as a perturbative theory, QCD is most applicable to pro-

cesses in which the coupling constant is small. Indeed, the QCD coupling

constant, αs, depends on the energy scale of the interaction Q2 (the mo-

mentum transferred between quarks and gluons). Fig. 1.1 illustrates the

running coupling constant αs as a function of the energy scale Q, derived

from distinct measurements and QCD calculations.

Owing to the fact that the coupling constant depends on the energy

scale, QCD processes can be classified into two regimes, namely Hard

QCD and Soft QCD processes.

According to Fig. 1.1, first, it can be seen that at large energy scales

when compared to ΛQCD, i.e. small distances, αs becomes small. This is

known as asymptotic freedom and in this regime termed as Hard QCD,

perturbative calculations are applicable. Second, for large distances or at

the low momentum scale, the QCD coupling constant becomes large, and

the perturbation theory breaks down. This regime is known as Soft QCD.

In view of the interplay between the two aforementioned regimes, QCD

exhibits a depth and complexity that requires a number of theoretical

tools so as to properly understand the behavior of the strong interaction

at different energy scales.

Despite the considerable advancements in the theoretical description

of high-energy hadron collisions during the last few years, we haven’t ac-

quired yet a good grasp of all of its facets. This is mainly due to the

fact that high-energy hadronic and nuclear collisions are characterized by

multi-particle productions, encompassing a wide range of phenomena. Be-

sides, most of the particles produced are soft in nature with low transverse

momenta. Thus, an accurate physical description of soft production pro-

cesses is mandatory.

However, there is a scarcity of methods and/or strategies that can be

used to handle these soft production processes based on sound theoretical

foundations. For this reason, one must instead turn to effective mod-

els, which are abundant in the literature and are primarily based on the
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Figure 1.1: Compilation of the measurements and QCD calculations on the running

coupling constant αs as a function of the energy scale Q. Figure taken from [3].
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Gribov-Regge phenomenology. They hinge on fundamental principles of

quantum field theory – such as unitarity, analyticity and crossing, along

with empirical parameterizations. While these models have succeeded, to

a certain extent, in describing some of the aspects of hadronic interactions,

they still need to be enhanced, especially through testing the hypotheses

that are central to their construction, constraining the parametrizations,

and fine-tuning the parameters using data comparisons available from both

colliders as well as cosmic-ray air showers.

The primary goal of the hadronic interaction models developed within

the Gribov-Regge framework is to accurately describe hadronic observables

measured by accelerator experiments. Since we heavily rely on them to

extrapolate to ultra-high energy scenarios, they should necessarily be in-

ternally consistent. It is worth noting that while the foundational assump-

tions of these models somewhat vary, the majority of them use the eikonal

approximation to ensure the unitarization of the scattering hadronic am-

plitude. As a matter of fact, the unitarization process is key in QFT and

particle physics as it ensures that the scattering amplitude satisfies the

unitarity condition. This condition guarantees that the total probability

of all possible outcomes of a scattering process is one, which preserves

physical probabilities.

Technically, the exchange of ”Regge poles”, such as the pomeron, is

the primary contributor to high-energy scattering in these models. Nev-

ertheless, at very high energies, the scattering amplitude is often not well

described by a single pomeron exchange. Instead, multiple pomeron ex-

changes need to be considered. When dealing with them, the eikonal ap-

proximation is especially useful for integrating unitarity into these models.

Nonetheless, we believe that the eikonal approximation is not an ade-

quate unitarisation scheme when dealing with composite particle scatter-

ing, like hadrons. Thus, we should consider alternative schemes to try to

reduce the uncertainties in hadronic interaction modeling, especially when

employing these models for ultra-high energy extrapolation.

Gaining a solid understanding of the Soft QCD processes, which are

dominated by non-perturbative effects, is essential to comprehending

hadronic interactions at high energies. Hadronization— a process involv-

ing the formation of observable hadrons by quarks and gluons produced

in high-energy collisions—is, in fact, one of the fundamental phenomena

in the Soft QCD regime. This intricate process is described by means of

string models along with the Gribov-Regge phenomenology, where quark
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confinement is represented by flux tubes or ”strings” connecting them.

To satisfy the unitarity principle, these string models make use of the

eikonal approximation.

However, several studies have furnished evidence in support of the in-

sufficiency of the utilized eikonal or its enhanced version, the quasi-eikonal

scheme, in providing a comprehensive description of the physics in ques-

tion. Not to mention the fundamental issues with string models that

still need to be solved. In these string models, produced particles are

assumed to come from the exchanged Pomerons which are identified from

the Gribov-Regge theory, each of which consists of two strings. In this

approach, the probability of having configurations with n string pairs is

the probability of having a certain number of these n pomerons exchanged,

which is Poissonian via the eikonal scheme. Unfortunately, this approach is

inconsistent for two main reasons. To begin with, in the string picture, the

first and subsequent pairs are of different nature, whereas in the Gribov-

Regge approach, all pomerons are identical. Secondly, in the string model,

energy is properly shared among the strings, while the Gribov-Regge ap-

proach does not consider energy sharing at all.

Overall, the aforementioned issues relating to the modelling of hadronic

interactions from collider to cosmic-ray physics have motivated us to un-

dertake this study in hopes of resolving them and particularly reducing

the uncertainties in hadronic interaction modelling so as to obtain better

and more accurate results.

Our belief is that the eikonal approximation which is a common ingredi-

ent in the majority of the hadronic models, is not an adequate unitarisation

scheme when dealing with composite particle scattering, such as hadrons,

and especially when employing these models for ultra-high energy extrap-

olation. In this project, we aim to reduce the uncertainties in hadronic

interaction modelling by maintaining consistency and coherence with the

foundational principles of Quantum Field Theory (QFT) across a range of

energies, from those accessible at the LHC to the extremely high energies

observed in cosmic rays by considering alternative unitarization schemes

and examining the uncertainty attached to them. It has evolved into a de-

tailed study of the U -matrix scheme compared with the eikonal one, and

to provide an attempt to explain the fundamental differences between the

two schemes, despite that both verify the unitarity constraint principle.

Moreover, to prove what unitarisation scheme is more adequate for de-

scribing interactions of composite particles like hadrons and highlight how
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this approach may provide solutions to the issues in cosmic-ray physics,

enhancing our understanding of soft QCD processes and offering a more

consistent framework for modeling hadronic interactions.

1.2 Structure of the Thesis

This thesis is divided into eight major chapters. In chapter 1 a general

introduction to the research presented in this thesis is provided and the

choice of the topic is justified. Chapter 2 will focus on the fundamen-

tal formalism related to high-energy hadron scattering, namely the Regge

theory and outline the optical theorem which allows for the calculation of

the total cross-section. Chapters 3,4,5,6 and 7 contain the articles. Each

of these chapters starts with a general context, including the theoretical

framework, the main objectives, as well as the methodology adopted. Fi-

nally, chapter 8 will summarize the main findings of the thesis. It will also

shed light on its strengths and contributions to the field of high-energy

hadronic interactions. Moreover, it will suggest possible directions for fu-

ture research.
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2 Theoretical framework of high en-

ergy hadron scattering

This chapter reviews the fundamental formalism [53] describing the soft

high-energy hadron scattering, which lies at the core of several phenomeno-

logical models. More specifically, this formalism is grounded in the S-

matrix theory. Indeed, the application of the Quantum Field Theory

(QFT) to the study of strong interactions was not thought of before the

inception of QCD. As an alternative, physicists focused on examining the

implications of a number of tenets about the S-matrix, and mainly com-

prise; unitarity, analyticity, and crossing symmetry, each of which is asso-

ciated with basic axioms.

2.1 S-matrix theory

The basic quantity to study in particle physics is the probability that a

certain set of particles in a given initial state |i > undergo a collision and

scatter into a final state |f >.
To this effect, the process is described by the quantity

Sfi =< f |S|i > (2.1)

where S is called the S-matrix (S for scattering) and Sfi are the matrix el-

ements. Since the scattering must also include the possibility that nothing

occurs, the S-matrix is written in terms of the T -matrix, namely

Sfi = δfi + i(2π)4δ4(Pf − Pi)Tfi (2.2)

where the 4-dimensional δ-function imposes energy-momentum conser-

vation on all particle momenta pj, and, with obvious notation, Pi,f =∑
all pi,f . The relevant matrix elements define the scattering and are func-

tions of the momenta of the scattering particles, in particular of the various

invariants which can be constructed with the momenta. Let us then turn

to the kinematics before going further into the dynamics.

9
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Before the development of QCD nobody dared to apply quantum field

theory to the strong interactions. Instead, physicists tried to extract as

much as possible by studying the consequences of a (reasonable) set of

postulates about the S-matrix :

These general principles were established in the late ’50s and consist of

unitarity, analyticity and crossing symmetry. Each of them is related to

basic axioms:

• unitarity to the conservation of probability in scattering processes;

• analyticity to causality and

• crossing symmetry to the relativistic nature of the interaction.

These basic principles are also at the foundations of relativistic Quantum

Field Theory (QFT).

2.2 Unitarity and the scattering amplitude

The measurement of the total cross-section is based on two complementary

methods: counting the number of collisions and, measuring the very for-

ward scattering probability. The second method is based on a fundamental

physical property i.e., the conservation of probability, which is embedded

in the unitarity property of the S-matrix, namely

SS† = 1 (2.3)

In terms of the matrix elements, we have

(SS†)fi =
∑

n

SfnS
∗
ni = δfi (2.4)

where n runs on all possible intermediate states. This condition ensures

the normalization and orthogonality of states in the reaction. In particular,

for the i = f case, Eq. 2.4 ensures that the sum over all allowed transitions

from a given state |i > to any possible final state, is one, namely

∑

n

|Sni|2 = 1 (2.5)

Eq. (2.5) is the statement of conservation of probability in the scatter-

ing.
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We can now proceed to derive the optical theorem, by using Eqs. (2.4)

and (2.2) to obtain

Tfi − T ∗
if = (2π)4

∑

n

δ4(Pf − Pn)TfnT
∗
in (2.6)

Because the left hand side of this equation is linear in T, while the

right hand side is quadratic, if the T-matrix can be expanded in a small

parameter (say a coupling constant), then unitarity ensures that the T-

matrix elements are hermitian. In the general case, one uses Eq. (2.6) to

obtain the optical theorem, namely

2ImTii = (2π)4
∑

n

δ4(Pi − Pn)|Tin|2 (2.7)

where the amplitude Tii indicates elastic scattering in the forward direction

and where the right hand side, a part from a normalization factor, gives

the total cross-section for scattering from an initial state |i > into any

possible final state, as shown in the following subsection. The reader is

warned that different authors use different normalizations for the elastic

scattering amplitudes and hence due care must be taken in using various

unitarity expressions.

2.3 The optical theorem and the total cross-section

The Cutkosky rule (1.7) [Cut60] provides a very interesting relation be-

tween the forward amplitude of an elastic process a(p1)+b(p2)− > a(p3)+

b(p4) and the total cross-section. Forward scattering, t = (p1 − p3) =

(p2 − p4)
2 = 0, means p1 = p3 and p2 = p4. Thus

Here, pn indicates the total momenta of the final state and n indicates

all possible final states. F stands for the flux factor

F = 4
√
(p1 · p2)2 −m2

1m
2
2

In the center-of-mass frame (c.m.s.) and with negligible masses, we find

F ≡ 2s, and thus

σtotal =
1

s
Im (A(s, t = 0)) (2.8)
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Figure 2.1: The optical theorem.

2.4 Partial-wave Amplitudes and Impact Parameter

representation

The scattering amplitude can be efficiently decomposed by identifying the

partial-wave amplitudes. The scattering of states having differing angular

momenta may be addressed separately and satisfy independent unitarity

equations in a relatively straightforward way given that angular momen-

tum is a conserved quantity. For spinless particles, the s-channel centre-

of-mass partial-wave amplitudes are determined by

Al(s) ≡
1

16π

1

2

∫ 1

−1
dzs Pl(zs)A(s, t) l = 0, 1, 2, . . . (2.9)

As for the inverse transformation, it is defined by:

A(s, t) = 16π
∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)aℓ(k), (2.10)

with the ℓth partial amplitude of momentum k, and the ℓth Legendre

polynomial Pℓ(cos θ), where zs = cos(θs) = 1+ 2t
s−4m and θs is the s-channel

centre-of-mass scattering angle.

If we replace this into two-particle unitarity equation, we get

Aif
l (s+)− Aif

l (s−) =
4iqsn√
s
Ain

l (s+)A
nf
l (s−) + . . .

(2.11)

which for elastic scattering in which the initial and final states are

identical, gives
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ImAel
l (s) =

2qs12√
s

∣∣Ael
l (s)

∣∣2+
∑

n ̸=i

2qsn√
s
Ain

l (s+)A
ni
l (s−)+3 body channels etc.

(2.12)

The elastic scattering is represented by the first term on the r.h.s, the

sum over inelastic two particle intermediate states by the second, and the

contributions of n-particle intermediate states by the remaining terms.

Given that 2qs12 =
√
s− 4m→ √

s for for large s and all the terms on the

r.h.s. are positive , the aforementioned equation entails that

0 ≤ |Ael
l |2 ≤ Im

{
Ael

l

}
≤ 1 (2.13)

which simply illustrates the condition that the probability of the elastic

scattering cannot go beyond unity and that no scattering process can be

completely inelastic.

The elastic partial-wave amplitudes are most of the time parametrized

as follows :

Ael
l =

ηle
2iδl − 1

2i
(
2q12√

s

) (2.14)

clearly meeting the unitarity condition mentioned above, where ηl
stands for the inelasticity factor and δl refers to the real phase shift. For

unitarity to be satisfied 0 ≤ ηl ≤ 1.

With respect to the partial wave amplitudes, the optical theorem

(3.1.12) provides

σT (s) =
8π

q12
√
s

∑

l

(2l + 1)Im
{
Ael

l (s)
}
=

2π

q212

∑

l

(2l + 1)[1− ηl cos 2δl]

(2.15)

and when we integrate over all angles, we have

σel(s) =
16π

s

∑

l

(2l+1)|Ael
l (s)|2 =

π

q212

∑

l

(2l+1)[1+η2l −2ηl cos 2δl] (2.16)

Consequently

σinel(s) = σT − σel =
π

q212

∑

l

(2l + 1)[1− η2l ] (2.17)
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Figure 2.2: Schematic representation of the collision between two hadrons in the impact

parameter space.

so that any partial wave’s contribution to the total cross-section dimin-

ishes as energy grows; and in case this does not happen, then a growing

number of partial waves must contribute as energy rises.

At high energies and small angles (s >> |t|), where numerous partial

waves contribute, we can further simplify the analysis through substituting

integrals in impact parameter (b) space for the summations over partial-

wave amplitudes.

This follows the the classical relation l = qsb− 1/2 and for large l

Pl(zs) ≃ J0((2l + 1) sin
θs
2
),

∑

l

→
∫
dl →

∫
qsdb (2.18)

with J0 being the Bessel function.

and when we write

Al(s) → A(s, b), sin
θ

2
≃ θ

2
≃
(−t
q2s

) 1
2

(2.19)

we obtain

A(s, t) = 8πs

∫ ∞

0
bdbJ0(b

√
−t)A(s, b) (2.20)

with the inverse transformation referring to (3.2.1) is

A(s, b) =
1

16πs

∫ 0

−∞
dtJ0(b

√
−t)A(s, t) (2.21)

This is merely the scattering amplitude’s two-dimensional Fourier trans-

form in impact parameter space with the azimuthal angle integrated out.

For the scattering at high energy and small angle, the impact parameter

remains constant, replacing the conservation of angular momentum.
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The unitarity condition on the elastic partial waves is expressed in terms

of the elastic profile function, A(s,b) as follows

0 ≤ |A(s, b)|2 ≤ ImA(s, b) ≤ 1 (2.22)

and the eikonal phase, χ(s, b), and the eikonal series are defined by

A(s, b) =
eiχ(s,b) − 1

2i
=

1

2i

∞∑

n=1

(iχ(s, b))n

n!
(3.2.13)

in order that χ(s, b)2δl(s) for large s and χ(s, b) is complex with positive

imaginary part.

And one obtain the various cross-sections :

σT (s) = 8π

∫ ∞

0
bdb ImA(s, b) (3.2.14)

σel(s) = 8π

∫ ∞

0
bdb|A(s, b)|2 (3.2.15)

σinel(s) = 8π

∫ ∞

0
bdbGinel(s, b) (3.2.16)

where the inelastic profile function Ginel(s, b) is determined by

Ginel(s, b) = Im(A(s, b))− |A(s, b)|2 (2.23)

also the ”opacity”’ Ω(s, b) is defined by

Ω(s, b) ≡ −iχ(s, b) (3.2.18)

so that

Ginel(s, b) = 1− e−2ReΩ(s,b) (2.24)

2.5 Regge phenomenology

The partial-wave amplitude is determined for non-integer and complex

values of l, as well, enabling us to extend the amplitude into the complex

angular momentum plane. For the continuation to be considered unique,

the function must vanish for l → C ±∞ and be regular for l > C where

C is a real constant.

In order to fulfill this for t-channel partial-wave amplitudes, we must

break the amplitude down into even and odd components using the inter-

change cos(θt)− cos(θt) (i.e., su). By doing so, we obtain even and odd
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signatured amplitudes (S = ±1) with exclusively right-hand cuts in the

complex zt plane.

Al(t) =

{
A+

l (t) for l even

A−
l (t) for l odd

(2.25)

The partial-wave series for the signatured amplitude can be expressed

as an integral in the complex l-plane through employing a Sommerfeld-

Watson transformation.

A(s, t) = −16π

2i

∮

Cl

(2l + 1)Al(t)
Pl(−zt)
sin(πl)

dl (2.26)

where Cl is a contour enclosing zero and the positive integers. The

expansion of the contour Cl to a semicircle at infinity with its base along

the line Re(l) = C is made possible by the analyticity in l of A (t). Due

to the convergence features of A(t), only the base contribution remains

after the semi-circle’s contribution vanishes. Assuming that the signatured

partial-wave amplitudes for Re(l) < C only contain isolated singularities

(poles and branch cuts), the contour’s base line can be moved farther to

the left, absorbing distinct contributions from each singularity.

The Legendre function Pl(z) declines most rapidly as a function of z

for l = −1/2. The contribution to the contour integral along the line

Re(l) = C = −1/2 will be asymptotically insignificant in comparison

to any singularities encountered to the right of the line if the base of the

contour is pushed to the left as far as that point. These t-channel singular-

ities, which influence the asymptotic behavior of the s-channel amplitude,

are known as the Regge poles and Regge cuts. In fact, we can use the

Mandelstam-Sommerfeld-Watson transformation to shift the base of the

contour as far to the left as we desire. Since the integral representation

is valid across the complex z-plane as long as the partial-wave amplitudes

are convergent enough in the l-plane, it is preferred over the partial-wave

series, which diverges at the nearest s-channel singularity.

The position of the singularity will be generally a function of t and will

describe a trajectory in the l-plane as t varies, l = α(t). A simple pole, R,

with signature and residue β(t) with the form

Al(t) =
β(t)

l − αR(t)
(2.27)

replaced in eq. 2.26 yields the amplitude



CHAPTER 2. THEORETICAL FRAMEWORK OF HIGH ENERGY HADRON
SCATTERING 17

AI
R(zt, t) = −16π2 (2αR(t) + 1) β(t)

PαR(t)(−zt)
sin(παR(t))

. (2.28)

Hence the contribution to the physical amplitude is provided by

AS
R(s, t) = AS

R(zt, t) + SAS
R(−zt, t). (2.29)

and it has the high energy behaviour in the s-channel

AS
R(s, t) ∼

(
1 + Se−iπαR(t)

)
sαR(t). (2.30)

According to the disconnectedness principle of the S-matrix theory, the

remnant of the pole, β(t) factorizes into a product of its couplings to each

of the external particle lines, yielding

β(t) = γ1,3(t)γ2,4(t) (2.31)

The features of a Regge pole in the asymptotic s-channel and the reso-

nance region of the t-channel can be concisely expressed as :

A(s, t) = γ1,3(t)γ2,4(t)
e−iπα(t) + S
2 sinπα(t)

1

Γ(α(t) + 1)

(
s

s0

)α(t)

(2.32)

The Regge trajectory, l = αR(t), is demonstrated to be a real analytic

function of t and to include the right-hand threshold branch cut. A pole in

the physical partial-wave amplitude is produced when a Regge pole with

an even signature takes place at an even value of l or with an odd signature

at an odd value of l. When this happens below the t-channel threshold, the

pole represents a bound state; when it happens beyond the threshold, the

trajectory has an imaginary part and represents a resonance. Therefore,

the trajectory, αR(t), generates the asymptotic s-channel behaviour as well

as the t-channel poles of the amplitude. For t > O, we anticipate that a

trajectory with a precise signature will produce a series of bound states and

resonances that correspond to observable particles with identical quantum

numbers, with the exception of their spins, which vary by two units of

angular momentum between consecutive states.

According to the experimental data on particle masses and spins, such

series of particles indeed occur and their corresponding trajectories are

linear functions of t(= mass2) with the following the form αR(t) = αR(0)+

α
′
Rt.
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The scattering of particles with spin can be added to the above dis-

cussion. In fact, this will further complicate the formalism as we must

consider the crossing characteristics and kinematical singularities of the

helicity amplitudes. Nevertheless, these issues are manageable, and the

outcome is roughly the same as for spin-zero scattering.

2.6 Restoring Unitarity

It is crucial to keep in mind that the parametrization employed in (equa-

tion) for the elastic scattering amplitude is not exclusive. Generally speak-

ing, no widely recognized technique exists for restoring unitarity in high-

energy hadronic scattering processes.

Furthermore, the choice of a certain unitarization scheme has impor-

tant physical ramifications, particularly in theories like QCD, where cross-

sections rise with energy. It is more than just a matter of preference; it

has the potential to alter the behavior and predictions of the theory.

Yet, there are several ways to represent the unit circle, which may yield

different insights into the underlying physics [59].

Figure 2.3: Mapping to the Unitary circle (Argand Circle) for the partial wave ampli-

tudes: the amplitudes must lay on the circle to satisfy the unitarity condition for elastic

scattering. Figure taken from [54]

First of all, one can map the upper complex plane into a circle via a

complex exponential

S(s,b) = exp(iz(s,b)) with Im z(s,b) ≥ 0. (2.33)

This maps, in fact, an infinite number of strips with 2nπ < Re z(s,b) <

2(n+ 1)π each onto the unit circle.

It is also possible to use a one-to-one map through a Möbius transform
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and write

S(s,b) =
1 + iz′(s,b)

1− iz′(s,b)
, with Im z′(s,b) ≥ 0. (2.34)

The physical amplitude lies within the unitarity circle, so that the as-

sociated S matrix can always be represented by Eqs. (2.33) and (2.34).

The unitarization scheme comes in once one identifies z or z′ with the

one-Reggeon exchange amplitude. One then considers (2.33) and (2.34)

as series expansions in n-Reggeon exchanges, so that their first term must

give 1 + iχ(s,b).

Indeed, if one writes the one-Reggeon exchange amplitude as χ(s,b),

then assuming z = χ in (2.33) leads to the well-known eikonal representa-

tion:

G(s,b) = i(1− exp(iχ(s,b))). (2.35)

This scheme can be derived in QED and other field theories [51] or in

potential theory. It leads at asymptotic energies (s → ∞) to the limit

σel/σinel = 1, i.e., to maximum inelasticity.

The other unitarization scheme considered here is the U -matrix repre-

sentation [45] where one identifies z′ in (2.34) with χ(s,b)/2, to match the

one-Reggeon exchange

G(s,b) =
χ(s,b)

1− iχ(s,b)/2
. (2.36)

In this scheme, S(s,b) tends to −1 when s → ∞ and b is finite, so that

the inelastic partial wave ηin(s,b) tends to 0: the ratio σel/σinel vanishes

asymptotically. Both schemes have the same development at the second

order in χ and differ only in the rest of the series. It must be noted,

however, that the resummation must lead to an amplitude within the

unitarity circle, but there is no reason to assume that it maps the entire

complex plane to the circle. Hence, one can easily extend both schemes

through a change in the strength of successive scattering. This gives the

extended eikonal schemes.

G(s,b) =
i

ω
(1− exp(iωχ(s,b))) (2.37)

and the extended U -matrix schemes

G(s,b) =
χ(s,b)

1− iω′χ(s,b)
. (2.38)

It is straightforward to check that using ω ≥ 1 or ω′ ≥ 1/2 maps any

amplitude χ into the unitarity circle.
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3 Unitarisation and non-diffractive

interactions

3.1 Context

A pp scattering event may generate a wide variety of phenomena, as por-

trayed in Figure 3.1:

Figure 3.1: a) Diagram for elastic scattering and ϕ − η map of the distribution of the

final state particles. b) Single diffractive for the rapidity window between −10 < η < 3.5.

c) Double diffraction process for the window −3.5 < η < 4. d) Central diffractive process

in two rapidity gaps between −10 < η < −2.5 and 2.5 < η < 10. e) Non-diffractive

process, where there is no rapidity gap, particles are uniformly distributed over ϕ and η.

Figure taken from [35].

The first study is concerned with the investigation of the proton in-

elastic cross section at ultrahigh energies. This was performed by exam-

ining high-energy collider data and employing two different unitarization

21
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schemes: the eikonal and the U -matrix. Particularly, it focuses on non-

diffractive inelastic interactions. As for diffraction interactions, they will

be covered in the subsequent chapter. It specifically seeks to understand

how these two schemes affect the predictions of total, elastic, and inelastic

cross sections for proton-proton pp and proton-antiproton pp̄ scattering up

to extremely high energies, reaching beyond the scale accessible by current

particle accelerators.

In order to gain deeper insights into the hadronic interactions at ultra-

high energies, high-energy collider experiments and cosmic-ray observa-

tions are highly needed. For instance, cross-sections,in particle physics,

measure the probability of certain interactions between particles. Pre-

cisely predicting the behaviour of particles at high energies depends on a

proper modeling of these cross-sections, with significant implications for

particle physics and astrophysics.

In spite of the efficiency of the 2002 fits to the total cross-section in

predicting the LHC pp total cross-section, they failed to relate the total

cross-section to the elastic and inelastic ones. The relation between these

cross-sections is necessary in the description of extensive air showers, given

the prominence of the inelastic cross-section.

In fact, as detailed in the previous chapters, given the challenges in

deriving precise cross-sections from quantum chromodynamics (QCD) at

these energies, we developed a phenomenological model grounded in the

Regge theory.

The elastic scattering amplitude was modeled using a Born-level am-

plitude with a pomeron exchange, constrained by low-energy data, and a

unitarization scheme to account for multiple exchanges at high energies

and ensure that the elastic amplitude does not exceed the unitarity limit.

Using our model, high-energy collider data were adopted to determine

the best-fit parameters for total, elastic, and inelastic cross-sections, and

the predictions of the two unitarization schemes up to energies around the

Grand Unified Theory (GUT) scale were compared for the evolution of the

ratio of the elastic cross-section to the total cross-section, as well as the

extrapolation of the inelastic cross-section at ultra-high energy, which is

crucial for understanding cosmic-ray interactions and extensive air show-

ers, was provided and examined.

The high-energy collider data used in this study were mainly from ex-

periments, such as TOTEM, ATLAS, CDF, and others to fit the cross

sections.
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3.2 ARTICLE 1

The Proton Inelastic Cross Section at Ultrahigh Energies

Atri Bhattacharya, Jean-René Cudell, Rami Oueslati, Arno Van-

thieghem

Physical Review D 103 (2021) 5, L051502

arXiv:2012.07970 [hep-ph]

Abstract: We study the consequences of high-energy collider

data on the best fits to total, elastic, and inelastic cross sections

for pp and pp̄ scattering using two very distinct unitarisation

schemes: the eikonal and the U -matrix. Despite their analytic

differences, we find that the two schemes lead to almost identical

predictions up to EeV energies, with differences only becoming

significant at GUT-scale and higher energies.

Man-made accelerators and indirect detection methods of high-energy

cosmic rays such as extensive air showers, at the core of high-energy and

multi-messenger astrophysics, have drawn a particular attention to the

modeling of the high-energy hadronic interactions. A comprehensive treat-

ment of the pp and pp̄ cross sections with quantum chromodynamics being

elusive for the moment, one has to rely on some generic arguments about

unitarity and analyticity of the scattering matrix to derive phenomeno-

logical estimates of the high-energy total, elastic and inelastic cross sec-

tions. In that regard, experimental studies, most notably those related

to cosmic-ray showers, often use the 2002 fits to the total cross section

that successfully predicted the LHC pp total cross section [55]. Besides

the fact that there are a lot of relevant data that have since appeared

[22, 25, 24, 23, 28, 5, 3, 4, 110, 6, 11, 26], these fits have the drawback that

they cannot self-consistently relate the total cross section to the elastic and

inelastic ones. Since the inelastic cross section is key to computing multi-

ple minijet production from cosmic-ray interactions with the atmosphere

at ultra-high energies, the relation between the total and inelastic cross

sections is therefore essential to the description of extensive air showers.

It is at the core of hadronic interaction models adopted in Monte Carlo

event generators such as SIBYLL [117] and QGSJET [113].

In this letter, we want to address this problem 1. In order to relate

1The question of the very forward component of the showers, which is linked to the diffractive cross

section, will be considered in a separate paper.

https://arxiv.org/abs/2012.07970
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elastic, inelastic, and total cross sections, one needs a physics model of the

elastic amplitude. This is typically made of two ingredients: an elastic

amplitude at the Born level, which encapsulates the elementary exchange

(and can be extracted from low-energy data), and a scheme that takes

into account multiple exchanges, which become increasingly important at

higher energies and without which the elastic amplitude would exceed the

unitarity limit.

The Born term of interest corresponds to pomeron exchange, and is

reasonably constrained. We normalize the elastic amplitude a(s, t) so that

the differential cross section for elastic scattering is written as

dσel
dt

=
|a(s, t)|2
16πs2

, (3.1)

where t = −q2 is the square of the momentum transfer. The Born term

can then be written using the pomeron trajectory α(t), the proton elastic

form factor F1(t) and the coupling pomeron-proton gp, as

a(s, t) = g2p F1(t)
2

(
s

s0

)α(t)

ξ(t) , (3.2)

with ξ(t) the signature factor

ξ(t) = −e−iπα(t)
2 . (3.3)

The pomeron trajectory is close to a straight line [57], and we take it to be

α(t) = 1+ ϵ+α′t. Non-linearities in the trajectory for large t may become

consequential when considering the differential cross-section dσ/d|t|, see
Ref. [94]; however, this is beyond the scope of the current work.

At high energy, the growth of this pomeron amplitude and eventual

violation of unitarity is most clearly seen in the impact-parameter repre-

sentation, where the Fourier transform of the amplitude a (s, t) rescaled

by 2s is equivalent to a partial wave

χ(s, b) =

∫
d2q

(2π)2
a(s, t)

2s
eiq·b. (3.4)

The norm of the partial wave signals two important regimes. When it

reaches unity, around
√
s = 2 TeV [60], the model enters the black-disk

regime – i.e. maximum inelasticity. When it reaches two, the model begins

to violate unitarity. Both regimes start at small impact parameter and

spread to higher values of b, and signal that multiple exchanges have to be

taken into account [131].
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It is thus necessary to introduce unitarization schemes that take into ac-

count multiple scatterings by mapping the amplitude χ(s, b) to the physi-

cal amplitude X(s, b). The latter reduces to χ(s, b) for small s, is confined

to the unitarity circle |X(s, b) − i| ⩽ 1, and bears the same relation as

Eq.(6.15), but this time to the unitarized amplitude A(s, t):

X(s, b) =

∫
d2q

(2π)2
A(s, t)

2s
eiq·b. (3.5)

The eikonal scheme, — derived for structureless bodies in optics, poten-

tial scattering, and QED — is commonly used in the literature. Another

proposed scheme is the U -matrix scheme, which can be motivated by a

form of Bethe-Salpeter equation [107]. Neither of these may be entirely

correct in the context of QCD, but going from one to the other permits

an evaluation of the systematics linked to multiple exchanges.

The eikonal scheme assumes [58]:

XE(s, b) = i
[
1− eiχ(s,b)

]
, (3.6)

while the U -matrix scheme posits:

XU(s, b) =
χ(s, b)

1− iχ(s, b)/2
. (3.7)

In terms of partial waves, the maximum inelasticity is reached in either

case for X(s, b) = i, which is also the asymptotic limit of the eikonal

scheme at high s.

The total and elastic scattering cross sections may be readily expressed

in these representations as

σtot = 2

∫
d2b Im (X(s, b)) , σel =

∫
d2b |X(s, b)|2. (3.8)

We shall now use them to fit all the data in p
(−)

p scattering above 500

GeV, for which lower trajectories have a negligible effect. We obtain 3

distinct datasets (for total, elastic and inelastic cross sections) from the

following sources, for a total of 37 data points:

• pp total and elastic cross sections from TOTEM [22, 25, 24, 23, 28],

and ATLAS [5, 3];

• pp̄ total and elastic cross sections from CDF [10], E710 [17, 18], and

E811 [30, 31] experiments at TeVatron; and UA4 at Spp̄S [48];
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dataset number of points χ2

σtot 18 21.7

σel 11 21.3

σin 8 4.1

Table 3.1: The values of χ2 resulting from independent fits to quadratic

polynomials in log(s), illustrating the tensions in some parts of the dataset.

Scheme ϵ α′ gp t0
χ2

d.o.f

Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436

Table 3.2: χ2/d.o.f and best-fit parameters obtained using the eikonal and

U -matrix unitarisation schemes.

• Direct measurements of inelastic cross sections, i.e. not derived from

total and elastic measurements, from UA5 at Spp̄S [15], ATLAS [4,

110], LHCb [6], ALICE [11], and TOTEM [26].

It should be noted that both the total and elastic cross section datasets

include discordant data from different experiments. This is quantified

by a simple consistency check that fits generic quadratic polynomials in

log s to each dataset and computes the resulting χ2. Table 4.3 shows the

results with both the elastic and total cross sections running up χ2/d.o.f

noticeably greater than 1. Thus, one obtains a minimum combined χ2 of

47.1. This is a well-known problem with these data, first addressed in [56]

and later in [46]. At present, however, the number of data points is simply

too small to identify individual outliers, and hence there is little one can

do for lack of better experimental results. We shall thus neither filter nor

sieve the data, but remember that the best possible χ2 is rather high.

We use a dipole-like form factor for the proton F1 = 1/(1 − t/t0)
2.

The parameters in our fit thus include ϵ and α′ describing the pomeron

trajectory, the coupling constant gp, and finally the form-factor scale t0.
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Figure 3.2: Total, elastic and inelastic cross sections obtained with best-fit parameters

for the U -matrix scheme (solid curves) and the eikonal scheme (dashed curves).

The results of our fits using either unitarisation scheme are shown in

Table 3.2 and in Fig. 3.2. We obtain χ2/d.o.f = 1.436 (1.442) when using

the U -matrix (eikonal) scheme. Note that, although at face value the fit

obtained using either scheme only has a seemingly poor χ2/d.o.f, the value

of the total χ2 — 47.39 (47.59) for the U -matrix (eikonal) scheme — is

very close to the minimum value — 47.1 — obtained earlier.

These values of the parameters are however quite striking. Ref. [57]

managed to disentangle the pomeron contribution at low energy from that

of lower-t trajectories, and provided estimates of its coupling, intercept

and slope. These values are within 1σ of those obtained here for the

U matrix, but the eikonal differs significantly from the low-energy results.

Hence it seems that for an eikonal scheme, one never recovers the observed

one-pomeron simple pole.

Using an exponential form factor {F1 = exp (R0t)}, instead of the dipole

form, leads to slightly poorer fits {χ2/d.o.f = 1.440 (1.445)}; however, the
qualitative picture remains unaltered. We have also analysed how the fits

improve if one uses the generalised eikonal and U -matrix schemes and we

find that these generalisations — at the cost of an additional free parameter

(ω or ω′) — do not improve the fits significantly.
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One particular consequence of the relative independence of the elastic

cross section to the choice of the unitarisation scheme is that values of the

ρ parameter remain largely unaffected by the choice of the scheme as well.

We use our best-fit parameters to compute this parameter across different

energies, and find that the corresponding values agree with existing data,

except for the latest TOTEMmeasurement. We indeed obtain ρ = 0.131 at√
s = 13 TeV. Whether this discrepancy is due to the fact that we neglect

an odderon contribution, or it comes from a problem in the extraction

of ρ from the data [71] is still unclear. As the purpose of this letter is

the evaluation of the inelastic cross section, the exact value of ρ is of little

importance given than it contributes about 1% to the processes considered

here.
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Figure 3.3: The 1σ band for the inelastic cross section at ultrahigh energies. Note that

both schemes give almost identical results.

We are now in a position to present our results on the inelastic cross

section at ultra-high energies. We obtain them by varying all the parame-

ters of Table 3.2 in a 1σ hyperellipsoid and use the corresponding curves to

evaluate the errors at ultrahigh energies. We show the results in Fig. 3.3.

The entwinement of the inelastic cross section with the elastic and total

cross sections, which are much better known, leads to smaller errors than

in the case of a fit to inelastic data alone. Furthermore, despite their
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very different analytic properties, the two schemes lead to almost identical

predictions. This gives us confidence that the extrapolation to ultra-high

energies is well founded.
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Figure 3.4: Real and imaginary parts of the Born terms χ(s, b) at
√
s = 13 TeV for the

U -matrix (solid curves) and eikonal (dashed curves) schemes.

While the inelastic cross sections using either of the two schemes are

almost identical, this alignment happens despite significant differences in

the individual order-by-order amplitudes in the expansion. We show this

for the specific case of the Born term in Fig. 3.4. Specifically as it pertains

to the inelastic cross section, this order-by-order difference can have major

consequences, for example, in Monte Carlo showering codes that depend on

the n-th term in the Taylor expansion inn χ to weigh the probability of the

n minijets. In these codes, switching the traditionally used eikonal scheme

to the U-matrix scheme will have an impact on the results, although a full

analysis of this impact is beyond the scope of this work.

It is important to note that, although we have shown that the total,

elastic, and inelastic cross sections obtained using the two schemes re-

main nearly identical for
√
s up to tens of TeV, at extremely high

√
s

approaching the grand unification scale the elastic and inelastic cross sec-

tions start differing significantly (see also discussion in [132]). Whereas

with the eikonal scheme the elastic cross section reaches parity with the
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inelastic cross section at around
√
s = 1015 GeV and remains so at higher

energies, the U -matrix scheme instead predicts continuing growth for the

elastic cross section — at the cost of the inelastic cross section — until it

gradually approaches saturation with respect to the total cross section at

some
√
s ≳ 1019 GeV. This is illustrated in terms of the ratio of the elastic

to total cross-sections in Fig. 3.5. These extremely high energies are of

course beyond the reach of experiments; such differences are therefore of

limited practical relevance.

1010 1012 1014 1016 1018
√
s [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

σ
el

as
ti

c/
σ

to
ta

l

U-matrix

Eikonal

Figure 3.5: The evolution of the ratio of the elastic cross section to the total cross section

at the GUT-scale and higher energies based on the unitarisation scheme chosen.

To summarise, we have used non-diffractive experimental data from

colliders up to
√
s = 13 TeV to determine the most up-to-date fits to

the total, elastic, and inelastic p
(−)

p cross sections in the literature, both

for the eikonal and U-matrix unitarisation schemes. The upshot of our

analysis is that the U -matrix scheme leads to cross sections that fit

the data as well as the eikonal scheme, which is more conventionally

used in most current cosmic-ray Monte Carlo codes. The corresponding

total, elastic, and inelastic cross sections from both schemes are nearly

indistinguishable at energies relevant to current and near-future colliders;

they only start showing differences at energies approaching the grand

unification scale. In particular, this allows us to extrapolate the inelastic
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cross section up to GZK cut-off energies (∼ 1020 eV) uniquely, irrespective

of the unitarisation scheme chosen. This alignment between the overall

inelastic cross sections notwithstanding, the amplitudes at each order in

the series expansions differ significantly, with potential consequences for

Monte Carlo showering codes.
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4 Unitarisation and diffractive in-

teractions

4.1 Context of the research study

In the prior study, we thoroughly examined the effects of the eikonal and

U -matrix schemes on inelastic non-diffractive interactions at ultra-high

energies. Building on these results, we expanded our analysis to include

diffractive interactions, which are crucial in high-energy scattering. In

such processes, a proton remains intact or dissociates into a low-mass

state. Diffractive processes are particularly significant at the high energies

probed by the Large Hadron Collider (LHC) and cosmic-ray experiments,

accounting for approximately 20 % of the inelastic cross-section at TeV

energies [13]. These collisions are key to understanding interaction elas-

ticity, a critical factor in air shower development. During these collisions,

momentum is transferred without the exchange of quantum numbers, lead-

ing to the generation of new particles. When the energy transfer is small,

typically a few GeV, the process is known as low-mass diffraction and is

typically modelled using the Good and Walker framework with a 2- or 3-

channel approach, depending on the number of diffractive states involved.

In contrast, high-mass diffraction involves greater momentum transfer, al-

lowing the exchanged Pomeron to produce additional particles or even a

jet, resulting in significantly lower elasticity.

Besides, the inclusion of diffractive processes makes unitarization

schemes more thoroughly tested and guarantees that all features of high-

energy hadronic interactions are adequately modelled. It also furnishes

new evidence that could allow for the improvement of the hadronic

interaction modelling. Particularly, in this study, we aimed to evaluate

how well the U -matrix and eikonal schemes describe the total, elastic,

inelastic, and single-diffractive cross-sections in pp and pp̄ interactions

and to quantify the uncertainties attached to them. Moreover, the study

aimed to explore the potential for generalizing these schemes, known as

extended schemes, by introducing an additional parameter, ω. These

33
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generalized forms are expressed as follows:

For the extended eikonal scheme:

XE(s, b) =
i

ω

[
1− eiωχ(s,b)

]
, (4.1)

For the extended U -matrix scheme:

XU(s, b) =
χ(s, b)

1− iωχ(s, b)
. (4.2)

In both cases, the asymptotic value of X(s → ∞, b) is 1/ω. Thus,

the traditional values for ω are 1 for the standard eikonal and 1/2 for the

standard U -matrix.

With our optimized model, we also attempted to predict the ρ parame-

ter, the ratio of the real part to the imaginary part of the elastic amplitude,

and to compare it with experimental data, particularly at 13 TeV. Another

objective of the study was to shed light on the implications of these differ-

ent unitarisation schemes’ effect on the single-diffractive cross-section for

current and future cosmic ray data.

In order to fulfil our research purposes, we adopted the following

methodology. First, up-to-date collider data on pp and pp̄ total, elastic,

inelastic and single-diffractive cross sections, including 13 TeV data from

recent LHC experiments, have been used to ascertain the best fits to the

parameters governing these cross sections. Then, we implemented both

the eikonal and U -matrix unitarisation schemes within our theoretical

framework, making sure that the unique features of each scheme were

appropriately represented. Afterwards, using the collected data, we

performed a global fit to determine the best-fit parameters for each

unitarisation scheme. This involved minimizing the χ2/d.o.f to assess the

relevance of the fit. Lastly, comparing the generated cross-sections and

fitted parameters, we paid particular attention to their concordance with

experimental data and their prediction capacity at high energies.

In this context, the Good-Walker formalism is crucial for describing

diffractive processes, particularly inelastic diffraction, which arises due to

the internal structure of hadrons. At high energies, this phenomenon is

more easily understood because the lifetime of fluctuations within a fast

hadron is large, τ ∼ E
m2 , allowing these fluctuations to be treated as nearly

”frozen.” During this period, each constituent of the hadron can undergo

scattering, disrupting the coherence of the fluctuations. Consequently, the

outgoing superposition of states will differ from the incident particle, often

resulting in both inelastic and elastic diffraction.
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To explore inelastic diffraction, the Good-Walker approach introduces

states ϕk that diagonalize the T matrix, where these eigenstates undergo

only elastic scattering. Since off-diagonal transitions are absent,

⟨ϕj|T |ϕk⟩ = 0 for j ̸= k, (4.3)

a state k cannot diffractively dissociate into a state j. However, for

hadronic states, which are not eigenstates of the S-matrix (or T ), this

condition generally does not hold. To account for the internal structure

of hadrons, the set of intermediate states must be expanded beyond just

the single elastic channel, introducing a multichannel approach. Before

examining such a case, let’s express the cross-section in terms of the prob-

ability amplitudes Fk of the hadronic process via the various diffractive

eigenstates ϕk.

Let the orthogonal matrix that diagonalizes ImT be denoted by a, such

that:

ImT = aFaT where ⟨ϕj|F |ϕk⟩ = Fk δjk. (4.4)

Consider the diffractive dissociation of an arbitrary incoming state:

|j⟩ =
∑

k

ajk |ϕk⟩. (4.5)

The elastic scattering amplitude for this state is:

⟨j|Im T |j⟩ =
∑

k

|ajk|2 Fk = ⟨F ⟩, (4.6)

where Fk = ⟨ϕk|F |ϕk⟩, and ⟨F ⟩ represents the average of F over the initial

probability distribution of diffractive eigenstates. After diffractive scat-

tering described by Tfj, the final state |f⟩ will typically be a different

superposition of eigenstates than |j⟩, as shown in the equation above.

At high energies, the real parts of the diffractive amplitudes can be

ignored. Then, the cross-sections at a given impact parameter b are:

dσtot
d2b

= 2 Im ⟨j|T |j⟩ = 2
∑

k

|ajk|2 Fk = 2⟨F ⟩, (4.7)

dσel
d2b

= |⟨j|T |j⟩|2 =
(∑

k

|ajk|2 Fk

)2

= ⟨F ⟩2, (4.8)

dσel+SD

d2b
=
∑

k

|⟨ϕk|T |j⟩|2 =
∑

k

|ajk|2 F 2
k = ⟨F 2⟩. (4.9)
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Thus, the cross-section for single diffractive dissociation of a proton is

given by:
dσSD
d2b

= ⟨F 2⟩ − ⟨F ⟩2, (4.10)

reflecting the statistical dispersion in the absorption probabilities of the

diffractive eigenstates. Here, the average is taken over the components k

of the incoming proton that dissociates. If the averages are taken over

components of both incoming particles, a second index on F must be

introduced, making it Fik, and summing over k and i. In this case, the

sum represents the cross-section for both single and double dissociation.

If all the components ϕk of the incoming diffractive state |j⟩ were ab-

sorbed equally, the diffracted superposition would be proportional to the

incident one, resulting in zero inelastic diffraction. At very high energies,

if the amplitudes Fk at small impact parameters reach the black disk limit

(Fk = 1), diffractive production will be zero in this impact parameter do-

main and will only occur in the peripheral b region. Similar behavior is

observed in pp and pp̄ interactions at Tevatron energies. Hence, the impact

parameter structure of inelastic and elastic diffraction differs significantly

when strong s-channel unitarity effects are present. The elastic amplitude

primarily originates from the center of the disk (small b), while dissociation

occurs at the periphery.

The Good-Walker mechanism effectively handles elastic scattering and

single diffractive dissociation by representing the initial state as a superpo-

sition of eigenstates that interact with the Pomeron. However, this model

assumes that these eigenstates remain unchanged during the interaction,

limiting its ability to describe more complex phenomena, such as multiple

Pomeron exchanges and diffractive dissociation involving multiple states.

Given the importance of multi-channel interactions at ultra-high en-

ergies, we adopted a modified Good-Walker approach. This adaptation

extends the original formalism to include additional channels and interac-

tion vertices, such as the p → D, D → p, and D → D transitions, where

D is a diffractive state. These modifications are essential for accurately

modelling diffractive dissociation at these energy scales.

A key challenge in this approach is that, at the Born level, the behaviour

of the interaction vertices is largely unknown, except for Vpp(t), for which

the parameterization from non-diffractive inelastic interactions is a good

representation at low energy. By assuming a similar functional form for

VDD, we retain two parameterizations in our model. Through this careful

consideration of vertex behaviour, we can better capture the full range
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of diffractive processes that the standard Good-Walker mechanism cannot

adequately address.

4.2 ARTICLE 2

Unitarisation Dependence Of Diffractive Scattering In Light Of

High-Energy Collider Data

Arno Vanthieghem, Atri Bhattacharya, Rami Oueslati, Jean-

René Cudell

Journal of High Energy Physics, 2021(9), 005

arXiv:2104.12923 [hep-ph]

Abstract: We study the consequences of high-energy collider

data on the best fits to total, elastic, inelastic, and single-

diffractive cross sections for pp and pp̄ scattering using different

unitarisation schemes. We find that the data are well fitted

both by eikonal and U-matrix schemes, but that diffractive data

prefer the U-matrix. Both schemes may be generalised by means

of an additional parameter; however, this yields only marginal

improvements to the fits. We provide estimates for ρ, the ratio

of the real part to the imaginary part of the elastic amplitude,

for the different fits. We comment on the effect of the different

schemes on present and future cosmic ray data.

4.2.1 Introduction

High-energy hadronic scattering may be described by Reggeon exchanges

(see, e.g. [63] and references therein) and for center-of-momentum energies√
s larger than 100 GeV, the only trajectory that matters is that of the

pomeron. However, at energies of a few TeV and higher, the growth of the

pomeron term leads to violation of the black-disk limit [87, 123, 120] and

eventually of unitarity. Unitarity can be enforced in high-energy pp and pp̄

interactions by the inclusion of multiple exchanges, which act as a cut to

the elastic scattering amplitude. Different unitarisation schemes have been

discussed in the literature [58] but all of them rely on phenomenological

arguments in the absence of a comprehensive quantum chromodynamics

treatment.

https://arxiv.org/abs/2104.12923
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The effect of unitarisation on the growth of p
(−)

p cross-sections becomes

important when considering proton-proton scattering cross sections at the

LHC where the centre-of-momentum energies extend up to 13 TeV. Mea-

surements of the total, elastic, inelastic, and diffractive pp cross sections by

the different LHC experiments — ALICE [11], ATLAS [5, 3, 4, 110], CMS

[125], LHCb [6], and TOTEM [22, 25, 24, 23, 28, 26] — add to existing p
(−)

p

scattering data at lower energies from previous generation experiments at

the Spp̄S [48, 15] and the TeVatron [10, 17, 18, 9, 30, 31]. This extensive

wealth of data allows us to constrain the nature of unitarisation governing

these interactions with an improved degree of accuracy.

Differences in cross sections that depend on the choice of the unitarisa-

tion scheme are expected to show up at very high energies — at 10 TeV

and higher — and therefore may influence predictions for cosmic-ray col-

lisions with atmospheric nuclei at ultra-high energies. Showering codes,

such as SIBYLL [117] and QGSJET [113], used to simulate and reconstruct

these events from observations of secondaries have historically used the

eikonal scheme (see [20] for a review). In the context of ongoing ultra-

high energy cosmic-ray experiments, e.g. the Pierre Auger Observatory

[1], the Telescope Array Project [95], and IceTop [8], an investigation of

the dependence of cross sections on different unitarisation schemes assumes

paramount importance.

In [42], we examined the effect of including up-to-date collider data for

total, elastic, and inelastic cross sections. We found nearly identical cross

sections for the three irrespective of the unitarisation scheme used. In

the current work, we focus on the effect of incorporating diffractive data

into the fits. Diffractive scattering in 2 7→ 2 interactions, where either

one or both final state particles break up into jets, becomes increasingly

important as the interaction energy increases. In these interactions, the

final state(s) being no longer expressible in terms of hadronic eigenstates,

the calculation of the corresponding scattering amplitudes requires the

invocation of a rotated eigenstate basis as described in the Good-Walker

mechanism [83].

The present work is organised as follows. In Section 4.2.2, we briefly

recapitulate the theory of unitarisation in p
(−)

p scattering and the different

schemes that have been proposed in the literature. In Section 4.2.3 we

explain the Good-Walker representation [83]. In section 4.2.4 we list the

various parameters defining our fits. Additionally, we list all the p
(−)

p scat-

tering data that are used to determine our best fits. Finally, in Section
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6.2.4 we give our results and discuss them in light of the existing literature,

drawing our conclusions.

4.2.2 Brief Survey of Unitarisation Schemes and Fit to Non-

Diffractive Forward Data

The differential cross section for elastic scattering may be expressed in

terms of the elastic amplitude A(s, t) as

dσel
dt

=
|A(s, t)|2
16πs2

, (4.11)

where t = −q2 is the square of the momentum transfer. At low energy,

the term in A(s, t) responsible for the growth of the cross section with s

can be parameterised [57] using the pomeron trajectory α(t), the proton

elastic form factor Fpp(t) and the coupling pomeron-proton-proton gpp, as

a(s, t) = g2pp Fpp(t)
2

(
s

s0

)α(t)

ξ(t), (4.12)

with ξ(t) the signature factor

ξ(t) = −e−iπα(t)
2 . (4.13)

We shall consider here a dipole form factor, which is close to the best func-

tional form [57], although the exact functional form is not very important

as we consider only integrated quantities in this paper:

Fpp =
1

(1− t/tpp)2
(4.14)

The pomeron trajectory is close to a straight line [60], and we take it to

be

α(t) = 1 + ϵ+ α′t. (4.15)

At high energy, the growth of this pomeron term and eventual violation

of unitarity is most clearly seen in the impact-parameter representation,

where the Fourier transform of the amplitude a (s, t) rescaled by 2s is

equivalent to a partial wave

χ(s, b) =

∫
d2q

(2π)2
a(s, t)

2s
eiq·b. (4.16)

The norm of this partial wave at small |b| exceeds unity around
√
s = 2

TeV [60].
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To solve this problem, one introduces unitarisation schemes which map

the amplitude χ(s, b) to the physical amplitudeX(s, b). The latter reduces

to χ(s, b) for small s, is confined to the unitarity circle |X(s, b) − i| ⩽ 1,

and bears the same relation as Eq.(6.15), but this time to the physical

amplitude:

X(s, b) =

∫
d2q

(2π)2
A(s, t)

2s
eiq·b. (4.17)

The most common scheme is the eikonal scheme, and it has been derived

for structureless bodies, in optics, in potential scattering and in QED.

Another proposed scheme is the U matrix scheme, which can be motivated

by a form of Bethe-Salpeter equation [107]. Probably neither of these is

correct in QCD, but going from one to the other permits an evaluation of

the systematics linked to unitarisation.

In the following, we shall actually use generalised versions of the

schemes, which include an extra parameter ω [58]:

XE(s, b) =
i

ω

[
1− eiωχ(s,b)

]
, (4.18)

while the generalised U-matrix scheme requires:

XU(s, b) =
χ(s, b)

1− iωχ(s, b)
. (4.19)

In both cases, the asymptotic value of X(s → ∞, b) is 1/ω, hence the

traditional values for ω are 1 for the standard eikonal [107], and 1/2 for

the standard U matrix [119]. Both schemes map the amplitude χ(s, b) into

the unitarity circle for ω ⩾ 1/2. In terms of partial waves, the maximum

inelasticity is reached for X(s, b) = i.

The total and elastic scattering cross sections may be readily expressed

in these representations as

σtot = 2

∫
d2b Im (X(s, b)) , σel =

∫
d2b |X(s, b)|2. (4.20)

Hence these unitarised schemes naturally lead to expressions for the

total, elastic, and hence inelastic, cross sections. We shall now use them to

fit all the data in p
(−)

p scattering above 100 GeV, for which lower trajectories

have a negligible effect. This includes the following:

• pp total and elastic cross sections from TOTEM [22, 25, 24, 23, 28],

and ATLAS [5, 3];
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Scheme ϵ α′ (GeV−2) gpp tpp (GeV2) χ2/d.o.f

U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436

Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

Table 4.1: χ2/d.o.f and best-fit parameters obtained using the eikonal

(ω = 1) and U-matrix (ω′ = 1/2) unitarisation schemes without diffractive

data [42] .

• pp̄ total and elastic cross sections from CDF [10], E710 [17, 18], and

E811 [30, 31] experiments at TeVatron; and UA4 at Spp̄S [48];

• Direct measurements of inelastic cross sections, i.e. not derived from

total and elastic measurements, from UA5 at Spp̄S [15], ATLAS [4,

110], LHCb [6], ALICE [11], and TOTEM [26].

This gives a total of 37 data points. In the next section, we shall also

consider 6 extra data points:

• Single diffractive pp̄ cross sections from UA5 [15, 16] and E710 [19];

and

• pp single diffractive cross sections at various energies measured at

ALICE [11].

The resulting fit leads to the following parameters of Table 6.1.

4.2.3 Unitarisation and diffraction

The implementation of diffraction within a unitarisation scheme at high

energy has to confront two questions: how does one describe the diffractive

amplitude at the Born level, and how does one embed that amplitude

within a unitarisation scheme?

The first questions has two answers. On the one hand, the asymptotic

answer is that , for high-mass final states, one should use the triple-reggeon

vertices. However, as the masses considered are not necessarily large, one

must consider a variety of reggeons lying on trajectories below that of

the pomeron[62], and to include not only subdominant trajectories (with

intercept of the order of 1/2) but also sub-subdominant ones (with an

intercept of the order of 0). This introduces a multitude of parameters, of

the order of the number of high-energy data points available.
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On the other hand, it is possible to consider a generic diffractive state

D and the vertex p+ IP → D. A priori, this implies the consideration of a

large number of channels for the diffractive state D, and the introduction

of many parameters. However, it has been shown in [85] that for inclusive

cross section, the consideration of one generic diffractive state | ΨD⟩ is

sufficient, and that adding other states does not significantly improve the

description of the data. One however looses the information about the

mass of the diffractive state.

We will concentrate in this paper on inclusive quantities, and on a

generic diffractive D, which is the seed of high-energy pions, and hence of

high-energy muons, in cosmic ray showers. This makes them of particular

interest in view of the muon anomaly at ultra-high energies (see [2] and

references therein).

The second question concerns the description of multiple exchanges,

which are expected to be important at ultra-high energies. The problem

is to include insertions that contain the pIPD, the DIPp and DIPD ver-

tices, and re-sum them. Solutions to this problem have been proposed by

Gotsman, Levin, and Maor (GLM) [85, 86] and further explored by Khoze,

Martin, and Ryskin [96, 97, 99] using the Good-Walker model [83]. We

shall adapt their method, originally proposed for the eikonal unitarisation,

to any scheme, and more specifically to the U -matrix unitarisation scheme.

At the Born level, the interaction of a proton with a pomeron can leave

the proton intact or turn it into a diffractive state D. GLM argue that it

is possible to define two states | Ψ1⟩ and | Ψ2⟩ which are not modified by

the interaction with a pomeron:

| Ψp⟩ = cos θ | Ψ1⟩+ sin θ | Ψ2⟩ , and (4.21a)

| ΨD⟩ = − sin θ | Ψ1⟩+ cos θ | Ψ2⟩ , (4.21b)

with θ an arbitrary angle. In this representation, the final states for

elastic, single diffractive, and double diffractive amplitudes are given by

| ΨpΨp⟩, | ΨpΨD⟩, and | ΨDΨD⟩ respectively.
Before we unitarise, we need the Born-level amplitudes aij(s, t) =

⟨ΨiΨj | T̂ | ΨiΨj⟩, for i, j = 1, 2. We shall assume that the pomeron is a

simple pole at the Born level, so that the amplitudes can be factorised in

t space as e.g.

app→pp = ⟨pp|T |pp⟩ = Vpp(t)
2R(s, t) (4.22)

app→pD = app→Dp = ⟨pp|T |pD⟩ = Vpp(t)VpD(t)R(s, t) (4.23)

aDD→DD = ⟨DD|T |DD⟩ = VDD(t)
2R(s, t) (4.24)
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with R(s, t) =
(

s
s0

)α(t)
ξ(t), and Vab(t) the vertex functions. All processes

can be described using 3 functions, Vpp, VDD and VpD = VDp. We take

them as

Vab = gabFab(t) (4.25)

where a and b are either p or D, gab are the coupling strengths and Fab(t)

is a form factor, with Fab(0) = 1. The nature of form factors for the

eigenstates Ψ{1,2} cannot be determined from experiments, therefore we

invert the relations in Eq. (4.21) to express Ψ{1,2} in terms of Ψ{p,D}. This
allows us to work with the proton and diffractive state form factors; we

assume the form factor for the latter is similar to that of the proton. The

two GLM states

|Ψ1⟩ = cos θ|p⟩ − sin θ|D⟩ (4.26)

|Ψ2⟩ = sin θ|p⟩+ cos θ|D⟩, (4.27)

correspond to amplitudes

aij→kl = ⟨ij|T |kl⟩ = Vik(t)Vjl(t)R(s, t), i, j = 1, 2 (4.28)

which will be purely elastic if V12 = V21 = 0. This leads to

tan(2θ(t)) =
2VpD(t)

VDD(t)− Vpp(t)
(4.29)

and

V11(t) = Vpp(t) cos
2(θ) + VDD(t) sin

2(θ)− VpD(t) sin(2θ) (4.30)

V22(t) = Vpp(t) sin
2(θ) + VDD(t) cos

2(θ) + VpD(t) sin(2θ). (4.31)

Hence at this point, we have traded three amplitudes Vab for two ampli-

tudes Vii and an angle. We do not know, at the born level, how any of these

should behave, except for Vpp(t), for which the parameterisation (4.25) is

a good representation at low energy [57]. One can assume the same func-

tional form holds for VDD, hence we keep these two parameterisations.

Following GLM [87], we choose θ as a final input. Clearly, it depends on t.

However, as we shall be considering integrated cross sections, and as the t

dependencies of the various Vab are not expected to be very different, it is

reasonable to approximate

tan(2θ(t)) ≈ tan(2θ(0)) =
gpD + gDp

gDD − gpp
(4.32)
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and keep it as a parameter. To translate this into a specific expression for

V11 and V22, we eliminate VpD using Eq. (4.29). This leads to

V11(t) =
cos2(θ)Vpp(t)− sin2(θ)VDD(t)

cos(2θ)
(4.33)

V22(t) =
cos2(θ)VDD(t)− sin2(θ)Vpp(t)

cos(2θ)
(4.34)

These can be used to build the amplitudes that will enter into the

unitarisation schemes, using Eq. (4.28). One can thus obtain the elas-

tic, single-diffractive and double-diffractive amplitudes from three purely

elastic amplitudes [85, 86], given the fact that a12→12 = a21→21:

app→pp = cos4(θ)a11→11 + 2 cos2(θ) sin2(θ)a12→12 + sin4(θ)a22→22 (4.35a)

app→pD = cos(θ) sin(θ)

× (− cos2(θ)a11→11 + (cos2(θ)− sin2(θ))a12→12 + sin2(θ)a22→22)

(4.35b)

app→DD = cos2(θ) sin2(θ)(a11→11 − 2a12→12 + a22→22). (4.35c)

At this point, it is easy to unitarise the amplitudes aij→ij(s, t), following

what was done in Section 2 for elastic scattering. One goes into impact

parameter space to obtain the corresponding χij→ij(s,b), replaces the am-

plitudes at the Born level by their unitarised version, as Eqs. (6.16) and

(6.17):

X
(E)
ij→ij(s, b) =

i

ω

[
1− eiωχij→ij(s,b)

]
(4.36a)

X
(U)
ij→ij(s, b) =

χij→ij(s, b)

1− iωχij→ij(s, b)
. (4.36b)

and obtains the amplitudes of interest as in Eq. (4.35):

Xel = cos4(θ)X11→11 + 2 cos2(θ) sin2(θ)X12→12 + sin4(θ)X22→22 (4.37a)

Xsd = cos(θ) sin(θ)

× (− cos2(θ)X11→11 + (cos2(θ)− sin2(θ))X12→12 + sin2(θ)X22→22)

(4.37b)

Xdd = cos2(θ) sin2(θ)(X11→11 − 2X12→12 +X22→22). (4.37c)
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The relevant 2 → 2 cross sections are then given by

σtot = 2

∫
d2b Im {Xel} ; σel =

∫
d2b |Xel|2 ; (4.38a)

σsd = 2

∫
d2b

(
|Xsd|2

)
; σdd =

∫
d2b |Xdd|2 ; (4.38b)

and the ρ parameter is defined by

ρ(s, t = 0) =
Re {Xel(s, t = 0)}
Im {Xel(s, t = 0)} . (4.38c)

4.2.4 Fit parameters and data

Section 3 has introduced the basic ingredients and parameters of our

model. First of all, one has of course the parameters of Section 2, i.e.

ϵ and α′, linked to the Pomeron trajectory R(s, t), as well as gpp and tpp,

linked to the pIPp vertex Vpp(t). To describe diffractive scattering in our

scheme, one needs three more parameters: the DIPD coupling gDD, the

scale tDD in the form factor

FDD(t) =
1

(1− t/tDD)2
(4.39)

and the mixing angle θ. Finally, one can introduce the parameters ω and

ω′ corresponding to extended unitarisation schemes.

Several remarks are in order at this point. First of all, we have con-

sidered the minimal GLM scheme, where we mix the proton with one

diffractive state. This corresponds to a 2-channel unitarisation scheme. In

principle, one could consider an N−channel scheme, at the cost of multi-

plying the number of parameters N(N + 1)/2 + 8. Given the paucity of

diffractive data at high energy, going beyond N = 2 is not possible. Note

that GLM considered the case N−3, and found that there is no significant

improvement [85].

We can further limit the number of parameters by considering the two

standard unitarisation schemes, i.e. fix ω = 1 and ω′ = 1/2. We have

checked that varying these parameters lead to an improvement of only

0.01 in the χ2/d.o.f.

Nevertheless, even in the 2-channel scheme, one still has an over-

parameterisation. The main problem comes from the fact that there is

a strong correlation between the parameters of Vpp and those of VDD,
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so that error bars are huge. As the pp parameters are determined by

the fits of Section 2, we fix their values to their central values in that

fit: gpp = 7.5 (7.3) and tpp = 2.6 (1.9) GeV2 in the U-matrix (eikonal)

schemes.

Since our focus is on high energy effects induced in p
(−)

p cross sections,

we use experimental data above 100 GeV. Together with the data set

provided by the Particle Data Group [127], Table 4.2 includes the data

from the following experiments:

• pp total and elastic cross sections from TOTEM [22, 25, 24, 23, 28],

and ATLAS [5, 3];

• pp̄ total and elastic cross sections from CDF [10], E710 [17, 18], and

E811 [30, 31] experiments at the TeVatron; and UA4 at the Spp̄S [48];

• Direct measurements of inelastic cross sections, i.e. not derived from

total and elastic measurements, from UA5 at the Spp̄S [15], ATLAS

[4, 110], LHCb [6], ALICE [11], and TOTEM [26];

• Single diffractive pp̄ cross sections from UA5 [15, 16] and E710 [19];

and

• pp single diffractive cross sections at various energies measured at

ALICE [11].

A few caveats about our data selection are in order. We use measured

data from experiments that quote both statistical and systematic errors,

and combine them in quadrature. We omit pp cross-section measurements

from cosmic-ray experiments because the reconstruction of these events

uses Monte Carlo showering codes such as SIBYLL [73] and QGSJET-II

[112] which use the eikonal unitarisation scheme.

As discussed in [42], there is considerable tension amongst the total

and elastic cross sections at the same or similar energies from different

experiments (see also [56, 46]). We quantify these inconsistencies by fitting

each kind of cross section with a quadratic polynomial in log s, the resulting

χ2 shown in Table 4.3.

We particularly note that at centre-of-mass energies of 7 and 8 TeV,

total and elastic cross sections from TOTEM are consistently 1σ higher

than those from ATLAS. The low statistics we have to work with prevents

us from determining which experimental results are the outliers, so we

shall continue to use all of the data points with the cognisance that the
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Expt
√
s σtot [mb] σel [mb] σin [mb] σsd [mb]

UA5

200 GeV 4.8± 0.9

546 GeV 5.4± 1.1

900 GeV 50.3± 1.1 7.8± 1.2

E710
1.02 TeV 61.1± 9.9

1.8 TeV 78.3± 5.9 19.6± 3.0 8.1± 1.7

ATLAS

7 TeV 95.4± 1.4 24.0± 0.6

7 TeV 69.4± 7.3

8 TeV 96.1± 0.9 24.3± 0.4

13 TeV 78.0± 3.0

ALICE
2.76 TeV 62.8± 3.4 12.2± 4.6

7 TeV 73.2± 4.3 14.9± 4.7

LHCb
7 TeV 68.7± 4.9

13 TeV 75.4± 5.4

TOTEM
7 TeV 73.7± 3.4

13 TeV 110.6± 3.4 31.0± 1.7

Table 4.2: High energy p
(−)

p experimental data set supplemented by data

available in [127]
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dataset number of points χ2

σtot 18 21.7

σel 11 21.3

σin 8 4.1

σsd 6 2.6

Table 4.3: The values of χ2 resulting from independent fits to quadratic

polynomials in log(s), illustrating the tensions in some parts of the dataset.

resulting χ2 will inevitably be high. When including single diffractive data,

this enforces a baseline minimum of χ2 = 49.6 for 43 data points.

Furthermore, we do not include double diffractive cross-section mea-

surements [21, 12, 11] in our fits since a proper description of these cross

sections has so far eluded any theoretical description. We have checked

that our models are not able to reproduce these, even if we free all possible

parameters. We show the discrepancy in Fig. 4.4.

4.2.5 Results

We give the results of our fits in Fig. 4.4 and Table 4.4. We obtain equiv-

alent fits for the U matrix and the eikonal, with respective values of the

χ2/d.o.f of 1.316 and 1.328. As discussed in Sec. 4.2.4, these high values

are driven by disagreements in the elastic data at the high energies. With

Scheme ϵ α′ (GeV−2) gDD tDD (GeV2) θ (rad) χ2/d.o.f

U-matrix 0.11± 0.08 0.35± 0.05 6.3± 1.3 2.2± 0.4 0.11± 0.02 1.316

Eikonal 0.12± 0.04 0.31± 0.10 8.81± 0.12 1.37± 0.05 0.20± 0.02 1.328

Table 4.4: χ2/d.o.f and best-fit parameters obtained using the eikonal (ω =

1) and U-matrix (ω′ = 1/2) unitarisation schemes with single diffractive

data. The parameters of the pp vertex are fixed to the central values of

Table 6.1.

this understanding, it is clear that the data allows for U-matrix unitarisa-

tion scheme. Either scheme describes the total and elastic cross sections

equally well; however, the U-matrix scheme provides a slightly better fit

to the high-energy single diffractive data than does the eikonal, as can be

seen in Fig. 4.4.
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Figure 4.1: Top left: Total, elastic, and inelastic cross sections obtained with best-fit pa-

rameters for the U-matrix (solid curves) and the eikonal schemes (dashed curves) without

using single-diffractive data. Top-right: Same as top-left but when single diffractive data

is included in the fits. Bottom-left: Single diffractive cross-sections for best-fit values

of the parameters when using the U-matrix (solid curves) and eikonal schemes (dashed

curve). Bottom-right: Double diffractive cross-sections, which are not well fit by either

scheme.

The parameters of the pomeron trajectory are not affected by the in-

clusion of the diffractive data, as they have a much lower weight than the

elastic data. The parameters linked to the diffractive state are consistent

with the physical picture underlying our model: the diffractive state is

slightly bigger than the proton hence its scale tDD is slightly lower than

tpp.

As noted previously, the double diffractive cross sections p
(−)

p → 2X

[21, 12, 11] are not fitted well by either of the unitarisation schemes. We

show this in Fig. 4.4 (bottom-right panel).

Multiple experiments have investigated the ratio of the real part of the

elastic scattering amplitude to its imaginary part at different centre-of-

mass energies. Although we do not use ρ data in our fits, we can predict
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Figure 4.2: Top left: Total, elastic, and inelastic cross sections obtained with best-fit pa-

rameters for the U-matrix (solid curves) and the eikonal schemes (dashed curves) without

using single-diffractive data. Top-right: Same as top-left but when single diffractive data

is included in the fits. Bottom-left: Single diffractive cross-sections for best-fit values

of the parameters when using the U-matrix (solid curves) and eikonal schemes (dashed

curve). Bottom-right: Double diffractive cross-sections, which are not well fit by either

scheme.

its values at different
√
s using our best-fit parameters and compare these

predictions against the experimental data. We find that the values of ρ

and its slowly-falling shape as a function of
√
s are largely consistent with

experimental data between 100 GeV and 7 TeV (see e.g. [127]). We predict

ρ = 0.131 ± 0.009 for either unitarisation scheme at
√
s = 13 TeV. This

agrees with the result ρ = 0.14 in [64]; however, it is in tension with the

value of ρ ≈ 0.10 obtained for the 13 TeV TOTEM data both by the

collaboration itself [27] and in [61].

Despite their equivalence for existing data, the two schemes give sig-

nificantly different predictions for the single-diffractive cross section at

ultra-high energies. Unlike the total, elastic, and inelastic cross sections,

the single diffractive cross section obtained using the eikonal scheme is
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Figure 4.3: Top left: Total, elastic, and inelastic cross sections obtained with best-fit pa-

rameters for the U-matrix (solid curves) and the eikonal schemes (dashed curves) without

using single-diffractive data. Top-right: Same as top-left but when single diffractive data

is included in the fits. Bottom-left: Single diffractive cross-sections for best-fit values

of the parameters when using the U-matrix (solid curves) and eikonal schemes (dashed

curve). Bottom-right: Double diffractive cross-sections, which are not well fit by either

scheme.

noticeably different from that obtained using the U-matrix, with the for-

mer exhibiting a slower growth with energies than the latter, as shown in

Fig. 4.5. This difference is especially significant for ongoing cosmic-ray ex-

periments measuring the pp cross-section at high energies from tens of TeV

up to the GZK cut-off, Elab ≈ 5×1010 GeV. As the single-diffraction is the

parent process to forward pions, and hence to forward muons, it seems that

considering different unitarisation schemes would lead to different muon

multiplicities at ultra-high energies.

4.2.6 Conclusions

We have shown how the scheme proposed by Gotsman, Levin and Maor

[85, 86] could be adapted to other unitarisation schemes. We have also
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Figure 4.4: Bottom-left: Single diffractive cross-sections for best-fit values of the pa-

rameters when using the U-matrix (solid curves) and eikonal schemes (dashed curve).

Bottom-right: Double diffractive cross-sections, which are not well fit by either scheme.

shown how the vertices of the mixed states could be deduced from those

of the proton, allowing a more constrained parameterisation.

Using up-to-date collider data on p
(−)

p total, elastic, and single diffrac-

tive cross sections, including 13 TeV data from recent LHC experiments,

we have determined best fits to the parameters governing these cross sec-

tions in the context of different unitarisation schemes. Specifically, we

have shown that the U-matrix scheme fits the data as well as the more

ubiquitous eikonal scheme. In fact, the fits have a slight preference for the

U Matrix. This difference is driven by the single diffractive cross section,

especially at high energies, while the best-fit total and elastic cross sections

are nearly identical up to energies of 13 TeV when using either of these

schemes.

A consequence of the indifference of the elastic cross section to the

choice of the unitarisation scheme up to tens of TeV is that values of the

ρ parameter remain largely unaffected by the choice of the scheme too.

We use our best-fit parameters to compute this parameter across different

energies, and find that the corresponding values conform to existing data,
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Figure 4.5: The growth of the single-diffractive cross section with lab energies up to
√
s = 1011 GeV for both the U-matrix unitarisation scheme (solid curve) and the eikonal

(dashed curve). We show a 1σ error band in the U-matrix case. The corresponding band

is similar in the eikonal case, but we omit it for clarity.

to the exception of the TOTEM measurement at 13 TeV.

We have also analysed how the fits improve if one uses the generalised

eikonal and U-matrix schemes and we find that these generalisations — at

the cost of an additional free parameter (ω or ω′) — do not improve the

fits significantly.

The upshot of our analysis is that the overall best-fit cross section, in

light of up-to-date collider data, is obtained using amplitudes unitarised

via the U-matrix scheme. The resulting p
(−)

p single diffractive cross section

shows a sharper growth at high energies than does the one obtained

using the more commonly used eikonal scheme, and unitarisation could

have an impact on the description of ultra-high-energy cosmic-ray showers.
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5 Unitarity and Multi-Channel

Diffraction

5.1 Context of the study

One of the striking results obtained from the previous study is related to

the description of the total, elastic, and inelastic cross-sections, which were

scheme-independent with the exception of the single-diffractive data that

preferred the U -matrix scheme over the eikonal one, regardless of the data

used.

Since hadron diffraction is closely tied to correlations arising from

hadron fluctuations in various configurations, implementing a multi-

channel model of high-energy hadronic interactions using the U -matrix

scheme could enhance our understanding of these hadronic fluctuations.

In light of this, we were spurred to undertake this study, in which we

extend the two-channel model to a multi-channel one. It can be perceived

as a continuation of the previous work, focusing on testing the hypothesis

of considering an infinite parton configuration space and quantifying the

uncertainties pertaining to the description of various hadronic observables,

namely total, elastic, inelastic and single-diffractive cross-sections. In

addition, it sought, based on our model, to predict the double diffractive

cross-section, the ratio of the real part to the imaginary part of the elastic

amplitude, i.e., the ρ parameter, and the elastic differential cross-section.

This study was conducted within the framework of the two-channel

Good-Walker mechanism, which was extended to the multichannel case

by considering the full range of parton configurations and mapping these

configurations onto positive real numbers to facilitate the replacement of

discrete sums with integrals, addressing the continuous nature of the prob-

lem.

55
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5.2 ARTICLE 3

A Multi-Channel U-Matrix Model Of Hadron Interaction At High

Energy
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Abstract: The present phenomenological study investigates a

multi-channel model of high-energy hadron interactions by con-

sidering a full parton configurations space and the U -matrix uni-

tarisation scheme of the elastic amplitude, comparing it to the

two-channel model, and examining the consequences of up-to-

date high-energy collider data on the best fits to various hadronic

observables in pp and pp̄ collisions. The findings of this study

reveal that the data are well-fitted with the multi-channel model

and that the difference compared to the two-channel one is neg-

ligible. Of particular significance is the observation that the

U -matrix unitarisation is likely incompatible with uncorrelated

pomeron exchange, as suggested by the equivalence between the

U -matrix multi-channel and eikonal two-channel descriptions.

Based on our best fit, predictions for the ρ parameter, the double

diffractive cross-section, and the elastic differential cross-section

are provided. We shed light on the effect of taking into account

a multi-channel model on present and future cosmic ray data.

5.2.1 Introduction

When ultra-high energy cosmic ray particles first hit the Earth’s atmo-

sphere, several additional interactions take place. These interactions lead

to particle multiplication and decay processes, which collectively result in

a cascade of secondary particles known as an extensive air shower (EAS).

In fact, observing these air showers is the only means of detecting high-

energy cosmic ray particles. The development of air showers is depen-

dent on hadronic cross sections and particle production characteristics in

hadronic interactions.

https://arxiv.org/abs/2305.03424
https://doi.org/10.1007/JHEP08(2023)087
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However, it is worth noting that there is still much to be discovered

about the evolution of the total and elastic cross sections in hadron-hadron

collisions as functions of the center of mass energy as well as the character-

istics of multiparticle production in these interactions. It is an interesting

line of research given its phenomenological implications.

Indeed, estimating the features of hadronic interactions at LHC energies

is crucial not only for modelling the background while looking for potential

manifestations of new physics but also for the interpretation of the existing

(and future) cosmic ray data, which relies on theoretical assumptions that

describe these interactions.

As a matter of fact, despite being a well-known and experimentally sup-

ported theory of strong interactions, Quantum chromodynamics (QCD)

can only currently predict processes involving large momentum transfer.

Furthermore, the bulk properties of multiparticle production, which are

required for air shower simulation, are still not calculable. Therefore,

in order to create models for hadronic interactions that describe various

particle generation processes, it is necessary to make further simplifying

hypotheses in conjunction with phenomenological models that essentially

consist of perturbative QCD (pQCD) predictions and phenomenological

fits to experimental hadron spectra, which in turn are based on funda-

mental principles of quantum field theory – such as unitarity, analyticity

and crossing, along with empirical parametrizations [68]. Certainly, it is

crucial to validate these assumptions, constrain the parametrizations, and

fine-tune the parameters using accelerator data comparisons.

For instance, in a prior study [135], the hypothesis of using two dif-

ferent unitarization schemes; the commonly employed eikonal as well as

the U-Matrix, as unitarity constraint of the elastic amplitude was exam-

ined by looking into the effect of including recent collider data for total,

elastic, inelastic and single diffractive cross sections in the framework of

the two-channel model. The results showed nearly identical cross-sections,

regardless of the unitarisation scheme adopted. Most importantly, it has

been found that the single diffractive data are slightly better described

with the U-matrix than with the eikonal one, in spite of the data used.

Another hypothesis with regard to considering an infinite parton configu-

rations space has been examined using the eikonal scheme [50]. We intend

to investigate this hypothesis, but rather utilizing the U-matrix scheme.

It should be noted that the U-matrix scheme is not used as an alterna-

tive to phenomenologically studying hadronic interactions at high energy,
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but rather for physical reasons. To start with, the choice of the U-matrix

scheme is motivated by the aforementioned result [135]. Secondly, owing to

the fact that correlations may emerge from the fluctuations of the hadrons

in various configurations, which is a phenomenon closely connected to

hadron diffraction [128], we then may infer that these hadron fluctuations

might be increased through implementing a multi-channel model of high

energy hadronic interactions using the U matrix scheme. We expect that

it will produce a better description of the hadronic observables, compared

with the eikonal scheme, within the multi-channel model. We also antic-

ipate that it will provide better results within the multi-channel model

than within the two-channel one.

This study has the following objectives. First of all, it will focus on

testing the hypothesis of considering an infinite parton configuration space

and compare it to the two-channel counterpart. Based on our model,

it also seeks to predict the double diffractive cross-section, the ratio of

the real part to the imaginary part of the elastic amplitude, i.e., the ρ

parameter, and the elastic differential cross-section. Finally, the impact of

considering a multi-channel model on present and future cosmic ray data

will be discussed.

The present paper is organised as follows. In section 5.2.2 we will focus

on the theoretical framework of the diffractive excitation in the context

of the multi-channel Good-Walker approach. In section 5.2.3, an explicit

model for the description of the elastic scattering amplitude as well as

the treatment of the average number of interactions will be proposed.

Moreover, the principal parameters of the model and data used will be

highlighted. In section 6.2.4, the results of the study will be presented and

discussed. In section 6.2.5, the conclusions will be given.

5.2.2 Diffraction and multi-channel Good-Walker approach

5.2.2.1 Theoretical framework

Hadrons are composite particles comprised of quarks and gluons which in-

teract in a variety of ways during hadron collisions. It is possible to relate

these interactions to the total and elastic cross sections using a suitable

theoretical framework. But the specific way to achieve it is still an open

question. In fact, ”Mini-jet” models [67] are thought to be a viable option,

with total and elastic cross sections calculated using an eikonal formalism

in terms of the quantity ⟨n(b, s)⟩, representing the average number of ele-
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mentary interactions at impact parameter b and c.m. energy
√
s.

It should be emphasized that predictions made using the simple eikonal

scheme in these Mini-jet models are insufficient. The fact that this kind

of elastic amplitude unitarization scheme is inappropriate for a collision of

composite objects like hadrons is already supported by the findings of a

number of studies [108, 130, 133] as well as certain (indirect) evidence. In

fact, the eikonal unitarization scheme is a well-known technique for cal-

culating the amplitude X, which meets some minimal s-channel unitarity

constraints from the “non-unitary” amplitude χ, as

X = i(1− exp (iχ)) (5.1)

It is based on the assumption that the impact parameter (the perpen-

dicular distance between the trajectories of colliding particles) is much

larger than the characteristic size of the interacting particles. Regarding

the statistical nature of this scheme, in collisions at a fixed impact pa-

rameter and c.m. energy, the fluctuations in the number of interactions

are just Poissonian in nature [47]. The statistically independent and iden-

tically distributed interactions is equivalent that each exchange process

is statistically equivalent and contributes equally to the overall scatter-

ing amplitude. This is equivalent to a sum of contributions derived from

the multiple exchanges, emerging with even weights, which is described

by the primary amplitude χ. While the assumption of equal weights is a

useful simplification, it may not always accurately reflect the underlying

physics. In reality, the individual exchange processes may have different

strengths or probabilities, which could affect the overall scattering ampli-

tude. Accounting for such differences would require a more detailed and

sophisticated treatment beyond the eikonal approximation. Mathemati-

cally, the eikonal approximation allows us to factorize the overall scatter-

ing S-matrix associated with the interaction into a product of individual

scattering matrices. This approach is sometimes connected with the image

of a rapid particle travelling virtually straight ahead in target media, [81].

Furthermore, the eikonal approximation treats the hadrons as classi-

cal objects with fixed parton distributions. It assumes that during the

interaction, the parton configurations remain frozen or unchanged. This

approximation is valid when the timescale for the parton dynamics, such

as radiation and absorption, is much longer than the timescale of the in-

teraction itself [105]. The freezing of parton configurations in the eikonal

approximation simplifies the calculations by considering the partons as
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fixed distributions and focusing on the overall scattering process rather

than the detailed internal dynamics. However, it is important to note

that the freezing of parton configurations is an approximation and may

not capture all aspects of the parton dynamics accurately. In reality, par-

tons can undergo radiation and absorption processes, leading to changes

in their energy and momentum distributions. Due to these limitations in

the eikonal approximation, all such multiple exchanges may not occur si-

multaneously and may be dependent on each other. This challenges the

assumption of equal weights and Poissonian behavior in the summation of

exchanges. Furthermore, the need for multiple exchanges arises to account

for phenomena such as screening effects and additional inelastic processes.

The prevalence of the eikonal scheme in Monte Carlo event generators,

such as SIBYLL [118] and QGSJET [114], prompts a reevaluation of its

suitability for unitarizing the elastic amplitude in hadronic collisions. Con-

tinual assessment and refinement of theoretical frameworks and models are

necessary to better capture the complexities of high-energy interactions.

The fluctuating structure of hadrons, which are composite particles

made up of quarks and gluons bound together by the strong force, is

thought to contribute to the process of diffractive excitation. The internal

structure of hadrons is highly complex and dynamic, with quarks and glu-

ons constantly interacting and creating temporary resonances within the

hadron. During a high-energy collision between two hadrons, these reso-

nances can be excited by the exchange of a pomeron, leading to diffractive

excitation. The exact mechanism of this process is still an area of active

research in particle physics. According to Good and Walker (GW) [82],

inelastic diffraction occurs because an interacting hadron can be perceived

as a superposition of several states that experience uneven absorptions.

GW further depicted the diffractive excitation as the eigenstates of the

scattering operator, which are utilized to describe the physical states.

In the same vein, Miettinen and Pumplin [109] postulated that these

“transmission eigenstates” can be recognized as distinct “configurations”

of the parton elements contained within a hadron. It is necessary to have

a general grasp of the entirety of these parton configurations in order

to estimate inelastic diffraction within this theoretical framework, which

seems to be a challenging task. One possible method of doing so consists in

lessening the space of parton configurations to a finite dimensional space

and explicitly creating a matrix transition operator. As an illustration

of this approach [135], we have taken into account the minimal scheme
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initially proposed by Gotsman, Levin, and Maor (GLM) [84] and combined

the proton with one diffractive state. This is equivalent to a two-channel

unitarisation scheme. Another illustration can be found in [84], where

GLM examined the case N = 3 in the eikonal scheme but discovered no

appreciable improvement.

Therefore, in order to highlight the difference in the description of the

hadronic observables between the models, the entirety of parton configu-

rations as well as the scheme adopted should be taken into account. Prac-

tically speaking, an N channel scheme could be considered, but this would

increase the number of parameters, which will affect the attainment of a

reliable and realistic model in comparison with the physics that we aspire

to describe.

An alternative approach assumed here is to map the space of the parton

configurations into the real positive numbers. Various research papers in

the field have already explored this approach [32, 76, 75, 77, 78, 90, 44, 50]

but all of them with the eikonal scheme. However, since no single published

study, to our knowledge, has estimated the inelastic diffraction within

the GW approach by considering the entirety of parton configurations

together with the U-matrix scheme, this study attempts to fill this gap, at

least partially. The total cross-section and its various constituents (elastic,

absorption, and diffraction) can be calculated as will be shown in the

following section.

5.2.2.2 Formalism

We adopt the multichannel formalism presented in [50, 90], with a small

modification to account for a full complex scattering amplitude. The start-

ing point is the impact parameter space representation, where the hadronic

observables, the total, elastic, single, and double diffractive scattering cross

sections may be readily expressed as :

σtot(s) = 2

∫
d2b Im {Xel(s, b)} ; σel(s) =

∫
d2b |Xel(s, b)|2 ; (5.2a)

σsd(s) = 2

∫
d2b |Xsd(s, b)|2 ; σdd(s) =

∫
d2b |Xdd(s, b)|2 (5.2b)

When a projectile P collides with a target T , represented by the phys-

ical states |P ⟩ and |T ⟩ respectively, we assume that both states can be

diffracted onto various particle states {|A⟩} and {|B⟩} due to their sub-



CHAPTER 5. UNITARITY AND MULTI-CHANNEL
DIFFRACTION 62

structure. The GW approach states that the initial state can be expressed

as a sum over the eigenstates {|Ψi⟩} of the scattering operator T̂ , forming

a complete set of normalized states. This gives us the initial state |I⟩ as:

|I⟩ = |P, T ⟩ =
∑

ij

CP
i C

T
j |ψiψj⟩ (5.3)

where T̂ |ψiψj⟩ = tij|ψiψj⟩, with the eigenvalues tij = tij(b, s) depending

implicitly on the projectile and target’s specific configurations. The final

state system can be described by

|F ⟩ = T̂ |I⟩ =
∑

i,j

CP
i C

T
j tij|ψiψj⟩ (5.4)

leading to

⟨F |F ⟩ =
∑

i,j

|CP
i |2|CT

j |2|tij|2 =
∑

i,j

P P
i P

T
j |tij|2 = ⟨|t|2⟩P,T (5.5)

where we have identified P P
i = |CP

i |2 and P T
j = |CT

j |2 as configuration’s

probability distributions for projectile and target respectively, and ⟨...⟩P,T
refers to the mean value calculated across the different configurations

present in both the projectile and the target.

The final state system can be expressed as a sum over the possible final

states {|A,B⟩}, which form a complete set of eigenstates, as:

|F ⟩ =
∑

A,B

|A,B⟩ = |P, T ⟩+
∑

A ̸=P

|A, T ⟩+
∑

B ̸=T

|P,B⟩+
∑

A ̸=P,B ̸=T

|A,B⟩ (5.6)

As a result, we can deduce that:

⟨F |F ⟩ =
∑

A,B

⟨F |A,B⟩⟨A,B|F ⟩

= |⟨P, T |F ⟩|2 +
∑

A ̸=P

|⟨A, T |F ⟩|2 +
∑

B ̸=T

|⟨P,B|F ⟩|2 +
∑

A ̸=P ;B ̸=T

|⟨A,B|F ⟩|2 .(5.7)

Furthermore, by using the fact that
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Xel(s, b) ≡ ⟨P, T |F ⟩ =
∑

i,j

|CP
i |2|CT

j |2tij ≡ ⟨t⟩P,T , (5.8)

XP
sd(s, b) ≡ ⟨A, T |F ⟩|A ̸=P =

∑

i,j

C∗,A
i CP

i |CT
j |2tij , (5.9)

XT
sd(s, b) ≡ ⟨P,B|F ⟩|B ̸=T =

∑

i,j

|CP
i |2C∗,B

j CT
j tij , (5.10)

Xdd(s, b) ≡ ⟨A,B|F ⟩|A ̸=P ;B ̸=T =
∑

i,j

C∗,A
i CP

i C
∗,B
j CT

j t
∗
ijtij , (5.11)

we can write by making use of the completeness of the states

{|A⟩}(∑AC
∗,A
i CA

i′ = δii′) :

|⟨P, T |F ⟩|2 +
∑

A ̸=P

|⟨A, T |F ⟩|2 =
∑

A

|⟨A, T |F ⟩|2 =
∑

A

∣∣∣∣∣∣
∑

i

C∗,A
i CP

i

∑

j

|CT
j |2tij

∣∣∣∣∣∣

2

=
∑

A

∣∣∣∣∣
∑

i

C∗,A
i CP

i ⟨t(j)⟩T
∣∣∣∣∣

2

=
∑

i

C∗,P
i CP

i |⟨t(j)⟩T |2

= ⟨|⟨t⟩T |2⟩P (5.12)

In a similar fashion, we can obtain the following result:

|⟨P, T |F ⟩|2 +
∑

B ̸=T

|⟨P,B|F ⟩|2 =
∑

B

|⟨P,B|F ⟩|2 =
∑

B

∣∣∣∣∣∣
∑

j

C∗,B
j CT

j

∑

i

|CP
i |2tij

∣∣∣∣∣∣

2

=
∑

B

∣∣∣∣∣∣
∑

j

C∗,B
j CT

j ⟨t(i)⟩P

∣∣∣∣∣∣

2

=
∑

j

C∗,T
j CT

j |⟨t(i)⟩P |2

= ⟨|⟨t⟩P |2⟩T , (5.13)

and

∑

A ̸=P ;B ̸=T

|⟨A,B|F ⟩|2 = ⟨F |F ⟩ − |⟨P, T |F ⟩|2 −
∑

A ̸=P

|⟨A, T |F ⟩|2 −
∑

B ̸=T

|⟨P,B|F ⟩|2

= ⟨|t|2⟩P,T − ⟨|⟨t⟩T |2⟩P − ⟨|⟨t⟩P |2⟩T + |⟨t⟩P,T |2 (5.14)

Thus, based on the aforementioned relations, we can deduce the related

cross-sections in the impact parameter space in the following manner:
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• The elastic cross-section:

d2σel
d2b

= |⟨P, T |F ⟩|2 = |⟨t⟩P,T |2 ; (5.15)

• The projectile single diffractive cross-section :

d2σPsd
d2b

=
∑

A ̸=P

|⟨A, T |F ⟩|2 = ⟨|⟨t⟩T |2⟩P − |⟨t⟩P,T |2 ; (5.16)

• The target single diffractive cross-section :

d2σTsd
d2b

=
∑

B ̸=T

|⟨P,B|F ⟩|2 = ⟨|⟨t⟩P |2⟩T − |⟨t⟩P,T |2 ; (5.17)

• The double diffractive cross-section:

d2σdd
d2b

=
∑

A ̸=P ;B ̸=T

|⟨A,B|F ⟩|2

= ⟨|t|2⟩P,T − ⟨|⟨t⟩T |2⟩P − ⟨|⟨t⟩P |2⟩T + |⟨t⟩P,T |2 . (5.18)

• Moreover, the total single diffractive cross-section is expressed as :

d2σsd
d2b

=
d2σPsd
d2b

+
d2σTsd
d2b

= ⟨|⟨t⟩T |2⟩P + ⟨|⟨t⟩P |2⟩T − 2|⟨t⟩P,T |2 , (5.19)

and the total diffractive cross-section as :

d2σdiff
d2b

=
d2σsd
d2b

+
d2σdd
d2b

= ⟨|t|2⟩P,T − |⟨t⟩P,T |2 . (5.20)

• Finally, using the optical theorem, the total cross-section is given by

d2σtot
d2b

= 2 Im {⟨t⟩P,T} . (5.21)

To compute the required average over the configurations in both the

projectile and the target, necessary for obtaining these cross-sections and

encompassing the entire space of parton configurations, we perform a map-

ping of this space onto the domain of real positive numbers. This mapping

is established under the assumption that the distinct configurations Ci can

be effectively represented by a continuous distribution, where each config-

uration is assigned a corresponding probability Phi(Ci).
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Accordingly, we can substitute a discrete summation with a continuous

one, and this leads to the following correspondences :

∑

i

|CP
i |2 →

∫
dC1Ph1(C1) for the projectile, (5.22)

∑

i

|CT
i |2 →

∫
dC2Ph2(C2) for the target (5.23)

and

tij(b, s) → t(b, s,C1,C2) , (5.24)

where the different configurations are clearly displayed.

In order to reveal the role of taking into account a full parton configu-

ration space based on this formalism, we need a model for the elastic scat-

tering amplitude t(b, s,C1,C2), and the probability distribution Phi(Ci),

which will explicitly be presented in the following section.

5.2.3 Explicit model and data

The elastic hadron scattering amplitude t(b, s,C1,C2) is a complex func-

tion that describes the probability of two hadrons scattering off each other

at a given energy and impact parameter. At high energies, this ampli-

tude can become very large, which violates the unitarity condition that

the probability of any physical process cannot exceed unity. To restore

unitarity, we can use a process called unitarization. This involves modi-

fying the amplitude in a way that satisfies unitarity while preserving its

physical properties. As has been stated in the introduction, we will con-

sider that t(b, s,C1,C2) is given by the U-Matrix form [? ], as the sum of

all n-pomeron exchange contributions from the single-pomeron scattering

amplitude which in turn is related to the expected number χ(b, s,C1,C2)

of interactions between partons of the incident hadrons for a given combi-

nation of configurations C1 and C2:

t(b, s,C1,C2) =
χ(b, s,C1,C2)

1− iχ(b, s,C1,C2)/2
(5.25)

In order to simplify the calculation of the elastic scattering amplitude, we

suppose that the expected number of interactions between partons can be

expressed as a product of the single-Pomeron scattering amplitude and

some functions of impact parameter and configurations.
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χ(b, s,C1,C2) = f(b,C1,C2) · χP (s, b) (5.26)

This factorization is based on the idea that the configurations dependence

of χ(b, s,C1,C2) can be separated from the energy dependence, which is

described by the single-Pomeron scattering amplitude. This assumption is

based on the fact that the energy dependence of the elastic scattering am-

plitude is dominated by the exchange of a single Regge pole, the pomeron,

which is independent of the specific hadronic configurations involved in

the scattering process

In addition, if we assume that the distribution of parton configurations

is independent of the impact parameter, which means that the parton

density inside the hadron is the same at all points in space and that the

hadron can be treated as a collection of independent partons, then we can

write

χ(b, s,C1,C2) = χP (s, b) · α(C1)α(C2) (5.27)

where the functions α(Ci) depend on the configurations of the incident

hadrons. Therefore, we have

∫
dC1

∫
dC2Ph1(C1)Ph2(C2)t(b, s,C1,C2) =

∫ ∞

0
dα1

∫ ∞

0
dα2p(α1)p(α2)t(b, s, α1, α2)

(5.28)

where the functions p(αi) are defined by

p(αi) =

∫
dCiPhi(Ci)δ[α(Ci)− αi], (5.29)

which satisfy the following constraints:
∫ ∞

0
dαi p(αi) = 1, (5.30)

and ∫ ∞

0
dαi αi p(αi) = 1 (i = 1, 2) . (5.31)

Accordingly, we can implicitly take into account of an infinite number

of inelastic channels by using the function of a real positive variable, the

probability distribution p(α) representing the fluctuations of the hadron

configurations with some extension defined by its variance. This gener-

alizes the GW approach to a multichannel framework, as demonstrated

in [105], where the connection between the discrete and continuous multi-

channel GW was established.
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Thus, The averaging over the configurations appearing in Eqs. (5.15) –

(5.21) will be determined as follows:

• Mean value computed over the configurations of the projectile:

⟨tn⟩P =

∫ ∞

0
dα1 p(α1) t

n(b, s, α1, α2); (5.32)

• Mean value computed over the configurations of the target :

⟨tn⟩T =

∫ ∞

0
dα2 p(α2) t

n(b, s, α1, α2); (5.33)

• Mean value computed over the configurations of the projectile and

the target :

⟨tn⟩PT =

∫ ∞

0
dα1

∫ ∞

0
dα2 p(α1) p(α2) t

n(b, s, α1, α2) (5.34)

An advantage to the method disclosed here is that it considers the en-

tirety of the parton configuration space. Nevertheless, it should be noted

that the probability distribution p(αi), remains unknown. We do antici-

pate, however, that this distribution will exhibit the following characteris-

tics: it needs to be defined for positive values of its variable α and have the

predicted limit, p(α) → δ(α − 1), when its variance reaches zero, which

is equivalent to no fluctuations and satisfies the above constraints 5.30

and 5.31. In order to satisfy these properties, we use for the probability

distribution p(αi), the gamma distribution, with variance w,

p(αi) =
1

wΓ(1/w)

(αi

w

)−1+1/w
e−αi/w (5.35)

Since we are accounting for the collision of identical hadrons, we will

suppose that the variance w of the distribution is independent of i.

This assumption enables us to compute the average over configurations

Eqs. (5.32), (5.33) and (5.34) needed to determine the various observables

Eqs. (5.15)- (5.21).

To complete the description of our model, we parameterize the single-

pomeron scattering amplitude, as the Ansatz put forth in [135] for com-

parison purposes :

aP (s, t) = g2pp Fpp(t)
2

(
s

s0

)α(t)

ξ(t), (5.36)
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where α(t) is the pomeron trajectory, Fpp(t) is the proton elastic form fac-

tor, and gpp is the coupling pomeron-proton-proton, with ξ(t) the signature

factor

ξ(t) = −e−iπα(t)
2 , (5.37)

where a full complex rather than a purely imaginary one was chosen in

order to meet the elastic amplitude’s analyticity constraint, which is es-

sential to respecting causality. Regarding the proton elastic form factor,

although the exact functional form is not very important as we want to

make a comparison with the two-channel model, we shall consider here a

dipole form factor :

Fpp =
1

(1− t/tpp)2
(5.38)

Using an exponential form factor {F1 = exp (R0t)}, instead of the dipole

form, leads to slightly poorer fits [43]. The pomeron trajectory is close to

a straight line [60] and we take it to be

α(t) = 1 + ϵ+ α′t. (5.39)

In the impact-parameter space representation, where the Fourier transform

of the amplitude aP (s, t) rescaled by 2s is equivalent to a partial wave, we

have :

χP (s, b) =

∫
d2q

(2π)2
aP (s, t)

2s
eiq·b. (5.40)

and by the unitarisation procedure we map the amplitude χP (s, b) to

the physical amplitude t(s, b), which in turn bears the same relation as

Eq. (6.15), but this time to the physical amplitude :

t(s, b) =

∫
d2q

(2π)2
A(s, t)

2s
eiq·b. (5.41)

Thus, using the assumptions made in this model, we can make specific

predictions and conclusions about the hadronic collisions at high energy

and, at the same time, test the hypotheses that were adopted.

Before presenting our results in the subsequent section, we list here the

model parameters that will be set by the data fit as well as the experimental

data employed. The model parameters are the following: ϵ and α′, which
are associated with the Pomeron trajectory, as well as gpp and tpp linked
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to the proton-pomeron pIPp vertex, and the variance ω of the probability

distribution. We employ experimental data above 100 GeV as we are

concerned with high energy effects induced in p
(−)

p cross sections. And

as we aim at looking into the impact of putting in place a multi-channel

model in order to describe hadronic interactions and comparing it with the

two-channel one, the same data set 1 as in [135], which involves statistical

as well as systematic errors and combines them in quadrature, is used. The

fitting process was conducted using the class Minuit2 from ROOT [91] and

the MIGRAD algorithm. The fitting was performed by minimizing the χ2

value, and the uncertainties in the free parameters were calculated with a

1σ confidence level, which was used to determine the error band.

5.2.4 Results and discussion

The results of our multi-channel model are provided in Fig. 4.4 and Table

5.1 using the formalism previously outlined. As can be seen from these

findings, the multi-channel model describes well the total, elastic, inelas-

tic, and single-diffractive cross-sections, with a χ2 /d.o.f of 1.328. These

outcomes are actually in line with those obtained using the U -matrix two-

channel model with a χ2 /d.o.f of 1.316 [135], which shows a difference of

only 0.012 in the χ2 /d.o.f.

The difference between the two χ2 obtained in both models is marginal.

As a matter of fact, it is somewhat surprising that there is no improve-

ment with the multi-channel model given that the latter was expected to

describe the diffractive phenomenon, in particular, better than the two-

channel one. The reason for this similarity between the two models can

be attributed to the unitarization process employed in both cases. Specif-

ically, both models adhere to the same unitarity constraint, known as the

U -matrix scheme. This can be observed in Fig. 5.5 (right panel), where

the impact-parameter space representation showcases that the imaginary

and real components of the elastic profile function at a specific energy,

such as 13 TeV, are nearly identical in both models. Furthermore, it is

evident that these components do not surpass the black disk limit, indicat-

ing consistency with the principles of unitarity. Most importantly, based

on the similarity in the obtained χ2/d.o.f. values between the U -matrix

multi-channel model and the eikonal two-channel one [135], it seems likely

that the factorization assumption adopted in the former case may not be

1see compilation in [135]



CHAPTER 5. UNITARITY AND MULTI-CHANNEL
DIFFRACTION 70

applicable. Specifically, if there is a correlation between the pomeron ex-

changes, then the impact parameter and configuration dependence of the

scattering amplitude may not be separable from the energy dependence

carried by the single-pomeron exchange. In this case, the distribution of

parton configurations may depend on the impact parameter, and the av-

erage number of interactions at a fixed impact parameter and center of

mass energy may not be separable from the configuration dependence of

the incident hadrons.
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Figure 5.1: Total cross section with the Multi-channel model and the 1σ error bands

around the fitted curve obtained with best-fit parameters.

Model ϵ α′ (GeV−2) gpp tpp (GeV2) ω χ2/d.o.f

Multi-channel 0.11± 0.003 0.29± 0.04 8.25± 0.2 2.06± 0.75 0.59± 0.06 1.328

Table 5.1: χ2/dof and best-fit parameters obtained with the U -matrix

Multi-channel model.
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Figure 5.2: Elastic cross section with the Multi-channel model and the 1σ error bands

around the fitted curve obtained with best-fit parameters.

Double diffractive cross-section measurements are not included in our

fits and our prediction based on the model presented in this study doesn’t

reproduce these data in spite of considering an infinite parton configu-

rations space, which corroborates the result reported in the context of a

two-channel model [135], as illustrated in Fig. 5.5 (left panel). In fact,

a proper description of this cross-section requires the introduction of an

additional contribution due to the Pomeron-enhanced diagrams involving

Pomeron-Pomeron interactions which is non GW. As the energy increases,

more diagrams illustrating complicated topologies become involved. Con-

sequently, the consistent treatment of these enhanced corrections proves

to be a very challenging task [111].

Fig. ?? displays the predictions for the energy evolution of the cross

sections in the impact parameter space from Tevatron to cosmic ray ener-

gies. The elastic, single-diffractive, and double-diffractive differential cross

sections are shown in the top right, bottom left and right panels, respec-



CHAPTER 5. UNITARITY AND MULTI-CHANNEL
DIFFRACTION 72

102 103 104 105
√
s[GeV ]

40

50

60

70

80

90

100

σ
in
el

[m
b]

Multi-channel U Matrix

non PDG data

Figure 5.3: Inelastic cross-section with the Multi-channel model and the 1σ error bands

around the fitted curve obtained with best-fit parameters.

tively. It can be seen that the elastic scattering is primarily central and

increases with energy. This result is comparable to the one reported in

[50]. In contrast, it gets much closer to the black disk limit at cosmic ray

energies. The behaviour of the single diffractive differential cross-section is

similar to that of the elastic scattering. At b = 0, it is mostly central and

has a magnitude that grows with energy, but it is smaller than the one of

the elastic scattering. It also declines more slowly than the elastic cross-

section as b rises. Similar behaviours of the unintegrated profile for the

single diffractive cross section at low mass are predicted by the Kolevatov

and Boreskov model presented in [101]. This result contrasts with the one

presented in [50], where the total single diffractive cross section becomes

more peripheral, with a maximum moving to a higher impact parameter as

the energy rises. Furthermore, as the c.m. energy increases, the magnitude

of the SD cross-section at b = 0 decreases. This rather contradictory re-

sult might be attributed to the use of two different unitarization schemes.
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Figure 5.4: Single diffractive cross section with the Multi-channel model and the 1σ error

bands around the fitted curve obtained with best-fit parameters.

The double diffractive cross-section becomes more peripheral when energy

rises. Nevertheless, its magnitude at b = 0 diminishes as c.m. energy

increases. This result is in line with that obtained in [50]. A note of cau-

tion with regard to the shape of the unintegrated profile for the double

diffractive cross section is due here since it is not well described.

The ρ parameter, i.e., the ratio of the real part of the elastic scattering

amplitude to its imaginary part has been studied in several experiments

at different centre-of-mass energies. In spite of the fact that ρ data are

not used in our fits, we can estimate its values at various
√
s by using our

best-fit parameters and then compare these predictions with the experi-

mental data. Fig. 5.9 (left panel) illustrates our predicted values for this

observable. As can be seen from this figure, while our model furnishes

a reasonable description for this parameter at various high energies, it is

unable to estimate the TOTEM data at 13 TeV since the 1σ error band

of the model doesn’t even reach the error bars of these data.
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Figure 5.5: The double diffractive cross section with 1σ error bands around the predicted

curve obtained with the Multi-channel model (left panel). The real and imaginary parts

of the elastic profile function Γ(s, b) at
√
s = 13 TeV with the U Matrix scheme for the

two and multi-channel cases (right panel).
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Figure 5.6: Multi-channel model prediction for the energy dependence of the elastic

differential cross section in impact parameter space.
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Figure 5.7: Multi-channel model prediction for the energy dependence of the single

diffractive differential cross section in impact parameter space.
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Figure 5.8: Multi-channel model prediction for the energy dependence of the double

diffractive differential cross section in impact parameter space.

This finding can be explained by the fact that an odderon contribution,

which emerged from the TOTEM and D0 experiments is required to be

included, implying distinct energy dependencies of the pp and pp̄ cross

sections [7].

Fig. 5.9 (right panel) shows our prediction for the elastic differential

cross-section in function of the transverse momentum in the context of a

pp collision at 13 TeV. It is evident from the figure that while the model

describes the experimental data for the elastic differential cross-section at

small values of squared momentum transfer q2, neither the position of the

dip nor the behaviour at large q2 is adequately described. Similar out-

comes have already been reported in a number of previous studies [50, 75],

which stresses the need for an improvement of the present model. Most

importantly, this result points out that taking into account an entire par-

ton configuration space doesn’t have any impact on the description of the

elastic differential cross section, as has been found in the two-channel case

[98]. Our model can be enhanced by considering a complex hadron over-

lap function rather than a simple dipole form factor, which is a reasonable

approximation, since it is known that the elastic differential cross-section

depends on the description of the overlap function and, thus, on the inter-
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Figure 5.9: Multi-channel model predictions for the ρ parameter (left panel) and for the

elastic differential cross-section at 13 TeV (right panel).
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nal structure of the incident hadrons [98]. As regards the position of the

dip, it has been reported in [98] that an Odderon contribution is required.
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Figure 5.10: The growth of the single-diffractive cross-section with lab energies up to
√
s = 1011 GeV for both the two and multi-channel models.

Although the two-channel and the multi-channel models are similar in

describing the various hadronic observables in comparison to the currently

available data, they provide differing predictions for the single-diffractive

cross-section, in particular, at ultra-high energies, as shown in the right

panel of Fig. 5.10, where the two-channel model exhibits a faster increase

with energies than the multi-channel one, using the U matrix scheme.

This discrepancy may stem from the assumption of equal width for

fluctuations in the parton configurations of colliding hadrons across differ-

ent channels. This assumption simplifies the model by assuming uniform

fluctuations across processes. However, in reality, fluctuations may vary

between channels. To gain a deeper understanding, it would be valuable to

investigate the potential for channel-dependent fluctuations. This would
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entail allowing the width of fluctuations to vary for each channel, thereby

encompassing the unique characteristics and dynamics of individual scat-

tering processes.

5.2.5 Conclusions

The chief purpose of the study was to provide a phenomenological de-

scription of the hadronic interaction at high energy through extending

the two-channel model into a multi-channel one using the U-matrix uni-

tarization scheme of the elastic amplitude. It has been found that the

multi-channel model accurately describes the total, elastic, inelastic, and

single-diffractive cross-sections, with only a minor difference from the two-

channel one.

In addition, in spite of considering an entire parton configuration space,

the present model was not able to estimate the double-diffractive cross-

section, which is in line with the results obtained with the two-channel

model. In fact, a proper description of this cross-section requires the in-

troduction of an additional contribution, i.e., pomeron interactions.

Moreover, the behaviour of the energy evolution of the various pro-

file functions in the impact parameter space from Tevatron to cosmic ray

energies was analysed.

The study has also found that the present model describes well the

ρ parameter at different high energies, but it is unable to estimate the

TOTEM data at 13 TeV. It has been suggested that an Odderon contri-

bution is needed to be included in order to remedy this shortcoming.

Furthermore, the elastic differential cross-section at 13 TeV was pre-

dicted. It has been shown that the model describes the experimental data

for this observable at small values of squared momentum transfer q2, but

it doesn’t describe the position of the dip or the behaviour at large q2. In

this regard, it has been proposed that considering a complex hadron over-

lap function instead of a simple dipole form factor as well as an odderon

contribution would be possible approaches to address this flaw.

Last but not least, despite similarities in the way the two models de-

scribe various hadronic observables, they provide distinct predictions for

the single-diffractive cross-section, especially at ultra-high energies, which

represents an interesting direction for future research on ultra-high energy

cosmic rays.

The paper concludes by arguing that the U -matrix scheme is more likely

to accounting for potential correlations between pomeron exchanges. Ad-
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ditionally, it suggests that the two-channel model, as opposed to a multi-

channel one, is adequate for modeling high-energy hadronic interactions,

particularly single diffractive scattering, using the U -matrix scheme, even

at ultra-high energies, provided that any potential pomeron correlations

are disregarded.

In summary, the multi-channel model used in the paper has limita-

tions because the probability distribution for hadron configurations is not

unique, and that the impact parameter and configuration dependence of

the scattering amplitude may not be separable from the energy dependence

carried by the single-pomeron exchange. This would complicate the cal-

culation of the total elastic scattering amplitude and may require a more

advanced theoretical framework, which is beyond the scope of this work.

On the whole, the findings of this study can serve as a base for future

improvements of the hadronic interaction models used in cosmic ray air

shower simulations.
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6 Unitarisation and Hadronic Multi-

Particle Production

6.1 Context of the work

There is a growing interest in the study of multiple production of hadrons

as it is perceived as the dominant phenomenon in high-energy particle

and nuclear collisions. This interest is especially pronounced at ultra-high

energies, as understanding this phenomenon is crucial for the accurate in-

terpretation of air-shower cosmic ray observables. These interpretations

are primarily achieved through Monte Carlo modelling of hadronic inter-

actions.

However, modelling hadronic interactions is not devoid of uncertain-

ties, which gives rise to model-dependent outcomes. For example, different

Monte Carlo event generators such as EPOS, QGSJET, and SIBYLL can

produce varying predictions for the same physical observables, complicat-

ing the interpretation of experimental data from cosmic ray detectors like

the Pierre Auger Observatory. This discrepancy underscores the need for

advances in the phenomenology and theory of modeling hadronic inter-

actions, especially in the context of multi-particle production, to reduce

uncertainties and achieve more reliable and consistent results.

Continuing from the previous chapters’ work, the main focus of the

present chapter is on the improved predictive ability of a hadronic inter-

action model based on the U -Matrix unitarisation scheme in explaining

the dynamics of multi-particle production in high-energy hadronic colli-

sions and its reliable prediction at ultra-high energies. More specifically,

it carefully looks at some important aspects related to this phenomenon,

in particular, multiplicity distributions, violation of scaling laws such as

geometrical and KNO scaling, correlations, and fluctuations between the

produced particles in the final state.

Scaling laws in hadronic multi-particle production are rules that

describe how certain physical quantities remain invariant or follow

predictable patterns as the energy of particle collisions changes. They

81
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are crucial for simplifying the interpretation of high-energy collision data,

validating theoretical models, and understanding the underlying dynamics

of particle interactions.

Here we are concerned with two scaling laws, namely the geometrical

scaling and the KNO scaling. They are both put forth by the ISR mea-

surements of the proton-proton and proton-antiproton scattering. The

first one stands for the invariability of the ratio between elastic and total

cross-sections. One of the known scaling laws is the geometrical scaling. It

is a regularity set forth by the ISR measurements of the proton-proton and

proton-antiproton scattering. It stands for the invariability of the ratio be-

tween elastic and total cross-sections. According to experiments carried

out at the CERN (SPS) collider, it is important to note that this regularity

is violated when energy exceeds the ISR energy range, raising fundamental

questions about the underlying mechanisms of hadronic interactions.

As for the second, it represents the energy independence of the shape

of the multiplicity distribution, i.e. the distribution of the number of pro-

duced particles. Another example of scaling laws is the KNO scaling which

is the energy independence of the shape of the multiplicity distribution,

i.e. the distribution of the number of produced particles. The approxi-

mate KNO scaling is valid up to
√
s = 20 GeV. As the energy increases

further, the distribution becomes wider than as expected from the scal-

ing at lower energies. The violation of this scaling becomes significant as

energy surpasses the ISR energy range.

Indeed, the violation of these scaling laws challenges our current under-

standing of hadronic interactions and motivates the refinement of existing

theoretical frameworks to accommodate these discrepancies. These vio-

lations also highlight complex dynamics that traditional models may not

fully capture, prompting further investigation into the underlying mecha-

nisms governing particle production at high energies.

Several studies have been conducted on the description of the geometri-

cal scaling and the KNO scaling violation, mainly using the eikonal scheme.

However, some studies have revealed that this scheme is not without limi-

tations. For example, in an eikonal model (ref), it has been demonstrated

that strict KNO scaling is not valid as there exists a limited range of energy,

where KNO scaling approximately holds. Besides, to date, no single study

has examined the potential implications of using alternative schemes in the

exploration of these phenomena or attempted to unravel the underlying

physics behind the multi-particle production mechanism.
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As shown in the previous chapters, the U-Matrix scheme has offered dif-

ferent and improved descriptions of certain hadronic cross-sections, which

are associated with the geometrical and KNO scaling. Thus, it is believed

that it may provide a good description of their violation as well and that it

is poised to shed light on the underlying physics behind the multi-particle

production mechanism.

As a matter of fact, the aforementioned reasons have prompted us to

investigate these violations, using the U -matrix scheme. The investiga-

tion also extends to higher-order moments of multiplicity distributions,

which provide critical insights into the correlations and collective behav-

ior of particles produced in collisions. The U -Matrix framework allows

for a detailed examination of these statistical properties and unveils the

underlying physics behind using this scheme.

Based on the picture depicting the KNO scaling violation as an ex-

tension of the geometrical scaling violation, the present study presents a

phenomenological model for multi-particle production in hadron collisions

that is grounded in the geometrical approach and using the U-Matrix uni-

tarization scheme of the scattering amplitude.

To highlight the connection between the multiplicity distribution Pn(s)

and the unitarisation scheme of the scattering amplitude, the overall mul-

tiplicity distribution is obtained by summing contributions from parton-

parton collisions occurring at each impact parameter weighted by the in-

elastic overlap function, which dictates the unitarisation scheme.

We conducted a detailed analysis of the multiplicity distribution data

in full phase space p + p and p + p̄ collisions across a broad spectrum of

energies, specifically at
√
s = 30.4, 44.5, 52.6, 62.2, 300, 546, 1000, and

1800 GeV. With regards to the fitting process, we utilized the Minuit2

class from ROOT and implemented the MIGRAD algorithm. The primary

objective of the fitting procedure was to minimize the χ2 value and the

uncertainties associated with the free parameters were calculated using a

1σ confidence level.

After fine-tuning the model and deriving all parameters from optimal

fits to the various hadronic multiplicity distributions data in p+ p(p̄) col-

lisions over a wide energy range, we were able to predict the behaviour

of the energy dependence of the hadron mean multiplicity. Additionally,

we predicted the hadronic multiplicity distribution at new collision energy

regimes, such as 14 TeV. We also examined the higher-order moments of

the multiplicity distribution.
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6.2 ARTICLE 4

The U-Matrix Geometrical Model For Multi-Particle Production

In High-Energy Hadronic Collisions

Rami Oueslati, Adel Trabelsi

Journal of High Energy Physics, 2024(07), 100

arXiv:2403.02263 [hep-ph]

doi: 10.1007/JHEP07(2024)100

Abstract: Inspired by the picture portraying the KNO scal-

ing violation as an extension of the geometrical scaling violation,

the current study proposes a phenomenological model for multi-

particle production in hadron collisions based on the geometrical

approach and using the U -Matrix unitarization scheme of the

scattering amplitude. The model has been fine-tuned and all pa-

rameters have been derived from optimal fits to various hadronic

multiplicity distributions data in p+p(p̄) collisions across a broad

range of energies. The results have revealed that our model fur-

nishes a reasonable description of diverse multiplicity distribu-

tions at various energies. Besides, they have demonstrated a

pronounced violation of the geometrical scaling, which eventu-

ally resulted in a significant violation of the KNO scaling. The

study has also analyzed the higher-order moments of the mul-

tiplicity distribution. We have observed an unexpected overes-

timation of the fluctuations and correlations between final state

particles with increasing energy, particularly above LHC energy.

It is claimed that this overestimation is due to statistical fluctu-

ations embedded in the U -matrix scheme. The findings of this

study have shed light on the key role of the U -matrix scheme

in the impact of collision geometry on multi-particle production

processes at high energy.

6.2.1 Introduction

Throughout the years, the study of multi-particle production in hadron

collisions at high energies has sparked the interest of both theoretical

physicists and experimentalists given its significance as it offers valuable

https://arxiv.org/abs/2403.02263
https://doi.org/10.1007/JHEP07(2024)100
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insights into the intricate mechanisms underlying the production of parti-

cles [134, 80, 106, 102, 65].

Similarly, the hadronic multi-particle production is primordial at ultra-

high energies. Indeed, it is necessary to have a solid grasp of it so as to

properly interpret air-shower cosmic ray observables, which are obtained

through a simulation of a wide range of event generators based on Monte

Carlo models. These models have been created and adjusted to describe

hadronic multi-particle production in man-made accelerator experiments.

Despite some minor differences in their fundamental assumptions, the ma-

jority of them employ the eikonal as the scheme of the unitarisation of

the scattering amplitude. They must also be internally consistent as we

depend on them for extrapolating to ultra-high energy scenarios. Nev-

ertheless, modelling hadronic interactions is not devoid of uncertainties,

which gives rise to model-dependent outcomes. Among them, one can cite

the mass composition problem and the long-standing muon puzzle, which

is regarded as one of the most significant issues in hadronic interaction

physics [35].

Having said that, advances in the phenomenology and theory of multi-

particle production may provide a solution to the aforementioned issues.

The study of multi-particle production may be carried out, particularly,

through examining the multiplicity distributions of the produced particles.

Their analysis is crucial since the patterns observed in them help reveal

the complexity of the collision process, shedding light on the interactions

involved in particle creation. In fact, this distribution has been thoroughly

investigated by experimental collaborations at the LHC, including ALICE,

ATLAS, CMS, and LHCb [89], to enhance our comprehension of the rudi-

mentary characteristics of strong interactions and the behaviour of matter

under extreme circumstances as well as to verify theoretical predictions.

Besides, the study of the higher-order moments of the multiplicity dis-

tribution is of paramount importance as they provide insight into par-

ticle features in high-energy collisions, such as correlation and collective

behaviour. Indeed, the behaviour of these moments has been the sub-

ject of various experimental studies over a wide range of collision energies

[126, 116], furnishing valuable data which are crucial in constraining the-

oretical models.

The multiplicity distribution Pn(s) in hadron collisions refers to the

distribution of the number of produced particles in a collision event. It

is influenced by various factors, such as the colliding hadrons’ energy, the
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collision geometry, and the underlying dynamics of the interaction. More

specifically, it is given by the ratio of the topological cross-section σn to

the inelastic cross-section σin. The topological cross-section represents the

probability or rate of observing a specific configuration of particles with

a particular multiplicity value n. It is derived from the scattering am-

plitudes, which are influenced by the underlying scattering processes and

dynamics. The inelastic cross-section, on the other hand, characterizes the

probability of observing any final-state interaction or particle production,

regardless of the specific configuration or multiplicity. It is closely related

to the total cross-section and includes contributions from various interac-

tion channels, including both diffractive and non-diffractive processes.

It is important to note that these cross-sections, and thus the multi-

plicity distribution Pn, cannot yet be calculated within the framework of

quantum chromodynamics (QCD). Therefore, our current understanding

of multi-particle production dynamics relies primarily on phenomenologi-

cal approaches as well as certain underlying theoretical principles, which

form the basis for a wide range of models [89]. Needless to say, the con-

tinuous enhancement of the theoretical models for particle production is

critical so as to maintain consistency and coherence with the foundational

principles of the Quantum Field Theory (QFT).

One of the key theoretical tenets in the construction of phenomenolog-

ical models, such as those based on the geometrical or string approach,

is the unitarity constraint [122, 40, 39, 41]. These models often utilize

the eikonal scheme as a means to unitarize the scattering amplitude and

describe inclusive multiplicity distributions. While this scheme provides

a reasonable description of certain hadronic observables, there are com-

pelling reasons to explore alternative schemes for unitarizing the scattering

amplitude, namely the U -matrix one.

In a recent study [42], it was shown that despite unexpected agree-

ment in the description of the inelastic pp and pp̄ cross-sections with the

eikonal and U -matrix schemes, a divergence in the individual order-by-

order amplitudes can potentially impact the topological cross-section by

influencing the relative probabilities of different multiplicity configurations

and capturing specific physical processes.

By the same token, in another study [136], it has been found that the

U -matrix scheme exhibits a slightly better fit to the single diffractive data

at high-energies and a faster growth at ultra-high energies compared to

the eikonal scheme. This result implies that the underlying physics and
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dynamics of the single diffractive scattering are sensitive to the choice

of scheme, especially at ultra-high energy, further reinforcing the signif-

icance of considering the U -matrix. Hence, it is worth noting that if

the discrepancy in the single diffractive cross-section propagates to the

topological cross-section, it can affect the relative probabilities or rates

of observing different multiplicity configurations. Moreover, as the in-

elastic cross-section encompasses both diffractive and non-diffractive pro-

cesses, the different behaviours in the single diffractive cross-section be-

tween unitarization schemes can contribute to variations in the overall

inelastic cross-section.

It should be noted that the specific impact on the topological and in-

elastic cross-sections would depend on the detailed correlations and inter-

play between different interaction channels, including both diffractive and

non-diffractive processes. In fact, when hadrons collide at high energies,

several interactions and processes take place, leading to the formation of

large numbers of particles with various species. Given the complex nature

of these interactions, deciphering the contributions from individual chan-

nels and identifying the specific processes behind multi-particle production

appears to be a daunting task [79].

On the whole, the inelastic and topological cross-sections are

scheme-dependent, implying that the multiplicity distribution Pn is

scheme-dependent as well. This will, therefore, impact the description of

the multiplicity distribution in terms of its shape, magnitude, or other

characteristic features.

An additional reason for considering an alternative to the eikonal uni-

tarization scheme is related to the geometrical scaling, as supported by

experimental observations. This scaling is a regularity established by the

ISR measurements of the proton-proton and proton-antiproton scattering

and refers to the invariability of the ratio between elastic and total cross-

sections. Interestingly, experiments conducted at the CERN (SPS) collider

have revealed that this regularity is violated when the energy surpasses the

ISR energy range [70, 69]. Furthermore, from a theoretical perspective,

it has been shown that the violation of the geometrical scaling is more

pronounced with the U -matrix scheme than with the eikonal as energy in-

creases [42]. It should be emphasized that this remarkable discrepancy has

proved to occur mainly when we venture into the extremely high-energy

region, roughly near the Grand Unification Scale. In this regard, one of

the preliminary objectives of the present study is to examine this disparity
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within an accessible energy range.

Another regularity put forth by the ISR measurements is the KNO

scaling so named after its proponents Koba, Nielsen, and Olesen (KNO)

[100]. It refers to the constancy of normalized moments in the distribution

of multiplicities. Practically, the KNO function is often employed for the

examination of multiplicity distributions in particle collisions. It is denoted

as Φ(z), where ⟨n⟩ stands for the average of the multiplicity distribution,

and z = n/⟨n⟩ represents the normalized multiplicity. It is noteworthy that

the KNO function Φ(z) tends to be independent of the collision energy
√
s

within the ISR energy range. However, considerable deviations from the

KNO scaling start to occur at higher energies, such as those attained at

FNAL and LHC.

As a matter of fact, several phenomenological studies have demon-

strated the existence of a connection between the geometrical scaling of

the profile function and the KNO scaling of the multiplicity distribution

[92, 74, 104]. More precisely, these models have shown that the violation

of the geometrical scaling, indicated by an increase in the ratio of elastic

to total cross-sections (σel/σtot) between ISR and collider energies, is as-

sociated with the violation of the KNO scaling across these energy ranges

within the eikonal scheme. This raises the question of potential conse-

quences for the violation of the KNO scaling within the context of the

U -matrix scheme. It is expected that the latter, with its modifications to

the scattering amplitude, may introduce novel dynamics and fluctuations

that influence the statistical behaviour of particle production. These ef-

fects can in turn influence the universal properties assumed in the KNO

scaling and significantly lead to a violation or alteration of the constancy

of normalized moments.

In view of all that has been mentioned so far, one can assume that

considering an alternative adequate unitarization scheme can considerably

change our understanding of the description of multi-particle production.

In the present study, we propose a phenomenological model for multi-

particle production in hadron-hadron collisions that hinges on both the

geometrical approach and the picture depicting the KNO scaling violation

as an extension of the geometrical scaling violation, using the U -Matrix

scheme. The chief purposes of the study are to examine the geometrical

scaling violation within an accessible energy range, describe the hadronic

multiplicity distributions in full-phase space over a wide energy range in

p + p(p̄) collisions and to investigate the KNO scaling violation. It also



CHAPTER 6. UNITARISATION AND HADRONIC MULTI-PARTICLE
PRODUCTION 89

aims at probing the correlation between the final particles and revealing

the physics that underlies it. In particular, it seeks to provide valuable

insights into the relationship between the violation of both the geometrical

and KNO scaling and the mechanism of particle production within the U -

matrix scheme.

The remainder of the paper is organized as follows: In Section II, the

theoretical background of the multi-particle production model will be out-

lined. Section III will focus on the explicit model and the data used.

Section IV will present and discuss the results. Finally, Section V will

summarize the findings and discuss the limitations and implications of

this work so as to guide future research.

6.2.2 The theoretical framework of the Model

The multiplicity distribution Pn(s), i.e., the probability of producing n

charged particles in an inelastic p + p(p̄) collision at the energy
√
s, is

given by

Pn(s) =
σn(s)

σin(s)
(6.1)

where σn(s) and σin(s) are the n-particle topological and inelastic cross-

sections, respectively, with
∑

n σn(s) = σin(s).

Great efforts have been devoted to explaining why the normalized mo-

ments in this multiplicity distribution remain constant in the ISR energy

range but diverge from this pattern from the LHC energy range. A possi-

ble explanation for this phenomenon might be ascribed to the increasing

importance of mini-jets production, resulting from both soft and semi-hard

partonic processes, as energy increases. In fact, these mini-jets not only

contribute to the rapid growth of hadron-hadron cross-sections, as demon-

strated by several geometrical models [72, 42, 136, 115], but may also play

a crucial role in the violation of the KNO scaling.

It goes without saying that the geometrical models based on the im-

pact parameter space representation provide a good description of various

aspects of hadron collisions at high energies. Technically speaking, by con-

sidering the impact parameter, which quantifies the distance between the

colliding particles’ centres, these models actually furnish a solid framework

for understanding the initial stages of collisions, allowing a systematic ex-

ploration of the collision geometry, ranging from central (small impact
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parameters) to peripheral (large impact parameters) collisions. Therefore,

this geometrical approach links the collision geometry to the underlying

physics processes, enabling us to infer certain properties. We particularly

assume that this approach can also shed light on the intricate interplay

between collision geometry and particle multiplicity distribution.

In addition, as has been mentioned in the previous section, the KNO

scaling violation can be perceived as an extension of the geometrical scal-

ing violation to the multi-particle production process. This extension high-

lights that the dynamics governing particle production become more com-

plex and energy-dependent than what a purely geometrical approach can

capture. It also suggests that additional physical processes, such as par-

ton interactions, collective effects, or fluctuations, play a role in shaping

the multiplicity distribution as collision energies increase. As a result, a

more accurate description of the geometrical scaling violation is needed,

which in turn will provide a better description of the violation extension

to multi-particle production. In fact, the violation of geometrical scaling

in impact parameter space occurs when the initial assumptions about sim-

ple geometrical overlap and scaling behaviour break down due to more

intricate particle-particle interactions or energy-dependent effects. Conse-

quently, this concept harmoniously aligns with the utilization of the impact

parameter space representation, emphasizing the significance of collision

geometry.

Overall, when combined with the geometrical scaling tenets, the geo-

metrical models can be enhanced and thus provide a solid framework for

describing the multiplicity distribution and uncovering the underpinning

universal features of particle production in high-energy hadron collisions.

They also furnish a reliable tool that serves to explain the impact of col-

lision geometry on the multiplicity distribution and to analyze it across a

broad range of collision energies and particle species, improving prediction

and comparison accuracy in multiple collision systems.

To construct our model highlighting the intrinsic relationship between

geometrical scaling and KNO scaling within a geometrical approach, we

draw inspiration from [52, 33, 104, 103], where the essence of the approach

lies in expressing the overall hadronic multiplicity distributions in the in-

elastic channel through a combination of an elementary distribution and

the inelastic overlap function. Thus, this approach establishes a direct

connection between the fluctuations in multiplicity and the fluctuations in

the impact parameter, driven by the intuitive understanding that collisions
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occurring at shorter distances tend to be more violent and yield a higher

number of fragments, thereby leading to increased multiplicities. There-

fore, in order to establish a reliable geometrical approach to calculate the

multiplicity distribution in the impact parameter space representation, we

rely on the unitarity condition of the S matrix. This involves examining

the elastic scattering amplitude in the impact parameter b space, expressed

by the equation:

2 Im[Γ(s, b)] = |Γ(s, b)|2 +Gin(s, b), (6.2)

where Γ(s, b) denotes the profile function, i.e., the elastic hadron scatter-

ing amplitude, and Gin(s, b) represents the inelastic overlap function. By

employing the optical theorem, we can obtain

σtot(s) = 2

∫
d2b Im[Γ(s, b)], (6.3)

and recognizing that the function Gin(s, b) signifies the absorption proba-

bility associated with each b value, we can derive the total inelastic cross-

section

σin(s) =

∫
d2b Gin(s, b). (6.4)

Thus, the unitarity condition (6.2) is equivalent to σtot(s) = σel(s)+σin(s),

where σel(s) =
∫
d2b |Γ(s, b)|2.

Various research papers in the field have already explored this phe-

nomenological procedure based on the impact parameter space represen-

tation known as the geometrical or string approach [40, 39, 41, 38]. In this

geometrical approach, wherein incident hadrons are treated as spatially

extended objects and their collisions are represented as an ensemble of

elementary interactions between quarks and/or gluons, the hadronic mul-

tiplicity distribution Pn(s) is constructed based on elementary quantities

associated with microscopic processes. It follows from this that the overall

hadronic multiplicity distribution is estimated through summing contri-

butions emerging from each impact parameter b of the incident hadronic

system.

To do this, the topological cross-section σn is decomposed into contri-

butions from each impact parameter b with weight Gin(s, b) as follows:

σn(s) ≡
∫
d2b σn(s, b)

=

∫
d2b Gin(s, b)

[
σn(s, b)

σin(s, b)

]
,

(6.5)
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where σin(s) ≡
∫
d2b σin(s, b) =

∫
d2bGin(s, b).

The quantity enclosed in brackets σn(s, b)/σin(s, b) ≡ pn(s, b) can be

interpreted as the probability of producing n particles at impact parameter

b. It accounts for interactions among the elementary components of the

colliding hadrons. Keeping in mind that pn(s, b) should scale in KNO sense

given its elementary structure, the multiplicity distribution Pn(s) (6.1) can

be reformulated as :

Pn(s) =
1

σin(s)

∫
d2b

Gin(s, b)

⟨n(s, b)⟩ [⟨n(s, b)⟩pn(s, b)] (6.6)

where ⟨n(s, b)⟩ represents the average number of particles produced at b

and s.

Let Φ(s, z) = ⟨n(s)⟩Pn(s) be the overall multiplicity distribution in

KNO form, where z = n(s)/⟨n(s)⟩ is the corresponding KNO variable.

A multiplicity distribution ϕ(s, z
¯
), associated with elementary processes

occurring at b and s, can be written in the form ϕ(s, z
¯
) = ⟨n(s, b)⟩pn(s, b),

where z
¯
= n(s)/⟨n(s, b)⟩. It is worth noting that both distributions adhere

to the standard normalizations [104] :

∫ ∞

0
dzΦ(z) =

∫ ∞

0
dz
¯
ϕ(z
¯
) = 2 (6.7)

and

∫ ∞

0
dz zΦ(z) =

∫ ∞

0
dz
¯
z
¯
ϕ(z
¯
) = 2. (6.8)

In this theoretical framework, the unknown function representing the

average number of particles produced at a specific impact parameter b and

energy s can be comprehended as the product of two factors: The first fac-

tor, ⟨n(s)⟩, representing the general behaviour depicts the average number

of particles generated in a collision, regardless of the specific impact pa-

rameter. As for the second, it is denoted as f(s, b) and perceived as a

multiplicity function. It describes the variation of the average number of

particles in accordance with the impact parameter b quantifying how col-

lision geometry affects particle production. The mathematical expression

for this factorization is:

⟨n(s, b)⟩ = ⟨n(s)⟩f(s, b) (6.9)
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and therefore the expression (6.6) can be rewritten in the KNO form as

follows:

Φ(s, z) = ⟨n(s)⟩Pn(s) =
1∫

d2bGin(s, b)

∫
d2b

Gin(s, b)

f(s, b)
ϕ

(
z

f(s, b)

)
,(6.10)

and we also have

Pn(s) =
1

⟨n(s)⟩
∫
d2bGin(s, b)

∫
d2b

Gin(s, b)

f(s, b)
ϕ(1)

(
z

f(s, b)

)
, (6.11)

The master formula eq. (6.11) highlights the connection between the

multiplicity distribution Pn(s) and the unitarisation scheme of the scat-

tering amplitude which can ultimately be established within the inelastic

overlap function, emphasizing that this multiplicity is scheme-dependent

as stated in the introduction. The full phase space hadronic multiplicity

distribution Pn(s) is hence constructed by summing contributions from

parton–parton collisions occurring at each value of b. These interactions

give rise to the formation of string-like objects, similar to the string forma-

tion described by the Lund model [29]. These strings in turn fragment into

hadrons. So, in order to stress the fundamental principle of the string ap-

proach, an index labelling the elementary multiplicity distribution ϕ(1) has

been introduced in the master formula (6.11). The essential elements in

this formula eq. (6.11), namely the inelastic overlap function, the average

number of particles produced at a specific impact parameter b and energy

s, as well as the elementary multiplicity distribution function, will be ex-

plicitly presented in the following section, laying the groundwork for an

in-depth analysis of the complex interactions between collision geometry

and particle production.

6.2.3 Explicit model and data

The explicit model presented in this paper for describing High-energy

hadronic scattering is theoretically grounded in the geometrical approach

and is based on the Reggeon exchanges picture (see, e.g. [63] and refer-

ences therein). In this picture, hypothetical exchange particles, known as

pomerons, mediate interactions between hadrons and the procedure of ob-

taining the amplitude of a given hadronic process involves summing over

all conceivable ways in which pomerons can be exchanged.
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Diagrammatically, every pomeron exchange is represented by a line that

connects the incoming and outgoing hadrons. Hence, by summing all

possible topologies of these diagrams, the total amplitude is determined.

Technically, the single-pomeron exchange amplitude, also known as, the

Born term can be parameterized as follows:

a(s, t) = g2p F1(t)
2

(
s

s0

)α(t)

ξ(t), (6.12)

where gp is the pomeron-proton coupling, F1(t) denotes the proton elastic

form factor, and ξ(t) stands for the signature factor that is given by:

ξ(t) = −e−iπα(t)/2, (6.13)

and the pomeron trajectory, represented by α(t), approximates a straight

line:

α(t) = 1 + ϵ+ α′t. (6.14)

In the impact-parameter space representation, where the Fourier trans-

form of the amplitude a(s, t) rescaled by 2s corresponds to a partial wave,

we have:

χ(s,b) =

∫
d2q

(2π)2
a(s, t)

2s
exp(iq · b). (6.15)

When we venture into high energies, summing amplitudes may lead

to a violation of unitarity, especially in the case of multi-pomeron ex-

changes. Therefore, in order to make the summed amplitudes comply

with the unitarity constraint, unitarization techniques come into play by

resuming infinite series or introducing additional terms to modify the am-

plitude’s behaviour. As a matter of fact, there is a plethora of techniques

in the literature [121, 58, 66] whose shared objective is to come up with a

consistent approach to summing over various exchange contributions while

making sure that the resulting amplitude Γ(b, s), i.e., the hadronic profile

function, satisfies the unitarity condition and may account for all features

of interactions in the context of hadron collisions. Among them, we can

cite the eikonal scheme, which is one of the most commonly used methods,

positing that the profile function is provided by:

ΓE(s, b) = i
[
1− eiχ(s,b)

]
, (6.16)
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Scheme ϵ α′ (GeV−2) gp t0 (GeV2) χ2/d.o.f

U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436

Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

Table 6.1: χ2/d.o.f and best-fit parameters obtained using the eikonal and

U-matrix unitarisation schemes.

The U -matrix scheme is another illustration, which asserts that:

ΓU(s, b) =
χ(s, b)

1− iχ(s, b)/2
. (6.17)

As previously mentioned in the introduction, we will consider that the

hadronic profile function Γ(b, s) is given by the U -Matrix form (6.17).

This function represents the sum of all n-pomeron exchange contributions

obtained from the single-pomeron exchange amplitude which is, in turn,

related to the expected number χ(b, s) of interactions between partons of

the incident hadrons.

Using both the eikonal and the U -matrix schemes as well as a dipole-

like form factor for the proton, where F1(t) = 1/(1−t/t0)2, the parameters

ϵ and α′ describing the pomeron trajectory, the coupling constant gp, and

the form-factor scale t0 are adjusted based on a best fit to up-to-date

hadron collider data on total, elastic, and inelastic cross-sections. The

values of these parameters are provided in Table 6.1 [42]. Following this

adequate description of the hadronic profile function, we can determine

the inelastic overlap function Gin(s, b), needed in our explicit model, by

using the equation presented in (6.2).

Since the primary objective of this work is to examine the influence

of geometrical collisions on multi-particle production processes, we shall

propose two hypotheses concerning our choice of the elementary multiplic-

ity distribution. First, it is sufficient for our study to consider that, on

average, every string created in parton-parton interactions has the same

likelihood of producing a certain number of charged hadrons, which is de-

scribed by the elementary multiplicity distribution ϕ(1)(z), even though

the strings created may have different probabilities of turning into a pair

of charged hadrons. Second, despite the fact that the parametrization of

the elementary distribution ϕ(1)(z) is key to capturing the overall shape

of the multiplicity distribution, these two do not necessarily have simi-

lar shapes. This is mainly because the overall distribution is obtained
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by summing contributions from elementary processes at different impact

parameters, in the context of this superposition model eq. (6.11). That

is to say, the peculiar combination of the individual contributions emerg-

ing from distinct impact parameters and which may be having differing

shapes results in an overall distribution that reflects these contributions’

combined effects and whose characteristics should be represented by their

superposition. Hence, we will assume, as a first approximation, that the

elementary distribution has the same shape as the overall distribution.

More specifically, the choice of the functional form for this elementary

distribution is motivated by phenomenological fits to data.

As a matter of fact, the Negative Binomial Distribution (NBD) has

proved to provide a good description of the experimental data on the

multiplicity distributions in the context of high-energy physics and hadron

collisions [89]. Therefore, in the present study, the KNO form of the NBD,

also known as the Gamma distribution, is adopted for the elementary

multiplicity distribution and given by:

ϕ(1)(z) = 2
KK

Γ(K)
zK−1 e−Kz, (6.18)

where K is a dimensionless parameter.

It should be pointed out that there exists a connection between the

average number of particles generated at a specific impact parameter b and

energy s, ⟨n(s, b)⟩, which determines the unknown multiplicity function

f(s, b) by the eq. (6.9), and the Born term in b space χ(s, b).

This link can be attributed to the various roles that the Born term

plays. To begin with, the multiplicity of generated particles in b space

and the Born term are interrelated given that the former can be impacted

by the effective interaction of partons within the colliding hadrons and

the latter provides a measure of this effective interaction since it repre-

sents the overlap of the colliding matter distributions. Not to mention,

the Born term depends on the impact parameter. As such, it reflects

how strong the interaction between colliding hadrons is at distinct im-

pact parameters. Indeed, the impact-parameter-dependent strength of the

interaction between hadrons may have an impact on the multiplicity of

produced particles. Secondly, owing that the Born term is a crucial pa-

rameter in describing the energy dependence of the scattering amplitude

and that particle generation is more likely to occur at higher energies, the

Born term is inextricably connected to the average particle production.

Thirdly, on the one hand, the imaginary part of the Born term is related
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to inelastic processes in high-energy collisions and, on the other hand,

multi-particle production is often associated with inelastic interactions, so

relying on the imaginary part of the Born term will reflect the possibil-

ity of inelastic scattering and subsequent particle production. Therefore,

the multiplicity function f(s, b) is constructed to depend on the imaginary

part of the Born term, denoted as χI(s, b).

Therefore, the connection between the multiplicity function f(s, b) and

the born term is formally defined as follows:

f(s, b) = β(s) [χI(s, b)]
2λ, (6.19)

where β(s) is determined by the normalisation condition (6.8) :

β(s) =

∫
d2bGin(s, b)∫

d2bGin(s, b) [χI(s, b)]2λ
(6.20)

and the exponent 2λ in eq. (6.19) introduces a power-law dependence on

χI(s, b), suggesting a non-linear relationship between the effective overlap

and the particle production in the impact-parameter space.

It should be emphasized that according to the geometrical approach,

the phenomenological portrayal of hadronic multiplicity distributions is

considerably influenced by the values and behaviours of three key inputs:

the inelastic overlap function Gin, the elementary multiplicity distribution

ϕ(z), and the λ parameter determining the power-law dependence on the

effective overlap χI(s, b). A previous study [40] has shown that changing

one of these inputs, while keeping the other two fixed, produces different

results across different parameterizations. For instance, if the inputs of

the inelastic overlap function are different and λ, as well as ϕ(z), are

kept constant, the obtained hadronic multiplicity distributions successfully

replicate the experimental data. Interestingly, in all cases, the physical

picture is that large multiplicities occur for small impact parameters while

peripheral collisions (large b) lead to small multiplicities. It is worth noting

that all these results, obtained for different inputs of the inelastic overlap

function, are generated using the eikonal scheme. However, in the present

study, we employ the U -matrix scheme for the reasons mentioned in the

previous section. This will eventually allow us to fix our choice of the

inelastic overlap function.

In order to present our findings in the following section, it is essential

to provide an overview of the model parameters that were determined

through data fitting, as well as the specific experimental data employed in
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our analysis. Since the Born term χI(s, b) is completely determined from

the best-fit, Table 6.1, we see from the master formula for the multiplicity

distribution eq. (6.11) that the only free parameters areK, λ, and ⟨n(s, b)⟩.
Further, for our purposes, it is sufficient to fix the value of K and assume

λ and ⟨n(s, b)⟩ as the only fitting parameters. Indeed, in [40], it was

shown that the choice of K = 10.775 by assuming a Gamma distribution

gives a good description of the charged multiplicity distributions for e+e−

annihilation data in a large energy interval. Based on the universality of

multiplicities in e+e− and p+ p(p̄) collisions, we adopt this choice.

To determine the values of the parameters λ and ⟨n⟩, we fix the dimen-

sionless parameter to K = 10.775 and conduct fits to full phase space Pn

data in p + p(p̄) collision across a wide range of energies, specifically at√
s = 30.4, 44.5, 52.6, 62.2, 300, 546, 1000, and 1800 GeV [49, 14].

With regards to the fitting process, we utilized the Minuit2 class from

ROOT [91] and implemented the MIGRAD algorithm. The primary ob-

jective of the fitting procedure was to minimize the χ2 value and the un-

certainties associated with the free parameters were calculated using a 1σ

confidence level.

6.2.4 Results and discussion

6.2.4.1 Geometrical scaling violation

The preliminary objective of this study was to analyze the behaviour of

the inelastic overlap function in the impact parameter space as well as the

geometrical scaling violation using the U -matrix and the eikonal schemes,

eqs. (6.16) and (6.17), in an attempt to offer valuable insights into the colli-

sion geometry and the interaction dynamics of colliding particles. Fig. 6.1

depicts the predictions for the energy evolution of the inelastic overlap

function, eq. (6.2), in the impact parameter space at energies spanning

from ISR to LHC levels using both schemes.

Looking at Fig. 6.1, it is apparent that this function exhibits a generally

comparable pattern in impact parameter space across both schemes, with

only minor differences. More specifically, it shows that it is predominantly

central, indicating that it has a significant contribution at small impact

parameters. This entails that most of the inelastic processes are more

probably to take place when the colliding particles pass through one an-

other within close proximity. Moreover, this function tends to decline more

slowly with the impact parameter as energy rises. This points out that the
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Figure 6.1: The energy evolution of the inelastic overlap function in the impact parameter

space at energies spanning from ISR to LHC levels using both the U -matrix and the

eikonal schemes.
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inelastic processes become less dependent on the specific spatial distance

between colliding particles and have a wider range of impact parameters

at which they can happen at higher energies.
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Figure 6.2: Energy evolution of the ratio elastic-to-total cross-section in both cases, the

eikonal and U -matrix schemes

Furthermore, it can be seen from Fig. 6.1 that the magnitude of the in-

elastic overlap function grows with energy at the central impact parameter

b = 0. This indicates that the higher the energy, the more likely it is that

inelastic events will occur at the central impact parameter. Interestingly,

as Fig. 6.1 shows, there is a significant divergence in the magnitude of

the inelastic overlap function obtained from the U -matrix and the eikonal

schemes. To be more specific, the former yields a greater magnitude than

the latter at b = 0. It is clear from this difference that the chosen scheme

has a profound impact on the inelastic processes, particularly on central

collisions which will have distinct characteristics or probabilities.

In the same vein, Fig. 6.2 depicts the energy evolution of the ratio

elastic-to-total cross-section using both schemes. As this Figure demon-

strates, in both cases there is an overall increase of this ratio as energy

rises from 10 GeV to 10 TeV, but does so in a non-linear manner, which

is indicative of geometrical scaling violation. Interestingly, comparing the



CHAPTER 6. UNITARISATION AND HADRONIC MULTI-PARTICLE
PRODUCTION 101

behaviour of this ratio in both cases, it is clear that it increases more

rapidly in the U -matrix case than in the eikonal one, as energy increases,

demonstrating a stronger violation of the geometrical scaling and a more

intricate behaviour in the former case.

It is possible to explain the divergence observed in the geometrical scal-

ing violation between the two distinct schemes in terms of the behaviour of

the inelastic overlap function in the impact parameter space with respect

to energy. To be more precise, this difference lies in the behaviour of the in-

elastic overlap function at b = 0, where we can see from Fig. 6.1 that it has

a magnitude that grows with energy in both cases. However, the U -matrix

scheme yields a larger magnitude than the eikonal one. This implies that,

in the former case, the inelastic interactions are more prominent, indicat-

ing that they have a remarkably and rapidly increasing strength at the

central impact parameter with increasing energy, compared to the eikonal

case.

It can be argued that the discrepancy found in the behavior of the

inelastic overlap function as well as in the observed violation of the geo-

metrical scaling between the two schemes can be ascribed to their differing

approaches to the unitarization of the scattering amplitude. Indeed, based

upon its thorough treatment of processes and its ability to take into ac-

count a wider range of interactions and collision dynamics compared to

the Eikonal scheme, the U-matrix scheme is likely to be a more advanced

mechanism for dealing with scattering processes and capturing the intri-

cate dynamics of hadronic interactions, which is also supported by other

results [115, 136, 42].

On the whole, this result validates the remarkable difference in the

geometrical scaling violation between the U -matrix and eikonal schemes.

Specifically, it supports the claim that this violation is more noticeable

with the former scheme when energy levels rise. Notably, this outcome is

in agreement with the theoretical prediction provided in [42] and further

highlights that this discrepancy becomes apparent even before reaching

the extremely high-energy region. Furthermore, it reinforces our moti-

vation, as stated in the introductory section, for selecting the U -matrix

scheme. In fact, the choice of this scheme, in particular, may contribute

to answering the question posed in the introduction regarding its poten-

tial implications for KNO scaling violation and unravelling the underlying

physics behind the multi-particle production mechanism, as will be elabo-

rated in the forthcoming sections.
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6.2.4.2 Hadronic Multiplicity Distributions

Using the master formula (6.11), the outcomes of the fitting procedure

of the multiplicity distributions data across a wide range of energies are

provided in Fig. 6.3, Fig. 6.4 and, Table 6.2, respectively, where the values

of the parameters λ and ⟨n(s)⟩ obtained in each fitting procedure, along

with the corresponding β(s), are furnished, as well as the different χ2/dof

values.
√
s [GeV] λ β(s) ⟨n(s)⟩ χ2/DOF

30.4 0.2837 ± 0.0133 1.6014 9.0583 ± 0.1452 1.2714

44.5 0.2720 ± 0.0119 1.6308 10.5900 ± 0.1339 0.6170

52.6 0.2775 ± 0.0104 1.6430 11.2885 ± 0.1299 0.6443

62.2 0.2709 ± 0.0107 1.6547 12.0090 ± 0.1551 1.3303

300 0.3695 ± 0.0113 1.7327 23.4646 ± 0.2915 0.6046

546 0.4618 ± 0.0148 1.7420 27.7185 ± 0.4145 0.3406

1000 0.4230 ± 0.0110 1.7362 36.6360 ± 0.4042 1.5301

1800 0.4836 ± 0.0070 1.7132 42.7217 ± 0.3184 1.2004

7000 0.5936 1.5833 73.7117 −
14000 0.6597 1.4716 96.0705 −

Table 6.2: Values of the λ parameter and ⟨n(s)⟩ resulting from fits to the

Pn data. The values of β(s) were obtained from eq. (6.20).

According to Fig. 6.3, Fig. 6.4, and the different χ2/dof values, our

model gives a reasonable description of the different multiplicity distribu-

tions at each energy.

Moreover, it allows to predict the multiplicity distribution Pn at LHC

energies by evaluating the energy dependence of the parameter λ using an

appropriate function λ(s).

As can be seen from Fig.6.5 (left panel), the behaviour of this parameter

is energy-dependent and rapidly increases with increasing energy. This

energy dependence can be aptly described by the following function:

λ(s) = a0 s
a1 (6.21)

where the values a0 = 0.154, a1 = 0.0762 were determined by a careful χ2

analysis. Thus, based on this function, the λ values at 7 and 14 TeV are

retrieved and then displayed in Table 6.2.
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Figure 6.3: Multiplicity distributions for inelastic pp data at
√
s = 30.4, 44.5, 52.6 and

62.2 GeV compared with theoretical expectations.
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Figure 6.4: Multiplicity distributions for inelastic p̄p data at
√
s = 300, 546, 1000 and

1800 GeV compared with theoretical expectations.
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Similarly, the estimates for the average multiplicity of hadrons at LHC

energies can be derived. As depicted in Figure 6.5 (right panel), this

parameter exhibits a rapid increase with the energy s, and its energy de-

pendence can be consistently described using this function:

⟨n(s)⟩ = b0 s
b1, (6.22)

where the values of b0 and b1 are 2.5 and 0.1911, respectively. These

coefficients were determined through a rigorous χ2 analysis. Hence, by

using this dependence, one can determine the values of ⟨n(s)⟩ at 7 and 14

TeV, as illustrated in Table 6.2.

An intriguing aspect of our findings lies in the remarkable accord be-

tween our result concerning the energy dependence of the hadron mean

multiplicity and that obtained by Troshin and Tyurin with their model for

multi-particle production with antishadowing [129], adding to the grow-

ing body of evidence that supports the fundamental principles underlying

the U -Matrix approach. This alignment is highlighted by the following

equation [129] :

⟨n(s)⟩ = 2.328 s0.201, (6.23)

This also implies that this approach is highly predictive and can accu-

rately describe and interpret multi-particle production in different energy

regimes. Besides, we should emphasize that the power-law energy depen-

dence of the hadron mean multiplicity is often regarded as a prominent

feature observed in different models and consistent with experimental data

from heavy ion collisions [34, 124] and this alignment in results further re-

inforces this assumption.

Having tuned our model with all parameters obtained from the best

fits, we can now rely on its potential extrapolations to novel collision en-

ergy regimes and investigate various phenomena, such as the KNO scaling

violation and the correlation of final state particles, as will be presented

in the subsequent sections.

6.2.4.3 KNO scaling violation

Using our model, the KNO scaling violation was also examined. The

predictions for the full-phase space multiplicity distribution in p + p(p̄)

collision, in KNO form at various energies, spanning from ISR to LHC

ones, are displayed in Fig. 6.6 and Fig. 6.7.
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Fig. 6.6 with a logarithmic scale shows that the high-multiplicity tail

rises with increasing energy. At the same time, by looking at the Fig. 6.7

with a linear scale along with a zoom into the low-multiplicity region we

can see that the maximum of the distribution shifts towards smaller values

of z.

This interpretation demonstrates the dynamic behaviour of the system,

especially as the energy level rises, and further validates the violation of the

KNO scaling. Interestingly, we can also see that beyond the ISR energy

range, the width of the distribution gets larger with increasing energy,

which underscores the strong violation of the KNO scaling. It is worth

noting that this finding resonates with experimental observations [89].

Most importantly, based on the picture that KNO scaling violation is

an extension of geometrical scaling violation, we can also claim that the

strong violation of the former stems from the strong violation of the latter,

emphasizing the interconnected nature of these phenomena within the U -

matrix representation and stressing the latter’s pivotal role in describing

collision geometry and the processes of multi-particle production in hadron

collisions.

To further illustrate the role of the U -matrix scheme, we examined the

average number of particles ⟨n(b, s)⟩ as a function of impact parameter b

for various collision energies, as its pattern offers insights into the collision

geometry and the distribution of particles in the transverse plane. The

result is illustrated in Fig. 6.8. Based on this figure, it is clear that, at

central collision, (b = 0), the magnitude of the average number of particles

increases with increasing energy. This is quite anticipated since central

collisions yield more produced particles than peripheral collisions [137].

This trend causes the tail of the multiplicity distribution to extend to

higher values and eventually to a broader distribution as energy increases,

indicating the possibility of rare high-multiplicity events.

A possible explanation for the broadening of the multiplicity distribu-

tion might be related to the effect of using the U -matrix scheme. In-

deed, as previously illustrated in Fig. 6.1, the disparity found between the

eikonal and U -matrix schemes is noticeable at the central impact parame-

ter, where the overlap of hadronic matter distributions is greater with the

latter scheme. This discrepancy not only influences the inelastic overlap

function, and hence the overall magnitude of multiplicity, but it also has

a significant impact on the tail of the multiplicity distribution.

In addition, irrespective of the energy level, the average number of
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particles generally decreases as the impact parameter b increases, which

eventually leads to a decrease in the magnitude of the multiplicity dis-

tribution. This phenomenon aligns with the notion that larger impact

parameters lead to less violent collisions, resulting in events with smaller

multiplicities [137].

Furthermore, as Fig. 6.8 manifests, the average number of particles is

energy-dependent, increasing with higher collision energies at each impact

parameter. This behaviour is also expected in high-energy physics experi-

ments, where higher energies often result in increased particle production

[89].

Fig. 6.8 shows that the curvature of the average number of particles

changes, at a specific impact parameter, regardless of the energy level.

More quantitatively, we show the second derivative of the average number

of particles as a function of the impact parameter in Fig. 6.9, illustrat-

ing a change of sign of this function which demonstrates the existence of

an inflection point at exactly 0.7 fm. This change in the curvature could

signify a shift in the particle production behaviour. For instance, at this

specific impact parameter value, there might be a change in the interac-

tion dynamics or the nature of the collision process. It should be noted

that this result is in line with what has been reported in [36], where the

inflection point was roughly estimated to be at around 1fm. The fact that

the inflection point is specifically at around 1 fm suggests that there is

something unique or significant about collisions occurring at this distance.

This could be related to the characteristics of the colliding particles or the

structure of the hadrons involved. This common behaviour underscores

the notion of the critical phenomenon in hadronic interactions [93].

On the whole, the shape of the multiplicity distribution is influenced

not only by the impact parameter and collision energy but also by the

unitarisation scheme, particularly the U -matrix, which reinforces our claim

that this distribution is scheme-dependent, as outlined in the introductory

section. Besides, the tail of the multiplicity distribution gives insights

into the rare but significant events that constitute the overall dynamics of

high-energy collisions and hence highlights the importance of this scheme

in multi-particle production processes.

In light of this result, the U -matrix scheme may prove to be a significant

alternative for addressing multi-particle production challenges at ultra-

high energies, including the muon puzzle in cosmic ray interactions at this

energy level. In situations such as these, where extreme conditions and
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rare events are likely to play a significant role, scheme-dependent effects

on multiplicity distribution become relevant.

Having said that, it is vital to consider this scheme in enhancing the

existing hadronic interaction models to tackle several lingering issues in

high and ultra-high energy physics. However, this is beyond the remit of

this study.

6.2.4.4 Hadronic multi-particle correlations

Now that we have estimated the multiplicity distribution Pn across various

energies, it seems appropriate to characterize it in an attempt to obtain

a better understanding of the dynamics of the particle production pro-

cess in hadron collisions. In order to fulfil this purpose, the normalized

ordinary higher-order moments (q > 2) of this distribution are analyzed.

Technically speaking, Pn’s moments of order q are defined as follows:

Cq =Mq/M
q
1 , (6.24)

and

Mq =
∞∑

n=0

nqPn, (6.25)

Our results, along with their comparison with the experimental data 1,

are given in Table 6.3 and illustrated in Fig. 6.10 and Fig. 6.11.

Based on Fig. 6.10 and Fig. 6.11, we can see that, as energy levels rise,

our proposed model predicts a gradual increase in the ordinary higher-

order moments, represented by C2, C3, C4, and C5. Surprisingly, while our

predictions match with the data points within the ISR energy range, it is

clear that the model overestimates the fluctuations and correlations in the

multiplicity distribution with rising energy, notably above LHC energy. In

order to further illustrate this overestimation, we computed the f2 moment

(or the two-particle correlation parameter), as a means of examining the

correlation between pairs of particles during a collision event, which is

defined by the following formula :

f2 =< n(n− 1) > − < n >2 (6.26)

Interestingly, as illustrated in Fig. 6.12, there is a noteworthy and sud-

den increase in the two-particle correlation parameter versus the average

1see compilation in [37]
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√
s [GeV ] C2 C3 C4 C5

30.4 1.29 ± 0.05 1.97± 0.09 3.45± 0.21 6.68± 0.52

1.28 1.94 3.36 6.47

44.5 1.28 ± 0.04 1.95± 0.07 3.40± 0.17 6.58± 0.47

1.3 2.01 3.55 6.99

52.6 1.29 ± 0.03 1.98± 0.06 3.48± 0.15 6.81± 0.42

1.3 2.04 3.64 7.24

62.2 1.29 ± 0.03 1.97± 0.06 3.40± 0.14 6.43± 0.33

1.31 2.07 3.73 7.51

300 1.34 ± 0.02 2.21± 0.04 4.26± 0.07 9.23± 0.17

1.41 2.46 4.95 11.17

546 1.41 ± 0.03 2.52± 0.05 5.31± 0.10 12.72± 0.24

1.46 2.67 5.63 13.38

1000 1.41 ± 0.02 2.47± 0.05 5.11± 0.13 11.87± 0.36

1.52 2.91 6.5 16.33

1800 1.47 ± 0.02 2.78± 0.03 6.23± 0.07 15.91± 0.21

1.59 3.21 7.57 20.18

7000 1.78 4.14 11.36 35.3

8000 1.81 4.26 11.87 37.51

13000 1.89 4.73 14.03 47.19

14000 1.91 4.81 14.41 48.93

Table 6.3: Cq Moments: experimental data with error bar and theoretical

predictions. Data points are from [37]

number of produced particles, indicating the existence of strong corre-

lations among the charged particles. Consequently, we can infer that the

model incorporates correlations in the final state, despite being constructed

on the basis of independent particle production. So the question that arises

is where this correlation emerges from. As the overall hadronic multiplicity

distribution is constructed by summing contributions from parton–parton

collisions occurring at each impact parameter weighted by the inelastic

overlap function, this overestimation of correlation is linked to the weight

in this superposition model, and hence to the unitarisation scheme, in
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comparison with the predictions provided by an eikonal geometrical inde-

pendent string model [37].

Our model’s outcomes of a pronounced KNO scaling violation, together

with the unexpected overestimation of the fluctuations and correlations

with increasing energy, can potentially be attributed to statistical fluctua-

tions. Hence, we may claim that in this U -matrix representation, pomeron

exchange may involve more intricate dynamics, such as collective effects,

non-perturbative QCD dynamics, or other interactions, leading to differ-

ent statistical fluctuations beyond a simple Poissonian eikonal summation

[47].

6.2.5 Conclusions

The first part of the results’ section was concerned with the descrip-

tion of the geometrical scaling violation. In fact, the energy evolution

of the elastic-to-total cross-section ratio was investigated using both the

eikonal and U -matrix schemes. The results have revealed that when energy

rises, this ratio increases non-linearly and more rapidly with the U -matrix

scheme than with the eikonal, implying a stronger violation of the geomet-

rical scaling. This pronounced violation was understood in terms of the

divergence in the behaviour of the inelastic overlap function, particularly

at the central impact parameter, where the magnitude of this function

is greater with the U -matrix scheme than the eikonal, regardless of the

energy level.

The second part of the results’ section was devoted to the hadronic mul-

tiplicity distributions. Our model was tuned and all parameters were ob-

tained from the best fits to various hadronic multiplicity distributions data

over a wide range of energies. It has been found that the present model

provides a reasonable description of the different multiplicity distributions

at each energy. Interestingly, our findings about the energy dependence of

the hadron mean multiplicity agree well with Troshin and Tyurin’s analy-

ses of the multiparticle production in the antishadowing model [129]. This

agreement adds to the growing body of evidence supporting the fundamen-

tal principles underlying the U -Matrix approach, which ensures reliable

extrapolations to novel collision energy regimes.

Based on our model, the KNO scaling violation was investigated as

well. Our results, related to the behaviour of the tail, as well as the

maximum of the multiplicity distribution, and especially to the strong

KNO scaling violation, are in line with the experimental findings [89].
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The broadening of the multiplicity distribution has been also confirmed

with the behaviour of the particles’ distribution in the transverse plane at

various collision energies. Besides, the interesting finding of an inflection

point in the average number of particles’ curve irrespective of the energy

level, corroborates with another finding (ref) and highlights the concept

of a critical phenomenon in hadronic interactions.

Besides, the normalized ordinary higher-order moments (q > 2) of the

multiplicity distribution were analyzed. Another surprising result was re-

lated to our model’s overestimation of the fluctuations and correlations in

the multiplicity distribution as energy rises, notably above LHC energy.

It is argued that this overestimation, is linked to the weight in this su-

perposition model, and hence to the unitarisation scheme. It should be

noted that the shape of the hadron multiplicity distribution is influenced

not only by the impact parameter and collision energy but also by the

unitarisation scheme, particularly the U -matrix.

On the whole, the results of this study, such as those related to the

strong geometrical scaling violation and its resultant pronounced KNO

scaling violation, coupled with the overestimation of the charged parti-

cles’ correlation, can potentially be attributed to statistical fluctuations

inherent in the U -matrix scheme. Hence, we may argue that in this U -

matrix representation, pomeron exchange may involve more intricate dy-

namics, leading to different statistical fluctuations beyond a simple Pois-

sonian eikonal summation.

As any research, this study is not without limitations. For instance, the

assumption that each created string has an equal probability of turning

into a pair of charged hadrons is acceptable but only as a first approxi-

mation. To refine the present model for a more reliable description, we

can consider the introduction of charged particle correlations in the final

state by incorporating, for example, string fusion, overlapping processes,

or other interactions leading to correlated string dynamics as evidenced

by theoretical predictions [39] and experimental observations [126]. Addi-

tionally, it is important to investigate the impact of the implicit different

statistical fluctuations in pomeron exchanges within the U -matrix repre-

sentation, along with the correlation and/or collective behaviour in the

production of final state particles.

The study concludes by proposing the U -matrix scheme as a noteworthy

alternative for tackling challenges related to multi-particle production in

hadron collisions, especially in scenarios where extreme conditions and rare
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events play a significant role in high and ultra-high energy physics. It also

prompts an inquiry into the fundamental nature of pomeron exchange

within the U -matrix scheme in comparison to the eikonal, despite that

both schemes verify the unitarity constraint principle.

RO would like to thank Jean-René Cudell for his invaluable comments.
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6.3 Further results

In this section, we present additional insights into the behavior of the

normalized moments Cq at different LHC energies. We observe that the

moments at higher energies, specifically at 13 TeV, are notably larger

compared to those at lower energies such as 7000 GeV. This increase may

be explained by the enhanced contribution of mini-jets, as well as the

onset of saturation effects, which are expected to become more significant

at higher energies. These phenomena are anticipated to be particularly

pronounced in heavy ion collisions, where the larger number of parton

interactions could play a key role. While our current model focuses on

proton-proton collisions, future studies will extend this analysis to heavy

ion collisions.

From Table 6.3, we have the following normalized moments Cq:

Comparison from Lower LHC Energies (example: 7000 GeV) to higher

LHC energies (example: 13 TeV):

• C2 increases from 1.78 to 1.89

• C3 increases from 4.14 to 4.73

• C4 increases from 11.36 to 14.03

• C5 increases significantly from 35.3 to 47.19.

In addition, one might wonder about the value of the K parameter if

it were left free in the fit and how this would affect the predictions at

LHC energies. To address this, we analyze the results of the fits with

the K parameter released. As can be seen from the Fig. 6.14, the shape

parameter k of the elementary multiplicity distribution generally shows
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Figure 6.14

a trend of decreasing with increasing energy, particularly noticeable from

lower to higher energy ranges. This decrease in k can be described by the

following function, which was obtained by a chi-squared fitting to the k

values derived from the model fitting:

k(
√
s) = a · ln(√s)b (6.27)

where a = 15.48± 2.52 and b = −0.23± 0.08.

Note that the two other parameters of the model, namely the hadron

mean multiplicity and the λ parameter, are almost insensitive to this

change, as shown in the Fig. 6.16 and Fig. 6.18 with their best-fit func-

tions, and Fig. 6.20 illustrates the predictions of the fits at LHC energy in

this case.
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It is worth noting that the differences observed at different
√
(s) in-

deed have implications for cosmic ray data, particularly concerning par-

ticle production rates and energy distribution. Specifically, the observed

increase in the ratio of elastic-to-total cross-section with energy, notably

more pronounced in the U -matrix case compared to the eikonal case, sig-

nifies a heightened contribution from inelastic scattering processes. This

observation aligns with studies, such as [88], which explore the influence

of increasing effective cross-sections for hadron inelastic interactions with

rising energy, especially regarding high-energy cosmic ray hadron energy

spectrum shape. Fig. 6.22 illustrates the predictions at 13 TeV
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The Fig. 6.24 shows a continuous growth of ⟨n(b, s)⟩ with energy, partic-
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ularly in central collisions, and there are no signs of saturation behavior,

such as a slowing down or plateauing of the growth rate of ⟨n(b, s)⟩ at

higher energies. Based on this observation, we may infer that this trend

is more closely related to mini-jet production.

Finally, the physical reason for the inflection point at 0.7 fm could be

related to the typical size of the proton. For Pb ions, we anticipate that the

inflection point would shift due to their larger size and different internal

structure.



7 Multi-pomeron exchange nature

7.1 Context of the work

The findings presented in the previous chapters, especially those showing

that, when compared to the eikonal scheme, the U-matrix offers a better

description of certain hadronic observables, raise the question about the

fundamental nature of pomeron-exchange within the latter scheme, despite

that both schemes satisfy the unitarity condition. This has sparked our

interest and motivated us to delve deeper into the study of the U-matrix

scheme in the context of the Soft QCD processes.

As a matter of fact, the description of the Soft QCD processes, occurring

at low momentum transfer which is governed by non-perturbative effects,

is not an easy task. This is simply because perturbative QCD strategies

are not applicable in this case.

To remedy this, we are compelled to use phenomenological models that

hinge on fundamental principles of quantum field theory, such as unitarity,

analyticity and crossing, in conjunction with empirical parametrizations.

Hadronization, the process by which the quarks and gluons generated in

high-energy collisions turn into hadrons in the final state, is viewed as one

of the most significant QCD processes. In fact, several phenomenological

models have been used to describe this process; for example, we can cite the

string models which have been employed together with the Gribov-Regge

theory, like in Sibyll and QGSJET.

In fact, multi-pomeron exchange is crucial to the hadronization process

in these string models. More specifically, the color strings are stretched

between the projectile and target partons during the first stage. According

to the Gribov-Regge theory, the pair of strings’ construction corresponds

to the cut pomeron. The strings are then hadronized, yielding the observed

hadrons.

The Gribov-Regge theory states that the unitarization of the elastic

scattering amplitude is the technique by which multi-pomeron exchange is

accomplished in order to satisfy the unitarity principle.

One example of satisfying the unitarity principle into these models while

125
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addressing multi-pomeron exchanges is the widely utilized eikonal approxi-

mation. Direct and indirect evidence, however, has shown that the eikonal

or its extended quasi-eikonal schemes used in these models, while describ-

ing some hadronic observables reasonably well, are not sufficient for a

comprehensive description of the physics in question, especially in hadron

collisions at (ultra-) high energies. Fundamentally, there is no good reason

for pomerons to be independent as they are exchanged between composite

particles consisting of bound quarks and gluons. As a result, it is the-

orized that interactions between quarks and gluons may cause pomeron

exchanges to be correlated and interdependent.

There are fundamental problems with string models that need to be

addressed. The generated particles in these models are thought to origi-

nate from the exchanged Pomerons-each composed of two strings. In this

approach, the probability of configurations including n string pairs is equal

to the probability of exchanging a specific number of these n pomerons,

which is Poissonian according to the eikonal scheme.

But for the reasons listed below, this approach is erratic. While all

of the pomerons in the Gribov-Regge model are the same, the first and

subsequent pairs in the string picture are of distinct nature. Another

reason behind the inconsistency is related to the energy sharing between

the strings. In fact, energy is properly shared in the string (chain) model,

while it is completely overlooked in the Gribov-Regge theory.

Actually, we can claim that the mismatch resulting from the afore-

mentioned inconsistencies is associated with the eikonal scheme since the

Gribov-Regge probability is Poisonian.

Indeed, the problems indicated above could be resolved, for instance,

by developing a consistent approach that distinguishes between the first

string pair and subsequent pairs. To do so, it could be necessary to modify

the Gribov-Regge theory in order to differentiate between initial and sub-

sequent Pomerons or to adjust the string model to better fit the uniform

treatment in Gribov-Regge theory.

They can also be dealt with by devising a method to include detailed

energy sharing among the strings in the Gribov-Regge theory. This could

entail mapping the Gribov-Regge probability onto a framework that incor-

porates energy sharing, or expanding the Gribov-Regge model to include

energy distribution among the Pomerons.

In addition, considering an alternative scheme which may provide an-

other probability of the pomerons exchanged, namely the U matrix, could
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be another solution to the aforementioned issues.

By taking these possible solutions into consideration , we believe that

a more consistent and accurate predictive model for soft QCD processes

may be developed.

In this study, we attempted to give a probabilistic interpretation of

Pomeron exchange within the U-matrix scheme. In order to achieve this,

we employed a spectral representation of Pomeron exchange in perturba-

tive Reggeon field theory, derived from the Kancheli formalism. This al-

lowed us to determine both the Pomeron topological cross-section and the

Pomeron multiplicity distribution, irrespective of the unitarization scheme

employed. After that, we looked at the pomeron multiplicity distribu-

tions’ statistical characteristics, especially their moments, to learn more

about the correlation between the Pomerons that were exchanged in each

scheme. Additionally, we investigated how these Pomeron weights affected

the multiplicities in pp collisions and explained how the mismatch between

Gribov-Regge theory and string models might be resolved by using the U-

matrix technique.

7.2 ARTICLE 5

Pomeron Weights in QCD Processes at High Energy and the
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The pomeron topological cross-section is derived for the eikonal and the U -matrix unitarization
schemes using a generalized expansion of the unitarized elastic amplitude in an effort to exam-
ine pomeron characteristics, namely the multiplicity distribution, fluctuation, and correlation, and
to reveal the impact of pomeron weights on the pp multiplicity distribution. The results demon-
strate that the U -matrix inherently incorporates a larger amount of diffraction production into the
multi-pomeron vertices, yielding a larger pomerons’ variability regardless of the energy range, while
such fluctuations become significant only beyond a specific high-energy threshold in the eikonal and
quasi-eikonal schemes. Most importantly, our findings indicate that within the U -matrix scheme,
an increase in exchanged pomerons results in more pronounced higher-order pomeron correlations,
which are affected by the energy and the impact parameter. Interestingly, our outcomes also high-
light that the correlated pomeron exchanges within the U -matrix summation play a key role in
enhancing multi-parton collisions. In light of these results, we can argue that the U -matrix is fun-
damentally more valid for theories with growing cross-sections with energy, such as QCD at high
energies.

I. INTRODUCTION

In the study of hadronic interactions at high energy,
understanding soft QCD processes that occur at low mo-
mentum transfer is a daunting task since perturbative
QCD techniques are inapplicable and, to date, there is
no fundamental theory that underlies these processes.
That being said, we can approach them through phe-
nomenological models that are based on fundamental
principles of quantum field theory – such as unitarity,
analyticity and crossing symmetry, along with empirical
parametrizations. In order to improve these models, ex-
tensive data comparisons from collider experiments and
cosmic-ray air showers are necessary to validate their un-
derlying assumptions and fine-tune their parameteriza-
tions.

One of the most important soft QCD processes is
Hadronization, which involves the transformation of
quarks and gluons produced in high-energy collisions into
the observed hadrons. Indeed, this process has been de-
scribed by a number of phenomenological models imple-
mented in Monte Carlo event generators. For instance,
we can cite the Lund string model [1] in conjunction with
the Gribov-Regge theory [2], in Sibyll [3] and QGSJET
[4]. In these models, multi-pomeron exchanges play a
crucial role in the hadronization process. The unitariza-
tion of the elastic scattering amplitude allows for their
inclusion, with the eikonal approximation being the most
commonly used method satisfying the unitarity principle
in this context.

In these models, multi-pomeron exchanges play a cru-
cial role in the hadronization process. The unitarization

∗ rami.oueslati@uliege.be

of the elastic scattering amplitude allows for their in-
clusion, with an eikonal-like unitarisation scheme being
the most commonly used method satisfying the unitar-
ity principle in this context. Indeed, the formation of
string pairs, which corresponds to cut pomerons in the
Gribov-Regge framework, is influenced by the weights of
the pomerons. These strings, stretched between projec-
tile and target partons, undergo hadronization, leading
to the production of observed hadrons. However, despite
the reasonable description of some hadronic observables
provided by the eikonal or its extended version the quasi-
eikonal, both direct and indirect evidence indicate that
these approaches are inadequate for a complete under-
standing of the physics in question, particularly in hadron
collisions at (ultra-) high energies. As such, a more com-
prehensive approach is necessary to accurately describe
the complex dynamics involved in these processes.

In [5], it has been shown that pomeron exchange
in an eikonal-like scheme is a Poisson-distributed vari-
able, where the number of exchanged pomerons is sta-
tistically independent. From a fundamental standpoint,
since pomerons are exchanged between composite parti-
cles consisting of bound quarks and gluons, there is no
sound reason why they should be independent. Hence,
it is hypothesized that pomeron exchanges may be cor-
related and interdependent as a result of interactions be-
tween the quarks and gluons. This raises the question of
identifying the appropriate unitarization scheme for such
dependent exchanges.

From a phenomenological point of view, modelling
problems caused by an eikonal-like unitarization tech-
nique are numerous. For instance, it has been demon-
strated in [6] that shadow corrections to the rapidly rising
contribution of the input supercritical pomeron, which
arise from pomeron rescatterings or, equivalently, from
considering the survival probability factor, do not resolve
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the Finkelstein-Kajantie problem. Consequently, it has
been argued that an alternative method for unitarization
is necessary.

Another fundamental issue that needs to be addressed
relates to string models for hadronization [7]. In these
models, the probability of configurations with n string
pairs is given by the probability of having n exchanged
pomerons, which is a Poisson distribution through the
eikonal scheme. Nevertheless, this approach is inconsis-
tent for the following reasons.

To begin with, in the string model, the first pair of
quark-antiquark strings and the subsequent pairs are fun-
damentally different. This distinction arises because the
first string pair is formed from the initial quarks of the
colliding protons, while the subsequent pairs are typi-
cally generated from secondary interactions. These sec-
ondary interactions involve different quark content and a
different distribution of energy among the strings, with
the first string pair generally receiving a larger share of
the available energy compared to the subsequent pairs.
Conversely, in the Gribov-Regge theory, all elementary
interactions -pomerons- are treated as identical. Thus
there is no distinction between the initial and subsequent
interactions and all pomerons are dealt with statistically
uniformly. Additionally, in the Gribov-Regge framework,
the energy sharing among the different pomerons is not
considered. These inconsistencies result in a mismatch
when using the Gribov-Regge pomeron probability distri-
bution for configurations with different numbers of string
pairs. Therefore, we can argue that this mismatch is at-
tributed to the eikonal scheme given that the Gribov-
Regge pomeron probability is essentially Poisonian and
basically defined from the eikonal scheme. Consequently,
considering an alternative unitarisation scheme, namely
the U -matrix, could be a solution to the aforementioned
issues. In fact, throughout the years, various arguments
have been furnished in favor of the U -matrix scheme.

For instance, in [8], a phenomenological model based
on the picture depicting the KNO scaling violation as an
extension of the geometrical scaling violation and using
the U -matrix unitarization scheme has been presented
within the framework of the geometrical approach in an
attempt to describe multi-particle production. In this
study, it has been suggested that the U -matrix scheme
may serve as a noteworthy alternative for tackling chal-
lenges related to multi-particle production in hadron col-
lisions, especially in scenarios where extreme conditions
and rare events play a significant role in high and ultra-
high energy physics. It also prompts an inquiry into the
fundamental nature of pomeron exchange within the U -
matrix scheme in comparison to the eikonal, despite that
both schemes verify the unitarity constraint principle.

In another study [9], owing to the fact that corre-
lations could arise from hadron fluctuations in various
diffractive configurations, a multi-channel model was in-
troduced to better describe diffractive cross-sections by
enhancing these hadron fluctuations. This model has
shown that U -matrix unitarization is likely incompatible

with the assumption of uncorrelated pomeron exchange,
primarily because the findings are independent of the de-
tails of the diffractive states.

In addition, the rational form of unitarization (e.g., the
U -matrix) has long been supported by arguments based
on the analytical features of the scattering amplitude. It
has been demonstrated that, in contrast to the exponen-
tial form of unitarization (e.g., the eikonal), this type of
unitarization far more easily replicates correct analytical
characteristics of the amplitude in the complex energy
plane [10]. Moreover, much research (e.g., [8, 11]) has
highlighted the efficacy of the rational form in offering
a more accurate description of the underlying physics in
hadronic collisions at high energy.

At ultra-high energy, it has been shown that the
eikonal causes problems in describing the data obtained
from cosmic-ray air showers. Indeed, the development
of air showers can be significantly affected by diffractive
collisions [12]. For example, based on the predictions
of MC simulations, it has been revealed that diffractive
collisions have an impact on the prediction of observ-
ables in ultra-high energy cosmic ray experiments, such
as the depth of the maximum of the shower development
Xmax and the depth of the maximum of the muon pro-
ductions in an air shower Xµ

max. As it has been revealed
in [13] the single diffractive data preferred the U -matrix
scheme over the eikonal, particularly at ultra-high en-
ergy. Switching from the commonly used eikonal in these
MC simulations could hence reshape our understanding
of cosmic-ray physics.

Overall, selecting the appropriate elastic scatter-
ing amplitude unitarisation is primordial in high-
energy hadron scattering, particularly for various phe-
nomenological models and generators. Indeed, multi-
pomeron exchange weights considerably impact high-
energy hadron amplitudes, thereby directly affecting
hadron process cross-sections. This includes the energy-
dependent growth pattern of inclusive cross-sections and
the shape of produced particle multiplicity distributions
[14, 15].

The study set out to understand the nature and role of
pomeron exchanges in the U -matrix scheme in compari-
son to an eikonal-like one. It also aims to shed light on
the impact of the pomeron weights for QCD processes.

This work is organized as follows. In the next section,
we will outline the theoretical framework of the pomeron
vertices in Gribov-Regge theory, along with a detailed
review of the generalized representation of the unitarized
elastic scattering amplitude, as proposed by Kancheli.
Section III will present and thoroughly discuss the re-
sults. Section IV will summarize the main findings and
implications of the study.
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II. POMERONS VERTICES IN
GRIBOV-REGGE THEORY

Unitarization in the Gribov-Regge theory [2] is accom-
plished by summing the contributions from all multi-
reggeon exchanges. Using this method, the Reggeon ver-
tices, referring to the coupling between the exchanged
Reggeons and the external particle, are used to calculate
the amplitudes for multi-Reggeon exchanges and their
values determine the weights of the n-reggeon exchange.
It is worth noting that it is difficult to compute the val-
ues of these vertices from first principles. In fact, from a
phenomenological procedure, they are parameters deter-
mined by fitting to experimental data using some func-
tional form. However, as previously stated in the first
section, there is no specific reason to assume that these
weights should adhere to the simple Glauber-eikonal
form. Therefore, a more thorough treatment of them
is needed. In [16], the structure of these multi-pomeron
vertices has been analyzed and generalized to take into
account more complex interactions, specifically the con-
tribution from diffraction production in the weights of
multi-reggeon exchange. In this section, the formalism
put forth in [16] will be thoroughly reviewed as it lies the
theoretical foundations for our objectives.

We begin with the expression of the unitarized elastic
hadronic amplitude represented as follows :

F (s, t) =

∞∑

n=1

Fn(s, t), (1)

with the n Reggeon exchange amplitude given by :

Fn(s, t ≃ −k2⊥) =
−i

nn!

∫
N2

n(k⊥i)

·
n∏

i=1

d2k⊥i

(2π)2
·D(s, k⊥i)δ

2
(
k⊥ −

∑
k⊥i

)
, (2)

where at high energy, the primary amplitude F1(s, t) can
be represented either as a pomeron exchange or as a more
intricate set of reggeon diagrams and its factorized form

is given by

F1(s, t) = G(k⊥)D(s, k⊥)G(k⊥), (3)

where D(s, k⊥) refers to the Green function of the
Pomeron. As stated in [17], the vertex function Nn(k⊥i)
in (2), representing the emission of n pomerons with
transverse momenta k⊥i by the external hadron parti-
cle, can be expressed through integrals of the product
of G vertices. Likewise, the vertices can be expanded
over on mass shell states of diffractive-like beams [18],
thereby accounting for the contribution from diffractive
production in the multi-reggeon exchange weights :

Nn(ki) =
∑

ν1,ν2,..νn

∫
G1 ν1

(Pin, p
(1)
i )Gν1ν2

(p
(1)
i , p

(2)
j ) · · ·

· · ·Gνn−11(p
(n−1)
i , Pout)

n−1∏

i=1

dΩνi(p
(1)
i ), (4)

where Gν1ν2(p
(1)
i , p

(2)
j , k⊥) is the transition amplitude for

a beam of ν1 particles with momenta p
(1)
i into a beam of

ν2 particles with momenta p
(2)
j , and with the emission of

a pomeron with the transverse momentum k⊥. In (4), the
dΩν(pi) represents the element of the ν particles phase-
space volume. The Eq. (4) incorporates both the summa-
tion and integration over all conceivable physical states
of the particles in the beams and thus accounts for their
full masses. It is important to note that the multi-particle
amplitudes Gν1ν2

are complex and may contain unrelated
contributions, whereas the vertex functions Nn(ki) are
real.
Considering a non-local field operator Ĝ(k) describ-

ing the pomeron emission vertices Gν1ν2(k) between the
initial and final states of the external particle, the expres-
sion (4) for the vertex functions Nn(ki) can be written in
a symbolic operator form as the average of the product
of this field operator Ĝ(k) :

Nn(ki) = ⟨Pin|Ĝ(k1)Ĝ(k2) · · · Ĝ(kn)|Pout⟩ (5)

This product can further be decomposed over the com-
plete set of physical states of the beams |ν⟩ as follows

Nn(ki) =
∑

ν1,...,νn−1

⟨Pin|Ĝ(k1)|ν1⟩⟨ν1|Ĝ(k2)|ν2⟩⟨ν2|Ĝ(k3)|ν3⟩ · · · ⟨νn−2|Ĝ(kn−1)|νn−1⟩⟨νn−1|Ĝ(kn)|Pout⟩ (6)

One can simplify the handling of the vertex operators
Ĝ(k) by redefining the basis for the beam states |ν⟩ where
Ĝ(k) has a simple diagonal form :

Ĝ(k)|ν⟩ = gν(k)|ν⟩, (7)

with gν(k) acting as eigenvalues. Then the expression
Eq. (6) is simplified as the summation over all possi-
ble beam states, with the contribution from each state
weighted by a function w(ν) and the product of its asso-
ciated vertex functions for the different momentum com-
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ponents ki :

Nn(ki) =
∑

ν

w(ν)
n∏

1

gν(ki) (8)

where w(ν) can be interpreted as the probability of find-
ing the fast hadron in the state | ν⟩ and is given by:

w(ν) = ⟨Pin|ν⟩ ⟨ν|Pout⟩ (9)

Following this simplification, the S-matrix in the impact
parameter representation can be written as follows:

S(s, b) =
∑

ν1ν2

w(ν1)w(ν2)
∞∑

n=0

( i χν1ν2(s, b))
n

n!
(10)

=
∑

ν1ν2

w(ν1)w(ν2)e
iχν1ν2

(s,b)

where

χν1ν2(s, b) =

∫
d2k⊥e

ibk⊥gν1(k⊥)D(s, k⊥)gν2(k⊥) (11)

One can further simplify the expression for the vertices
by factorizing the vertex function gν(k) into a universal
term g(k) and a state-dependent coefficient λ(ν), with a
small non-factorizable correction g̃(ν, k) :

gν(k) = g(k)λ(ν) + g̃(ν, k) (12)

then the vertices can be represented as :

Nn(ki) ≃ βn

n∏

1

g(ki), (13)

where

βn =
∑

ν

w(ν) (λ(ν))n (14)

Under this assumption of factorization, the vertices sim-
plify to a product of universal functions g(ki), weighted
by βn, which encapsulates the sum over the probabilities
w(ν) and the coefficients (λ(ν))n.

All in all we obtain the following expression for the
S-Matrix in the impact parameter representation :

S(s, b) =
∞∑

n=0

β2
n

n!
(i χ(s, b))

n
(15)

where the real coefficients βn ≥ 1 are largely arbitrary.
Yet, their expressions will be determined depending on
the unitarisation scheme chosen for the elastic amplitude,
which will be illustrated in the forthcoming section.

The above equation provides a generalized expansion
of the S-matrix whereby the coefficients govern the con-
tributions of different orders of the interaction between
the particles. Technically, the expansion is developed as

a power series increasingly summing over complex inter-
action terms dictated by the function χ(s, b) which in-
corporates the scattering dynamics. Each term’s weight
is controlled by the coefficient βn, reflecting the relative
probability of different interaction strengths leading to
the scattering process.
It is often not feasible to work directly with an infi-

nite series due to the computational cost of calculating
each term and the potential difficulty of evaluating the
convergence characteristics. Yet, it might be possible to
gain a better understanding of the series’ structure in
(38) by constructing a more compact and manageable
formulation. This can be accomplished in a few different
ways, for instance by mapping the series into an integral.
By using spectral theory, for example, hidden spectral
properties may be uncovered. To do so, we replace the
coefficients βn in (38) with the following expression :

βn =

∫ ∞

0

dτ τn φ(τ) , (16)

then the S[χ] matrix can be rewritten as a combination
of Glauber-type eikonal terms:

S(s, b) ≡ S[χ] =

∫ ∞

0

dτ ρ(τ) eiτχ(s,b) (17)

ρ(τ) =

∫ ∞

0

dτ1
τ1

φ(τ1)φ(τ/τ1) (18)

where ρ(τ) functions as a weight. The constraints β0 =
β1 = 1 are imposed by the normalization condition for
S[χ] and w(ν). This results in the following relations:

∫ ∞

0

dτ ρ(τ) =

∫ ∞

0

dτ τρ(τ) = 1 (19)

It is worth noting that, in the Glauber eikonal case, the
single-particle state in beams contributes very little to
Nn(ki). When this occurs, the integrals in (4) disappear
and the expression for Nn(ki) becomes a simple product
of n elastic pomeron vertices as :

Nn(ki) =
n∏

i=1

g(ki), (20)

where g(k) = G11(p, p+ k).
Using the generalised S matrix representation, we can

write some general relationships for cross-sections at a
given impact parameter, which are expressed using the
function S[χ(s, b)], and are valid for any spectral density
ρ(τ).

• The total cross-section :

σtot(s, b) = 2(1−Re(S[χ])), (21)
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• The elastic cross-section

σel(s, b) = | 1− S[χ] |2, (22)

• The total inelastic cross-section

σin(s, b) = σtot − σel = 1− |S[χ]|2 (23)

• The total cross-section of diffraction generation :
single σsd and double σdd

σdif (s, b) = σin − σin, cut = 2σsd + σdd

= S[2iIm(χ)]− | S[χ] | 2 (24)

• The cross-section corresponding to processes when
at least one pomeron is s-cut : when we cut a sin-
gle pomeron from the elastic amplitude, this corre-
sponds to taking the imaginary part of the corre-
sponding partial-wave amplitude. From the optical
theorem, we know that this is related to the cross-
section for cutting a single pomeron. Therefore

σin, cut(s, b) = 1− S[2i Im(χ)] (25)

and so the pomeron topological cross-section: these
are the contributions of diagrams with n cut
pomerons and of the arbitrary number of uncut
pomeron lines

σn(s, b) =

∫ ∞

0

dτρ(τ)
(2τIm(χ))n

n!
e−2τIm(χ) (26)

where ρ(τ) is a spectral density. The pomeron
topological cross-section resembles a superposition
of Poisson distributions, where each term repre-
sents the contribution of a Poisson distribution
with mean (2τ Im(χ)) weighted by the spectral den-
sity ρ(τ).

III. RESULTS

A. Pomeron topological cross-section

This section is concerned with the investigation of the
pomeron dynamics by utilizing the general representation
of the S-Matrix. First of all, we start with highlighting
the link between this general representation and the uni-
tarization scheme and then with the pomeron weights.
Let’s examine two prominent unitarization schemes: the
eikonal and the U -matrix. They are distinguished by

their respective spectral functions ρ(τ), i.e. the βn co-
efficients. For instance, if we consider a simple spectral
function as a delta function,

ρ(τ) = δ(τ − 1) , (27)

then we obtain for the unitarised elastic scattering am-
plitude, the following expression :

A(s, b) = i
[
1− eiχ(s,b)

]
(28)

which is the eikonal form of the unitarisation scheme [19].
In this case, using Eq. 26 , the pomeron topological cross-
section is given by

σn(s, b) =
(2Im(χ))n

n!
e−2Im(χ) (29)

While if we take for the spectral function, the expression
:

ρ(τ) =
e−τ/c

c
(30)

[20] and with c = 1
2 then we get for the unitarised elastic

scattering amplitude, this form :

A(s, b) =
χ(s, b)

1− iχ(s, b)/2
(31)

which is the U -Matrix form of the unitarisation scheme
[19], and for the pomeron topological cross-section,
Eq. 26 gives :

σn(s, b) =
(Im(χ))n

(1 + Im(χ))1+n
(32)

It is worth noting that different schemes for unitariz-
ing the elastic amplitude, and hence various approaches
to ensure the unitarity constraint, arise from the gener-
alized S matrix form, which depends on the choice of
the spectral function. Owing to the ambiguity of select-
ing the appropriate unitarisation scheme, particularly for
hadron scattering at high energy, in spite of satisfying
the unitarity constraint, one can resort to some general
procedure. Indeed, it is significant to note that the opti-
mization of a phenomenological model from the general
expansion of the S-matrix may facilitate the identifica-
tion of the suitable scheme. This can be achieved by
fitting experimental data to some observables, such as
total, elastic and inelastic cross-sections, among others.
Then, the adequate scheme can be determined by deriv-
ing the appropriate spectral function from the best fits.
In the eikonal case, the number of pomerons is a ran-

dom variable Poisson distributed [5]. Therefore, one may
inquire about the nature of the probability distribution
for the number of pomeron exchanged in alternative ap-
proaches, mainly the U -matrix scheme. As a matter of
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fact, the expression 26 of the pomeron topological cross-
section σn(s, b), as a superposition of Poisson distribu-
tion, can be understood as a mixed Poisson distribution,
in which the conditional distribution of the number of
pomeron exchanged, given a certain rate parameter, is
a Poisson distribution. Nevertheless, the rate parame-
ter itself, in the mixed poisson framework, is handled as
a random variable with its own distribution [21]. Thus,
one can query what kind of features can be obtained with
this random rate parameter rather than with a fixed Pois-
son rate parameter for all events. To achieve this, let a

random variable X satisfies a mixed Poisson distribution
with density π(λ), then the probability distribution has
this form :

Pr(X = n) =

∫ ∞

0

λn

n!
e−λ π(λ) dλ. (33)

If we consider that the Poisson rate parameter is dis-
tributed according to an exponential distribution, π(λ) =
1
γ e

−λ
γ and using integration by parts n times yields:

Pr(X = n) =
1

n!

∞∫

0

λn e−λ 1

γ
e−

λ
γ dλ =

(
γ

1 + γ

)n(
1

1 + γ

)
(34)

we get X ∼ Geo
(

1
1+γ

)
. And so the pomeron probabil-

ity distribution in case of the U -matrix scheme gives the
probability distribution of the number of failures until
the first success of the exchanged pomerons.

Pr(X = n) = (1− p)n p (35)

for n = 0, 1, 2, 3, ...., where

p =
1

1 + γ
(36)

Thus, when compounding a Poisson distribution with
rate parameter distributed according to an exponential
distribution yields a geometric distribution. Or accord-
ing to (32), for the pomeron topological cross-section in
the U -Matrix case, we have :

P (X = n) =

(
γ

1 + γ

)n(
1

1 + γ

)
= σn(s, b) =

(Im(χ(s, b))n

(1 + Im(χ(s, b))1+n
, (37)

with γ = Im(χ(s, b)). Consequently, within the U -
matrix scheme, the number of pomerons is a random
variable that follows a geometric distribution, and hence
pomeron exchanges are no longer independent, and this
dependency implies collective phenomena such as corre-
lation among the exchanged pomerons. This outcome
distinguishes the U -matrix scheme from others, particu-
larly the eikonal, which lacks these properties.

Another approach in [22] involves deriving the
pomeron topological cross-section by applying the AGK
cutting rules and using the coefficients obtained in each
scheme by expanding the elastic scattering amplitude in
impact parameter space as a power series of the Born
term. The resulting expression is very similar to our
result 32, with the main difference being an additional
multiplicative factor of 2. Moreover, it was shown that
the U -matrix unitarization is inconsistent with the AGK
rules and in turn that the U -matrix scheme cannot be
used for the unitarization of the pomeron with inter-
cept greater than 1. Nevertheless, using the generalized

representation of the S matrix 38, and the constraints
β0 = 1 imposed by the normalization condition for S[χ]
and w(ν) :

S(s, b) = β2
0 +

∞∑

n=1

β2
n

n!
(i χ(s, b))

n
= 1 + i A(s, b) (38)

we obtain a generalized expansion of the unitarized elas-
tic amplitude in impact parameter space :

A(s, b) = −i
∞∑

n=1

β2
n

n!
(i χ(s, b))

n
(39)

To obtain the expression of the unitarized elastic ampli-
tude in each scheme, fixing in 39, the weight’s coefficient
β2
n, reflecting the relative probability of different interac-

tion strengths.
For the eikonal, case, let β2

n = 1 and so (39) implies



7

A(s, b) = i[1− eiχ(s,b)] = −i
∞∑

n=1

[iχ(s, b)]n

n!
= i

∞∑

n=1

Ceik
n · (−1)n−1[Ω(s, b)]n, (40)

where Ω(s, b) ≡ −2iχ(s, b) is the opacity of pp interac-
tion, and the coefficients of the power series are as in
[22]:

Ceik
n = 2−n/n!, (41)

and for the U -matrix case, let β2
n = cn n! [23] with

c = 1
2 , then (39) gives

A(s, b) =
χ̂(s, b)

1− iχ̂(s, b)/2
= −2i

∞∑

n=1

[iχ̂(s, b)]n

2n
= i

∞∑

n=1

CU
n · (−1)n−1[Ω̂(s, b)]n, (42)

where Ω̂(s, b) ≡ −2iχ̂(s, b) is the respective opacity, and
the coefficients of the power series are :

CU
n = 1/4n (43)

Note that, as opposed to [22], the first two terms of the
pomeron exchange in the eikonal (40) and the U -matrix

(42) schemes (with Ω = P = Ω̂) are not the same. Using
the expression from [22] of the pomeron topological cross-
section derived by applying the AGK cutting rules :

σk(s, b) = 2
∑

n

Cn · (−1)n−k2n−1n![P(s, b)]n

k!(n− k)!
. (44)

and replacing in (44) the coefficients Cn by CU
n in the U

matrix case, we get

σk
U (s, b) =

[
Imχ̂(s, b)

1 + Imχ̂(s, b)

]k
1

1 + Imχ̂(s, b)
(45)

exactly the same as our result (32). Regarding the prob-
lem of the inconsistency of the U -matrix unitarization
with the AGK rules, we have from the unitarity equation
in impact parameter space and (42) that:

Ginel(s, b) = 2ImA(s, b)− |A(s, b)|2

=
2Imχ̂(s, b)

(1− iχ̂(s, b)/2)(1 + iχ̂∗(s, b)/2)
, (46)

and from (45) we get

Ginel(s, b) =
∑

k

σk
U (s, b) =

Imχ̂(s, b)

1 + Imχ̂(s, b)
. (47)

In particular, at very large s → ∞ according to (46)
Ginel → 0 whereas from (47) Ginel → 1 .It is worth
noting that the limit Ginel → 1 provides a more physi-
cally consistent approximation of inelastic scattering at

large χ̂, as it better reflects the suppression of contri-
butions compared to the unphysical saturation implied
by Ginel → 2 in [22], bringing it closer to the expected
asymptotic behavior of Ginel → 0. Moreover, the dis-
crepancy between the limit of convergence of Ginel in our
result and the physical limit of convergence arises from
the fact that, in the application of the AGK cutting rules
in [22], the cut amplitude does not include contributions
from the cross-section of the diffractive states, which cor-
responds to the production of states accompanied by a
rapidity gap. Indeed, the AGK cutting rules relate dif-
ferent cuts of the same diagram, potentially leading to
subtle connections or cancellations.

B. Pomeron multiplicity distribution

Let us quantify the implications of this finding in an
explicit model. The starting point is the single pomeron
scattering amplitude, i.e. the Born term. We parame-
terise it as

a(s, t) = g2p F1(t)
2

(
s

s0

)α(t)

ξ(t) , (48)

using the pomeron trajectory α(t), the proton elastic
form factor F1(t) and the coupling pomeron-proton gp,
with ξ(t) the signature factor

ξ(t) = −e
−iπα(t)

2 . (49)

and the pomeron trajectory close to a straight line

α(t) = 1 + ϵ+ α′t. (50)

In the impact-parameter representation, where the
Fourier transform of the amplitude a (s, t) rescaled by
2s is equivalent to a partial wave

χ(s, b) =

∫
d2q

(2π)
2

a(s, t)

2s
eiq·b. (51)
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We used a dipole-like form factor for the proton F1 =
1/(1 − t/t0)

2. The parameters ϵ and α′ describing the
pomeron trajectory, the coupling constant gp and t0 the
form-factor scale, are adjusted from a fit to up-to-date
hadron collider data on total, elastic and inelastic cross-
sections both for the eikonal and U -matrix unitarisation
schemes [24] and are provided in table I.

In order to understand the hadronic dynamics at high
and ultra-high energies, particularly in terms of the spa-
tial distribution of the interactions and their implications
for particle production, we examined the behaviour of
the pomeron topological cross-section in the impact pa-
rameter space with energy and the number of pomerons
exchanged, in both the eikonal and U -matrix cases, as
shown in Fig. 1 and Fig. 2.
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Eikonal Scheme  2P @ 300 GeV

 4P @ 300 GeV

 2P @ 13 TeV

 4P @ 13 TeV

 2P @ 57 TeV

 4P @ 57 TeV

FIG. 1. Impact parameter evolution of the Pomeron Topo-
logical cross-section in the Eikonal case.

As can be seen from both figures, this function exhibits
a distinct pattern in impact parameter space regardless
of the scheme used. Nevertheless in each scheme, it has
a broadly similar shape irrespective of both the energy
level and the number of the pomerons exchanged. More
specifically, as shown in the eikonal case, this function is
predominantly peripheral, indicating a substantial con-
tribution at large impact parameters. This implies that
the majority of pomeron interactions are more likely to
occur when the colliding hadrons pass through each other
at large distances, reflecting that the interactions are
”softer” in nature, meaning they involve long-range pro-
cesses, likely mediated by soft pomeron exchanges. On
the other hand, in the U matrix case, we can clearly see
that this function is primarily central, suggesting that
pomeron interactions tend to happen when the colliding
hadrons pass through each other in close proximity, en-
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b [fm]
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U Matrix Scheme

 2P @ 300 GeV

 4P @ 300 GeV
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 2P @ 57 TeV

 4P @ 57 TeV

FIG. 2. Impact parameter evolution of the Pomeron Topo-
logical cross-section in the U -Matrix case.

tailing that the collisions tend to involve higher energy
densities, leading to more intense interactions in the core
of the colliding hadrons.
Furthermore, another aspect observed from these fig-

ures is that, with the exponential scheme, this function
tends to decline in the same manner with respect to the
impact parameter as energy increases. Notably, for a
given n, the peak of this function shifts toward larger
values of b with increasing energy, while the magnitude
of the peak remains approximately constant. This sug-
gests that the spatial region, where the interactions take
place, expands with increasing energy, making peripheral
collisions even more dominant at ultra-high energy. Most
importantly, this peripheral behaviour and constancy of
the peak’s magnitude are indicative of reaching a satura-
tion effect where the available parton density limits the
increase in the interaction strength even with increasing
energy.
Whereas, with the rational scheme, this cross-section

typically shows a more gradual decrease with increasing
impact parameter as energy rises. More interestingly, for
a given n, the maximum remains near the centre of the
collision, and its value increases with energy. This indi-
cates that the strength of the pomeron interactions grows
at the core of the collision and we can understand that
more partons are involved in the interaction in the cen-
tral region. This reflects a regime where the interactions
are still increasing, indicating that saturation has not yet
been reached in the central collision region.
Additionally, according to these figures, it is clear that,

for a fixed energy, with two and four pomerons exchanged
the magnitude of this function decreases as n increases
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Scheme ϵ α′ gp t0
χ2

d.o.f

Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436

TABLE I. χ2/d.o.f and best-fit parameters obtained using the eikonal and U -matrix unitarisation schemes.

for both schemes. We may suggest that higher-order
pomeron exchanges become less significant at higher en-
ergies depending on their nature.
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FIG. 3. Energy evolution of the Pomeron topological cross-
section in the Eikonal case.

The energy evolution of the pomeron topological cross-
sections for 1, 2, 3, 4 and 5-pomerons exchanged has also
been examined in both the eikonal and U -matrix cases.
By looking at Fig. 3 and Fig. 4, we can generally see
that these cross-sections roughly exhibit the same be-
havior in both schemes. To be more specific, for each
pomeron exchanged, the cross-sections increase as en-
ergy rises, with the contribution of 1-pomeron exchanged
showing the highest value across all energy ranges. This
suggests that the interactions are primarily governed by
the simplest diagrams in the pomeron exchange frame-
work, especially at lower energies. As for the higher-
order pomeron exchanges σ2pom, σ3pom, etc.), they con-
tribute gradually less. It also shows that all cross-sections
tend to reach a maximum then decline abruptly at ex-
treme energies, indicating a signature of the unitarity
constraint. It is significant to note that in comparison
with the eikonal case, this unitarity constraint signature
is hit at a slightly higher energy for each pomeron ex-
changed in the U -matrix case. Indeed, this demonstrates
the different energy levels at which unitarity effects take
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FIG. 4. Energy evolution of the Pomeron topological cross-
section in the U Matrix case.

over for each pomeron contribution in these two schemes.
Furthermore, before reaching the energy threshold

of the unitarity signature, it is evident that all cross-
sections’ curvatures, starting from 2 pomerons ex-
changed, significantly change at energies beyond 104 GeV
in the eikonal case. It should be noted that with more
pomerons being exchanged, this effect intensifies. Con-
versely, in the U -matrix case, despite taking into con-
sideration several pomeron exchanges, the cross-sections
show a more constant and progressive behaviour without
any change in curvature.
The pomeron multiplicity distribution Wn(s), i.e., the

probability of n pomerons exchanged in an inelastic col-
lision at the energy s, is given by

Wn =
σn∑
n′ σn′

(52)

Using the ansatz for the single pomeron exchange am-
plitude in the eikonal and U -Matrix cases, we compute
Wn. The results are plotted in Fig. 5 for three collision
energy scales.
Fig. 5 clearly shows that in the eikonal case, the ex-

change of a large number of pomerons is significantly
suppressed compared to the U -matrix case. In the latter
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FIG. 5. Pomeron multiplicity distribution in both cases,
eikonal and U -matrix.

scheme, the exchange of one pomeron enhances the prob-
ability of exchanging additional pomerons, and then the
pomeron multiplicity distribution would deviate from a
Poissonian one. This remarkable difference entails that
multi-pomeron exchange is different in the two schemes.
In particular, it may result from the presence of collective
phenomena, such as correlations between the exchanged
pomerons in contrast to what would be expected from an
independent exchange.

It goes without saying that the role of the multi-
pomeron exchange becomes more significant as energy
grows. In the case of a Poisson distribution, the mean
and the variance are equal. In hadronic interactions,
however, their relationship tends to vary depending on
a number of factors, such as the energy of the interac-
tion. As a matter of fact, in order to highlight the role of
the multi-pomeron exchange, particularly at high energy,
we investigated the energy evolution of the mean and the
variance of the number of pomerons exchanged. Using
the probabilities in each scheme, we can calculate the
mean and variance of the number of cut-pomerons as a
function of the energy:

⟨n⟩ =
∞∑

n′=0

n′Wn′ (53)

and

Var(n) =
∞∑

n′=0

n′2Wn′ − ⟨n⟩2. (54)

By looking at Fig. 6, we can clearly see that in the
eikonal case both the mean and the variance of the ex-
changed pomerons increase more considerably with en-
ergy. In addition, it is evident that the mean-variance

relationship shows a noticeable shift around 104 GeV.
More precisely, at energies below 104 GeV, we can notice
that the variance is steadily smaller than the mean. This
suggests that the fluctuations of the exchanged pomerons
are not as severe as they are in the average behavior.
This also points to a more consistent and stable interac-
tion dynamics at lower energy, where more predictable
contributions govern the pomeron exchanges. Neverthe-
less, at energies above 104 GeV, the variance exceeds the
mean with a disproportionate growth.

It is significant to note that the result regarding the
energy evolution of both the mean and the variance of
the pomerons exchanged aligns with that reported in the
quasi-eikonal framework [25]. Most importantly, they un-
cover a significant distinction in the energy shift of the
mean-variance relationship. Indeed, the transition in the
quasi-eikonal case, where the variance exceeds the mean,
takes place at a lower energy scale, around 200 GeV.
In contrast, this transition is seen at a greater energy,
roughly 104 GeV, in the eikonal case. One of the possible
explanations for this discrepancy is linked to the fact that
the quasi-eikonal unitarization is an extended eikonal-like
scheme, with an extra factor c in the expression of this
unitarisation scheme accounting for the modification of
the simple eikonal due to inelastic diffractive states. For
instance, a value of c = 1.5 is utilized, corresponding
to a 50% contribution of low-mass diffractive states, in
comparison to the elastic ones. Hence, the additional dy-
namics from the diffractive process in the quasi-eikonal
scheme make the number of exchanged pomerons more
variable, which lowers the energy threshold for the tran-
sition regime in which the variance is greater than the
mean.

Fig. 7 demonstrates the evolution of both the mean
and the variance with energy in the U -matrix scheme. As
can be seen, the mean number of pomerons exchanged
progressively rises as energy grows and it keeps increasing
at higher energies.

As far as the variance is concerned, it exhibits a sim-
ilar increase. However, surprisingly enough, it is con-
stantly greater than the mean throughout the whole en-
ergy range. This suggests that the number of pomerons
exchanged shows greater fluctuations than the average at
each energy level, and this deviation becomes more sig-
nificant as energy rises. As a matter of fact, this striking
result can be explained in terms of the vertices, i.e., the
pomeron weights, pertaining to hadronic interactions at
high energy. More precisely, on the one hand, we can
infer that the U -matrix scheme intrinsically incorporates
diffraction production into the multi-pomeron vertices, as
they are weighted by the probabilities of the fast hadron
being in various diffractive states (13), reflecting a wider
range of interaction possibilities. The eikonal scheme, on
the other hand, having a simpler vertex structure (20) has
restricted variability at lower energies and exhibits fluc-
tuations that only exceed the mean at higher energies,
where the role of the multi-pomeron exchanges becomes
substantial.
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FIG. 6. Mean and variance of the number of pomerons in
the eikonal and U Matrix case

Due to the fact that the U -matrix scheme yields larger
fluctuations of the number of pomerons exchanged irre-
spective of the energy range in comparison to the simpler
eikonal and the quasi-eikonal schemes, we can argue that
it accounts for more complex interaction dynamics and
for a larger amount of diffraction production. Interest-
ingly, this resonates with a result obtained in [13] and
most importantly helps explain why the U -matrix scheme
describes the single diffractive data slightly better than
the eikonal regardless of the data employed.

The disparity between the U -matrix and eikonal frame-
works, with respect to the fluctuations in the number of
pomerons exchanged, is most likely due to the diffrac-
tive states’ overlap. It is significant to note that, the
difference between the two schemes with regards to the
parametrized hadronic overlap function is marginal (48).
However, in the U -matrix scheme, there is a consider-
able diffractive states’ overlap, which increases pomerons’
variability and gives rise to more pronounced fluctua-
tions. Conversely, since the eikonal scheme does not
take into consideration such overlap, it shows simpler
dynamics with suppressed fluctuations at lower energies.
This comparison sheds light on the role that the U -matrix
scheme plays in accounting for more intricate dynamics,
particularly, when considering scattering processes with
significant diffractive contributions.

Overall, despite the marginal difference in the func-
tional form of the pomeron input in both schemes, we can
deduce that the mechanism of unitarization significantly
affects the fluctuations in the number of pomerons ex-
changed, and claim that the U -matrix scheme offers an ef-
ficient phenomenological approach to consider pomerons’
variability regardless of the energy range, while such fluc-
tuations become significant only beyond specific high-
energy thresholds in the other schemes, namely the

eikonal and quasi-eikonal.

102 103 104 105 106 107 108 109 1010 1011 1012√
s [GeV]

100

101

102

U Matrix Scheme

Mean

Variance

FIG. 7. Mean and variance of the number of pomerons in
the eikonal and U Matrix case

The intriguing energy shift with regards to the mean-
variance relationship hints at a transition in the underly-
ing dynamics of the hadronic scattering process with re-
spect to the energy regime. Thus, in order to better com-
prehend this energy transition, we will examine the f2
moment of the pomeron multiplicity distribution, i.e., the
two-particle correlation parameter, measuring the corre-
lation between pairs of pomerons, across various energies
within both the eikonal and U -matrix frameworks. This
parameter is defined as follows :

f2 =< n(n− 1) > − < n >2= D2
2− < n > (55)

where D2 is the dispersion: D2
2 =< n2 > − < n >2.

The two-particle correlation parameter has three possible
values: negative, zero, and positive, in accordance with
the multiplicity distributions that are narrower, equal to,
or broader than a Poisson distribution.
By looking at Fig. 8, we can vividly see in the eikonal

case that the f2 moment displays a changing behavior
in variation with energy. Indeed, at energies below 104

GeV, the f2 moment is negative. This suggests that the
pomeron multiplicity distribution is narrower than the
Poisson distribution. This also implies that the parti-
cle production fluctuations are suppressed and the num-
ber of pomeron exchanges is distributed uniformly. At
104 GeV, the value of the f2 moment is zero, which is
indicative of the alignment of both the pomeron mul-
tiplicity and the Poisson distributions. This entails in-
dependent and randomly occurring events. At energies
above 104 GeV, the f2 moment becomes positive. This
demonstrates that the pomeron multiplicity distribution
is broader than the Poisson distribution, indicating an
enhancement of pomeron fluctuations.
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Turning now to the U-matrix case, Fig. 8 strikingly
shows that the f2 moment remains positive throughout
various energy ranges, suggesting that the pomeron mul-
tiplicity distribution is constantly broader than the Pois-
son distribution and hence indicating an enhancement of
pomeron fluctuations. These fluctuations become more
noticeable with increasing energy and are remarkably
constantly larger than those yielded in the eikonal case.

102 103 104 105√
s [GeV]

−0.5

0.0

0.5

1.0

1.5

f 2

U-Matrix Scheme

Eikonal Scheme

FIG. 8. The two-particle correlation parameter versus the
interaction energy in the eikonal and U Matrix case

Fig. 9 displays the behavior of the f2 parameter with
respect to the mean number of pomerons in the eikonal
and U -matrix cases, specifically for energies exceeding
104 GeV, where both schemes manifest pomeron fluctu-
ations. It is apparent from this figure that both schemes
yield amplified fluctuations. It also shows that the in-
creasing mean number of pomerons with energy results in
a rise in the correlation between pairs of pomerons. Nev-
ertheless, it is worth noting that when comparing the two
schemes, the correlation between pairs of pomerons rises
considerably faster as the number of exchanged pomerons
increases in the U-matrix scheme. This signifies that
this latter incorporates enhanced correlations, indicating
strong multi-pomeron dynamics.

It is evident from the sharper increase in f2 in the U -
matrix case that the two approaches handle high-energy
hadronic interactions differently, with the U -matrix re-
vealing more noticeable pomeron collective effects and
non-linear pomeron exchanges.

These results strongly confirm our previous assertion
that the U -matrix scheme naturally comprises pomeron
statistical fluctuations that are distinct from those in
eikonal-like schemes and further explain their impact on
the properties of hadronic multi-particle production, in
particular the unexpected overestimation of the fluctua-
tions and correlations between final state particles with
increasing energy in pp collisions, as shown in [8].

In view of the aforementioned results, we understand
that the energy transition in the underpinning dynamics
of the scattering process, which is only present in eikonal-
like schemes, stems from a movement from a regime of
suppressed pomeron fluctuations to a regime of enhanced
fluctuations with increasing energy.
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FIG. 9. The two-pomeron correlation parameter versus the
average pomeron in the eikonal and U Matrix case

In light of the presence of enhanced pomeron fluctu-
ations and a broader distribution within the U -matrix
scheme, it is argued that the exchanged pomerons exhibit
correlations which could be the result of collective ef-
fects, such as those stemming from the overlap of diffrac-
tive states that are in turn, emerging from the pomeron
weights.
In an attempt to better comprehend these correlations,

the higher-order moments of the pomeron multiplicity
distribution were analyzed, as will be seen in the forth-
coming subsection.

C. Pomeron correlations

In order to elucidate the nature of correlations among
the pomerons exchanged in hadronic collisions, we exam-
ine the normalized factorial moments Fq of the pomeron
multiplicity distribution. In fact, the moment Fq equals
unity for all rank q in the case of an independent exchange
of pomerons. Nevertheless, Fq is greater (less) than unity
depending on whether the exchanged pomerons are corre-
lated (anti-correlated) [26]. These moments are provided
by

Fq =
1

⟨n⟩q
∞∑

n=q

n(n− 1)...(n− q + 1)Pn , (56)

where ⟨n⟩ =
∑

n nWn is the average multiplicity and
q is the rank of the moment. In the eikonal case, regard-
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less of the energy scale, the normalized factorial moment
remains equal to 1 for all ranks q, reflecting a Poisson
distribution of the exchanged pomerons and indicating
an uncorrelated distribution of events. In case of the
U -matrix scheme, the moments are given by :

E(Xq) = p Li−q(1− p) (57)

where Li−q(1− p) is the polylogarithm function. So the
normalized factorial moment of rank q is given by :

Fq(s) =
p Li−q(1− p)

( 1−p
p )q

(58)

and p defined by 36.
Fig. 10 illustrates the behavior of the normalized fac-

torial moments of pomerons exchanged in function of the
rank q of pomerons and across various impact parameter
b values within the framework of the U -matrix scheme,
specifically at 13 GeV and 57 GeV. According to this fig-
ure, we can see that the normalized factorial moments
Fq exhibit a considerably increasing pattern with q at
both energies, indicating stronger higher-order correla-
tions, where pomeron correlations emerge from q = 3
at 13 GeV, with two pomerons showing anti-correlation.
However, they appear starting from q = 2 at 57 GeV,
with all pomerons being positively correlated.

In both energies, when b = 0 fm, Fq is the highest sug-
gesting that the strongest correlations occur in central
collisions. Nevertheless, when b rises, we observe a de-
crease in Fq, indicating weaker correlations in less-central
collisions because of a reduced interaction overlap. When
comparing the two energies, Fq values are consistently
greater at 57 GeV than at 13 GeV for all pomerons ex-
changed and impact parameter b, showing that pomeron
correlations become more intense as center-of-mass en-
ergy increases. In addition, at both energies, Fq remains
dependent on b, with correlations decreasing as b rises.
Yet, it is significant to note that at 57 GeV we have
stronger correlations even at larger b. This highlights
that increasing collision energy mediates the influence of
the impact parameter on the correlation strength while
simultaneously strengthening correlations and reducing
the prevalence of anti-correlation effects.

On the whole, both the energy and the impact pa-
rameter b have a combined impact on the correlation
between pomerons exchanged, indicating that these two
parameters are not entirely independent when it comes
to influencing the number of elementary interactions.

To delve deeper in the interdependence between these
two factors, we demonstrate in Fig. 11, 12, 13 and 14 the
impact parameter evolution of the normalised factorial
moment for various energy scales and different pomerons
exchanged. One intriguing trend revealed by this evolu-
tion is that for each energy, Fq shows an inflection point
at a specific value of b at which the correlation strength
changes noticeably. Moreover, we can see that as energy

increases, this inflection point moves to larger impact
parameters, implying that the correlations between ex-
changed pomerons spread out more in transverse space.
And, at extremely high energies, it reaches a value of
about 1 fm, where correlations are roughly zero. In this
regard, we suggest that as energy grows, the spatial scope
of the interactions becomes more significant, reflecting an
interdependence between the energy scale and the trans-
verse position of pomerons.
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FIG. 10. Normalized factorial moment of pomeron exchanges
as a function of the rank q and for different impact parameter
b values with the U Matrix scheme

As a matter of fact, the aforementioned findings come
in support of a previous suggestion that the U -matrix
unitarization is probably incompatible with uncorrelated
pomeron exchanges as there was no improvement in the
description of the single diffractive data with a multi-
channel model compared to a two-channel one [9]. To be
more specific, [9] a multi-channel model of high-energy
hadron interactions was created by considering a full par-
ton configuration space and using the U -matrix unita-
rization scheme. Moreover, the mean number of interac-
tions between partons was assumed to be expressed as a
product of the single-pomeron scattering amplitude, to-
gether with functions of the impact parameter and con-
figurations. Furthermore, we assumed that the impact
parameter had no effect on the distribution of parton
configurations. Nevertheless, in the present study, the
interdependence effect observed between s and b on the
number of pomerons exchanged breaks down the rigor-
ous validity of such factorization within the U -matrix
scheme. Furthermore, aside from its ease of use as a
workable framework, as with the eikonal approach, this
factorization assumption is short of a compelling theo-
retical foundation. As a result, the parton distribution
functions cannot be efficiently separated into longitudinal
and transverse components.
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FIG. 11. Impact parameter evolution of the normalized
factorial moment at 200 GeV
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We can contend that the U -matrix approach offers
a more suitable framework, as it provides a more ac-
curate representation of the underlying elementary in-
teractions, by taking into account the interdependence
on all hadronic degrees of freedom. Moreover, correla-
tions between pomerons allow the hadron’s internal par-
tonic structure to evolve dynamically during the scat-
tering process. Thus, the U -matrix scheme does not re-
quire the hadrons to be frozen in their internal partonic
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FIG. 13. Impact parameter evolution of the normalized
factorial moment at 13 TeV
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FIG. 14. Impact parameter evolution of the normalized
factorial moment at 57 TeV

configurations during the interaction, unlike the eikonal.
Furthermore, by allowing for correlation between the ex-
changed pomerons, one can take into account the fact
that the first pair of quark-antiquark strings is different
from subsequent pairs, as the pomeron weights influence
the dynamics of string pair formation. Consequently, the
inconsistencies between the string model and the Gribov-
Regge theory in hadronization models could be partially
resolved within the U -matrix scheme.
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D. Multiplicities in pp collisions

Correlations between partons are known to occur as a
result of the fundamental dynamics of partonic interac-
tions as well as the spatial and momentum structure of
the hadron. In fact, these correlations are critical in iden-
tifying the topological cross-sections for processes, such
as double and triple parton scattering, which in turn
influence the observed multiplicity patterns and cross-
sections in hadronic collisions.

This subsection elucidates the role of the correlated
multi-pomeron exchange in hadronic collisions by ana-
lyzing the multiplicity distribution of pp and p̄p colli-
sions from the point of view of multi-parton interactions,
as described by string models along with the Regge Phe-
nomenology ( see the introduction section). According to
this conjunction, a cut in the multi-pomeron exchange di-
agram is responsible for the hadrons yielded in the final
state. More precisely, a cut of n pomerons results in 2n
chains that connect to the partons of the initial hadrons.
The number n, representing the pairs of simultaneously
colliding partons from the different hadrons involved in
the interaction, corresponds to the number of resulting
showers. For instance, n = 1 translates into a single
collision of one pair of partons emerging from the two
colliding hadrons, which is ascribed to the Regge pole.
n = 2 corresponds to a double collision of two pairs of
partons from the different hadrons, which refers to the
exchange of two pomerons, and so on.

In our analysis of the cross-section corresponding to
the production of N secondary hadrons, σN (s), diffrac-
tion processes were not considered so as to overlook long-
distance correlations among particles within the same
shower and the picture of the hadronic multi-particle
production based on the Dual Parton Model (DPM) pre-
sented in [27] was followed mainly for comparison pur-
poses.

In fact, in order to simplify our analysis, we assumed
that the multiplicity distribution maintains its Poisso-
nian character regardless of the energy scale, in spite
of the known phenomenon of the violation of the KNO
scaling [28] which entails that as energy increases, the
hadronic multiplicity distribution broadens and deviates
from a purely Poissonian nature :

Pn(N) =
⟨Nn⟩N
N !

e−⟨Nn⟩ (59)

where ⟨Nn⟩ represents the mean number of particles
produced in n showers and is taken proportional to the
mean multiplicity for a single shower :

⟨Nn⟩ = n⟨N1⟩ (60)

and the mean multiplicity for a single shower is modelled
as :

⟨N1⟩ = a+ b ln (s/s0) (61)

representing a logarithmic growth with centre-of-mass
energy s, in agreement with experimental observations
at low energy, with a = −7.3 and b = 2.56 from [27].
Thus, the total inelastic cross-section is constructed as a
sum over contributions from n-shower events:

σin(N, s) = σ1P1(N)+σ2(P2(N)+σ3P3(N)+ . . . , (62)

where the pomerons weights σn(ξn) are given after im-
pact parameter integration of the cross-section for the
production of n showers in both schemes (32), (29) and

ξn = ln
(

s
s0n2

)
. We retain three terms in 62 since the

quadruple (or four-parton pair) collision has a small ef-
fect.
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FIG. 15. Topological cross sections σN in the eikonal and U
Matrix approximation with exchanges of three effective soft
Pomerons.

By looking at Fig. 15 and Fig. 16, the shoulder, asso-
ciated with the double collision, is clearly visible at low
energies in the eikonal case, which is in concordance with
the quasi-eikonal case [27]. Interestingly enough, in the
U -matrix case, this second peak of σN (s) is rather slightly
resolved and tends to become broader and lower with
increasing energy as opposed to the eikonal case. This
behavior can be explained by the impact of correlated
pomeron exchanges given that parton correlations en-
hance the probability of multi-parton collisions and hence
re-distribute the contributions throughout the topologi-
cal cross-sections. Thus, in the U -matrix scheme, cor-
related pomeron exchanges play a key role in enhancing
multi-parton collisions, particularly double parton colli-
sions.
These outcomes suggest that pomeron exchanges in

the U -matrix framework embed a probability of concur-
rently finding partons with momentum fractions x1 and
x2 within the hadron, which is represented by a non-zero
correlation function F (x1, x2), emphasizing the deviation
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FIG. 16. Topological cross sections σN in the eikonal and U
Matrix approximation with exchanges of three effective soft
Pomerons.

from independent multi-parton interactions. In this re-
gard, one may wonder how the U -matrix approach could
allow disentangling correlations in multiple parton inter-
actions, specifically separating the effects of fractional
momentum correlations from those of transverse coordi-
nate correlations, which is beyond the remit of this paper.

It is worth noting that in [27], the Dual Parton Model
(DPM) was used to describe the double-parton collision,
while solely taking the soft pomeron as the main com-
ponent mediating the interactions between partons and
comparing it to its hard counterpart. It has been argued
that soft interactions are also responsible for the dou-
ble inelastic parton collisions, which is confirmed by our
result.

Moreover, given that the DPM is based on the quasi-
eikonal scheme, we can infer that the incorporation of
higher levels of diffractive production, resulting in an en-
hanced parton correlation, makes the U -matrix scheme a
more reliable approach to the description of multi-parton
collisions, compared to both the eikonal and quasi-eikonal
schemes.

Owing that the soft interactions are also responsible for
the double parton collisions, while a cut pomeron com-
prises contributions from both hard and soft processes,
this makes us wonder about its nature, particularly in
relation to the hard-soft hadronic physics transition, and
may pave the way for a unified description of high-energy
hadronic collisions in the context of the U -matrix.

IV. CONCLUSION

The chief purpose of the present paper was to under-
stand the nature of the pomeron exchanges in hadronic
interaction. Using a generalized representation of the

unitarized hadronic elastic amplitude, the pomeron topo-
logical cross section was derived for both the U-matrix
and eikonal schemes. Our results have demonstrated that
the mechanism of the multi-pomeron exchange summa-
tion is distinct in each scheme at many levels. To be more
specific, it has been found that in the impact parameter
space, the elementary interactions tend to occur at the
core of the collision in the U - matrix case as opposed to
the eikonal case.
In addition, in both schemes, it has been shown that

the pomeron topological cross-section for each higher-
order exchanged pomeron increases with increasing en-
ergy and tends to reach a maximum then suddenly de-
creases at extreme energies, which marks the unitarity
constraint. However, this unitarity constraint mark is
reached at a somewhat higher energy for each pomeron
exchanged in the U -matrix case. The disparity between
the two schemes has also been shown concerning the
curvature of this cross-section. More specifically, in the
eikonal case, it considerably changed at energies beyond
104 GeV. In the U -matrix case, no change was observed.
Furthermore, the pomeron multiplicity distribution

has been computed. In the U -matrix case, the pomeron
exchange is a random variable geometrically distributed,
and the exchange of one pomeron has been demon-
strated to enhance the probability of exchanging addi-
tional pomerons.
Moreover, in the U -matrix case, the number of

pomerons exchanged has shown greater fluctuations than
the average at each energy level, and this deviation be-
comes more significant as energy rises. It has been de-
duced that the U -matrix scheme intrinsically incorpo-
rates diffraction production into the multi-pomeron ver-
tices, reflecting a larger pomerons’ variability regardless
of the energy range, while such fluctuations become sig-
nificant only beyond a specific high-energy threshold in
the eikonal and quasi-eikonal schemes.
Furthermore, the pomeron exchange in the U -matrix

scheme exhibits collective effects, as an increase in the
number of exchanged pomerons leads to more pro-
nounced higher-order pomeron correlations, which de-
pend on both the energy and the impact parameter.
This behavior contrasts with the independent pomeron
exchange characteristic of the eikonal scheme.
Last but not least, the impact of pomeron weights on

the proton-proton multiplicity distribution has been ex-
amined from the point of view of multi-parton interac-
tions. The results have revealed that, in the U -matrix
scheme, correlated pomeron exchanges play a key role
in enhancing multi-parton collisions, particularly double
parton collisions.
We understand from the findings of this study that the

pomeron distribution is fixed by the unitarization scheme
chosen to satisfy the unitarity constraint, and that this
choice cannot be arbitrary.
In light of these results, although there is no funda-

mental theory to compute the vertices in hadronic inter-
actions at high energy, we can claim that the U -matrix
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scheme may incorporate the proper vertices for such phe-
nomena. We also argue that the distribution of the num-
ber of elementary interactions pertaining to the U -matrix
scheme should be implemented in Monte Carlo event gen-
erator in order to have more realistic predictions for high
and ultra-high energy hadronic observables.
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8 Conclusion

The chief goal of this thesis was to improve the modelling of hadronic inter-

actions at high and ultra-high energies. To do so, the intricate dynamics of

hadronic interactions were investigated at high energies, utilizing a com-

bination of theoretical modelling and empirical data analysis in order to

get a deeper understanding of proton-proton pp and proton-antiproton pp̄

scattering. The problem of the S-matrix’s unitarity lies at the core of this

research, attempting to select the most accurate unitarity condition for

composite particle interactions, such as hadrons, at high energies.

Practically, we focused on two unitarization schemes, namely the com-

monly used eikonal and the U -matrix, both of which were rigorously tested

for their efficiency in predicting various key hadronic observables, such as

the total, elastic, inelastic and diffractive cross-sections, as well as the

multiplicity distributions, which are essential for both high-energy parti-

cle physics and astrophysical applications.

A brief review of what has been accomplished in the preceding pages

will show to what degree this goal has been reached.

In the first study, the implications of high-energy collider data up to√
s = 13 TeV on the best fits to total, elastic, and non-diffractive inelas-

tic cross-sections for pp and pp̄ scattering were examined using the two

schemes. The findings demonstrated that, in comparison to the eikonal

scheme, the U-matrix produces cross-sections that also fit the data, with

marginal differences at energies relevant to present and near-future collid-

ers. Although the overall inelastic cross-sections align, there are consider-

able differences in the amplitudes at each order in the series expansions,

which could have implications for Monte Carlo showering codes.

In order to gain a more comprehensive understanding of high-energy

hadronic interactions, the second study builds on the prior analysis by

including diffractive interactions and using the two schemes in the context

of a two-channel model. Best fits to the parameters governing the p p

and pbar p total, elastic, inelastic and single diffractive cross sections we

identified using up-to-date collider data, including 13 TeV from recent LHC

experiments. The results have shown that both schemes generally fit the

145
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data, with a minor preference for the U -matrix. While the best-fit total,

elastic, and inelastic cross-sections are almost equal up to energies of 13

TeV when employing either of them, this difference is ascribed, particularly

at high energies, to the single diffractive cross-section. It should be noted

that, at the cost of an additional parameter, the extended version of these

two schemes has yielded a marginal improvement in the fits.

Moving on to the third study, it aimed to provide a phenomenological

description of the hadronic interaction at high energy through expand-

ing the two-channel model into a multi-channel one, mainly using the U -

matrix scheme. The results have indicated that the multi-channel model

accurately describes the total, elastic, inelastic, and single-diffractive cross-

sections, with only a minor difference from the two-channel one. Further-

more, it has been found that the model used fell short in estimating the

double-diffractive cross-section, which further corroborates the results of

the previous study. To remedy this, it has been proposed that an addi-

tional contribution, i.e., pomeron interaction can be introduced as a way

to provide an adequate description of this cross-section.

In addition, the results have demonstrated that the present model de-

scribes well the ρ parameter at different high energies, but it is unable to

estimate the TOTEM data at 13 TeV. In order to overcome this flaw, it

has been suggested that an Odderon contribution is needed to be included.

Moreover, despite similarities in the way the two models describe various

hadronic observables, it has been shown that both furnish different pre-

dictions for the single-diffractive cross-sections, particularly at ultra-high

energies, which represents an interesting direction for future research on

ultra-high energy cosmic rays. Most importantly, the study has concluded

by assuming that the U -matrix scheme is more likely to account for po-

tential correlations between pomeron exchanges. Additionally, it has sug-

gested that the two-channel model, as opposed to the multi-channel one,

is adequate for modelling high-energy hadronic interactions, particularly

single diffractive scattering, using the U-matrix scheme, even at ultra-high

energies, provided that any potential pomeron correlations are disregarded.

In the fourth study, a phenomenological model for multi-particle pro-

duction in hadron collisions based on the geometrical approach and using

the U-Matrix scheme has been introduced. The model has been fine-tuned

and all parameters have been derived from optimal fits to various hadronic

full phase space multiplicity distributions data in p+ p(p̄) collisions across

a broad range of energies. Broadly speaking, the results have revealed that
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our model furnishes a reasonable description of these multiplicity distribu-

tions at various energies. Besides, they have demonstrated a pronounced

violation of the geometrical scaling, which eventually resulted in a sig-

nificant violation of the KNO scaling. The study has also analyzed the

higher-order moments of the multiplicity distribution. We have observed

an unexpected overestimation of the fluctuations and correlations between

final state particles with increasing energy, particularly above LHC energy.

It is claimed that this overestimation is due to statistical fluctuations em-

bedded in the U -matrix scheme. Furthermore, the findings of this study

have shed light on the key role of the U-matrix scheme in the impact of

collision geometry on multi-particle production processes at high energy.

Lastly, in the fifth study, irrespective of the unitarization scheme em-

ployed, both the Pomeron topological cross-section and the Pomeron mul-

tiplicity distribution have been determined based on the Kancheli formal-

ism. Interestingly, it has been found that compared to the eikonal scheme,

in the U -matrix, pomerons are geometrically distributed and hence are

correlated. Then, the role of pomeron correlation in pp multiplicity dis-

tribution has been examined. We have also explained how the mismatch

between the Gribov-Regge theory and string models might be resolved by

using the U -matrix technique.

In fact, this thesis adds to the body of knowledge in the field of high-

energy hadronic interactions, especially when it comes to the study of

cosmic ray physics and particle collisions at ultra-high energies. In partic-

ular, the choice of the U -matrix unitarization scheme as the focus of this

research has been contributive as it has proved to be a useful tool, fur-

nishing improved predictions for various cross-sections and shedding light

on complex phenomena, such as multi-particle production and pomeron

exchange. Additionally, the U -matrix scheme has demonstrated reliable

extrapolation capabilities to ultra-high energy regimes, making it a promis-

ing candidate for future studies and applications.

Thus, implementing this scheme in Monte Carlo event generator codes

could be a potentially fruitful avenue for future research, since these sim-

ulation codes are essential for the interpretation of experimental data and

the prediction of particle collision results. Hence, this will furnish more

accurate and reliable studies for future particle collider experiments and

cosmic-ray physics.

Overall, this thesis has established a solid framework for further in-

vestigation into hadronic interactions at ultrahigh energies, offering novel
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theoretical perspectives and useful techniques that will propel further de-

velopments in particle physics and astrophysics. In fact, this thesis is only

a modest beginning in dealing with that probably never-ending task and

challenge.
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sive final states in diffractive excitation. Journal of High Energy

Physics, 2012(12), dec 2012.

[79] Maria Beatriz Gay Ducati, M. M. Machado, and M. V. T. Machado.

Investigating diffractive W production in hadron-hadron collisions at

high energies. Int. J. Mod. Phys. E, 16:2956–2960, 2007.

[80] G. Giacomelli. Particle production in high energy collisions. 1 2009.

[81] R. J. Glauber. in lecture in theoretical physics. Vol. 1, edited by W.

E. Brittin, L. G. Duham (Interscience, New York, 1959).

[82] M. L. Good and W. D. Walker. Diffraction dissociation of beam

particles. Phys. Rev., 120:1857–1860, Dec 1960.

[83] M. L. Good and W. D. Walker. Diffraction disssociation of beam

particles. Phys. Rev., 120:1857–1860, 1960.

[84] E. Gotsman, E. Levin, and U. Maor. Survival probability of large

rapidity gaps in a three channel model. Phys. Rev. D, 60:094011,

Oct 1999.



BIBLIOGRAPHY 156

[85] E. Gotsman, E. Levin, and U. Maor. The Survival probability of

large rapidity gaps in a three channel model. Phys. Rev., D60:094011,

1999.

[86] E. Gotsman, E. Levin, and U. Maor. A comprehensive model of soft

interactions in the LHC era. Int. J. Mod. Phys., A30(08):1542005,

2015.

[87] E. Gotsman, E. M. Levin, and U. Maor. Diffractive dissociation and

eikonalization in high-energy p p and p anti-p collisions. Phys.Rev.D,

49:4321–4325, 1994.

[88] N L Grigorov. Effect of inelastic interaction cross section increase on

the shape of cosmic hadron spectrum. Yadernaya Fizika, 25(4):788–

801, 1977.

[89] Jan Fiete Grosse-Oetringhaus and Klaus Reygers. Charged-particle

multiplicity in proton–proton collisions. Journal of Physics G: Nu-

clear and Particle Physics, 37(8):083001, jul 2010.
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