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Secretary:

Dominique Sluse

Members of the Jury:

Ioana Maris

Adel Trabelsi

v





Abstract

The primary aim of this thesis was to enhance the modeling of hadronic

interactions at high and ultra-high energies. This research delved into

the complex dynamics of hadronic interactions, specifically focusing on

proton-proton pp and proton-antiproton pp̄ scattering. The central issue

addressed was the unitarity of the S-matrix, with an emphasis on selecting

the most accurate unitarisation scheme for composite particle interactions

at high energies.

To achieve this, two unitarization schemes were thoroughly examined:

the eikonal and the U -matrix schemes. These schemes were rigorously

tested for their effectiveness in predicting crucial hadronic observables

such as total, elastic, inelastic, and diffractive cross-sections, as well as

multiplicity distributions. The first study evaluated the implications of

high-energy collider data (up to
√
s = 13 TeV) on these cross-sections,

demonstrating that the U -matrix scheme provides a fit to the data com-

parable to the eikonal scheme, with some differences that could impact

Monte Carlo simulations.

The second study extended this analysis by incorporating diffractive in-

teractions within a two-channel model, showing that both schemes fit the

data well, with a slight preference for the U -matrix. This study also high-

lighted that the extended versions of these schemes, though slightly im-

proved, still faced challenges in fitting the double diffractive cross-section

accurately.

In the third study, a multi-channel model was explored, primarily us-

ing the U -matrix scheme. This model accurately described various cross-

sections but underperformed in estimating the double-diffractive cross-

section, suggesting that an additional pomeron interaction might be nec-

essary. It was also found that the U -matrix scheme better accounts for

potential pomeron correlations, which could influence predictions for ultra-

high energy cosmic rays.

The fourth study introduced a phenomenological model for multi-particle

production based on the geometrical approach and U -matrix scheme. The

model provided a reasonable description of multiplicity distributions across
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a broad energy range but revealed violations of geometrical and KNO scal-

ing. The study highlighted the role of the U -matrix scheme in understand-

ing the impact of collision geometry on multi-particle production.

Lastly, the fifth study focused on the Pomeron topological cross-section

and multiplicity distribution using the Kancheli formalism. It was ob-

served that in the U -matrix scheme, pomerons exhibit geometric correla-

tions, which were not present in the eikonal scheme. This finding could

resolve discrepancies between Gribov-Regge theory and string models.

In summary, this thesis contributes to the field of high-energy hadronic

interactions by demonstrating the utility of the U -matrix scheme in pro-

viding improved predictions and insights into complex phenomena such as

multi-particle production and pomeron exchange. The scheme’s reliable

extrapolation to ultra-high energy regimes makes it a promising candidate

for future research and applications, particularly in Monte Carlo event

generators for particle colliders and cosmic-ray physics.

This research establishes a solid foundation for further exploration of

hadronic interactions at ultra-high energies and offers valuable theoreti-

cal perspectives and techniques for advancing particle physics and astro-

physics. The thesis marks a significant step in addressing the ongoing

challenges in this field.



Résumé

L’objectif principal de cette thèse était d’améliorer la modélisation des

interactions hadroniques à haute et très haute énergie. Cette recherche

a exploré les dynamiques complexes des interactions hadroniques, en se

concentrant spécifiquement sur les interactions proton-proton pp et proton-

antiproton pp̄. La question centrale abordée était l’unité de la matrice S,

avec un accent sur le choix du schéma d’unitarisation le plus précis pour

les interactions des particules composites à haute énergie.

Pour ce faire, deux schémas d’unitarisation ont été examinés en pro-

fondeur : le schéma éikonal et le schéma U -matrice. Ces schémas ont

été rigoureusement testés pour leur efficacité à prédire des observables

hadroniques cruciales telles que les sections efficaces totales, élastiques,

inélastiques et diffractives, ainsi que les distributions de multiplicité. La

première étude a évalué les implications des données des colliders à haute

énergie (jusqu’à
√
s = 13 TeV) sur ces sections efficaces, démontrant que

le schéma U -matrice fournit un ajustement des données comparable à celui

du schéma éikonal, avec certaines différences susceptibles d’affecter les sim-

ulations de Monte Carlo.

La deuxième étude a étendu cette analyse en incorporant des inter-

actions diffractives dans un modèle à deux canaux, montrant que les

deux schémas ajustent bien les données, avec une légère préférence pour

le schéma U -matrice. Cette étude a également souligné que les versions

étendues de ces schémas, bien que légèrement améliorées, rencontrent tou-

jours des difficultés pour ajuster avec précision la section efficace double-

ment diffractive.

Dans la troisième étude, un modèle multi-canaux a été exploré, prin-

cipalement en utilisant le schéma U -matrice. Ce modèle a décrit avec

précision diverses sections efficaces mais a sous-performé dans l’estimation

de la section efficace doublement diffractive, suggérant qu’une interaction

supplémentaire de pomeron pourrait être nécessaire. Il a également été

constaté que le schéma U -matrice rend mieux compte des corrélations po-

tentielles des pomerons, ce qui pourrait influencer les prévisions pour les

rayons cosmiques à très haute énergie.
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La quatrième étude a introduit un modèle phénoménologique pour la

production de multiparticules basé sur l’approche géométrique et le schéma

U -matrice. Le modèle a fourni une description raisonnable des distribu-

tions de multiplicité sur une large gamme d’énergies, mais a révélé des

violations du scaling géométrique et du scaling KNO. L’étude a mis en

évidence le rôle du schéma U -matrice dans la compréhension de l’impact

de la géométrie de collision sur la production de multiparticules.

Enfin, la cinquième étude s’est concentrée sur la section efficace

topologique des pomerons et la distribution de multiplicité en utilisant le

formalisme de Kancheli. Il a été observé que, dans le schéma U -matrice,

les pomerons présentent des corrélations géométriques, ce qui n’est pas le

cas dans le schéma éikonal. Cette découverte pourrait résoudre les écarts

entre la théorie de Gribov-Regge et les modèles de cordes.

En résumé, cette thèse contribue au domaine des interactions

hadroniques à haute énergie en démontrant l’utilité du schéma U -matrice

pour fournir des prévisions améliorées et des aperçus sur des phénomènes

complexes tels que la production de multiparticules et l’échange de

pomeron. La capacité fiable du schéma à extrapoler aux régimes d’énergie

ultra-haute en fait un candidat prometteur pour les recherches et applica-

tions futures, notamment dans les générateurs d’événements Monte Carlo

pour les collisionneurs de particules et la physique des rayons cosmiques.

Cette recherche établit une base solide pour une exploration plus ap-

profondie des interactions hadroniques à très haute énergie et offre des

perspectives théoriques et des techniques précieuses pour faire progresser

la physique des particules et l’astrophysique. La thèse marque une étape

significative dans le traitement des défis en cours dans ce domaine.
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1 Introduction

1.1 Statement of the problem

The universe is constantly experiencing violent phenomena that result in

the production of certain particles whose energy ranges from a few GeV to

extremely high energies exceeding 1019 eV, namely cosmic rays, neutrinos,

and gamma rays. Since these particles are detected on Earth, they are of-

ten regarded as excellent astrophysical ”messengers” carrying information

that could potentially provide solutions to a wide range of physics and

astronomy-related concerns.

In particular, cosmic rays incessantly strike the Earth’s atmosphere.

These high-energy particles are made up of 90% protons. Research has

indicated that the cosmic ray flux declines sharply as energy increases. In

fact, at energies above 1014 eV, the direct detection of these particles is un-

feasible. Instead, they are investigated indirectly either by observing the

cascades of particles stemming from their interaction with the Earth’s at-

mosphere, commonly known as air showers, or by measuring the secondary

particles reaching the ground. Ultra-high-energy cosmic rays (UHECRs),

on the other hand, refer to cosmic rays with energies above 1018 eV (1

EeV). Their interaction with air nuclei in the upper atmosphere gives rise

to extensive air showers (EAS).

The study of these UHECRs has considerably evolved with the advent

of large detector arrays. For instance, IceTop, LOFAR, the Pierre Auger

Observatory, and the Telescope Array are renowned air shower experiments

covering cosmic-ray energies exceeding 1016 eV.

In spite of the considerable progress with respect to the detection and

characterization of cosmic rays over the last few years, many questions

about UHECRs still need to be answered, mainly with regard to their

origins, mass composition, as well as the mechanisms accelerating these

particles to such extreme energies.

It is worth noting that the observation of these messengers does not only

provide valuable information about distant and violent places, but it also

checks our understanding of particle physics since the process involving the
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CHAPTER 1. INTRODUCTION 2

production of these messengers at the source, their propagation across the

space, till their arrival at Earth, is governed by the laws of particle physics.

Cosmic ray physics, for example, uses these particles as a means to probe

hadronic interactions at an energy level that goes beyond that possible

in terrestrial experiments, such as those conducted at the Large Hadron

Collider (LHC). Specifically, as the energy of the UHECRs is significantly

higher than that obtained by man-made accelerators, this makes them an

ideal laboratory for investigating hadronic interactions at extremely high

energies.

Therefore, by extending the energy range of observed interactions, cos-

mic ray data supplement collider experiments and allow for the study of

hadronic interactions, spanning several orders of magnitude. This thor-

ough coverage of energy ensures continuity in the understanding of energy

dependence and helps in the improvement of hadronic models.

Air shower data are collected through ground-based detectors, such as

those at the Pierre Auger Observatory and the IceCube Neutrino Obser-

vatory, which enables the reconstruction of early hadronic interactions.

Monte Carlo (MC) simulation codes, based on different hadronic interac-

tion models, such as QGSJET, EPOS, and SIBYLL, are fundamental in

this reconstruction process.

It is worthwhile to note that although we have a strong grasp of electro-

magnetic interactions in the process of cosmic-ray air shower formation,

modelling hadronic interactions remains a challenging task. This is mainly

due to the paucity of accelerator data within the relevant phase space for

air showers, especially in forward particle physics and to the necessity of

extrapolating theoretical or phenomenological descriptions of accelerator

data to considerably higher energies.

Moreover, modelling hadronic interactions is not devoid of uncertainties,

as results vary depending on the specific model employed, and there is a

notable discrepancy between predictions and measurements in the descrip-

tion of cosmic-ray observables. For instance, the muon puzzle, referring

to the divergence between model predictions and the observed number of

muons produced in extensive atmospheric air showers, is one of the long-

standing problems in air-shower physics. The reason for this disparity

is that the simulation results are not in line with actual measurements.

Furthermore, an initial investigation [40] revealed significant variations in

the muon spectra predicted by distinct hadronic interaction models at the

atmospheric depth where the IceTop surface array of IceCube is located.
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Hadronic interactions, involving particles that undergo strong inter-

actions, are at the core of Particle Physics. They are mainly described

through Quantum Chromodynamics (QCD), which is now widely recog-

nized as the theory of strong interactions. It is a sophisticated and highly

nonlinear quantum field theory describing how quarks and gluons, which

are the fundamental building blocks of hadrons, such as protons and neu-

trons, interact and bind together to create observable particles.

Nevertheless, as a perturbative theory, QCD is most applicable to pro-

cesses in which the coupling constant is small. Indeed, the QCD coupling

constant, αs, depends on the energy scale of the interaction Q2 (the mo-

mentum transferred between quarks and gluons). Fig. 1.1 illustrates the

running coupling constant αs as a function of the energy scale Q, derived

from distinct measurements and QCD calculations.

Owing to the fact that the coupling constant depends on the energy

scale, QCD processes can be classified into two regimes, namely Hard

QCD and Soft QCD processes.

According to Fig. 1.1, first, it can be seen that at large energy scales

compared to ΛQCD, i.e. small distances, αs becomes small. This is known

as asymptotic freedom and in this regime termed as Hard QCD, perturba-

tive calculations are applicable. Second, for large distances or at the low

momentum scale, the QCD coupling constant becomes large, and the per-

turbation theory breaks down. This regime is known as Soft QCD. In view

of the interplay between the two aforementioned regimes, QCD exhibits

a depth and complexity that requires a number of theoretical tools so as

to properly understand the behavior of the strong interaction at different

energy scales.

Despite the considerable advancements in the theoretical description

of high-energy hadron collisions during the last few years, we haven’t ac-

quired yet a good grasp of all of its facets. This is mainly due to the

fact that high-energy hadronic and nuclear collisions are characterized by

multi-particle productions, encompassing a wide range of phenomena. Be-

sides, most of the particles produced are soft in nature with low transverse

momenta. Thus, an accurate physical description of soft production pro-

cesses is mandatory.

However, there is a scarcity of methods and/or strategies that can be

used to handle these soft production processes based on sound theoretical

foundations. For this reason, one must instead turn to effective mod-

els, which are abundant in the literature and are primarily based on the
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Figure 1.1: Compilation of the measurements and QCD calculations on the running

coupling constant αs as a function of the energy scale Q. Figure taken from [8].
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Gribov-Regge phenomenology. They hinge on fundamental principles of

quantum field theory – such as unitarity, analyticity and crossing, along

with empirical parameterizations. While these models have succeeded, to

a certain extent, in describing some of the aspects of hadronic interactions,

they still need to be enhanced, especially through testing the hypotheses

that are central to their construction, constraining the parametrizations,

and fine-tuning the parameters using data comparisons available from both

colliders as well as cosmic-ray air showers.

The primary goal of the hadronic interaction models developed within

the Gribov-Regge framework is to accurately describe hadronic observables

measured by accelerator experiments. Since we heavily rely on them to

extrapolate to ultra-high energy scenarios, they should necessarily be in-

ternally consistent. It is worth noting that while the foundational assump-

tions of these models somewhat vary, the majority of them use the eikonal

approximation to ensure the unitarization of the scattering hadronic am-

plitude. As a matter of fact, the unitarization process is key in Quantum

field theory (QFT) and particle physics as it ensures that the scattering

amplitude satisfies the unitarity condition. This condition guarantees that

the total probability of all possible outcomes of a scattering process is one,

which preserves physical probabilities.

Technically, the exchange of ”Regge trajectories”, such as the pomeron,

is the primary contributor to high-energy scattering in these models. Nev-

ertheless, at very high energies, the scattering amplitude is often not well

described by a single pomeron exchange. Instead, multiple pomeron ex-

changes need to be considered. When dealing with them, the eikonal ap-

proximation is especially useful for integrating unitarity into these models.

Nonetheless, we believe that the eikonal approximation is not an ade-

quate unitarisation scheme when dealing with composite particle scatter-

ing, like hadrons. Thus, we should consider alternative schemes to try to

reduce the uncertainties in hadronic interaction modeling, especially when

employing these models for ultra-high energy extrapolation.

Gaining a solid understanding of the Soft QCD processes, which are

dominated by non-perturbative effects, is essential to comprehend hadronic

interactions at high energies. Hadronization— a process involving the

formation of observable hadrons by quarks and gluons produced in high-

energy collisions—is, in fact, one of the fundamental phenomena in the

Soft QCD regime. This intricate process is described by means of string

models along with the Gribov-Regge phenomenology, where quark con-
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finement is represented by flux tubes or ”strings” connecting them. To

satisfy the unitarity principle, these string models make use of the eikonal

approximation.

However, several studies have furnished evidence in support of the in-

sufficiency of the utilized eikonal or its enhanced version, the quasi-eikonal

scheme, in providing a comprehensive description of the physics in ques-

tion. Not to mention the fundamental issues with string models that still

need to be solved. In these string models, produced particles are as-

sumed to come from the exchanged pomerons which are identified from

the Gribov-Regge theory, each of which consists of two strings. In this

approach, the probability of having configurations with n string pairs is

the probability of having a certain number of these n pomerons exchanged,

which is poissonian via the eikonal scheme. Unfortunately, this approach is

inconsistent for two main reasons. To begin with, in the string picture, the

first and subsequent pairs are of different nature, whereas in the Gribov-

Regge approach, all pomerons are identical. Secondly, in the string model,

energy is properly shared among the strings, while the Gribov-Regge ap-

proach does not consider energy sharing at all.

Overall, the aforementioned issues relating to the modelling of hadronic

interactions from collider to cosmic-ray physics have motivated us to un-

dertake this study in hopes of resolving them and particularly reducing

the uncertainties in hadronic interaction modelling so as to obtain better

and more accurate results.

Our belief is that the eikonal approximation which is a common ingredi-

ent in the majority of the hadronic models, is not an adequate unitarisation

scheme when dealing with composite particle scattering, such as hadrons,

and especially when employing these models for ultra-high energy extrap-

olation. In this project, we aim to reduce the uncertainties in hadronic

interaction modelling by maintaining consistency and coherence with the

foundational principles of Quantum Field Theory (QFT) across a range of

energies, from those accessible at the LHC to the extremely high energies

observed in cosmic rays by considering alternative unitarization schemes

and examining the uncertainty attached to them. It has evolved into a de-

tailed study of the U -matrix scheme compared with the eikonal one, and

to provide an attempt to explain the fundamental differences between the

two schemes, despite that both verify the unitarity constraint principle.

Moreover, to prove what unitarisation scheme is more adequate for de-

scribing interactions of composite particles like hadrons and highlight how
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this approach may provide solutions to the issues in cosmic-ray physics,

enhancing our understanding of soft QCD processes and offering a more

consistent framework for modelling hadronic interactions.

1.2 Structure of the Thesis

This thesis is divided into eight major chapters. In chapter 1 a general

introduction to the research presented in this thesis is provided and the

choice of the topic is justified. Chapter 2 will focus on the fundamen-

tal formalism related to high-energy hadron scattering, namely the Regge

theory and outline the optical theorem which allows for the calculation of

the total cross-section. Chapters 3,4,5,6 and 7 contain the articles. Each

of these chapters starts with a general context, including the theoretical

framework, the main objectives, as well as the methodology adopted. Fi-

nally, chapter 8 will summarize the main findings of the thesis. It will also

shed light on its strengths and contributions to the field of high-energy

hadronic interactions. Moreover, it will suggest possible directions for fu-

ture research.



2 Theoretical framework of high en-

ergy hadron scattering

This chapter reviews the fundamental formalism [4] describing the soft

high-energy hadron scattering, which lies at the core of several phenomeno-

logical models. More specifically, this formalism is grounded in the S-

matrix theory. Indeed, the application of Quantum Field Theory (QFT)

to the study of strong interactions was not thought of before the inception

of QCD. As an alternative, physicists focused on examining the impli-

cations of a number of tenets about the S-matrix, and mainly comprise

unitarity, analyticity, and crossing symmetry, each of which is associated

with basic axioms.

2.1 S-matrix theory

The basic quantity to study in particle physics is the amplitude that a

certain set of particles in a given initial state |i > undergo a collision and

scatter into a final state |f >.

To this effect, the process is described by the quantity

Sfi =< f |S|i > (2.1)

where S is called the S-matrix (S for scattering) and Sfi are the matrix el-

ements. Since the scattering must also include the possibility that nothing

occurs, the S-matrix is written in terms of the T -matrix, namely

Sfi = δfi + i(2π)4δ4(Pf − Pi)Tfi (2.2)

where the 4-dimensional δ-function imposes energy-momentum conser-

vation on all particle momenta pj, and, with obvious notation, Pi,f =∑
all pi,f . The relevant matrix elements define the scattering and are func-

tions of the momenta of the scattering particles, in particular of the various

invariants which can be constructed with the momenta. Let us then turn

to the kinematics before going further into the dynamics.

8
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Physicists tried to extract as much as possible by studying the conse-

quences of a (reasonable) set of postulates about the S-matrix :

These general principles were established in the late ’50s and consist of

unitarity, analyticity and crossing symmetry. Each of them is related to

basic axioms:

• unitarity to the conservation of probability in scattering processes;

• analyticity to causality and

• crossing symmetry to the relativistic nature of the interaction.

These basic principles are also at the foundations of relativistic Quantum

Field Theory (QFT).

2.2 Unitarity and the scattering amplitude

The measurement of the total cross-section is based on two complementary

methods: counting the number of collisions and measuring the very for-

ward scattering probability. The second method is based on a fundamental

physical property, i.e. the conservation of probability, which is embedded

in the unitarity property of the S-matrix, namely

SS† = 1 (2.3)

In terms of the matrix elements, we have

(SS†)fi =
∑

n

SfnS
∗
ni = δfi (2.4)

where n runs on all possible intermediate states. This condition ensures

the normalization and orthogonality of states in the reaction. In particular,

for the i = f case, Eq. 2.4 ensures that the sum over all allowed transitions

from a given state |i > to any possible final state, is one, namely
∑

n

|Sni|2 = 1 (2.5)

Eq. (2.5) is the statement of conservation of probability in the scatter-

ing.

We can now proceed to derive the optical theorem, by using Eqs. (2.4)

and (2.2) to obtain

Tfi − T ∗
if = (2π)4

∑

n

δ4(Pf − Pn)TfnT
∗
in (2.6)
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Because the left hand side of this equation is linear in T, while the

right hand side is quadratic, if the T-matrix can be expanded in a small

parameter (say a coupling constant), then unitarity ensures that the T-

matrix elements are hermitian. In the general case, one uses Eq. (2.6) to

obtain the optical theorem, namely

2ImTii = (2π)4
∑

n

δ4(Pi − Pn)|Tin|2 (2.7)

where the amplitude Tii indicates elastic scattering in the forward direction

and where the right hand side, apart from a normalization factor, gives

the total cross-section for scattering from an initial state |i > into any

possible final state, as shown in the following subsection. The reader is

warned that different authors use different normalizations for the elastic

scattering amplitudes and hence due care must be taken in using various

unitarity expressions.

2.3 The optical theorem and the total cross-section

The Cutkosky rule [7] provides a very interesting relation between the

forward amplitude of an elastic process a(p1) + b(p2) → a(p3) + b(p4) and

the total cross section. Forward scattering, t = (p1−p3)
2 = (p2−p4)

2 = 0,

means p1 = p3 and p2 = p4. Thus

2Im(A)aa(s, t = 0) = Fσtotal, (2.8)

where F stands for the flux factor

F = 4
√
(p1 · p2)2 −m2

1m
2
2. (2.9)

In the c.m.s. frame and negligible masses, we find F ≃ 2s and thus

σtotal =
1

s
Im (A(s, t = 0)) (2.10)
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Figure 2.1: The optical theorem.

2.4 Partial-wave Amplitudes and Impact Parameter

representation

The scattering amplitude can be efficiently decomposed by identifying the

partial-wave amplitudes. The scattering of states having differing angular

momenta may be addressed separately and satisfy independent unitarity

equations in a relatively straightforward way given that angular momen-

tum is a conserved quantity. For spinless particles, the s-channel centre-

of-mass partial-wave amplitudes are determined by

Al(s) ≡
1

16π

1

2

∫ 1

−1
dzs Pl(zs)A(s, t) l = 0, 1, 2, . . . (2.11)

As for the inverse transformation, it is defined by:

A(s, t) = 16π
∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)aℓ(k), (2.12)

with the ℓth partial amplitude of momentum k, and the ℓth Legendre

polynomial Pℓ(cos θ), where zs = cos(θs) = 1+ 2t
s−4m and θs is the s-channel

centre-of-mass scattering angle.

If we replace this into two-particle unitarity equation, we get

Aif
l (s+)− Aif

l (s−) =
4iqsn√

s
Ain

l (s+)A
nf
l (s−) + . . . (2.13)

which for elastic scattering in which the initial and final states are identical,

gives

ImAel
l (s) =

2qs12√
s

∣∣Ael
l (s)

∣∣2+
∑

n ̸=i

2qsn√
s
Ain

l (s+)A
ni
l (s−)+3 body channels etc.

(2.14)
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The elastic scattering is represented by the first term on the r.h.s, the

sum over inelastic two particle intermediate states by the second, and the

contributions of n-particle intermediate states by the remaining terms.

Given that 2qs12 =
√
s− 4m → √

s for for large s and all the terms on the

r.h.s. are positive , the aforementioned equation entails that

0 ≤ |Ael
l |2 ≤ Im

{
Ael

l

}
≤ 1 (2.15)

which simply illustrates the condition that the probability of the elastic

scattering cannot go beyond unity and that no scattering process can be

completely inelastic.

The elastic partial-wave amplitudes are most of the time parametrized

as follows :

Ael
l =

ηle
2iδl − 1

2i
(
2q12√

s

) (2.16)

clearly meeting the unitarity condition mentioned above, where ηl stands

for the inelasticity factor and δl refers to the real phase shift. For unitarity

to be satisfied 0 ≤ ηl ≤ 1. With respect to the partial wave amplitudes,

the optical theorem provides :

σT (s) =
8π

q12
√
s

∑

l

(2l + 1)Im
{
Ael

l (s)
}
=

2π

q212

∑

l

(2l + 1)[1− ηl cos 2δl]

(2.17)

and when we integrate over all angles, we have

σel(s) =
16π

s

∑

l

(2l+1)|Ael
l (s)|2 =

π

q212

∑

l

(2l+1)[1+η2l −2ηl cos 2δl] (2.18)

Consequently

σinel(s) = σT − σel =
π

q212

∑

l

(2l + 1)[1− η2l ] (2.19)

so that any partial wave’s contribution to the total cross-section diminishes

as energy grows; and in case this does not happen, then a growing number

of partial waves must contribute as energy rises.

At high energies and small angles (s >> |t|), where numerous partial

waves contribute, we can further simplify the analysis through substituting

integrals in impact parameter b space for the summations over partial-wave

amplitudes.
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Figure 2.2: Schematic representation of the collision between two hadrons in the impact

parameter space.

This follows the classical relation l = qsb− 1/2 and for large l

Pl(zs) ≃ J0((2l + 1) sin
θs
2
),

∑

l

→
∫

dl →
∫

qsdb (2.20)

with J0 being the Bessel function. And when we write

Al(s) → A(s, b), sin
θ

2
≃ θ

2
≃
(−t

q2s

) 1
2

(2.21)

we obtain

A(s, t) = 8πs

∫ ∞

0
bdbJ0(b

√
−t)A(s, b) (2.22)

with the inverse transformation referring to (2.11) is

A(s, b) =
1

16πs

∫ 0

−∞
dtJ0(b

√
−t)A(s, t) (2.23)

This is merely the scattering amplitude’s two-dimensional Fourier trans-

form in impact parameter space with the azimuthal angle integrated out.

For the scattering at high energy and small angle, the impact parameter

remains constant, replacing the conservation of angular momentum.

The unitarity condition on the elastic partial waves is expressed in terms

of the elastic profile function, A(s,b) as follows

0 ≤ |A(s, b)|2 ≤ ImA(s, b) ≤ 1 (2.24)

and the eikonal phase, χ(s, b), and the eikonal series are defined by

A(s, b) =
eiχ(s,b) − 1

2i
=

1

2i

∞∑

n=1

(iχ(s, b))n

n!
(2.25)
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in order that χ(s, b) ↔ 2δl(s) for large s and χ(s, b) is complex with positive

imaginary part. And we obtain the various cross-sections :

σT (s) = 8π

∫ ∞

0
bdb ImA(s, b) (2.26)

σel(s) = 8π

∫ ∞

0
bdb|A(s, b)|2 (2.27)

σinel(s) = 8π

∫ ∞

0
bdbGinel(s, b) (2.28)

where the inelastic profile function Ginel(s, b) is determined by :

Ginel(s, b) = Im(A(s, b))− |A(s, b)|2 (2.29)

also the ”opacity”’ Ω(s, b) is defined by

Ω(s, b) ≡ −iχ(s, b) (2.30)

so that

Ginel(s, b) = 1− e−2ReΩ(s,b) (2.31)

2.5 Regge phenomenology

The partial-wave amplitude is determined for non-integer and complex

values of l, as well, enabling us to extend the amplitude into the complex

angular momentum plane. For the continuation to be considered unique,

the function must vanish for l → C±∞ and be regular for l > C where C

is a real constant. In order to fulfill this for t-channel partial-wave ampli-

tudes, we must break the amplitude down into even and odd components

using the interchange cos(θt) ↔ − cos(θt) (i.e., s ↔ u). By doing so, we

obtain even and odd signatured amplitudes ± with exclusively right-hand

cuts in the complex zt plane :

Al(t) =

{
A+

l (t) for l even

A−
l (t) for l odd

(2.32)

The partial-wave series for the signatured amplitude can be expressed

as an integral in the complex l-plane through employing a Sommerfeld-

Watson transformation.

A±(s, t) = −16π

2i

∮

Cl

(2l + 1)A±
l (t)

Pl(−zt)

sin(πl)
dl (2.33)
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where Cl is a contour enclosing zero and the positive integers. The expan-

sion of the contour Cl to a semicircle at infinity with its base along the

line Re(l) = C is made possible by the analyticity in l of A (t). Due to the

convergence features of A(t), only the base contribution remains after the

semi-circle’s contribution vanishes. Assuming that the signatured partial-

wave amplitudes for Re(l) < C only contain isolated singularities (poles

and branch cuts), the contour’s base line can be moved farther to the left,

absorbing distinct contributions from each singularity.

The Legendre function Pl(z) decreases most rapidly as a function of

z for l = −1/2. The contribution to the contour integral along the line

Re(l) = C = −1/2 will be asymptotically insignificant in comparison

to any singularities encountered to the right of the line if the base of the

contour is pushed to the left as far as that point. These t-channel singular-

ities, which influence the asymptotic behavior of the s-channel amplitude,

are known as the Regge poles and Regge cuts. In fact, we can use the

Mandelstam-Sommerfeld-Watson transformation to shift the base of the

contour as far to the left as we desire. Since the integral representation

is valid across the complex z-plane as long as the partial-wave amplitudes

are convergent enough in the l-plane, it is preferred over the partial-wave

series, which diverges at the nearest s-channel singularity.

The position of the singularity will be generally a function of t and will

describe a trajectory in the l-plane as t varies, l = α(t). A simple pole, R,

with signature and residue β(t) with the form

A±
l (t) =

β(t)

l − αR(t)
(2.34)

replaced in eq. 2.33 yields the amplitude

A±
R(zt, t) = −16π2 (2αR(t) + 1) β(t)

PαR(t)(−zt)

sin(παR(t))
. (2.35)

Hence the contribution to the physical amplitude is provided by

A±
R(s, t) = A±

R(zt, t)± A±
R(−zt, t) (2.36)

and it has the high energy behaviour in the s-channel

A±
R(s, t) ∼

(
1± e−iπαR(t)

)
sαR(t). (2.37)

According to the disconnectedness principle of the S-matrix theory, the

remnant of the pole, β(t) factorizes into a product of its couplings to each
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of the external particle lines, yielding

β(t) = γ1,3(t)γ2,4(t) (2.38)

The Regge trajectory, l = αR(t), is demonstrated to be a real analytic

function of t and to include the right-hand threshold branch cut. A pole in

the physical partial-wave amplitude is produced when a Regge pole with

an even signature takes place at an even value of l or with an odd signature

at an odd value of l. When this happens below the t-channel threshold, the

pole represents a bound state; when it happens beyond the threshold, the

trajectory has an imaginary part and represents a resonance. Therefore,

the trajectory, αR(t), generates the asymptotic s-channel behaviour as well

as the t-channel poles of the amplitude. For t > 0, we anticipate that a

trajectory with a precise signature will produce a series of bound states and

resonances that correspond to observable particles with identical quantum

numbers, with the exception of their spins, which vary by two units of

angular momentum between consecutive states.

According to the experimental data on particle masses and spins, such

series of particles indeed occur and their corresponding trajectories are

linear functions of t(= mass2) with the following form αR(t) = αR(0)+α
′
Rt.

The scattering of particles with spin can be added to the above dis-

cussion. In fact, this will further complicate the formalism as we must

consider the crossing characteristics and kinematical singularities of the

helicity amplitudes. Nevertheless, these issues are manageable, and the

outcome is roughly the same as for spin-zero scattering.

2.6 Restoring Unitarity

It is crucial to keep in mind that the parametrization employed for the

eikonal series in (2.25) for the elastic scattering amplitude is not exclusive.

Generally speaking, no widely recognized technique exists for restoring

unitarity in high-energy hadronic scattering processes.

Furthermore, the choice of a certain unitarization scheme has impor-

tant physical ramifications, particularly in theories like QCD, where cross-

sections rise with energy. It is more than just a matter of preference; it

has the potential to alter the behavior and predictions of the theory.

Yet, there are several ways to represent the unit circle, which may yield

different insights into the underlying physics [6].
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Figure 2.3: Mapping to the Unitary circle (Argand Circle) for the partial wave ampli-

tudes: the amplitudes must lay on the circle to satisfy the unitarity condition for elastic

scattering. Figure taken from [5]

First of all, one can map the upper complex plane into a circle via a

complex exponential

S(s,b) = exp(iz(s,b)) with Im z(s,b) ≥ 0. (2.39)

This maps, in fact, an infinite number of strips with 2nπ < Re z(s,b) <

2(n+ 1)π each onto the unit circle.

It is also possible to use a one-to-one map through a Möbius transform

and write

S(s,b) =
1 + iz′(s,b)

1− iz′(s,b)
, with Im z′(s,b) ≥ 0. (2.40)

The physical amplitude lies within the unitarity circle, so that the as-

sociated S matrix can always be represented by Eqs. (2.39) and (2.40).

The unitarization scheme comes in once one identifies z or z′ with the

one-Reggeon exchange amplitude. One then considers (2.39) and (2.40)

as series expansions in n-Reggeon exchanges, so that their first term must

give 1 + iχ(s,b).

Indeed, if one writes the one-Reggeon exchange amplitude as χ(s,b),

then assuming z = χ in (2.39) leads to the well-known eikonal representa-

tion:

G(s,b) = i(1− exp(iχ(s,b))). (2.41)

This scheme can be derived in QED and other field theories [3] or in

potential theory. It leads at asymptotic energies (s → ∞) to the limit

σel/σinel = 1, i.e., to maximum inelasticity.

The other unitarization scheme considered here is the U -matrix repre-

sentation [2] where one identifies z′ in (2.40) with χ(s,b)/2, to match the
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one-Reggeon exchange

G(s,b) =
χ(s,b)

1− iχ(s,b)/2
. (2.42)

In this scheme, S(s,b) tends to −1 when s → ∞ and b is finite, so that

the inelastic partial wave ηin(s,b) tends to 0: the ratio σel/σinel vanishes

asymptotically. Both schemes have the same development at the second

order in χ and differ only in the rest of the series. It must be noted,

however, that the resummation must lead to an amplitude within the

unitarity circle, but there is no reason to assume that it maps the entire

complex plane to the circle. Hence, one can easily extend both schemes

through a change in the strength of successive scattering. This gives the

extended eikonal schemes.

G(s,b) =
i

ω
(1− exp(iωχ(s,b))) (2.43)

and the extended U -matrix schemes

G(s,b) =
χ(s,b)

1− iω′χ(s,b)
. (2.44)

It is straightforward to check that using ω ≥ 1 or ω′ ≥ 1/2 maps any

amplitude χ into the unitarity circle.



3 Unitarisation and non-diffractive

interactions

3.1 Context

A pp scattering event may generate a wide variety of phenomena, as por-

trayed in Figure 3.1:

Figure 3.1: a) Diagram for elastic scattering and ϕ − η map of the distribution of the

final state particles. b) Single diffractive for the rapidity window between −10 < η < 3.5.

c) Double diffraction process for the window −3.5 < η < 4. d) Central diffractive process

in two rapidity gaps between −10 < η < −2.5 and 2.5 < η < 10. e) Non-diffractive

process, where there is no rapidity gap, particles are uniformly distributed over ϕ and η.

Figure taken from [35].

The first study is concerned with the investigation of the proton in-

elastic cross section at ultrahigh energies. This was performed by exam-

ining high-energy collider data and employing two different unitarization

19
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schemes: the eikonal and the U -matrix. Particularly, it focuses on non-

diffractive inelastic interactions. As for diffraction interactions, they will

be covered in the subsequent chapter. It specifically seeks to understand

how these two schemes affect the predictions of total, elastic, and inelastic

cross sections for proton-proton pp and proton-antiproton pp̄ scattering up

to extremely high energies, reaching beyond the scale accessible by current

particle accelerators. In order to gain deeper insights into the hadronic

interactions at ultra-high energies, high-energy collider experiments and

cosmic-ray observations are highly needed. For instance, cross-sections,in

particle physics, measure the probability of certain interactions between

particles. Precisely predicting the behaviour of particles at high energies

depends on a proper modeling of these cross-sections, with significant im-

plications for particle physics and astrophysics. In spite of the efficiency

of the 2002 fits to the total cross-section in predicting the LHC pp to-

tal cross-section, they failed to relate the total cross-section to the elastic

and inelastic ones. The relation between these cross-sections is neces-

sary in the description of extensive air showers, given the prominence of

the inelastic cross-section. In fact, as detailed in the previous chapters,

given the challenges in deriving precise cross-sections from quantum chro-

modynamics (QCD) at these energies, we developed a phenomenological

model grounded in the Regge theory. The elastic scattering amplitude

was modeled using a born-level amplitude with a pomeron exchange, con-

strained by low-energy data, and a unitarization scheme to account for

multiple exchanges at high energies and ensure that the elastic amplitude

does not exceed the unitarity limit. Using our model, high-energy collider

data were adopted to determine the best-fit parameters for total, elastic,

and inelastic cross-sections, and the predictions of the two unitarization

schemes up to energies around the Grand Unified Theory (GUT) scale

were compared for the evolution of the ratio of the elastic cross-section to

the total cross-section, as well as the extrapolation of the inelastic cross-

section at ultra-high energy, which is crucial for understanding cosmic-ray

interactions and extensive air showers, was provided and examined. The

high-energy collider data used in this study were mainly from experiments,

such as TOTEM, ATLAS, CDF, and others to fit the cross sections.
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Atri Bhattacharya ,1,* Jean-René Cudell ,1,† Rami Oueslati ,1,‡ and Arno Vanthieghem2,§

1Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
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Man-made accelerators and indirect detection methods
of high-energy cosmic rays such as extensive air showers,
at the core of high-energy and multimessenger astrophys-
ics, have drawn a particular attention to the modeling of the
high-energy hadronic interactions. A comprehensive treat-
ment of the pp and pp̄ cross sections with quantum
chromodynamics being elusive for the moment, one has
to rely on some generic arguments about unitarity and
analyticity of the scattering matrix to derive phenomeno-
logical estimates of the high-energy total, elastic and
inelastic cross sections. In that regard, experimental studies,
most notably those related to cosmic-ray showers, often use
the 2002 fits to the total cross section that successfully
predicted the LHC pp total cross section [1]. Besides the
fact that there are a lot of relevant data that have since
appeared [2–13], these fits have the drawback that they
cannot self-consistently relate the total cross section to the
elastic and inelastic ones. Since the inelastic cross section is
key to computing multiple minijet production from cosmic-
ray interactions with the atmosphere at ultrahigh energies,
the relation between the total and inelastic cross sections is
therefore essential to the description of extensive air
showers. It is at the core of hadronic interaction models
adopted in Monte Carlo event generators such as SIBYLL
[14] and QGSJET [15].

In this letter, we want to address this problem [16].
In order to relate elastic, inelastic, and total cross sections,
one needs a physics model of the elastic amplitude. This
is typically made of two ingredients: an elastic amplitude
at the Born level, which encapsulates the elementary
exchange (and can be extracted from low-energy data),
and a scheme that takes into account multiple exchanges,
which become increasingly important at higher energies
and without which the elastic amplitude would exceed the
unitarity limit.
The Born term of interest corresponds to pomeron

exchange and is reasonably constrained. We normalize
the elastic amplitude aðs; tÞ so that the differential cross
section for elastic scattering is written as

dσel
dt

¼ jaðs; tÞj2
16πs2

; ð1Þ

where t ¼ −q2 is the square of the momentum transfer. The
Born term can then be written using the pomeron trajectory
αðtÞ, the proton elastic form factor F1ðtÞ and the coupling
pomeron-proton gp, as

aðs; tÞ ¼ g2pF1ðtÞ2
�
s
s0

�
αðtÞ

ξðtÞ; ð2Þ

with ξðtÞ the signature factor,

ξðtÞ ¼ −e
−iπαðtÞ

2 : ð3Þ

The pomeron trajectory is close to a straight line [17], and
we take it to be αðtÞ ¼ 1þ ϵþ α0t. Nonlinearities in the
trajectory for large t may become consequential when
considering the differential cross section dσ=djtj, see
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Ref. [18]; however, this is beyond the scope of the
current work.
At high energy, the growth of this pomeron amplitude

and eventual violation of unitarity is most clearly seen in
the impact-parameter representation, where the Fourier
transform of the amplitude aðs; tÞ rescaled by 2s is
equivalent to a partial wave,

χðs; bÞ ¼
Z

d2q
ð2πÞ2

aðs; tÞ
2s

eiq·b: ð4Þ

The norm of the partial wave signals two important
regimes. When it reaches unity, around

ffiffiffi
s

p ¼ 2 TeV
[19], the model enters the black-disk regime—i.e., maxi-
mum inelasticity. When it reaches two, the model begins
to violate unitarity. Both regimes start at small impact
parameter and spread to higher values of b, and signal that
multiple exchanges have to be taken into account [20].
It is thus necessary to introduce unitarization schemes

that take into account multiple scatterings by mapping the
amplitude χðs; bÞ to the physical amplitude Xðs; bÞ. The
latter reduces to χðs; bÞ for small s, is confined to the unitarity
circle jXðs; bÞ − ij ≤ 1, and bears the same relation as
Eq. (4), but this time to the unitarized amplitude Aðs; tÞ,

Xðs; bÞ ¼
Z

d2q
ð2πÞ2

Aðs; tÞ
2s

eiq·b: ð5Þ

The eikonal scheme—derived for structureless bodies in
optics, potential scattering, and QED—is commonly used
in the literature. Another proposed scheme is the U-matrix
scheme, which can be motivated by a form of Bethe-
Salpeter equation [21]. Neither of these may be entirely
correct in the context of QCD, but going from one to the
other permits an evaluation of the systematics linked to
multiple exchanges.
The eikonal scheme assumes [22]

XEðs; bÞ ¼ i½1 − eiχðs;bÞ�; ð6Þ

while the U-matrix scheme posits,

XUðs; bÞ ¼
χðs; bÞ

1 − iχðs; bÞ=2 : ð7Þ

In terms of partial waves, the maximum inelasticity is
reached in either case for Xðs; bÞ ¼ i, which is also the
asymptotic limit of the eikonal scheme at high s.
The total and elastic scattering cross sections may be

readily expressed in these representations as

σtot ¼ 2

Z
d2bImðXðs; bÞÞ; σel ¼

Z
d2bjXðs; bÞj2:

ð8Þ

We shall now use them to fit all the data in p p
ð−Þ

scattering
above 500 GeV, for which lower trajectories have a neg-
ligible effect. We obtain three distinct datasets (for total,
elastic and inelastic cross sections) from the following
sources, for a total of 37 data points:

(i) pp total and elastic cross sections from TOTEM
[2–6], and ATLAS [7,8];

(ii) pp̄ total and elastic cross sections from CDF [23],
E710 [24,25], and E811 [26,27] experiments at
TeVatron; and UA4 at Spp̄S [28];

(iii) Direct measurements of inelastic cross sections, i.e.,
not derived from total and elastic measurements,
from UA5 at Spp̄S [29], ATLAS [9,10], LHCb [11],
ALICE [12], and TOTEM [13].

It should be noted that both the total and elastic cross
section datasets include discordant data from different
experiments. This is quantified by a simple consistency
check that fits generic quadratic polynomials in log s to
each dataset and computes the resulting χ2. Table I shows
the results with both the elastic and total cross sections
running up χ2=d:o:f noticeably greater than 1. Thus, one
obtains a minimum combined χ2 of 47.1. This is a well-
known problem with these data, first addressed in [30] and
later in [31]. At present, however, the number of data points
is simply too small to identify individual outliers, and hence
there is little one can do for lack of better experimental
results. We shall thus neither filter nor sieve the data, but
remember that the best possible χ2 is rather high.
We use a dipole form factor for the proton F1 ¼ 1=

ð1 − t=t0Þ2. The parameters in our fit thus include ϵ and α0
describing the pomeron trajectory, the coupling constant
gp, and finally the form-factor scale t0.
The results of our fits using either unitarization scheme

are shown in Table II and in Fig. 1. We obtain χ2=d:o:f: ¼
1.436ð1.442Þ when using the U-matrix (eikonal) scheme.
Note that, although at face value the fit obtained using
either scheme only has a seemingly poor χ2=d:o:f., the

TABLE I. The values of χ2 resulting from independent fits to
quadratic polynomials in logðsÞ, illustrating the tensions in some
parts of the dataset.

Dataset Number of points χ2

σtot 18 21.7
σel 11 21.3
σin 8 4.1

TABLE II. χ2=d:o:f: and best-fit parameters obtained using the
eikonal and U-matrix unitarization schemes.

Scheme ϵ α0 gp t0 χ2

d:o:f

Eikonal 0.11� 0.01 0.31� 0.19 7.3� 0.9 1.9� 0.4 1.442
U-matrix 0.10� 0.01 0.37� 0.28 7.5� 0.8 2.5� 0.6 1.436
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value of the total χ2—47.39 (47.59) for the U-matrix
(eikonal) scheme—is very close to the minimum value—
47.1—obtained earlier.
These values of the parameters are however quite

striking. Reference [17] managed to disentangle the pom-
eron contribution at low energy from that of lower-t
trajectories, and provided estimates of its coupling, inter-
cept and slope. These values are within 1σ of those
obtained here for the U matrix, but the eikonal differs
significantly from the low-energy results. Hence it seems
that for an eikonal scheme, one never recovers the observed
one-pomeron simple pole.
Using an exponential form factor fF1 ¼ exp ðR0tÞg,

instead of the dipole form, leads to slightly poorer fits
fχ2=d:o:f: ¼ 1.440ð1.445Þg; however, the qualitative pic-
ture remains unaltered. We have also analyzed how the fits
improve if one uses the generalized eikonal and U-matrix
schemes, and we find that these generalizations—at the cost
of an additional free parameter (ω or ω0)—do not improve
the fits significantly.
One particular consequence of the relative independence

of the elastic cross section to the choice of the unitarization
scheme is that values of the ρ parameter remain largely
unaffected by the choice of the scheme as well. We use
our best-fit parameters to compute this parameter across
different energies, and find that the corresponding values
agree with existing data, except for the latest TOTEM mea-
surement. We indeed obtain ρ ¼ 0.131 at

ffiffiffi
s

p ¼ 13 TeV.
Whether this discrepancy is due to the fact that we neglect
an odderon contribution, or it comes from a problem in the
extraction of ρ from the data [32] is still unclear. As the
purpose of this paper is the evaluation of the inelastic
cross section, the exact value of ρ is of little importance
given than it contributes about 1% to the processes
considered here.

We are now in a position to present our results on the
inelastic cross section at ultrahigh energies. We obtain them
by varying all the parameters of Table II in a 1σ hyper-
ellipsoid and use the corresponding curves to evaluate the
errors at ultrahigh energies. We show the results in Fig. 2.
The entwinement of the inelastic cross section with the
elastic and total cross sections, which are much better
known, leads to smaller errors than in the case of a fit to
inelastic data alone. Furthermore, despite their very differ-
ent analytic properties, the two schemes lead to almost
identical predictions. This gives us confidence that the
extrapolation to ultrahigh energies is well founded.
While the inelastic cross sections using either of the two

schemes are almost identical, this alignment happens
despite significant differences in the individual order-by-
order amplitudes in the expansion. We show this for the
specific case of the Born term in Fig. 3. Specifically as it

FIG. 1. Total, elastic and inelastic cross sections obtained with
best-fit parameters for theU-matrix scheme (solid curves) and the
eikonal scheme (dashed curves).

FIG. 2. The 1σ band for the inelastic cross section at ultrahigh
energies. Note that both schemes give almost identical results.

FIG. 3. Real and imaginary parts of the Born terms χðs; bÞ atffiffiffi
s

p ¼ 13 TeV for the U-matrix (solid curves) and eikonal
(dashed curves) schemes.
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pertains to the inelastic cross section, this order-by-order
difference can have major consequences, for example, in
Monte Carlo showering codes that depend on the nth term
in the Taylor expansion inn χ to weigh the probability of the
n minijets. In these codes, switching the traditionally used
eikonal scheme to the U-matrix scheme will have an impact
on the results, although a full analysis of this impact is
beyond the scope of this work.
It is important to note that, although we have shown

that the total, elastic, and inelastic cross sections obtained
using the two schemes remain nearly identical for

ffiffiffi
s

p
up to

tens of TeV, at extremely high
ffiffiffi
s

p
approaching the grand

unification scale the elastic and inelastic cross sections start
differing significantly (see also discussion in [33]).
Whereas with the eikonal scheme the elastic cross section
reaches parity with the inelastic cross section at aroundffiffiffi
s

p ¼ 1015 GeV and remains so at higher energies, the
U-matrix scheme instead predicts continuing growth for
the elastic cross section—at the cost of the inelastic
cross section—until it gradually approaches saturation with
respect to the total cross section at some

ffiffiffi
s

p ≳ 1019 GeV.

This is illustrated in terms of the ratio of the elastic to total
cross sections in Fig. 4. These extremely high energies are
of course beyond the reach of experiments; such differences
are therefore of limited practical relevance.
To summarize, we have used nondiffractive experimental

data from colliders up to
ffiffiffi
s

p ¼ 13 TeV to determine the
most up-to-date fits to the total, elastic, and inelastic

p p
ð−Þ

cross sections in the literature, both for the eikonal
and U-matrix unitarization schemes. The upshot of our
analysis is that the U-matrix scheme leads to cross sections
that fit the data as well as the eikonal scheme, which is
more conventionally used in most current cosmic-ray
Monte Carlo codes. The corresponding total, elastic, and
inelastic cross sections from both schemes are nearly
indistinguishable at energies relevant to current and near-
future colliders; they only start showing differences at
energies approaching the grand unification scale. In par-
ticular, this allows us to extrapolate the inelastic cross
section up to GZK cutoff energies (∼1020 eV) uniquely,
irrespective of the unitarization scheme chosen. This align-
ment between the overall inelastic cross sections notwith-
standing, the amplitudes at each order in the series
expansions differ significantly, with potential consequences
for Monte Carlo showering codes.

ACKNOWLEDGMENTS

The authors are grateful to O. V. Selyugin and S. M.
Troshin for useful discussions. A. B. is supported by the
Fonds de la Recherche Scientifique-FNRS, Belgium, under
Grant No. 4.4503.19. AB is thankful to the computational
resource provided by Consortium des Équipements de
Calcul Intensif (CÉCI), funded by the Fonds de la
Recherche Scientifique de Belgique (F. R. S.-FNRS) under
Grant No. 2.5020.11 where a part of the computation was
carried out. This work was also supported by the Fonds de
la Recherche Scientifique-FNRS, Belgium, under Grant
No. 4.4503.19. A. V. is supported by U.S. DOE Early
Career Research Program under Program No. FWP100331.

[1] J. R. Cudell, V. V. Ezhela, P. Gauron, K. Kang, Y. V.
Kuyanov, S. B. Lugovsky, E. Martynov, B. Nicolescu,
E. A. Razuvaev, and N. P. Tkachenko (COMPETE Collabo-
ration), Phys. Rev. Lett. 89, 201801 (2002).

[2] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.
96, 21002 (2011).

[3] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.
101, 21002 (2013).

[4] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.
101, 21004 (2013).

[5] G. Antchev et al. (TOTEM Collaboration), Phys. Rev. Lett.
111, 012001 (2013).

[6] G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C
79, 103 (2019).

[7] G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B889,
486 (2014).

[8] M. Aaboud et al. (ATLAS Collaboration), Phys. Lett. B
761, 158 (2016).

[9] G. Aad et al. (ATLAS Collaboration), Nat. Commun. 2, 463
(2011).

FIG. 4. The evolution of the ratio of the elastic cross section to
the total cross section at the GUT-scale and higher energies based
on the unitarization scheme chosen.

ATRI BHATTACHARYA et al. PHYS. REV. D 103, L051502 (2021)

L051502-4



[10] M. Myska (ATLAS Collaboration), Proc. Sci., ICHEP2016
(2017) 1127.

[11] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.
06 (2018) 100.

[12] B. Abelev et al. (ALICE Collaboration), Eur. Phys. J. C 73,
2456 (2013).

[13] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.
101, 21003 (2013).

[14] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T.
Stanev, Phys. Rev. D 102, 063002 (2020).

[15] S. Ostapchenko, EPJ Web Conf. 208, 11001 (2019).
[16] The question of the very forward component of the showers,

which is linked to the diffractive cross section, will be
considered in a separate paper.

[17] J. R. Cudell, A. Lengyel, and E. Martynov, Phys. Rev. D 73,
034008 (2006).

[18] L. Jenkovszky, R. Schicker, and I. Szanyi, Int. J. Mod. Phys.
E 27, 1830005 (2018).

[19] J. R. Cudell and O. V. Selyugin, Czech. J. Phys. 54, A441
(2004).

[20] S. M. Troshin and N. E. Tyurin, Mod. Phys. Lett. A 31,
1650079 (2016).

[21] A. Logunov, V. Savrin, N. Tyurin, and O. Khrustalev, Teor.
Mat. Fiz. 6, 157 (1971).

[22] J. R. Cudell, E. Predazzi, and O. V. Selyugin, Phys. Rev. D
79, 034033 (2009).

[23] F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 5518
(1994).

[24] N. A. Amos et al. (E-710 Collaboration), Phys. Lett. B 243,
158 (1990).

[25] N. A. Amos et al. (E710 Collaboration), Nuovo Cimento A
106, 123 (1993).

[26] C. Avila et al. (E811 Collaboration), Phys. Lett. B 445, 419
(1999).

[27] C. Avila et al. (E-811 Collaboration), Phys. Lett. B 537, 41
(2002).

[28] M. Bozzo et al. (UA4 Collaboration), Phys. Lett. 147B, 392
(1984).

[29] G. J. Alner et al. (UA5 Collaboration), Z. Phys. C 32, 153
(1986).

[30] J. R. Cudell, K. Kang, and S. K. Kim, Phys. Lett. B 395, 311
(1997).

[31] M.M. Block, Nucl. Instrum. Methods Phys. Res., Sect. A
556, 308 (2006).

[32] V. Ezhela, V. Petrov, N. Tkachenko, and A. Logunov,
arXiv:2003.03817.

[33] S. M. Troshin and N. E. Tyurin, Europhys. Lett. 129, 31002
(2020).

PROTON INELASTIC CROSS SECTION AT ULTRAHIGH … PHYS. REV. D 103, L051502 (2021)

L051502-5



4 Unitarisation and diffractive in-

teractions

4.1 Context of the research study

In the prior study, we thoroughly examined the effects of the eikonal and

U -matrix schemes on inelastic non-diffractive interactions at ultra-high

energies. Building on these results, we expanded our analysis to include

diffractive interactions, which are crucial in high-energy scattering. In

such processes, a proton remains intact or dissociates into a low-mass

state. Diffractive processes are particularly significant at the high energies

probed by the Large Hadron Collider (LHC) and cosmic-ray experiments,

accounting for approximately 20 % of the inelastic cross-section at TeV

energies [1]. These collisions are key to understanding interaction elastic-

ity, a critical factor in air shower development. During these collisions,

momentum is transferred without the exchange of quantum numbers,

leading to the generation of new particles. When the energy transfer is

small, typically a few GeV, the process is known as low-mass diffraction

and is typically modelled using the Good and Walker framework with a

2- or 3-channel approach, depending on the number of diffractive states

involved. In contrast, high-mass diffraction involves greater momentum

transfer, allowing the exchanged pomeron to produce additional particles

or even a jet, resulting in significantly lower elasticity.

Besides, the inclusion of diffractive processes makes unitarization

schemes more thoroughly tested and guarantees that all features of high-

energy hadronic interactions are adequately modelled. It also furnishes

new evidence that could allow for the improvement of the hadronic

interaction modelling. Particularly, in this study, we aimed to evaluate

how well the U -matrix and eikonal schemes describe the total, elastic,

inelastic, and single-diffractive cross-sections in pp and pp̄ interactions

and to quantify the uncertainties attached to them. Moreover, the study

aimed to explore the potential for generalizing these schemes, known as

26



CHAPTER 4. UNITARISATION AND DIFFRACTIVE INTERACTIONS 27

extended schemes, by introducing an additional parameter, ω. These

generalized forms are expressed as follows:

For the extended eikonal scheme:

XE(s, b) =
i

ω

[
1− eiωχ(s,b)

]
, (4.1)

For the extended U -matrix scheme:

XU(s, b) =
χ(s, b)

1− iωχ(s, b)
. (4.2)

In both cases, the asymptotic value of X(s → ∞, b) is 1/ω. Thus, the

traditional values for ω are 1 for the standard eikonal and 1/2 for the

standard U -matrix.

With our optimized model, we also attempted to predict the ρ

parameter, the ratio of the real part to the imaginary part of the elastic

amplitude, and to compare it with experimental data, particularly at 13

TeV. Another objective of the study was to shed light on the implications

of these different unitarisation schemes’ effect on the single-diffractive

cross-section for current and future cosmic ray data.

In order to fulfil our research purposes, we adopted the following

methodology. First, up-to-date collider data on pp and pp̄ total, elastic,

inelastic and single-diffractive cross sections, including 13 TeV data from

recent LHC experiments, have been used to ascertain the best fits to the

parameters governing these cross sections. Then, we implemented both

the eikonal and U -matrix unitarisation schemes within our theoretical

framework, making sure that the unique features of each scheme were

appropriately represented. Afterwards, using the collected data, we

performed a global fit to determine the best-fit parameters for each

unitarisation scheme. This involved minimizing the χ2/d.o.f to assess the

relevance of the fit. Lastly, comparing the generated cross-sections and

fitted parameters, we paid particular attention to their concordance with

experimental data and their prediction capacity at high energies.

In this context, the Good-Walker formalism is crucial for describing

diffractive processes, particularly inelastic diffraction, which arises due to

the internal structure of hadrons. At high energies, this phenomenon is

more easily understood because the lifetime of fluctuations within a fast
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hadron is large, τ ∼ E
m2 , allowing these fluctuations to be treated as nearly

”frozen.” During this period, each constituent of the hadron can undergo

scattering, disrupting the coherence of the fluctuations. Consequently,

the outgoing superposition of states will differ from the incident particle,

often resulting in both inelastic and elastic diffraction.

To explore inelastic diffraction, the Good-Walker approach introduces

states ϕk that diagonalize the T matrix, where these eigenstates undergo

only elastic scattering. Since off-diagonal transitions are absent,

⟨ϕj|T |ϕk⟩ = 0 for j ̸= k, (4.3)

a state k cannot diffractively dissociate into a state j. However, for

hadronic states, which are not eigenstates of the S-matrix (or T ), this

condition generally does not hold. To account for the internal structure

of hadrons, the set of intermediate states must be expanded beyond

just the single elastic channel, introducing a multichannel approach.

Before examining such a case, let’s express the cross-section in terms of

the probability amplitudes Fk of the hadronic process via the various

diffractive eigenstates ϕk.

Let the orthogonal matrix that diagonalizes T be denoted by a, such

that:

T = aFaT where ⟨ϕj|F |ϕk⟩ = Fk δjk. (4.4)

Consider the diffractive dissociation of an arbitrary incoming state:

|j⟩ =
∑

k

ajk |ϕk⟩. (4.5)

The elastic scattering amplitude for this state is:

⟨j|T |j⟩ =
∑

k

|ajk|2 Fk = ⟨F ⟩, (4.6)

where Fk = ⟨ϕk|F |ϕk⟩, and ⟨F ⟩ represents the average of F over the

initial probability distribution of diffractive eigenstates. After diffractive

scattering described by Tfj, the final state |f⟩ will typically be a different

superposition of eigenstates than |j⟩, as shown in the equation above.

At high energies, the real parts of the diffractive amplitudes can be

ignored. Then, the cross-sections at a given impact parameter b are:

dσtot
d2b

= 2 Im ⟨j|T |j⟩ = 2
∑

k

|ajk|2 Fk = 2⟨F ⟩, (4.7)
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dσel
d2b

= |⟨j|T |j⟩|2 =
(∑

k

|ajk|2 Fk

)2

= ⟨F ⟩2, (4.8)

dσel+SD

d2b
=
∑

k

|⟨k|T |j⟩|2 =
∑

k

|ajk|2 F 2
k = ⟨F 2⟩. (4.9)

Thus, the cross-section for single diffractive dissociation of a proton is

given by:
dσSD
d2b

= ⟨F 2⟩ − ⟨F ⟩2, (4.10)

reflecting the statistical dispersion in the absorption probabilities of the

diffractive eigenstates. Here, the average is taken over the components k

of the incoming proton that dissociates. If the averages are taken over

components of both incoming particles, a second index on F must be

introduced, making it Fik, and summing over k and i. In this case, the

sum represents the cross-section for both single and double dissociation.

If all the components ϕk of the incoming diffractive state |j⟩ were

absorbed equally, the diffracted superposition would be proportional to

the incident one, resulting in zero inelastic diffraction. At very high

energies, if the amplitudes Fk at small impact parameters reach the black

disk limit (Fk = 1), diffractive production will be zero in this impact

parameter domain and will only occur in the peripheral b region. Similar

behavior is observed in pp and pp̄ interactions at Tevatron energies.

Hence, the impact parameter structure of inelastic and elastic diffraction

differs significantly when strong s-channel unitarity effects are present.

The elastic amplitude primarily originates from the center of the disk

(small b), while dissociation occurs at the periphery.

The Good-Walker mechanism effectively handles elastic scattering

and single diffractive dissociation by representing the initial state as a

superposition of eigenstates that interact with the pomeron. However,

this model assumes that these eigenstates remain unchanged during the

interaction, limiting its ability to describe more complex phenomena,

such as multiple pomeron exchanges and diffractive dissociation involving

multiple states.

Given the importance of multi-channel interactions at ultra-high
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energies, we adopted a modified Good-Walker approach. This adaptation

extends the original formalism to include additional channels and interac-

tion vertices, such as the p → D, D → p, and D → D transitions, where

D is a diffractive state. These modifications are essential for accurately

modelling diffractive dissociation at these energy scales.

A key challenge in this approach is that, at the born level, the behaviour

of the interaction vertices is largely unknown, except for Vpp(t), for which

the parameterization from non-diffractive inelastic interactions is a good

representation at low energy. By assuming a similar functional form for

VDD, we retain two parameterizations in our model. Through this careful

consideration of vertex behaviour, we can better capture the full range

of diffractive processes that the standard Good-Walker mechanism cannot

adequately address.

4.2 ARTICLE 2
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1 Introduction

High-energy hadronic scattering may be described by Reggeon exchanges (see, e.g. [1] and
references therein) and for center-of-momentum energies

√
s larger than 100GeV, the only

trajectory that matters is that of the pomeron. However, at energies of a few TeV and
higher, the growth of the pomeron term leads to violation of the black-disk limit [2–4] and
eventually of unitarity. Unitarity can be enforced in high-energy pp and pp̄ interactions
by the inclusion of multiple exchanges, which act as a cut to the elastic scattering am-
plitude. Different unitarisation schemes have been discussed in the literature [5] but all
of them rely on phenomenological arguments in the absence of a comprehensive quantum
chromodynamics treatment.

The effect of unitarisation on the growth of p(−)
p cross-sections becomes important

when considering proton-proton scattering cross sections at the LHC where the centre-of-
momentum energies extend up to 13TeV. Measurements of the total, elastic, inelastic, and
diffractive pp cross sections by the different LHC experiments — ALICE [6], ATLAS [7–10],
CMS [11], LHCb [12], and TOTEM [13–18] — add to existing p(−)

p scattering data at lower
energies from previous generation experiments at the Spp̄S [19, 20] and the TeVatron [21–
26]. This extensive wealth of data allows us to constrain the nature of unitarisation gov-
erning these interactions with an improved degree of accuracy.

Differences in cross sections that depend on the choice of the unitarisation scheme
are expected to show up at very high energies — at 10TeV and higher — and therefore
may influence predictions for cosmic-ray collisions with atmospheric nuclei at ultra-high
energies. Showering codes, such as SIBYLL [27] and QGSJET [28], used to simulate and
reconstruct these events from observations of secondaries have historically used the eikonal
scheme (see [29] for a review). In the context of ongoing ultra-high energy cosmic-ray
experiments, e.g. the Pierre Auger Observatory [30], the Telescope Array Project [31], and

– 1 –
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IceTop [32], an investigation of the dependence of cross sections on different unitarisation
schemes assumes paramount importance.

In [33], we examined the effect of including up-to-date collider data for total, elastic,
and inelastic cross sections. We found nearly identical cross sections for the three irre-
spective of the unitarisation scheme used. In the current work, we focus on the effect of
incorporating diffractive data into the fits. Diffractive scattering in 2 7→ 2 interactions,
where either one or both final state particles break up into jets, becomes increasingly im-
portant as the interaction energy increases. In these interactions, the final state(s) being
no longer expressible in terms of hadronic eigenstates, the calculation of the corresponding
scattering amplitudes requires the invocation of a rotated eigenstate basis as described in
the Good-Walker mechanism [34].

The present work is organised as follows. In section 2, we briefly recapitulate the theory
of unitarisation in p(−)

p scattering and the different schemes that have been proposed in the
literature. In section 3 we explain the Good-Walker representation [34]. In section 4 we
list the various parameters defining our fits. Additionally, we list all the p(−)

p scattering
data that are used to determine our best fits. Finally, in section 5 we give our results and
discuss them in light of the existing literature, drawing our conclusions.

2 Brief survey of unitarisation schemes and fit to non-diffractive forward
data

The differential cross section for elastic scattering may be expressed in terms of the elastic
amplitude A(s, t) as

dσel
dt =

∣∣A(s, t)
∣∣2

16πs2 , (2.1)

where t = −q2 is the square of the momentum transfer. At low energy, the term in
A(s, t) responsible for the growth of the cross section with s can be parameterised [35]
using the pomeron trajectory α(t), the proton elastic form factor Fpp(t) and the coupling
pomeron-proton-proton gpp, as

a(s, t) = g2
ppFpp(t)2

(
s

s0

)α(t)
ξ(t), (2.2)

with ξ(t) the signature factor
ξ(t) = −e−

iπα(t)
2 . (2.3)

We shall consider here a dipole form factor, which is close to the best functional form [35],
although the exact functional form is not very important as we consider only integrated
quantities in this paper:

Fpp = 1
(1− t/tpp)2

(2.4)

The pomeron trajectory is close to a straight line [36], and we take it to be

α(t) = 1 + ε+ α′P t. (2.5)

– 2 –
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At high energy, the growth of this pomeron term and eventual violation of unitarity is
most clearly seen in the impact-parameter representation, where the Fourier transform of
the amplitude a (s, t) rescaled by 2s is equivalent to a partial wave

χ(s, b) =
∫ d2q

(2π)2
a(s, t)

2s eiq·b. (2.6)

The norm of this partial wave at small
∣∣b
∣∣ exceeds unity around

√
s = 2TeV [36].

To solve this problem, one introduces unitarisation schemes which map the amplitude
χ(s, b) to the physical amplitude X(s, b). The latter reduces to χ(s, b) for small s, is
confined to the unitarity circle

∣∣X(s, b)− i
∣∣ 6 1, and bears the same relation as eq. (2.6),

but this time to the physical amplitude:

X(s, b) =
∫ d2q

(2π)2
A(s, t)

2s eiq·b. (2.7)

The most common scheme is the eikonal scheme, and it has been derived for struc-
tureless bodies, in optics, in potential scattering and in QED. Another proposed scheme is
the U matrix scheme, which can be motivated by a form of Bethe-Salpeter equation [37].
Probably neither of these is correct in QCD, but going from one to the other permits an
evaluation of the systematics linked to unitarisation.

In the following, we shall actually use generalised versions of the schemes, which include
an extra parameter ω [5]:

XE(s, b) = i
ω

[
1− eiωχ(s,b)

]
, (2.8)

while the generalised U-matrix scheme requires:

XU (s, b) = χ(s, b)
1− iωχ(s, b) . (2.9)

In both cases, the asymptotic value of X(s → ∞, b) is 1/ω, hence the traditional values
for ω are 1 for the standard eikonal [37], and 1/2 for the standard U matrix [38]. Both
schemes map the amplitude χ(s, b) into the unitarity circle for ω > 1/2. In terms of partial
waves, the maximum inelasticity is reached for X(s, b) = i.

The total and elastic scattering cross sections may be readily expressed in these rep-
resentations as

σtot = 2
∫

d2b Im (X(s, b)) , σel =
∫

d2b
∣∣X(s, b)

∣∣2. (2.10)

Hence these unitarised schemes naturally lead to expressions for the total, elastic, and
hence inelastic, cross sections. We shall now use them to fit all the data in p(−)

p scattering
above 100GeV, for which lower trajectories have a negligible effect. This includes the
following:

• pp total and elastic cross sections from TOTEM [13–17], and ATLAS [7, 8];

• pp̄ total and elastic cross sections from CDF [21], E710 [22, 23], and E811 [25, 26]
experiments at TeVatron; and UA4 at Spp̄S [19];
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Scheme ε α′P (GeV−2) gpp tpp (GeV2) χ2/d.o.f
U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436
Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

Table 1. χ2/d.o.f and best-fit parameters obtained using the eikonal (ω = 1) and U-matrix
(ω′ = 1/2) unitarisation schemes without diffractive data [33].

• Direct measurements of inelastic cross sections, i.e. not derived from total and elastic
measurements, from UA5 at Spp̄S [20], ATLAS [9, 10], LHCb [12], ALICE [6], and
TOTEM [18].

This gives a total of 37 data points. In the next section, we shall also consider 6 extra
data points:

• Single diffractive pp̄ cross sections from UA5 [20, 39] and E710 [40]; and

• pp single diffractive cross sections at various energies measured at ALICE [6].

The resulting fit leads to the following parameters of table 1.

3 Unitarisation and diffraction

The implementation of diffraction within a unitarisation scheme at high energy has to
confront two questions: how does one describe the diffractive amplitude at the Born level,
and how does one embed that amplitude within a unitarisation scheme?

The first questions has two answers. On the one hand, the asymptotic answer is
that, for high-mass final states, one should use the triple-reggeon vertices. However, as
the masses considered are not necessarily large, one must consider a variety of reggeons
lying on trajectories below that of the pomeron [41], and to include not only subdominant
trajectories (with intercept of the order of 1/2) but also sub-subdominant ones (with an
intercept of the order of 0). This introduces a multitude of parameters, of the order of the
number of high-energy data points available.

On the other hand, it is possible to consider a generic diffractive state D and the vertex
p+ IP → D. A priori, this implies the consideration of a large number of channels for the
diffractive state D, and the introduction of many parameters. However, it has been shown
in [42] that for inclusive cross section, the consideration of one generic diffractive state | ΨD〉
is sufficient, and that adding other states does not significantly improve the description of
the data. One however looses the information about the mass of the diffractive state.

We will concentrate in this paper on inclusive quantities, and on a generic diffractive
D, which is the seed of high-energy pions, and hence of high-energy muons, in cosmic ray
showers. This makes them of particular interest in view of the muon anomaly at ultra-high
energies (see [43] and references therein).

The second question concerns the description of multiple exchanges, which are expected
to be important at ultra-high energies. The problem is to include insertions that contain
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the pIPD, the DIPp and DIPD vertices, and re-sum them. Solutions to this problem have
been proposed by Gotsman, Levin, and Maor (GLM) [42, 44] and further explored by
Khoze, Martin, and Ryskin [45–47] using the Good-Walker model [34]. We shall adapt
their method, originally proposed for the eikonal unitarisation, to any scheme, and more
specifically to the U -matrix unitarisation scheme.

At the Born level, the interaction of a proton with a pomeron can leave the proton
intact or turn it into a diffractive state D. GLM argue that it is possible to define two
states | Ψ1〉 and | Ψ2〉 which are not modified by the interaction with a pomeron:

| Ψp〉 = cos θ | Ψ1〉+ sin θ | Ψ2〉 , and (3.1a)
| ΨD〉 = − sin θ | Ψ1〉+ cos θ | Ψ2〉 , (3.1b)

with θ an arbitrary angle. In this representation, the final states for elastic, single diffrac-
tive, and double diffractive amplitudes are given by | ΨpΨp〉, | ΨpΨD〉, and | ΨDΨD〉
respectively.

Before we unitarise, we need the Born-level amplitudes aij(s, t) = 〈ΨiΨj | T̂ | ΨiΨj〉,
for i, j = 1, 2. We shall assume that the pomeron is a simple pole at the Born level, so that
the amplitudes can be factorised in t space as e.g.

app→pp = 〈pp|T |pp〉 = Vpp(t)2R(s, t) (3.2)
app→pD = app→Dp = 〈pp|T |pD〉 = Vpp(t)VpD(t)R(s, t) (3.3)

aDD→DD = 〈DD|T |DD〉 = VDD(t)2R(s, t) (3.4)

with R(s, t) =
(
s
s0

)α(t)
ξ(t), and Vab(t) the vertex functions. All processes can be described

using 3 functions, Vpp, VDD and VpD = VDp. We take them as

Vab = gabFab(t) (3.5)

where a and b are either p or D, gab are the coupling strengths and Fab(t) is a form factor,
with Fab(0) = 1. The nature of form factors for the eigenstates Ψ{1,2} cannot be determined
from experiments, therefore we invert the relations in eq. (3.1) to express Ψ{1,2} in terms
of Ψ{p,D}. This allows us to work with the proton and diffractive state form factors; we
assume the form factor for the latter is similar to that of the proton. The two GLM states

|Ψ1〉 = cos θ|p〉 − sin θ|D〉 (3.6)
|Ψ2〉 = sin θ|p〉+ cos θ|D〉, (3.7)

correspond to amplitudes

aij→kl = 〈ij|T |kl〉 = Vik(t)Vjl(t)R(s, t), i, j = 1, 2 (3.8)

which will be purely elastic if V12 = V21 = 0. This leads to

tan(2θ(t)) = 2VpD(t)
VDD(t)− Vpp(t)

(3.9)
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and

V11(t) = Vpp(t) cos2(θ) + VDD(t) sin2(θ)− VpD(t) sin(2θ) (3.10)
V22(t) = Vpp(t) sin2(θ) + VDD(t) cos2(θ) + VpD(t) sin(2θ). (3.11)

Hence at this point, we have traded three amplitudes Vab for two amplitudes Vii and an
angle. We do not know, at the born level, how any of these should behave, except for Vpp(t),
for which the parameterisation (3.5) is a good representation at low energy [35]. One can
assume the same functional form holds for VDD, hence we keep these two parameterisations.
Following GLM [2], we choose θ as a final input. Clearly, it depends on t. However, as we
shall be considering integrated cross sections, and as the t dependencies of the various Vab
are not expected to be very different, it is reasonable to approximate

tan(2θ(t)) ≈ tan(2θ(0)) = gpD + gDp
gDD − gpp

(3.12)

and keep it as a parameter. To translate this into a specific expression for V11 and V22, we
eliminate VpD using eq. (3.9). This leads to

V11(t) = cos2(θ)Vpp(t)− sin2(θ)VDD(t)
cos(2θ) (3.13)

V22(t) = cos2(θ)VDD(t)− sin2(θ)Vpp(t)
cos(2θ) (3.14)

These can be used to build the amplitudes that will enter into the unitarisation
schemes, using eq. (3.8). One can thus obtain the elastic, single-diffractive and double-
diffractive amplitudes from three purely elastic amplitudes [42, 44], given the fact that
a12→12 = a21→21:

app→pp = cos4(θ)a11→11 + 2 cos2(θ) sin2(θ)a12→12 + sin4(θ)a22→22 (3.15a)
app→pD = cos(θ) sin(θ)

× (− cos2(θ)a11→11 + (cos2(θ)− sin2(θ))a12→12 + sin2(θ)a22→22) (3.15b)
app→DD = cos2(θ) sin2(θ)(a11→11 − 2a12→12 + a22→22). (3.15c)

At this point, it is easy to unitarise the amplitudes aij→ij(s, t), following what was
done in section 2 for elastic scattering. One goes into impact parameter space to obtain
the corresponding χij→ij(s,b), replaces the amplitudes at the Born level by their unitarised
version, as eqs. (2.8) and (2.9):

X
(E)
ij→ij(s, b) = i

ω

[
1− eiωχij→ij(s,b)

]
(3.16a)

X
(U)
ij→ij(s, b) = χij→ij(s, b)

1− iωχij→ij(s, b) . (3.16b)
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and obtains the amplitudes of interest as in eq. (3.15):

Xel = cos4(θ)X11→11 + 2 cos2(θ) sin2(θ)X12→12 + sin4(θ)X22→22 (3.17a)
Xsd = cos(θ) sin(θ)

× (− cos2(θ)X11→11 + (cos2(θ)− sin2(θ))X12→12 + sin2(θ)X22→22) (3.17b)
Xdd = cos2(θ) sin2(θ)(X11→11 − 2X12→12 +X22→22). (3.17c)

The relevant 2→ 2 cross sections are then given by

σtot = 2
∫

d2b Im {Xel} ; σel =
∫

d2b
∣∣Xel

∣∣2 ; (3.18a)

σsd = 2
∫

d2b
(∣∣Xsd

∣∣2
)

; σdd =
∫

d2b
∣∣Xdd

∣∣2 ; (3.18b)

and the ρ parameter is defined by

ρ(s, t = 0) = Re {Xel(s, t = 0)}
Im {Xel(s, t = 0)} . (3.18c)

4 Fit parameters and data

Section 3 has introduced the basic ingredients and parameters of our model. First of all, one
has of course the parameters of section 2, i.e. ε and α′, linked to the Pomeron trajectory
R(s, t), as well as gpp and tpp, linked to the pIPp vertex Vpp(t). To describe diffractive
scattering in our scheme, one needs three more parameters: the DIPD coupling gDD, the
scale tDD in the form factor

FDD(t) = 1
(1− t/tDD)2 (4.1)

and the mixing angle θ. Finally, one can introduce the parameters ω and ω′ corresponding
to extended unitarisation schemes.

Several remarks are in order at this point. First of all, we have considered the minimal
GLM scheme, where we mix the proton with one diffractive state. This corresponds to
a 2-channel unitarisation scheme. In principle, one could consider an N -channel scheme,
at the cost of multiplying the number of parameters N(N + 1)/2 + 8. Given the paucity
of diffractive data at high energy, going beyond N = 2 is not possible. Note that GLM
considered the case N − 3, and found that there is no significant improvement [42].

We can further limit the number of parameters by considering the two standard uni-
tarisation schemes, i.e. fix ω = 1 and ω′ = 1/2. We have checked that varying these
parameters lead to an improvement of only 0.01 in the χ2/d.o.f.

Nevertheless, even in the 2-channel scheme, one still has an over-parameterisation. The
main problem comes from the fact that there is a strong correlation between the parameters
of Vpp and those of VDD, so that error bars are huge. As the pp parameters are determined
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Expt
√
s σtot [mb] σel [mb] σin [mb] σsd [mb]

UA5
200GeV 4.8± 0.9
546GeV 5.4± 1.1
900GeV 50.3± 1.1 7.8± 1.2

E710
1.02TeV 61.1± 9.9
1.8TeV 78.3± 5.9 19.6± 3.0 8.1± 1.7

ATLAS

7TeV 95.4± 1.4 24.0± 0.6
7TeV 69.4± 7.3
8TeV 96.1± 0.9 24.3± 0.4
13TeV 78.0± 3.0

ALICE
2.76TeV 62.8± 3.4 12.2± 4.6
7TeV 73.2± 4.3 14.9± 4.7

LHCb
7TeV 68.7± 4.9
13TeV 75.4± 5.4

TOTEM
7TeV 73.7± 3.4
13TeV 110.6± 3.4 31.0± 1.7

Table 2. High energy p(−)
p experimental data set supplemented by data available in [48].

by the fits of section 2, we fix their values to their central values in that fit: gpp = 7.5 (7.3)
and tpp = 2.6 (1.9)GeV2 in the U-matrix (eikonal) schemes.

Since our focus is on high energy effects induced in p(−)
p cross sections, we use exper-

imental data above 100GeV. Together with the data set provided by the Particle Data
Group [48], table 2 includes the data from the following experiments:

• pp total and elastic cross sections from TOTEM [13–17], and ATLAS [7, 8];

• pp̄ total and elastic cross sections from CDF [21], E710 [22, 23], and E811 [25, 26]
experiments at the TeVatron; and UA4 at the Spp̄S [19];

• Direct measurements of inelastic cross sections, i.e. not derived from total and elastic
measurements, from UA5 at the Spp̄S [20], ATLAS [9, 10], LHCb [12], ALICE [6],
and TOTEM [18];

• Single diffractive pp̄ cross sections from UA5 [20, 39] and E710 [40]; and

• pp single diffractive cross sections at various energies measured at ALICE [6].

A few caveats about our data selection are in order. We use measured data from ex-
periments that quote both statistical and systematic errors, and combine them in quadra-
ture. We omit pp cross-section measurements from cosmic-ray experiments because the
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dataset number of points χ2

σtot 18 21.7
σel 11 21.3
σin 8 4.1
σsd 6 2.6

Table 3. The values of χ2 resulting from independent fits to quadratic polynomials in log(s),
illustrating the tensions in some parts of the dataset.

Scheme ε α′P (GeV−2) gDD tDD (GeV2) θ (rad) χ2/d.o.f
U-matrix 0.11± 0.08 0.35± 0.05 6.3± 1.3 2.2± 0.4 0.11± 0.02 1.316
Eikonal 0.12± 0.04 0.31± 0.10 8.81± 0.12 1.37± 0.05 0.20± 0.02 1.328

Table 4. χ2/d.o.f and best-fit parameters obtained using the eikonal (ω = 1) and U-matrix
(ω′ = 1/2) unitarisation schemes with single diffractive data. The parameters of the pp vertex are
fixed to the central values of table 1.

reconstruction of these events uses Monte Carlo showering codes such as SIBYLL [49] and
QGSJET-II [50] which use the eikonal unitarisation scheme.

As discussed in [33], there is considerable tension amongst the total and elastic cross
sections at the same or similar energies from different experiments (see also [51, 52]).
We quantify these inconsistencies by fitting each kind of cross section with a quadratic
polynomial in log s, the resulting χ2 shown in table 3.

We particularly note that at centre-of-mass energies of 7 and 8TeV, total and elastic
cross sections from TOTEM are consistently 1σ higher than those from ATLAS. The low
statistics we have to work with prevents us from determining which experimental results
are the outliers, so we shall continue to use all of the data points with the cognisance
that the resulting χ2 will inevitably be high. When including single diffractive data, this
enforces a baseline minimum of χ2 = 49.6 for 43 data points.

Furthermore, we do not include double diffractive cross-section measurements [6, 53,
54] in our fits since a proper description of these cross sections has so far eluded any
theoretical description. We have checked that our models are not able to reproduce these,
even if we free all possible parameters. We show the discrepancy in figure 1.

5 Results

We give the results of our fits in figure 1 and table 4. We obtain equivalent fits for the
U matrix and the eikonal, with respective values of the χ2/d.o.f of 1.316 and 1.328. As
discussed in section 4, these high values are driven by disagreements in the elastic data at
the high energies. With this understanding, it is clear that the data allows for U-matrix
unitarisation scheme. Either scheme describes the total and elastic cross sections equally
well; however, the U-matrix scheme provides a slightly better fit to the high-energy single
diffractive data than does the eikonal, as can be seen in figure 1.
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Figure 1. Top left: total, elastic, and inelastic cross sections obtained with best-fit parameters for
the U-matrix (solid curves) and the eikonal schemes (dashed curves) without using single-diffractive
data. Top-right: same as top-left but when single diffractive data is included in the fits. Bottom-
left: single diffractive cross-sections for best-fit values of the parameters when using the U-matrix
(solid curves) and eikonal schemes (dashed curve). Bottom-right: double diffractive cross-sections,
which are not well fit by either scheme.

The parameters of the pomeron trajectory are not affected by the inclusion of the
diffractive data, as they have a much lower weight than the elastic data. The parameters
linked to the diffractive state are consistent with the physical picture underlying our model:
the diffractive state is slightly bigger than the proton hence its scale tDD is slightly lower
than tpp.

As noted previously, the double diffractive cross sections p(−)
p → 2X [6, 53, 54] are

not fitted well by either of the unitarisation schemes. We show this in figure 1 (bottom-
right panel).

Multiple experiments have investigated the ratio of the real part of the elastic scattering
amplitude to its imaginary part at different centre-of-mass energies. Although we do not
use ρ data in our fits, we can predict its values at different

√
s using our best-fit parameters

and compare these predictions against the experimental data. We find that the values of
ρ and its slowly-falling shape as a function of

√
s are largely consistent with experimental
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Figure 2. The growth of the single-diffractive cross section with lab energies up to
√
s = 1011 GeV

for both the U-matrix unitarisation scheme (solid curve) and the eikonal (dashed curve). We show
a 1σ error band in the U-matrix case. The corresponding band is similar in the eikonal case, but
we omit it for clarity.

data between 100GeV and 7TeV (see e.g. [48]). We predict ρ = 0.131 ± 0.009 for either
unitarisation scheme at

√
s = 13TeV. This agrees with the result ρ = 0.14 in [55]; however,

it is in tension with the value of ρ ≈ 0.10 obtained for the 13TeV TOTEM data both by
the collaboration itself [56] and in [57].

Despite their equivalence for existing data, the two schemes give significantly different
predictions for the single-diffractive cross section at ultra-high energies. Unlike the total,
elastic, and inelastic cross sections, the single diffractive cross section obtained using the
eikonal scheme is noticeably different from that obtained using the U-matrix, with the
former exhibiting a slower growth with energies than the latter, as shown in figure 2. This
difference is especially significant for ongoing cosmic-ray experiments measuring the pp
cross-section at high energies from tens of TeV up to the GZK cut-off, Elab ≈ 5×1010 GeV.
As the single-diffraction is the parent process to forward pions, and hence to forward
muons, it seems that considering different unitarisation schemes would lead to different
muon multiplicities at ultra-high energies.

6 Conclusions

We have shown how the scheme proposed by Gotsman, Levin and Maor [42, 44] could
be adapted to other unitarisation schemes. We have also shown how the vertices of the
mixed states could be deduced from those of the proton, allowing a more constrained
parameterisation.

Using up-to-date collider data on p(−)
p total, elastic, and single diffractive cross sections,

including 13TeV data from recent LHC experiments, we have determined best fits to the
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parameters governing these cross sections in the context of different unitarisation schemes.
Specifically, we have shown that the U-matrix scheme fits the data as well as the more
ubiquitous eikonal scheme. In fact, the fits have a slight preference for the U Matrix. This
difference is driven by the single diffractive cross section, especially at high energies, while
the best-fit total and elastic cross sections are nearly identical up to energies of 13TeV
when using either of these schemes.

A consequence of the indifference of the elastic cross section to the choice of the unitari-
sation scheme up to tens of TeV is that values of the ρ parameter remain largely unaffected
by the choice of the scheme too. We use our best-fit parameters to compute this parameter
across different energies, and find that the corresponding values conform to existing data,
to the exception of the TOTEM measurement at 13TeV.

We have also analysed how the fits improve if one uses the generalised eikonal and
U-matrix schemes and we find that these generalisations — at the cost of an additional
free parameter (ω or ω′) — do not improve the fits significantly.

The upshot of our analysis is that the overall best-fit cross section, in light of up-to-
date collider data, is obtained using amplitudes unitarised via the U-matrix scheme. The
resulting p(−)

p single diffractive cross section shows a sharper growth at high energies than
does the one obtained using the more commonly used eikonal scheme, and unitarisation
could have an impact on the description of ultra-high-energy cosmic-ray showers.
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5 Unitarity and Multi-Channel

Diffraction

5.1 Context of the study

One of the striking results obtained from the previous study is related to

the description of the total, elastic, and inelastic cross-sections, which were

scheme-independent with the exception of the single-diffractive data that

preferred the U -matrix scheme over the eikonal one, regardless of the data

used.

Since hadron diffraction is closely tied to correlations arising from

hadron fluctuations in various configurations, implementing a multi-

channel model of high-energy hadronic interactions using the U -matrix

scheme could enhance our understanding of these hadronic fluctuations.

In light of this, we were spurred to undertake this study, in which we

extend the two-channel model to a multi-channel one. It can be perceived

as a continuation of the previous work, focusing on testing the hypothesis

of considering an infinite parton configuration space and quantifying the

uncertainties pertaining to the description of various hadronic observables,

namely total, elastic, inelastic and single-diffractive cross-sections. In

addition, it sought, based on our model, to predict the double diffractive

cross-section, the ratio of the real part to the imaginary part of the elastic

amplitude, i.e., the ρ parameter, and the elastic differential cross-section.

This study was conducted within the framework of the two-channel

Good-Walker mechanism, which was extended to the multichannel case

by considering the full range of parton configurations and mapping these

configurations onto positive real numbers to facilitate the replacement of

discrete sums with integrals, addressing the continuous nature of the prob-

lem.
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1 Introduction

When ultra-high energy cosmic ray particles first hit the Earth’s atmosphere, several
additional interactions take place. These interactions lead to particle multiplication and
decay processes, which collectively result in a cascade of secondary particles known as
an extensive air shower (EAS). In fact, observing these air showers is the only means of
detecting high-energy cosmic ray particles. The development of air showers is dependent on
hadronic cross sections and particle production characteristics in hadronic interactions.

However, it is worth noting that there is still much to be discovered about the evolution
of the total and elastic cross sections in hadron-hadron collisions as functions of the center
of mass energy as well as the characteristics of multiparticle production in these interactions.
It is an interesting line of research given its phenomenological implications.

Indeed, estimating the features of hadronic interactions at LHC energies is crucial not
only for modelling the background while looking for potential manifestations of new physics
but also for the interpretation of the existing (and future) cosmic ray data, which relies on
theoretical assumptions that describe these interactions.

As a matter of fact, despite being a well-known and experimentally supported theory of
strong interactions, Quantum chromodynamics (QCD) can only currently predict processes
involving large momentum transfer. Furthermore, the bulk properties of multiparticle
production, which are required for air shower simulation, are still not calculable. Therefore,
in order to create models for hadronic interactions that describe various particle genera-
tion processes, it is necessary to make further simplifying hypotheses in conjunction with
phenomenological models that essentially consist of perturbative QCD (pQCD) predic-
tions and phenomenological fits to experimental hadron spectra, which in turn are based
on fundamental principles of quantum field theory — such as unitarity, analyticity and
crossing, along with empirical parametrizations [1]. Certainly, it is crucial to validate these
assumptions, constrain the parametrizations, and fine-tune the parameters using accelerator
data comparisons.

– 1 –
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For instance, in a prior study [2], the hypothesis of using two different unitarization
schemes; the commonly employed eikonal as well as the U-Matrix, as unitarity constraint of
the elastic amplitude was examined by looking into the effect of including recent collider
data for total, elastic, inelastic and single diffractive cross sections in the framework of
the two-channel model. The results showed nearly identical cross-sections, regardless of
the unitarisation scheme adopted. Most importantly, it has been found that the single
diffractive data are slightly better described with the U-matrix than with the eikonal
one, in spite of the data used. Another hypothesis with regard to considering an infinite
parton configurations space has been examined using the eikonal scheme [3]. We intend to
investigate this hypothesis, but rather utilizing the U-matrix scheme.

It should be noted that the U-matrix scheme is not used as an alternative to phenomeno-
logically studying hadronic interactions at high energy, but rather for physical reasons. To
start with, the choice of the U-matrix scheme is motivated by the aforementioned result [2].
Secondly, owing to the fact that correlations may emerge from the fluctuations of the hadrons
in various configurations, which is a phenomenon closely connected to hadron diffraction [4],
we then may infer that these hadron fluctuations might be increased through implementing
a multi-channel model of high energy hadronic interactions using the U matrix scheme. We
expect that it will produce a better description of the hadronic observables, compared with
the eikonal scheme, within the multi-channel model. We also anticipate that it will provide
better results within the multi-channel model than within the two-channel one.

This study has the following objectives. First of all, it will focus on testing the
hypothesis of considering an infinite parton configuration space and compare it to the
two-channel counterpart. Based on our model, it also seeks to predict the double diffractive
cross-section, the ratio of the real part to the imaginary part of the elastic amplitude, i.e.,
the ρ parameter, and the elastic differential cross-section. Finally, the impact of considering
a multi-channel model on present and future cosmic ray data will be discussed.

The present paper is organised as follows. In section 2 we will focus on the theoretical
framework of the diffractive excitation in the context of the multi-channel Good-Walker
approach. In section 3, an explicit model for the description of the elastic scattering
amplitude as well as the treatment of the average number of interactions will be proposed.
Moreover, the principal parameters of the model and data used will be highlighted. In
section 4, the results of the study will be presented and discussed. In section 5, the
conclusions will be given.

2 Diffraction and multi-channel Good-Walker approach

2.1 Theoretical framework

Hadrons are composite particles comprised of quarks and gluons which interact in a variety
of ways during hadron collisions. It is possible to relate these interactions to the total and
elastic cross sections using a suitable theoretical framework. But the specific way to achieve
it is still an open question. In fact, “Mini-jet” models [5] are thought to be a viable option,
with total and elastic cross sections calculated using an eikonal formalism in terms of the
quantity 〈n(b, s)〉, representing the average number of elementary interactions at impact
parameter b and c.m. energy

√
s.

– 2 –
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It should be emphasized that predictions made using the simple eikonal scheme in these
Mini-jet models are insufficient. The fact that this kind of elastic amplitude unitarization
scheme is inappropriate for a collision of composite objects like hadrons is already supported
by the findings of a number of studies [6–8] as well as certain (indirect) evidence. In fact,
the eikonal unitarization scheme is a well-known technique for calculating the amplitude
X, which meets some minimal s-channel unitarity constraints from the “non-unitary”
amplitude χ, as

X = i(1− exp (iχ)) (2.1)

It is based on the assumption that the impact parameter (the perpendicular distance
between the trajectories of colliding particles) is much larger than the characteristic size
of the interacting particles. Regarding the statistical nature of this scheme, in collisions
at a fixed impact parameter and c.m. energy, the fluctuations in the number of inter-
actions are just Poissonian in nature [9]. The statistically independent and identically
distributed interactions is equivalent that each exchange process is statistically equivalent
and contributes equally to the overall scattering amplitude. This is equivalent to a sum of
contributions derived from the multiple exchanges, emerging with equal weights, which is
described by the primary amplitude χ. While the assumption of equal weights is a useful
simplification, it may not always accurately reflect the underlying physics. In reality, the
individual exchange processes may have different strengths or probabilities, which could
affect the overall scattering amplitude. Accounting for such differences would require a more
detailed and sophisticated treatment beyond the eikonal approximation. Mathematically,
the eikonal approximation allows us to factorize the overall scattering S-matrix associated
with the interaction into a product of individual scattering matrices. This approach is
sometimes connected with the image of a rapid particle travelling virtually straight ahead
in target media, [10].

Furthermore, the eikonal approximation treats the hadrons as classical objects with
fixed parton distributions. It assumes that during the interaction, the parton configurations
remain frozen or unchanged. This approximation is valid when the timescale for the parton
dynamics, such as radiation and absorption, is much longer than the timescale of the
interaction itself [11]. The freezing of parton configurations in the eikonal approximation
simplifies the calculations by considering the partons as fixed distributions and focusing
on the overall scattering process rather than the detailed internal dynamics. However,
it is important to note that the freezing of parton configurations is an approximation
and may not capture all aspects of the parton dynamics accurately. In reality, partons
can undergo radiation and absorption processes, leading to changes in their energy and
momentum distributions. Due to these limitations in the eikonal approximation, all such
multiple exchanges may not occur simultaneously and may be dependent on each other.
This challenges the assumption of equal weights and Poissonian behavior in the summation
of exchanges. Furthermore, the need for multiple exchanges arises to account for phenomena
such as screening effects and additional inelastic processes. The prevalence of the eikonal
scheme in Monte Carlo event generators, such as SIBYLL [12] and QGSJET [13], prompts
a reevaluation of its suitability for unitarizing the elastic amplitude in hadronic collisions.
Continual assessment and refinement of theoretical frameworks and models are necessary to
better capture the complexities of high-energy interactions.

– 3 –
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The fluctuating structure of hadrons, which are composite particles made up of quarks
and gluons bound together by the strong force, is thought to contribute to the process of
diffractive excitation. The internal structure of hadrons is highly complex and dynamic,
with quarks and gluons constantly interacting and creating temporary resonances within
the hadron. During a high-energy collision between two hadrons, these resonances can
be excited by the exchange of a pomeron, leading to diffractive excitation. The exact
mechanism of this process is still an area of active research in particle physics. According
to Good and Walker (GW) [14], inelastic diffraction occurs because an interacting hadron
can be perceived as a superposition of several states that experience uneven absorptions.
GW further depicted the diffractive excitation as the eigenstates of the scattering operator,
which are utilized to describe the physical states.

In the same vein, Miettinen and Pumplin [15] postulated that these “transmission
eigenstates” can be recognized as distinct “configurations” of the parton elements contained
within a hadron. It is necessary to have a general grasp of the entirety of these parton
configurations in order to estimate inelastic diffraction within this theoretical framework,
which seems to be a challenging task. One possible method of doing so consists in lessening
the space of parton configurations to a finite dimensional space and explicitly creating
a matrix transition operator. As an illustration of this approach [2], we have taken into
account the minimal scheme initially proposed by Gotsman, Levin, and Maor (GLM) [16]
and combined the proton with one diffractive state. This is equivalent to a two-channel
unitarisation scheme. Another illustration can be found in [16], where GLM examined the
case N = 3 in the eikonal scheme but discovered no appreciable improvement.

Therefore, in order to highlight the difference in the description of the hadronic
observables between the models, the entirety of parton configurations as well as the scheme
adopted should be taken into account. Practically speaking, an N channel scheme could
be considered, but this would increase the number of parameters, which will affect the
attainment of a reliable and realistic model in comparison with the physics that we aspire
to describe.

An alternative approach assumed here is to map the space of the parton configurations
into the real positive numbers. Various research papers in the field have already explored
this approach [3, 17–23] but all of them with the eikonal scheme. However, since no single
published study, to our knowledge, has estimated the inelastic diffraction within the GW
approach by considering the entirety of parton configurations together with the U-matrix
scheme, this study attempts to fill this gap, at least partially. The total cross-section and
its various constituents (elastic, absorption, and diffraction) can be calculated as will be
shown in the following section.

2.2 Formalism

We adopt the multichannel formalism presented in [3, 22], with a small modification to
account for a full complex scattering amplitude. The starting point is the impact parameter
space representation, where the hadronic observables, the total, elastic, single, and double
diffractive scattering cross sections may be readily expressed as:

σtot(s) = 2
∫

d2b Im {Xel(s, b)} ; σel(s) =
∫

d2b
∣∣Xel(s, b)

∣∣2 ; (2.2a)

– 4 –
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σsd(s) = 2
∫

d2b
∣∣Xsd(s, b)

∣∣2 ; σdd(s) =
∫

d2b
∣∣Xdd(s, b)

∣∣2 (2.2b)

When a projectile P collides with a target T , represented by the physical states |P 〉
and |T 〉 respectively, we assume that both states can be diffracted onto various particle
states {|A〉} and {|B〉} due to their substructure. The GW approach states that the initial
state can be expressed as a sum over the eigenstates {|Ψi〉} of the scattering operator T̂ ,
forming a complete set of normalized states. This gives us the initial state |I〉 as:

|I〉 = |P, T 〉 =
∑

ij

CPi C
T
j |ψiψj〉 (2.3)

where T̂ |ψiψj〉 = tij |ψiψj〉, with the eigenvalues tij = tij(b, s) depending implicitly on the
projectile and target’s specific configurations. The final state system can be described by

|F 〉 = T̂ |I〉 =
∑

i,j

CPi C
T
j tij |ψiψj〉 (2.4)

leading to
〈F |F 〉 =

∑

i,j

|CPi |2|CTj |2|tij |2 =
∑

i,j

PPi P
T
j |tij |2 = 〈|t|2〉P,T (2.5)

where we have identified PPi = |CPi |2 and P Tj = |CTj |2 as configuration’s probability
distributions for projectile and target respectively, and 〈. . .〉P,T refers to the mean value
calculated across the different configurations present in both the projectile and the target.

The final state system can be expressed as a sum over the possible final states {|A,B〉},
which form a complete set of eigenstates, as:

|F 〉 =
∑

A,B

|A,B〉 = |P, T 〉+
∑

A 6=P
|A, T 〉+

∑

B 6=T
|P,B〉+

∑

A 6=P,B 6=T
|A,B〉 (2.6)

As a result, we can deduce that:

〈F |F 〉=
∑

A,B

〈F |A,B〉〈A,B|F 〉

= |〈P,T |F 〉|2+
∑

A 6=P
|〈A,T |F 〉|2+

∑

B 6=T
|〈P,B|F 〉|2+

∑

A 6=P ;B 6=T
|〈A,B|F 〉|2 . (2.7)

Furthermore, by using the fact that

Xel(s, b) ≡ 〈P, T |F 〉 =
∑

i,j

|CPi |2|CTj |2tij ≡ 〈t〉P,T , (2.8)

XP
sd(s, b) ≡ 〈A, T |F 〉|A 6=P =

∑

i,j

C∗,Ai CPi |CTj |2tij , (2.9)

XT
sd(s, b) ≡ 〈P,B|F 〉|B 6=T =

∑

i,j

|CPi |2C∗,Bj CTj tij , (2.10)

Xdd(s, b) ≡ 〈A,B|F 〉|A 6=P ;B 6=T =
∑

i,j

C∗,Ai CPi C
∗,B
j CTj tij , (2.11)
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we can write by making use of the completeness of the states {|A〉}(∑AC
∗,A
i CAi′ = δii′):

|〈P, T |F 〉|2 +
∑

A 6=P
|〈A, T |F 〉|2 =

∑

A

|〈A, T |F 〉|2 =
∑

A

∣∣∣∣∣∣
∑

i

C∗,Ai CPi
∑

j

|CTj |2tij

∣∣∣∣∣∣

2

=
∑

A

∣∣∣∣∣
∑

i

C∗,Ai CPi 〈t(j)〉T
∣∣∣∣∣

2

=
∑

i

C∗,Pi CPi |〈t(j)〉T |2

= 〈|〈t〉T |2〉P (2.12)

In a similar fashion, we can obtain the following result:

|〈P, T |F 〉|2 +
∑

B 6=T
|〈P,B|F 〉|2 =

∑

B

|〈P,B|F 〉|2 =
∑

B

∣∣∣∣∣∣
∑

j

C∗,Bj CTj
∑

i

|CPi |2tij

∣∣∣∣∣∣

2

=
∑

B

∣∣∣∣∣∣
∑

j

C∗,Bj CTj 〈t(i)〉P

∣∣∣∣∣∣

2

=
∑

j

C∗,Tj CTj |〈t(i)〉P |2

= 〈|〈t〉P |2〉T , (2.13)

and
∑

A 6=P ;B 6=T
|〈A,B|F 〉|2 = 〈F |F 〉 − |〈P, T |F 〉|2 −

∑

A 6=P
|〈A, T |F 〉|2 −

∑

B 6=T
|〈P,B|F 〉|2

= 〈|t|2〉P,T − 〈|〈t〉T |2〉P − 〈|〈t〉P |2〉T + |〈t〉P,T |2 (2.14)

Thus, based on the aforementioned relations, we can deduce the related cross-sections in
the impact parameter space in the following manner:

• The elastic cross-section:

d2σel
d2b

= |〈P, T |F 〉|2 = |〈t〉P,T |2 ; (2.15)

• The projectile single diffractive cross-section:

d2σPsd
d2b

=
∑

A 6=P
|〈A, T |F 〉|2 = 〈|〈t〉T |2〉P − |〈t〉P,T |2 ; (2.16)

• The target single diffractive cross-section:

d2σTsd
d2b

=
∑

B 6=T
|〈P,B|F 〉|2 = 〈|〈t〉P |2〉T − |〈t〉P,T |2 ; (2.17)

• The double diffractive cross-section:

d2σdd
d2b

=
∑

A 6=P ;B 6=T
|〈A,B|F 〉|2

= 〈|t|2〉P,T − 〈|〈t〉T |2〉P − 〈|〈t〉P |2〉T + |〈t〉P,T |2 . (2.18)
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• Moreover, the total single diffractive cross section is expressed as:

d2σsd
d2b

= d2σPsd
d2b

+ d2σTsd
d2b

= 〈|〈t〉T |2〉P + 〈|〈t〉P |2〉T − 2|〈t〉P,T |2 , (2.19)

and the total diffractive cross-section as:

d2σdiff
d2b

= d2σsd
d2b

+ d2σdd
d2b

= 〈|t|2〉P,T − |〈t〉P,T |2 . (2.20)

• Finally, using the optical theorem, the total cross-section is given by

d2σtot
d2b

= 2 Im {〈t〉P,T } . (2.21)

To compute the required average over the configurations in both the projectile and the
target, necessary for obtaining these cross-sections and encompassing the entire space of
parton configurations, we perform a mapping of this space onto the domain of real positive
numbers. This mapping is established under the assumption that the distinct configurations
Ci can be effectively represented by a continuous distribution, where each configuration is
assigned a corresponding probability Phi(Ci).

Accordingly, we can substitute a discrete summation with a continuous one, and this
leads to the following correspondences:

∑

i

|CPi |2 →
∫
dC1Ph1(C1) for the projectile, (2.22)

∑

i

|CTi |2 →
∫
dC2Ph2(C2) for the target (2.23)

and
tij(b, s)→ t(b, s,C1,C2) , (2.24)

where the different configurations are clearly displayed.
In order to reveal the role of taking into account a full parton configuration space based

on this formalism, we need a model for the elastic scattering amplitude t(b, s,C1,C2), and the
probability distribution Phi(Ci), which will explicitly be presented in the following section.

3 Explicit model and data

The elastic hadron scattering amplitude t(b, s,C1,C2) is a complex function that describes
the probability of two hadrons scattering off each other at a given energy and impact
parameter. At high energies, this amplitude can become very large, which violates the
unitarity condition that the probability of any physical process cannot exceed unity. To
restore unitarity, we can use a process called unitarization. This involves modifying the
amplitude in a way that satisfies unitarity while preserving its physical properties. As has
been stated in the introduction, we will consider that t(b, s,C1,C2) is given by the U-Matrix
form [24], as the sum of all n-pomeron exchange contributions from the single-pomeron
scattering amplitude which in turn is related to the expected number χ(b, s,C1,C2) of

– 7 –
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interactions between partons of the incident hadrons for a given combination of configurations
C1 and C2:

t(b, s,C1,C2) = χ(b, s,C1,C2)
1− iχ(b, s,C1,C2)/2 (3.1)

In order to simplify the calculation of the elastic scattering amplitude, we suppose that the
expected number of interactions between partons can be expressed as a product of the single-
Pomeron scattering amplitude and some functions of impact parameter and configurations.

χ(b, s,C1,C2) = f(b,C1,C2) · χP (s, b) (3.2)

This factorization is based on the idea that the configurations dependence of χ(b, s,C1,C2)
can be separated from the energy dependence, which is described by the single-Pomeron
scattering amplitude. This assumption is based on the fact that the energy dependence
of the elastic scattering amplitude is dominated by the exchange of a single Regge pole,
the pomeron, which is independent of the specific hadronic configurations involved in the
scattering process

In addition, if we assume that the distribution of parton configurations is independent
of the impact parameter, which means that the parton density inside the hadron is the same
at all points in space and that the hadron can be treated as a collection of independent
partons, then we can write

χ(b, s,C1,C2) = χP (s, b) · α(C1)α(C2) (3.3)

where the functions α(Ci) depend on the configurations of the incident hadrons. Therefore,
we have
∫
dC1

∫
dC2Ph1(C1)Ph2(C2)t(b, s,C1,C2) =

∫ ∞

0
dα1

∫ ∞

0
dα2p(α1)p(α2)t(b, s, α1, α2)

(3.4)
where the functions p(αi) are defined by

p(αi) =
∫
dCiPhi(Ci)δ[α(Ci)− αi], (3.5)

which satisfy the following constraints:
∫ ∞

0
dαi p(αi) = 1, (3.6)

and ∫ ∞

0
dαi αi p(αi) = 1 (i = 1, 2) . (3.7)

Accordingly, we can implicitly take into account of an infinite number of inelastic
channels by using the function of a real positive variable, the probability distribution p(α)
representing the fluctuations of the hadron configurations with some extension defined by its
variance. This generalizes the GW approach to a multichannel framework, as demonstrated
in [11], where the connection between the discrete and continuous multi-channel GW
was established.

Thus, The averaging over the configurations appearing in eqs. (2.15)–(2.21) will be
determined as follows:

– 8 –
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• Mean value computed over the configurations of the projectile:

〈tn〉P =
∫ ∞

0
dα1 p(α1) tn(b, s, α1, α2); (3.8)

• Mean value computed over the configurations of the target:

〈tn〉T =
∫ ∞

0
dα2 p(α2) tn(b, s, α1, α2); (3.9)

• Mean value computed over the configurations of the projectile and the target:

〈tn〉PT =
∫ ∞

0
dα1

∫ ∞

0
dα2 p(α1) p(α2) tn(b, s, α1, α2) (3.10)

An advantage to the method disclosed here is that it considers the entirety of the parton
configuration space. Nevertheless, it should be noted that the probability distribution
p(αi), remains unknown. We do anticipate, however, that this distribution will exhibit the
following characteristics: it needs to be defined for positive values of its variable α and have
the predicted limit, p(α)→ δ(α− 1), when its variance reaches zero, which is equivalent
to no fluctuations and satisfies the above constraints (3.6) and (3.7). In order to satisfy
these properties, we use for the probability distribution p(αi), the gamma distribution, with
variance w,

p(αi) = 1
wΓ(1/w)

(
αi
w

)−1+1/w
e−αi/w (3.11)

Since we are accounting for the collision of identical hadrons, we will suppose that the
variance w of the distribution is independent of i. This assumption enables us to compute
the average over configurations eqs. (3.8), (3.9) and (3.10) needed to determine the various
observables eqs. (2.15)–(2.21).

To complete the description of our model, we parameterize the single-pomeron scattering
amplitude, as the Ansatz put forth in [2] for comparison purposes:

aP (s, t) = g2
ppFpp(t)2

(
s

s0

)α(t)
ξ(t), (3.12)

where α(t) is the pomeron trajectory, Fpp(t) is the proton elastic form factor, and gpp is the
coupling pomeron-proton-proton, with ξ(t) the signature factor

ξ(t) = −e
−iπα(t)

2 , (3.13)

where a full complex rather than a purely imaginary one was chosen in order to meet
the elastic amplitude’s analyticity constraint, which is essential to respecting causality.
Regarding the proton elastic form factor, although the exact functional form is not very
important as we want to make a comparison with the two-channel model, we shall consider
here a dipole form factor:

Fpp = 1
(1− t/tpp)2 (3.14)

– 9 –
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Using an exponential form factor {F1 = exp (R0t)}, instead of the dipole form, leads to
slightly poorer fits [25]. The pomeron trajectory is close to a straight line [26] and we take
it to be

α(t) = 1 + ε+ α′P t. (3.15)

In the impact-parameter space representation, where the Fourier transform of the amplitude
aP (s, t) rescaled by 2s is equivalent to a partial wave, we have:

χP (s, b) =
∫ d2q

(2π)2
aP (s, t)

2s eiq·b, (3.16)

and by the unitarisation procedure we map the amplitude χP (s, b) to the physical am-
plitude t(s, b), which in turn bears the same relation as eq. (3.16), but this time to the
physical amplitude:

t(s, b) =
∫ d2q

(2π)2
A(s, t)

2s eiq·b. (3.17)

Thus, using the assumptions made in this model, we can make specific predictions and
conclusions about the hadronic collisions at high energy and, at the same time, test the
hypotheses that were adopted.

Before presenting our results in the subsequent section, we list here the model parameters
that will be set by the data fit as well as the experimental data employed. The model
parameters are the following: ε and α′, which are associated with the Pomeron trajectory,
as well as gpp and tpp linked to the proton-pomeron pIPp vertex, and the variance ω of the
probability distribution. We employ experimental data above 100GeV as we are concerned
with high energy effects induced in p(−)

p cross sections. And as we aim at looking into the
impact of putting in place a multi-channel model in order to describe hadronic interactions
and comparing it with the two-channel one, the same data set1 as in [2], which involves
statistical as well as systematic errors and combines them in quadrature, is used. The
fitting process was conducted using the class Minuit2 from ROOT [27] and the MIGRAD
algorithm. The fitting was performed by minimizing the χ2 value, and the uncertainties in
the free parameters were calculated with a 1σ confidence level, which was used to determine
the error band.

4 Results and discussion

The results of our multi-channel model are provided in figure 1 and table 1 using the
formalism previously outlined. As can be seen from these findings, the multi-channel model
describes well the total, elastic, inelastic, and single-diffractive cross-sections, with a χ2

/d.o.f of 1.328. These outcomes are actually in line with those obtained using the U -matrix
two-channel model with a χ2 /d.o.f of 1.316 [2], which shows a difference of only 0.012 in
the χ2 /d.o.f.

The difference between the two χ2 obtained in both models is marginal. As a matter of
fact, it is somewhat surprising that there is no improvement with the multi-channel model

1See compilation in [2].

– 10 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
7

102 103 104 105
√
s[GeV ]

40

60

80

100

120

140

σ
to
t[
m
b]

Multi-channel U Matrix

non PDG data

p̄p

pp

102 103 104 105
√
s[GeV ]

10

15

20

25

30

35

40

45

σ
el

[m
b]

Multi-channel U Matrix

non PDG data

p̄p

pp

102 103 104 105
√
s[GeV ]

40

50

60

70

80

90

100

σ
in
el

[m
b]

Multi-channel U Matrix

non PDG data

102 103 104 105
√
s[GeV ]

4

6

8

10

12

14

16

18

20

σ
sd

[m
b]

Multi-channel U Matrix

non PDG data

Figure 1. Total, elastic, inelastic and single diffractive cross sections with the Multi-channel model
and the 1σ error bands around the fitted curve obtained with best-fit parameters.

Model ε α′P (GeV−2) gpp tpp (GeV2) ω χ2/d.o.f
Multi-channel 0.11± 0.003 0.29± 0.04 8.25± 0.2 2.06± 0.75 0.59± 0.06 1.328

Table 1. χ2/d.o.f and best-fit parameters obtained with the U -matrix Multi-channel model.

given that the latter was expected to describe the diffractive phenomenon, in particular,
better than the two-channel one. The reason for this similarity between the two models
can be attributed to the unitarization process employed in both cases. Specifically, both
models adhere to the same unitarity constraint, known as the U -matrix scheme. This can
be observed in figure 2 (right panel), where the impact-parameter space representation
showcases that the imaginary and real components of the elastic profile function at a specific
energy, such as 13TeV, are nearly identical in both models. Furthermore, it is evident
that these components do not surpass the black disk limit, indicating consistency with the
principles of unitarity. Most importantly, based on the similarity in the obtained χ2/d.o.f.

values between the U -matrix multi-channel model and the eikonal two-channel one [2],
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Figure 2. The double diffractive cross section with 1σ error bands around the predicted curve
obtained with the Multi-channel model (left panel). The real and imaginary parts of the elastic
profile function Γ(s, b) at

√
s = 13TeV with the U Matrix scheme for the two and multi-channel

cases (right panel).

it seems likely that the factorization assumption adopted in the former case may not be
applicable. Specifically, if there is a correlation between the pomeron exchanges, then the
impact parameter and configuration dependence of the scattering amplitude may not be
separable from the energy dependence carried by the single-pomeron exchange. In this case,
the distribution of parton configurations may depend on the impact parameter, and the
average number of interactions at a fixed impact parameter and center of mass energy may
not be separable from the configuration dependence of the incident hadrons.

Double diffractive cross-section measurements are not included in our fits and our
prediction based on the model presented in this study doesn’t reproduce these data in spite
of considering an infinite parton configurations space, which corroborates the result reported
in the context of a two-channel model [2], as illustrated in figure 2 (left panel). In fact, a
proper description of this cross-section requires the introduction of an additional contribution
due to the Pomeron-enhanced diagrams involving Pomeron-Pomeron interactions which
is non GW. As the energy increases, more diagrams illustrating complicated topologies
become involved. Consequently, the consistent treatment of these enhanced corrections
proves to be a very challenging task [28].

Figure 3 displays the predictions for the energy evolution of the cross sections in the
impact parameter space from Tevatron to cosmic ray energies. The elastic, single-diffractive,
and double-diffractive differential cross sections are shown in the top right, bottom left and
right panels, respectively. It can be seen that the elastic scattering is primarily central and
increases with energy. This result is comparable to the one reported in [3]. In contrast, it
gets much closer to the black disk limit at cosmic ray energies. The behaviour of the single
diffractive differential cross-section is similar to that of the elastic scattering. At b = 0,
it is mostly central and has a magnitude that grows with energy, but it is smaller than
the one of the elastic scattering. It also declines more slowly than the elastic cross-section
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Figure 3. Multi-channel model predictions for the energy dependence of the elastic, single diffractive,
and double diffractive differential cross sections in impact parameter space.

as b rises. Similar behaviours of the unintegrated profile for the single diffractive cross
section at low mass are predicted by the Kolevatov and Boreskov model presented in [29].
This result contrasts with the one presented in [3], where the total single diffractive cross
section becomes more peripheral, with a maximum moving to a higher impact parameter
as the energy rises. Furthermore, as the c.m. energy increases, the magnitude of the SD
cross-section at b = 0 decreases. This rather contradictory result might be attributed to
the use of two different unitarization schemes. The double diffractive cross-section becomes
more peripheral when energy rises. Nevertheless, its magnitude at b = 0 diminishes as c.m.
energy increases. This result is in line with that obtained in [3]. A note of caution with
regard to the shape of the unintegrated profile for the double diffractive cross section is due
here since it is not well described.

The ρ parameter, i.e., the ratio of the real part of the elastic scattering amplitude
to its imaginary part has been studied in several experiments at different centre-of-mass
energies. In spite of the fact that ρ data are not used in our fits, we can estimate its values
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Figure 4. Multi-channel model predictions for the ρ parameter (left panel) and for the elastic
differential cross-section at 13TeV (right panel).

at various
√
s by using our best-fit parameters and then compare these predictions with the

experimental data. Figure 4 (left panel) illustrates our predicted values for this observable.
As can be seen from this figure, while our model furnishes a reasonable description for this
parameter at various high energies, it is unable to estimate the TOTEM data at 13TeV
since the 1σ error band of the model doesn’t even reach the error bars of these data.

This finding can be explained by the fact that an odderon contribution, which emerged
from the TOTEM and D0 experiments is required to be included, implying distinct energy
dependencies of the pp and pp̄ cross sections [30].

Figure 4 (right panel) shows our prediction for the elastic differential cross-section
in function of the transverse momentum in the context of a pp collision at 13TeV. It is
evident from the figure that while the model describes the experimental data for the elastic
differential cross-section at small values of squared momentum transfer q2, neither the
position of the dip nor the behaviour at large q2 is adequately described. Similar outcomes
have already been reported in a number of previous studies [3, 19], which stresses the need
for an improvement of the present model. Most importantly, this result points out that
taking into account an entire parton configuration space doesn’t have any impact on the
description of the elastic differential cross section, as has been found in the two-channel
case [31]. Our model can be enhanced by considering a complex hadron overlap function
rather than a simple dipole form factor, which is a reasonable approximation, since it is
known that the elastic differential cross-section depends on the description of the overlap
function and, thus, on the internal structure of the incident hadrons [31]. As regards the
position of the dip, it has been reported in [31] that an Odderon contribution is required.

Although the two-channel and the multi-channel models are similar in describing the
various hadronic observables in comparison to the currently available data, they provide
differing predictions for the single-diffractive cross-section, in particular, at ultra-high
energies, as shown in the right panel of figure 5, where the two-channel model exhibits a
faster increase with energies than the multi-channel one, using the U matrix scheme.
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Figure 5. The growth of the single-diffractive cross-section with lab energies up to
√
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for both the two and multi-channel models.

This discrepancy may stem from the assumption of equal width for fluctuations in
the parton configurations of colliding hadrons across different channels. This assumption
simplifies the model by assuming uniform fluctuations across processes. However, in reality,
fluctuations may vary between channels. To gain a deeper understanding, it would be
valuable to investigate the potential for channel-dependent fluctuations. This would entail
allowing the width of fluctuations to vary for each channel, thereby encompassing the unique
characteristics and dynamics of individual scattering processes.

5 Conclusions

The chief purpose of the study was to provide a phenomenological description of the hadronic
interaction at high energy through extending the two-channel model into a multi-channel one
using the U-matrix unitarization scheme of the elastic amplitude. It has been found that the
multi-channel model accurately describes the total, elastic, inelastic, and single-diffractive
cross-sections, with only a minor difference from the two-channel one.

In addition, in spite of considering an entire parton configuration space, the present
model was not able to estimate the double-diffractive cross-section, which is in line with
the results obtained with the two-channel model. In fact, a proper description of this cross-
section requires the introduction of an additional contribution, i.e., pomeron interactions.

Moreover, the behaviour of the energy evolution of the various profile functions in the
impact parameter space from Tevatron to cosmic ray energies was analysed.

The study has also found that the present model describes well the ρ parameter at
different high energies, but it is unable to estimate the TOTEM data at 13TeV. It has
been suggested that an Odderon contribution is needed to be included in order to remedy
this shortcoming.
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Furthermore, the elastic differential cross-section at 13TeV was predicted. It has been
shown that the model describes the experimental data for this observable at small values
of squared momentum transfer q2, but it doesn’t describe the position of the dip or the
behaviour at large q2. In this regard, it has been proposed that considering a complex hadron
overlap function instead of a simple dipole form factor as well as an odderon contribution
would be possible approaches to address this flaw.

Last but not least, despite similarities in the way the two models describe various
hadronic observables, they provide distinct predictions for the single-diffractive cross-section,
especially at ultra-high energies, which represents an interesting direction for future research
on ultra-high energy cosmic rays.

The paper concludes by arguing that the U -matrix scheme is more likely to accounting
for potential correlations between pomeron exchanges. Additionally, it suggests that the
two-channel model, as opposed to a multi-channel one, is adequate for modeling high-
energy hadronic interactions, particularly single diffractive scattering, using the U -matrix
scheme, even at ultra-high energies, provided that any potential pomeron correlations
are disregarded.

In summary, the multi-channel model used in the paper has limitations because the
probability distribution for hadron configurations is not unique, and that the impact
parameter and configuration dependence of the scattering amplitude may not be separable
from the energy dependence carried by the single-pomeron exchange. This would complicate
the calculation of the total elastic scattering amplitude and may require a more advanced
theoretical framework, which is beyond the scope of this work.

On the whole, the findings of this study can serve as a base for future improvements of
the hadronic interaction models used in cosmic ray air shower simulations.

Acknowledgments

RO would like to thank Prof. Jean-René Cudell for his invaluable comments and fruitful
discussions. Special thanks go to the computational resource provided by Consortium des
Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique
de Belgique (F.R.S.-FNRS) where a part of the computational work was carried out.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. d’Enterria et al., Constraints from the first LHC data on hadronic event generators for
ultra-high energy cosmic-ray physics, Astropart. Phys. 35 (2011) 98 [arXiv:1101.5596]
[INSPIRE].

[2] A. Vanthieghem, A. Bhattacharya, R. Oueslati and J.-R. Cudell, Unitarisation dependence of
diffractive scattering in light of high-energy collider data, JHEP 09 (2021) 005
[arXiv:2104.12923] [INSPIRE].

– 16 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
7

[3] M. Broilo, V.P. Gonçalves and P.V.R.G. Silva, Model of diffractive excitation in pp collisions
at high energies, Phys. Rev. D 101 (2020) 074034 [arXiv:2003.04768] [INSPIRE].

[4] D. Treleani, A multi-channel Poissonian model for multi-parton scatterings,
https://arxiv.org/abs/0808.2656.

[5] L. Durand and H. Pi, High-energy Nucleon Nucleus Scattering and Cosmic Ray Cross-sections,
Phys. Rev. D 38 (1988) 78 [INSPIRE].

[6] E. Martynov and G. Tersimonov, Multigap diffraction cross sections: Problems in eikonal
methods for the pomeron unitarization, Phys. Rev. D 101 (2020) 114003 [arXiv:2004.00497]
[INSPIRE].

[7] S.M. Troshin and N.E. Tyurin, Unitarity at the LHC energies, Phys. Part. Nucl. 35 (2004) 555
[hep-ph/0308027] [INSPIRE].

[8] S.M. Troshin and N.E. Tyurin, Reflective scattering at the LHC and two-scale structure of a
proton, EPL 129 (2020) 31002 [arXiv:2001.06260] [INSPIRE].

[9] K.G. Boreskov et al., The Partonic interpretation of reggeon theory models, Eur. Phys. J. C
44 (2005) 523 [hep-ph/0506211] [INSPIRE].

[10] R.J. Glauber, in Lecture in Theoretical Physics, Volume 1, W.E. Brittin and L.G. Duham eds.,
Interscience, New York (1959).

[11] P. Lipari and M. Lusignoli, Multiple Parton Interactions in Hadron Collisions and Diffraction,
Phys. Rev. D 80 (2009) 074014 [arXiv:0908.0495] [INSPIRE].

[12] F. Riehn et al., Hadronic interaction model Sibyll 2.3d and extensive air showers, Phys. Rev.
D 102 (2020) 063002 [arXiv:1912.03300] [INSPIRE].

[13] S. Ostapchenko, QGSJET-III model: physics and preliminary results, EPJ Web Conf. 208
(2019) 11001 [INSPIRE].

[14] M.L. Good and W.D. Walker, Diffraction disssociation of beam particles, Phys. Rev. 120
(1960) 1857 [INSPIRE].

[15] H.I. Miettinen and J. Pumplin, Diffraction Scattering and the Parton Structure of Hadrons,
Phys. Rev. D 18 (1978) 1696 [INSPIRE].

[16] E. Gotsman, E. Levin and U. Maor, The Survival probability of large rapidity gaps in a three
channel model, Phys. Rev. D 60 (1999) 094011 [hep-ph/9902294] [INSPIRE].

[17] E. Avsar, G. Gustafson and L. Lonnblad, Diifractive excitation in DIS and pp collisions,
JHEP 12 (2007) 012 [arXiv:0709.1368] [INSPIRE].

[18] C. Flensburg and G. Gustafson, Fluctuations, Saturation, and Diffractive Excitation in High
Energy Collisions, JHEP 10 (2010) 014 [arXiv:1004.5502] [INSPIRE].

[19] C. Flensburg, G. Gustafson and L. Lonnblad, Elastic and quasi-elastic pp and γ?p scattering
in the Dipole Model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [INSPIRE].

[20] C. Flensburg, G. Gustafson and L. Lonnblad, Inclusive and Exclusive Observables from
Dipoles in High Energy Collisions, JHEP 08 (2011) 103 [arXiv:1103.4321] [INSPIRE].

[21] C. Flensburg, G. Gustafson and L. Lönnblad, Exclusive final states in diffractive excitation,
JHEP 12 (2012) 115 [arXiv:1210.2407] [INSPIRE].

[22] G. Gustafson, L. Lönnblad, A. Ster and T. Csörgő, Total, inelastic and (quasi-)elastic cross
sections of high energy pA and γ? A reactions with the dipole formalism, JHEP 10 (2015) 022
[arXiv:1506.09095] [INSPIRE].

– 17 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
7

[23] C. Bierlich, G. Gustafson and L. Lönnblad, Diffractive and non-diffractive wounded nucleons
and final states in pA collisions, JHEP 10 (2016) 139 [arXiv:1607.04434] [INSPIRE].

[24] J.-R. Cudell, E. Predazzi and O.V. Selyugin, New analytic unitarisation schemes, Phys. Rev.
D 79 (2009) 034033 [arXiv:0812.0735] [INSPIRE].

[25] A. Bhattacharya, J.-R. Cudell, R. Oueslati and A. Vanthieghem, Proton inelastic cross section
at ultrahigh energies, Phys. Rev. D 103 (2021) L051502 [arXiv:2012.07970] [INSPIRE].

[26] J.R. Cudell and O.V. Selyugin, Saturation regimes at LHC energies, Czech. J. Phys. 54 (2004)
A441 [hep-ph/0309194] [INSPIRE].

[27] M. Hatlo et al., Developments of mathematical software libraries for the LHC experiments,
IEEE Trans. Nucl. Sci. 52 (2005) 2818 [INSPIRE].

[28] S. Ostapchenko, On the re-summation of enhanced Pomeron diagrams, Phys. Lett. B 636
(2006) 40 [hep-ph/0602139] [INSPIRE].

[29] R.S. Kolevatov and K.G. Boreskov, All-loop calculations of total, elastic and single diffractive
cross sections in RFT via the stochastic approach, AIP Conf. Proc. 1523 (2013) 137
[arXiv:1212.0691] [INSPIRE].

[30] TOTEM and D0 collaborations, Odderon Exchange from Elastic Scattering Differences
between pp and pp̄ Data at 1.96TeV and from pp Forward Scattering Measurements, Phys. Rev.
Lett. 127 (2021) 062003 [arXiv:2012.03981] [INSPIRE].

[31] V.A. Khoze, A.D. Martin and M.G. Ryskin, Elastic proton-proton scattering at 13TeV, Phys.
Rev. D 97 (2018) 034019 [arXiv:1712.00325] [INSPIRE].

– 18 –



6 Unitarisation and Hadronic Multi-

Particle Production

6.1 Context of the work

There is a growing interest in the study of multiple production of

hadrons as it is perceived as the dominant phenomenon in high-energy

particle and nuclear collisions. This interest is especially pronounced

at ultra-high energies, as understanding this phenomenon is crucial for

the accurate interpretation of air-shower cosmic ray observables. These

interpretations are primarily achieved through Monte Carlo modelling of

hadronic interactions. However, modelling hadronic interactions is not

devoid of uncertainties, which gives rise to model-dependent outcomes.

For example, different Monte Carlo event generators such as EPOS,

QGSJET, and SIBYLL can produce varying predictions for the same

physical observables, complicating the interpretation of experimental

data from cosmic ray detectors like the Pierre Auger Observatory. This

discrepancy underscores the need for advances in the phenomenology

and theory of modeling hadronic interactions, especially in the context

of multi-particle production, to reduce uncertainties and achieve more

reliable and consistent results.

Continuing from the previous chapters’ work, the main focus of the

present chapter is on the improved predictive ability of a hadronic inter-

action model based on the U -matrix unitarisation scheme in explaining

the dynamics of multi-particle production in high-energy hadronic colli-

sions and its reliable prediction at ultra-high energies. More specifically,

it carefully looks at some important aspects related to this phenomenon,

in particular, multiplicity distributions, violation of scaling laws such as

geometrical and KNO scaling, correlations, and fluctuations between the

produced particles in the final state. Scaling laws in hadronic multi-particle

production are rules that describe how certain physical quantities remain

invariant or follow predictable patterns as the energy of particle collisions
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changes. They are crucial for simplifying the interpretation of high-energy

collision data, validating theoretical models, and understanding the un-

derlying dynamics of particle interactions.

Here we are concerned with two scaling laws, namely the geometrical

scaling and the KNO scaling. They are both put forth by the ISR mea-

surements of the proton-proton and proton-antiproton scattering. The

first one stands for the invariability of the ratio between elastic and total

cross-sections. According to experiments carried out at the CERN (SPS)

collider, it is important to note that this regularity is violated when en-

ergy exceeds the ISR energy range, raising fundamental questions about

the underlying mechanisms of hadronic interactions.

As for the second, it represents the energy independence of the shape

of the multiplicity distribution, i.e. the distribution of the number of

produced particles. The approximate KNO scaling is valid up to
√
s = 20

GeV. As the energy increases further, the distribution becomes wider than

as expected from the scaling at lower energies. The violation of this scaling

becomes significant as energy surpasses the ISR energy range.

Indeed, the violation of these scaling laws challenges our current

understanding of hadronic interactions and motivates the refinement

of existing theoretical frameworks to accommodate these discrepancies.

These violations also highlight complex dynamics that traditional models

may not fully capture, prompting further investigation into the underlying

mechanisms governing particle production at high energies.

Several studies have been conducted on the description of the geo-

metrical scaling and the KNO scaling violation, mainly using the eikonal

scheme. However, some studies have revealed that this scheme is not

without limitations. For example, in an eikonal model [10], it has been

demonstrated that strict KNO scaling is not valid as there exists a limited

range of energy where KNO scaling approximately holds. Besides, to

date, no single study has examined the potential implications of using

alternative schemes in the exploration of these phenomena or attempted

to unravel the underlying physics behind the multi-particle production

mechanism.

As shown in the previous chapters, the U -matrix scheme has offered

different and improved descriptions of certain hadronic cross-sections,

which are associated with the geometrical and KNO scaling. Thus, it is
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believed that it may provide a good description of their violation as well

and that it is poised to shed light on the underlying physics behind the

multi-particle production mechanism.

As a matter of fact, the aforementioned reasons have prompted us to

investigate these violations, using the U -matrix scheme. The investigation

also extends to higher-order moments of multiplicity distributions, which

provide critical insights into the correlations and collective behavior of

particles produced in collisions. The U -matrix framework allows for

a detailed examination of these statistical properties and unveils the

underlying physics behind using this scheme.

Based on the picture depicting the KNO scaling violation as an

extension of the geometrical scaling violation, the present study presents a

phenomenological model for multi-particle production in hadron collisions

that is grounded in the geometrical approach and using the U -matrix

unitarization scheme of the scattering amplitude.

To highlight the connection between the multiplicity distribution Pn(s)

and the unitarisation scheme of the scattering amplitude, the overall

multiplicity distribution is obtained by summing contributions from

parton-parton collisions occurring at each impact parameter weighted by

the inelastic overlap function, which dictates the unitarisation scheme.

We conducted a detailed analysis of the multiplicity distribution data

in full phase space p + p and p + p̄ collisions across a broad spectrum of

energies, specifically at
√
s = 30.4, 44.5, 52.6, 62.2, 300, 546, 1000, and

1800 GeV. With regards to the fitting process, we utilized the Minuit2

class from ROOT and implemented the MIGRAD algorithm. The primary

objective of the fitting procedure was to minimize the χ2 value and the

uncertainties associated with the free parameters were calculated using a

1σ confidence level.

After fine-tuning the model and deriving all parameters from optimal

fits to the various hadronic multiplicity distributions data in p+ p(p̄) col-

lisions over a wide energy range, we were able to predict the behaviour

of the energy dependence of the hadron mean multiplicity. Additionally,

we predicted the hadronic multiplicity distribution at new collision energy
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regimes, such as 14 TeV. We also examined the higher-order moments of

the multiplicity distribution.
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1 Introduction

Throughout the years, the study of multi-particle production in hadron collisions at high
energies has sparked the interest of both theoretical physicists and experimentalists given
its significance as it offers valuable insights into the intricate mechanisms underlying the
production of particles [1–5].

Similarly, the hadronic multi-particle production is primordial at ultra-high energies.
Indeed, it is necessary to have a solid grasp of it so as to properly interpret air-shower
cosmic ray observables, which are obtained through a simulation of a wide range of event
generators based on Monte Carlo models. These models have been created and adjusted to
describe hadronic multi-particle production in man-made accelerator experiments. Despite
some minor differences in their fundamental assumptions, the majority of them employ the
eikonal as the scheme of the unitarisation of the scattering amplitude. They must also be
internally consistent as we depend on them for extrapolating to ultra-high energy scenarios.
Nevertheless, modelling hadronic interactions is not devoid of uncertainties, which gives rise
to model-dependent outcomes. Among them, one can cite the mass composition problem
and the long-standing muon puzzle, which is regarded as one of the most significant issues
in hadronic interaction physics [6].

Having said that, advances in the phenomenology and theory of multi-particle production
may provide a solution to the aforementioned issues.

The study of multi-particle production may be carried out, particularly, through examin-
ing the multiplicity distributions of the produced particles. Their analysis is crucial since the
patterns observed in them help reveal the complexity of the collision process, shedding light
on the interactions involved in particle creation. In fact, this distribution has been thoroughly
investigated by experimental collaborations at the LHC, including ALICE, ATLAS, CMS,
and LHCb [7], to enhance our comprehension of the rudimentary characteristics of strong
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interactions and the behaviour of matter under extreme circumstances as well as to verify
theoretical predictions.

Besides, the study of the higher-order moments of the multiplicity distribution is of
paramount importance as they provide insight into particle features in high-energy collisions,
such as correlation and collective behaviour. Indeed, the behaviour of these moments has
been the subject of various experimental studies over a wide range of collision energies [8, 9],
furnishing valuable data which are crucial in constraining theoretical models.

The multiplicity distribution Pn(s) in hadron collisions refers to the distribution of the
number of produced particles in a collision event. It is influenced by various factors, such
as the colliding hadrons’ energy, the collision geometry, and the underlying dynamics of the
interaction. More specifically, it is given by the ratio of the topological cross-section σn to
the inelastic cross-section σin. The topological cross-section represents the probability or rate
of observing a specific configuration of particles with a particular multiplicity value n. It is
derived from the scattering amplitudes, which are influenced by the underlying scattering
processes and dynamics. The inelastic cross-section, on the other hand, characterizes the
probability of observing any final-state interaction or particle production, regardless of the
specific configuration or multiplicity. It is closely related to the total cross-section and
includes contributions from various interaction channels, including both diffractive and
non-diffractive processes.

It is important to note that these cross-sections, and thus the multiplicity distribution
Pn, cannot yet be calculated within the framework of quantum chromodynamics (QCD).
Therefore, our current understanding of multi-particle production dynamics relies primarily
on phenomenological approaches as well as certain underlying theoretical principles, which
form the basis for a wide range of models [7]. Needless to say, the continuous enhancement of
the theoretical models for particle production is critical so as to maintain consistency and
coherence with the foundational principles of the Quantum Field Theory (QFT).

One of the key theoretical tenets in the construction of phenomenological models, such as
those based on the geometrical or string approach, is the unitarity constraint [10–13]. These
models often utilize the eikonal scheme as a means to unitarize the scattering amplitude
and describe inclusive multiplicity distributions. While this scheme provides a reasonable
description of certain hadronic observables, there are compelling reasons to explore alternative
schemes for unitarizing the scattering amplitude, namely the U -matrix one.

In a recent study [14], it was shown that despite unexpected agreement in the description
of the inelastic pp and pp̄ cross-sections with the eikonal and U -matrix schemes, a divergence
in the individual order-by-order amplitudes can potentially impact the topological cross-
section by influencing the relative probabilities of different multiplicity configurations and
capturing specific physical processes.

By the same token, in another study [15], it has been found that the U -matrix scheme
exhibits a slightly better fit to the single diffractive data at high-energies and a faster growth
at ultra-high energies compared to the eikonal scheme. This result implies that the underlying
physics and dynamics of the single diffractive scattering are sensitive to the choice of scheme,
especially at ultra-high energy, further reinforcing the significance of considering the U -
matrix. Hence, it is worth noting that if the discrepancy in the single diffractive cross-section
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propagates to the topological cross-section, it can affect the relative probabilities or rates
of observing different multiplicity configurations. Moreover, as the inelastic cross-section
encompasses both diffractive and non-diffractive processes, the different behaviours in the
single diffractive cross-section between unitarization schemes can contribute to variations
in the overall inelastic cross-section.

It should be noted that the specific impact on the topological and inelastic cross-sections
would depend on the detailed correlations and interplay between different interaction channels,
including both diffractive and non-diffractive processes. In fact, when hadrons collide at
high energies, several interactions and processes take place, leading to the formation of large
numbers of particles with various species. Given the complex nature of these interactions,
deciphering the contributions from individual channels and identifying the specific processes
behind multi-particle production appears to be a daunting task [16].

On the whole, the inelastic and topological cross-sections are scheme-dependent, implying
that the multiplicity distribution Pn is scheme-dependent as well. This will, therefore, impact
the description of the multiplicity distribution in terms of its shape, magnitude, or other
characteristic features.

An additional reason for considering an alternative to the eikonal unitarization scheme is
related to the geometrical scaling, as supported by experimental observations. This scaling is
a regularity established by the ISR measurements of the proton-proton and proton-antiproton
scattering and refers to the invariability of the ratio between elastic and total cross-sections.
Interestingly, experiments conducted at the CERN (SPS) collider have revealed that this
regularity is violated when the energy surpasses the ISR energy range [17, 18]. Furthermore,
from a theoretical perspective, it has been shown that the violation of the geometrical scaling
is more pronounced with the U -matrix scheme than with the eikonal as energy increases [14].
It should be emphasized that this remarkable discrepancy has proved to occur mainly when
we venture into the extremely high-energy region, roughly near the Grand Unification Scale.
In this regard, one of the preliminary objectives of the present study is to examine this
disparity within an accessible energy range.

Another regularity put forth by the ISR measurements is the KNO scaling so named after
its proponents Koba, Nielsen, and Olesen (KNO) [19]. It refers to the constancy of normalized
moments in the distribution of multiplicities. Practically, the KNO function is often employed
for the examination of multiplicity distributions in particle collisions. It is denoted as Φ(z),
where ⟨n⟩ stands for the average of the multiplicity distribution, and z = n/⟨n⟩ represents the
normalized multiplicity. It is noteworthy that the KNO function Φ(z) tends to be independent
of the collision energy

√
s within the ISR energy range. However, considerable deviations from

the KNO scaling start to occur at higher energies, such as those attained at FNAL and LHC.
As a matter of fact, several phenomenological studies have demonstrated the existence of

a connection between the geometrical scaling of the profile function and the KNO scaling
of the multiplicity distribution [20–22]. More precisely, these models have shown that the
violation of the geometrical scaling, indicated by an increase in the ratio of elastic to total
cross-sections (σel/σtot) between ISR and collider energies, is associated with the violation
of the KNO scaling across these energy ranges within the eikonal scheme. This raises the
question of potential consequences for the violation of the KNO scaling within the context of
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the U -matrix scheme. It is expected that the latter, with its modifications to the scattering
amplitude, may introduce novel dynamics and fluctuations that influence the statistical
behaviour of particle production. These effects can in turn influence the universal properties
assumed in the KNO scaling and significantly lead to a violation or alteration of the constancy
of normalized moments.

In view of all that has been mentioned so far, one can assume that considering an
alternative adequate unitarization scheme can considerably change our understanding of the
description of multi-particle production. In the present study, we propose a phenomenological
model for multi-particle production in hadron-hadron collisions that hinges on both the
geometrical approach and the picture depicting the KNO scaling violation as an extension of
the geometrical scaling violation, using the U -Matrix scheme. The chief purposes of the study
are to examine the geometrical scaling violation within an accessible energy range, describe
the hadronic multiplicity distributions in full-phase space over a wide energy range in p+ p(p̄)
collisions and to investigate the KNO scaling violation. It also aims at probing the correlation
between the final particles and revealing the physics that underlies it. In particular, it seeks to
provide valuable insights into the relationship between the violation of both the geometrical
and KNO scaling and the mechanism of particle production within the U -matrix scheme.

The remainder of the paper is organized as follows: in section 2, the theoretical background
of the multi-particle production model will be outlined. Section 3 will focus on the explicit
model and the data used. Section 4 will present and discuss the results. Finally, section 5
will summarize the findings and discuss the limitations and implications of this work so
as to guide future research.

2 The theoretical framework of the Model

The multiplicity distribution Pn(s), i.e., the probability of producing n charged particles in
an inelastic p + p(p̄) collision at the energy

√
s, is given by

Pn(s) =
σn(s)
σin(s)

(2.1)

where σn(s) and σin(s) are the n-particle topological and inelastic cross-sections, respectively,
with ∑n σn(s) = σin(s).

Great efforts have been devoted to explaining why the normalized moments in this
multiplicity distribution remain constant in the ISR energy range but diverge from this
pattern from the LHC energy range. A possible explanation for this phenomenon might be
ascribed to the increasing importance of mini-jets production, resulting from both soft and
semi-hard partonic processes, as energy increases. In fact, these mini-jets not only contribute
to the rapid growth of hadron-hadron cross-sections, as demonstrated by several geometrical
models [14, 15, 23, 24], but may also play a crucial role in the violation of the KNO scaling.

It goes without saying that the geometrical models based on the impact parameter
space representation provide a good description of various aspects of hadron collisions at
high energies. Technically speaking, by considering the impact parameter, which quantifies
the distance between the colliding particles’ centres, these models actually furnish a solid
framework for understanding the initial stages of collisions, allowing a systematic exploration
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of the collision geometry, ranging from central (small impact parameters) to peripheral
(large impact parameters) collisions. Therefore, this geometrical approach links the collision
geometry to the underlying physics processes, enabling us to infer certain properties. We
particularly assume that this approach can also shed light on the intricate interplay between
collision geometry and particle multiplicity distribution.

In addition, as has been mentioned in the previous section, the KNO scaling violation
can be perceived as an extension of the geometrical scaling violation to the multi-particle
production process. This extension highlights that the dynamics governing particle production
become more complex and energy-dependent than what a purely geometrical approach can
capture. It also suggests that additional physical processes, such as parton interactions,
collective effects, or fluctuations, play a role in shaping the multiplicity distribution as
collision energies increase. As a result, a more accurate description of the geometrical scaling
violation is needed, which in turn will provide a better description of the violation extension
to multi-particle production. In fact, the violation of geometrical scaling in impact parameter
space occurs when the initial assumptions about simple geometrical overlap and scaling
behaviour break down due to more intricate particle-particle interactions or energy-dependent
effects. Consequently, this concept harmoniously aligns with the utilization of the impact
parameter space representation, emphasizing the significance of collision geometry.

Overall, when combined with the geometrical scaling tenets, the geometrical models can
be enhanced and thus provide a solid framework for describing the multiplicity distribution
and uncovering the underpinning universal features of particle production in high-energy
hadron collisions. They also furnish a reliable tool that serves to explain the impact of
collision geometry on the multiplicity distribution and to analyze it across a broad range
of collision energies and particle species, improving prediction and comparison accuracy
in multiple collision systems.

To construct our model highlighting the intrinsic relationship between geometrical
scaling and KNO scaling within a geometrical approach, we draw inspiration from [22, 25–
27], where the essence of the approach lies in expressing the overall hadronic multiplicity
distributions in the inelastic channel through a combination of an elementary distribution and
the inelastic overlap function. Thus, this approach establishes a direct connection between
the fluctuations in multiplicity and the fluctuations in the impact parameter, driven by
the intuitive understanding that collisions occurring at shorter distances tend to be more
violent and yield a higher number of fragments, thereby leading to increased multiplicities.
Therefore, in order to establish a reliable geometrical approach to calculate the multiplicity
distribution in the impact parameter space representation, we rely on the unitarity condition
of the S matrix. This involves examining the elastic scattering amplitude in the impact
parameter b space, expressed by the equation:

2 Im[Γ(s, b)] = |Γ(s, b)|2 +Gin(s, b), (2.2)

where Γ(s, b) denotes the profile function, i.e., the elastic hadron scattering amplitude, and
Gin(s, b) represents the inelastic overlap function. By employing the optical theorem, we
can obtain

σtot(s) = 2
∫
d2b Im[Γ(s, b)], (2.3)
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and recognizing that the function Gin(s, b) signifies the absorption probability associated
with each b value, we can derive the total inelastic cross-section

σin(s) =
∫
d2b Gin(s, b). (2.4)

Thus, the unitarity condition (2.2) is equivalent to σtot(s) = σel(s) + σin(s), where σel(s) =∫
d2b |Γ(s, b)|2.

Various research papers in the field have already explored this phenomenological procedure
based on the impact parameter space representation known as the geometrical or string
approach [11–13, 28]. In this geometrical approach, wherein incident hadrons are treated as
spatially extended objects and their collisions are represented as an ensemble of elementary
interactions between quarks and/or gluons, the hadronic multiplicity distribution Pn(s) is
constructed based on elementary quantities associated with microscopic processes. It follows
from this that the overall hadronic multiplicity distribution is estimated through summing
contributions emerging from each impact parameter b of the incident hadronic system.

To do this, the topological cross-section σn is decomposed into contributions from each
impact parameter b with weight Gin(s, b) as follows:

σn(s) ≡
∫
d2b σn(s, b)

=
∫
d2b Gin(s, b)

[
σn(s, b)
σin(s, b)

]
,

(2.5)

where σin(s) ≡
∫
d2b σin(s, b) =

∫
d2bGin(s, b).

The quantity enclosed in brackets σn(s, b)/σin(s, b) ≡ pn(s, b) can be interpreted as the
probability of producing n particles at impact parameter b. It accounts for interactions among
the elementary components of the colliding hadrons. Keeping in mind that pn(s, b) should
scale in KNO sense given its elementary structure, the multiplicity distribution Pn(s) (2.1)
can be reformulated as:

Pn(s) =
1

σin(s)

∫
d2b

Gin(s, b)
⟨n(s, b)⟩ [⟨n(s, b)⟩pn(s, b)] (2.6)

where ⟨n(s, b)⟩ represents the average number of particles produced at b and s.
Let Φ(s, z) = ⟨n(s)⟩Pn(s) be the overall multiplicity distribution in KNO form, where

z = n(s)/⟨n(s)⟩ is the corresponding KNO variable. A multiplicity distribution ϕ(s, z
¯
),

associated with elementary processes occurring at b and s, can be written in the form
ϕ(s, z

¯
) = ⟨n(s, b)⟩pn(s, b), where z

¯
= n(s)/⟨n(s, b)⟩. It is worth noting that both distributions

adhere to the standard normalizations [22]:
∫ ∞

0
dzΦ(z) =

∫ ∞

0
dz
¯
ϕ(z

¯
) = 2 (2.7)

and
∫ ∞

0
dz zΦ(z) =

∫ ∞

0
dz
¯
z
¯
ϕ(z

¯
) = 2. (2.8)

In this theoretical framework, the unknown function representing the average number
of particles produced at a specific impact parameter b and energy s can be comprehended
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as the product of two factors: the first factor, ⟨n(s)⟩, representing the general behaviour
depicts the average number of particles generated in a collision, regardless of the specific
impact parameter. As for the second, it is denoted as f(s, b) and perceived as a multiplicity
function. It describes the variation of the average number of particles in accordance with
the impact parameter b quantifying how collision geometry affects particle production. The
mathematical expression for this factorization is:

⟨n(s, b)⟩ = ⟨n(s)⟩f(s, b) (2.9)

and therefore the expression (2.6) can be rewritten in the KNO form as follows:

Φ(s, z) = ⟨n(s)⟩Pn(s) =
1∫

d2bGin(s, b)

∫
d2b

Gin(s, b)
f(s, b) ϕ

(
z

f(s, b)

)
, (2.10)

and we also have

Pn(s) =
1

⟨n(s)⟩ ∫ d2bGin(s, b)

∫
d2b

Gin(s, b)
f(s, b) ϕ(1)

(
z

f(s, b)

)
, (2.11)

The master formula eq. (2.11) highlights the connection between the multiplicity distri-
bution Pn(s) and the unitarisation scheme of the scattering amplitude which can ultimately
be established within the inelastic overlap function, emphasizing that this multiplicity is
scheme-dependent as stated in the introduction. The full phase space hadronic multiplicity
distribution Pn(s) is hence constructed by summing contributions from parton-parton colli-
sions occurring at each value of b. These interactions give rise to the formation of string-like
objects, similar to the string formation described by the Lund model [29]. These strings in
turn fragment into hadrons. So, in order to stress the fundamental principle of the string
approach, an index labelling the elementary multiplicity distribution ϕ(1) has been introduced
in the master formula (2.11). The essential elements in this formula eq. (2.11), namely the
inelastic overlap function, the average number of particles produced at a specific impact
parameter b and energy s, as well as the elementary multiplicity distribution function, will be
explicitly presented in the following section, laying the groundwork for an in-depth analysis
of the complex interactions between collision geometry and particle production.

3 Explicit model and data

The explicit model presented in this paper for describing High-energy hadronic scattering is
theoretically grounded in the geometrical approach and is based on the Reggeon exchanges
picture (see, e.g. [30] and references therein). In this picture, hypothetical exchange particles,
known as pomerons, mediate interactions between hadrons and the procedure of obtaining
the amplitude of a given hadronic process involves summing over all conceivable ways in
which pomerons can be exchanged.

Diagrammatically, every pomeron exchange is represented by a line that connects the
incoming and outgoing hadrons. Hence, by summing all possible topologies of these diagrams,
the total amplitude is determined. Technically, the single-pomeron exchange amplitude, also
known as, the Born term can be parameterized as follows:

a(s, t) = g2
p F1(t)2

(
s

s0

)α(t)
ξ(t), (3.1)
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where gp is the pomeron-proton coupling, F1(t) denotes the proton elastic form factor, and
ξ(t) stands for the signature factor that is given by:

ξ(t) = −e−iπα(t)/2, (3.2)

and the pomeron trajectory, represented by α(t), approximates a straight line:

α(t) = 1 + ϵ+ α′P t. (3.3)

In the impact-parameter space representation, where the Fourier transform of the ampli-
tude a(s, t) rescaled by 2s corresponds to a partial wave, we have:

χ(s,b) =
∫ d2q

(2π)2
a(s, t)
2s exp(iq · b). (3.4)

When we venture into high energies, summing amplitudes may lead to a violation of
unitarity, especially in the case of multi-pomeron exchanges. Therefore, in order to make the
summed amplitudes comply with the unitarity constraint, unitarization techniques come into
play by resuming infinite series or introducing additional terms to modify the amplitude’s
behaviour. As a matter of fact, there is a plethora of techniques in the literature [31–33] whose
shared objective is to come up with a consistent approach to summing over various exchange
contributions while making sure that the resulting amplitude Γ(b, s), i.e., the hadronic profile
function, satisfies the unitarity condition and may account for all features of interactions in
the context of hadron collisions. Among them, we can cite the eikonal scheme, which is one
of the most commonly used methods, positing that the profile function is provided by:

ΓE(s, b) = i
[
1− eiχ(s,b)

]
, (3.5)

The U -matrix scheme is another illustration, which asserts that:

ΓU(s, b) =
χ(s, b)

1− iχ(s, b)/2 . (3.6)

As previously mentioned in the introduction, we will consider that the hadronic profile
function Γ(b, s) is given by the U -Matrix form (3.6). This function represents the sum of all
n-pomeron exchange contributions obtained from the single-pomeron exchange amplitude
which is, in turn, related to the expected number χ(b, s) of interactions between partons
of the incident hadrons.

Using both the eikonal and the U -matrix schemes as well as a dipole-like form factor for
the proton, where F1(t) = 1/(1− t/t0)2, the parameters ϵ and α′P describing the pomeron
trajectory, the coupling constant gp, and the form-factor scale t0 are adjusted based on a
best fit to up-to-date hadron collider data on total, elastic, and inelastic cross-sections. The
values of these parameters are provided in table 1 [14]. Following this adequate description
of the hadronic profile function, we can determine the inelastic overlap function Gin(s, b),
needed in our explicit model, by using the equation presented in (2.2).

Since the primary objective of this work is to examine the influence of geometrical
collisions on multi-particle production processes, we shall propose two hypotheses concerning
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Scheme ϵ α′P (GeV−2) gp t0 (GeV2) χ2/d.o.f
U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436
Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

Table 1. χ2/d.o.f and best-fit parameters obtained using the eikonal and U-matrix unitarisation
schemes.

our choice of the elementary multiplicity distribution. First, it is sufficient for our study
to consider that, on average, every string created in parton-parton interactions has the
same likelihood of producing a certain number of charged hadrons, which is described by
the elementary multiplicity distribution ϕ(1)(z), even though the strings created may have
different probabilities of turning into a pair of charged hadrons. Second, despite the fact
that the parametrization of the elementary distribution ϕ(1)(z) is key to capturing the overall
shape of the multiplicity distribution, these two do not necessarily have similar shapes. This is
mainly because the overall distribution is obtained by summing contributions from elementary
processes at different impact parameters, in the context of this superposition model eq. (2.11).
That is to say, the peculiar combination of the individual contributions emerging from
distinct impact parameters and which may be having differing shapes results in an overall
distribution that reflects these contributions’ combined effects and whose characteristics
should be represented by their superposition. Hence, we will assume, as a first approximation,
that the elementary distribution has the same shape as the overall distribution. More
specifically, the choice of the functional form for this elementary distribution is motivated
by phenomenological fits to data.

As a matter of fact, the Negative Binomial Distribution (NBD) has proved to provide a
good description of the experimental data on the multiplicity distributions in the context
of high-energy physics and hadron collisions [7]. Therefore, in the present study, the KNO
form of the NBD, also known as the Gamma distribution, is adopted for the elementary
multiplicity distribution and given by:

ϕ(1)(z) = 2 KK

Γ(K) z
K−1 e−Kz, (3.7)

where K is a dimensionless parameter.
It should be pointed out that there exists a connection between the average number of

particles generated at a specific impact parameter b and energy s, ⟨n(s, b)⟩, which determines
the unknown multiplicity function f(s, b) by the eq. (2.9), and the Born term in b space χ(s, b).

This link can be attributed to the various roles that the Born term plays. To begin with,
the multiplicity of generated particles in b space and the Born term are interrelated given
that the former can be impacted by the effective interaction of partons within the colliding
hadrons and the latter provides a measure of this effective interaction since it represents
the overlap of the colliding matter distributions. Not to mention, the Born term depends
on the impact parameter. As such, it reflects how strong the interaction between colliding
hadrons is at distinct impact parameters. Indeed, the impact-parameter-dependent strength
of the interaction between hadrons may have an impact on the multiplicity of produced
particles. Secondly, owing that the Born term is a crucial parameter in describing the
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energy dependence of the scattering amplitude and that particle generation is more likely
to occur at higher energies, the Born term is inextricably connected to the average particle
production. Thirdly, on the one hand, the imaginary part of the Born term is related to
inelastic processes in high-energy collisions and, on the other hand, multi-particle production
is often associated with inelastic interactions, so relying on the imaginary part of the Born
term will reflect the possibility of inelastic scattering and subsequent particle production.
Therefore, the multiplicity function f(s, b) is constructed to depend on the imaginary part
of the Born term, denoted as χI(s, b).

Therefore, the connection between the multiplicity function f(s, b) and the born term
is formally defined as follows:

f(s, b) = β(s) [χI(s, b)]2λ, (3.8)

where β(s) is determined by the normalisation condition (2.8):

β(s) =
∫
d2bGin(s, b)∫

d2bGin(s, b) [χI(s, b)]2λ
(3.9)

and the exponent 2λ in eq. (3.8) introduces a power-law dependence on χI(s, b), suggesting
a non-linear relationship between the effective overlap and the particle production in the
impact-parameter space.

It should be emphasized that according to the geometrical approach, the phenomenological
portrayal of hadronic multiplicity distributions is considerably influenced by the values and
behaviours of three key inputs: the inelastic overlap function Gin, the elementary multiplicity
distribution ϕ(z), and the λ parameter determining the power-law dependence on the effective
overlap χI(s, b). A previous study [11] has shown that changing one of these inputs, while
keeping the other two fixed, produces different results across different parameterizations.
For instance, if the inputs of the inelastic overlap function are different and λ, as well
as ϕ(z), are kept constant, the obtained hadronic multiplicity distributions successfully
replicate the experimental data. Interestingly, in all cases, the physical picture is that large
multiplicities occur for small impact parameters while peripheral collisions (large b) lead to
small multiplicities. It is worth noting that all these results, obtained for different inputs
of the inelastic overlap function, are generated using the eikonal scheme. However, in the
present study, we employ the U -matrix scheme for the reasons mentioned in the previous
section. This will eventually allow us to fix our choice of the inelastic overlap function.

In order to present our findings in the following section, it is essential to provide an
overview of the model parameters that were determined through data fitting, as well as
the specific experimental data employed in our analysis. Since the Born term χI(s, b) is
completely determined from the best-fit, table 1, we see from the master formula for the
multiplicity distribution eq. (2.11) that the only free parameters are K, λ, and ⟨n(s, b)⟩.
Further, for our purposes, it is sufficient to fix the value of K and assume λ and ⟨n(s, b)⟩
as the only fitting parameters. Indeed, in [11], it was shown that the choice of K = 10.775
by assuming a Gamma distribution gives a good description of the charged multiplicity
distributions for e+e− annihilation data in a large energy interval. Based on the universality
of multiplicities in e+e− and p + p(p̄) collisions, we adopt this choice.
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Figure 1. The energy evolution of the inelastic overlap function in the impact parameter space at
energies spanning from ISR to LHC levels using both the U -matrix and the eikonal schemes.

To determine the values of the parameters λ and ⟨n⟩, we fix the dimensionless parameter to
K = 10.775 and conduct fits to full phase space Pn data in p+p(p̄) collision across a wide range
of energies, specifically at

√
s = 30.4, 44.5, 52.6, 62.2, 300, 546, 1000, and 1800GeV [34, 35].

With regards to the fitting process, we utilized the Minuit2 class from ROOT [36] and
implemented the MIGRAD algorithm. The primary objective of the fitting procedure was
to minimize the χ2 value and the uncertainties associated with the free parameters were
calculated using a 1σ confidence level.

4 Results and discussion

4.1 Geometrical scaling violation

The preliminary objective of this study was to analyze the behaviour of the inelastic overlap
function in the impact parameter space as well as the geometrical scaling violation using the
U -matrix and the eikonal schemes, eqs. (3.5) and (3.6), in an attempt to offer valuable insights
into the collision geometry and the interaction dynamics of colliding particles. Figure 1
depicts the predictions for the energy evolution of the inelastic overlap function, eq. (2.2), in
the impact parameter space at energies spanning from ISR to LHC levels using both schemes.

Looking at figure 1, it is apparent that this function exhibits a generally comparable
pattern in impact parameter space across both schemes, with only minor differences. More
specifically, it shows that it is predominantly central, indicating that it has a significant
contribution at small impact parameters. This entails that most of the inelastic processes are
more probably to take place when the colliding particles pass through one another within close
proximity. Moreover, this function tends to decline more slowly with the impact parameter as
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Figure 2. Energy evolution of the ratio elastic-to-total cross-section in both cases, the eikonal and
U -matrix schemes.

energy rises. This points out that the inelastic processes become less dependent on the specific
spatial distance between colliding particles and have a wider range of impact parameters
at which they can happen at higher energies.

Furthermore, it can be seen from figure 1 that the magnitude of the inelastic overlap
function grows with energy at the central impact parameter b = 0. This indicates that the
higher the energy, the more likely it is that inelastic events will occur at the central impact
parameter. Interestingly, as figure 1 shows, there is a significant divergence in the magnitude
of the inelastic overlap function obtained from the U -matrix and the eikonal schemes. To
be more specific, the former yields a greater magnitude than the latter at b = 0. It is clear
from this difference that the chosen scheme has a profound impact on the inelastic processes,
particularly on central collisions which will have distinct characteristics or probabilities.

In the same vein, figure 2 depicts the energy evolution of the ratio elastic-to-total cross-
section using both schemes. As this figure demonstrates, in both cases there is an overall
increase of this ratio as energy rises from 10GeV to 10TeV, but does so in a non-linear
manner, which is indicative of geometrical scaling violation. Interestingly, comparing the
behaviour of this ratio in both cases, it is clear that it increases more rapidly in the U -matrix
case than in the eikonal one, as energy increases, demonstrating a stronger violation of the
geometrical scaling and a more intricate behaviour in the former case.

It is possible to explain the divergence observed in the geometrical scaling violation
between the two distinct schemes in terms of the behaviour of the inelastic overlap function
in the impact parameter space with respect to energy. To be more precise, this difference lies
in the behaviour of the inelastic overlap function at b = 0, where we can see from figure 1
that it has a magnitude that grows with energy in both cases. However, the U -matrix
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√
s [GeV] λ β(s) ⟨n(s)⟩ χ2/DOF

30.4 0.2837 ± 0.0133 1.6014 9.0583 ± 0.1452 1.2714
44.5 0.2720 ± 0.0119 1.6308 10.5900 ± 0.1339 0.6170
52.6 0.2775 ± 0.0104 1.6430 11.2885 ± 0.1299 0.6443
62.2 0.2709 ± 0.0107 1.6547 12.0090 ± 0.1551 1.3303
300 0.3695 ± 0.0113 1.7327 23.4646 ± 0.2915 0.6046
546 0.4618 ± 0.0148 1.7420 27.7185 ± 0.4145 0.3406
1000 0.4230 ± 0.0110 1.7362 36.6360 ± 0.4042 1.5301
1800 0.4836 ± 0.0070 1.7132 42.7217 ± 0.3184 1.2004
7000 0.5936 1.5833 73.7117 −
14000 0.6597 1.4716 96.0705 −

Table 2. Values of the λ parameter and ⟨n(s)⟩ resulting from fits to the Pn data. The values of β(s)
were obtained from eq. (3.9).

scheme yields a larger magnitude than the eikonal one. This implies that, in the former
case, the inelastic interactions are more prominent, indicating that they have a remarkably
and rapidly increasing strength at the central impact parameter with increasing energy,
compared to the eikonal case.

It can be argued that the discrepancy found in the behavior of the inelastic overlap
function as well as in the observed violation of the geometrical scaling between the two
schemes can be ascribed to their differing approaches to the unitarization of the scattering
amplitude. Indeed, based upon its thorough treatment of processes and its ability to take
into account a wider range of interactions and collision dynamics compared to the Eikonal
scheme, the U-matrix scheme is likely to be a more advanced mechanism for dealing with
scattering processes and capturing the intricate dynamics of hadronic interactions, which
is also supported by other results [14, 15, 24].

On the whole, this result validates the remarkable difference in the geometrical scaling
violation between the U -matrix and eikonal schemes. Specifically, it supports the claim that
this violation is more noticeable with the former scheme when energy levels rise. Notably, this
outcome is in agreement with the theoretical prediction provided in [14] and further highlights
that this discrepancy becomes apparent even before reaching the extremely high-energy region.
Furthermore, it reinforces our motivation, as stated in the introductory section, for selecting
the U -matrix scheme. In fact, the choice of this scheme, in particular, may contribute to
answering the question posed in the introduction regarding its potential implications for KNO
scaling violation and unravelling the underlying physics behind the multi-particle production
mechanism, as will be elaborated in the forthcoming sections.

4.2 Hadronic Multiplicity Distributions

Using the master formula (2.11), the outcomes of the fitting procedure of the multiplicity
distributions data across a wide range of energies are provided in figure 3, figure 4 and, table 2,
respectively, where the values of the parameters λ and ⟨n(s)⟩ obtained in each fitting procedure,
along with the corresponding β(s), are furnished, as well as the different χ2/dof values.
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Figure 3. Multiplicity distributions for inelastic pp data at
√
s = 30.4, 44.5, 52.6 and 62.2GeV

compared with theoretical expectations.

According to figure 3, figure 4, and the different χ2/dof values, our model gives a
reasonable description of the different multiplicity distributions at each energy. Moreover, it
allows to predict the multiplicity distribution Pn at LHC energies by evaluating the energy
dependence of the parameter λ using an appropriate function λ(s).

As can be seen from figure 5 (left panel), the behaviour of this parameter is energy-
dependent and rapidly increases with increasing energy. This energy dependence can be
aptly described by the following function:

λ(s) = a0 s
a1 (4.1)

where the values a0 = 0.154, a1 = 0.0762 were determined by a careful χ2 analysis. Thus,
based on this function, the λ values at 7 and 14TeV are retrieved and then displayed in table 2.

Similarly, the estimates for the average multiplicity of hadrons at LHC energies can be
derived. As depicted in figure 5 (right panel), this parameter exhibits a rapid increase with
the energy s, and its energy dependence can be consistently described using this function:

⟨n(s)⟩ = b0 s
b1 , (4.2)
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Figure 4. Multiplicity distributions for inelastic p̄p data at
√
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compared with theoretical expectations.
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where the values of b0 and b1 are 2.5 and 0.1911, respectively. These coefficients were
determined through a rigorous χ2 analysis. Hence, by using this dependence, one can
determine the values of ⟨n(s)⟩ at 7 and 14TeV, as illustrated in table 2.

An intriguing aspect of our findings lies in the remarkable accord between our result
concerning the energy dependence of the hadron mean multiplicity and that obtained by
Troshin and Tyurin with their model for multi-particle production with antishadowing [37],
adding to the growing body of evidence that supports the fundamental principles underlying
the U -Matrix approach. This alignment is highlighted by the following equation [37]:

⟨n(s)⟩ = 2.328 s0.201, (4.3)

This also implies that this approach is highly predictive and can accurately describe and
interpret multi-particle production in different energy regimes. Besides, we should emphasize
that the power-law energy dependence of the hadron mean multiplicity is often regarded as a
prominent feature observed in different models and consistent with experimental data from
heavy ion collisions [38, 39] and this alignment in results further reinforces this assumption.

Having tuned our model with all parameters obtained from the best fits, we can now
rely on its potential extrapolations to novel collision energy regimes and investigate various
phenomena, such as the KNO scaling violation and the correlation of final state particles,
as will be presented in the subsequent sections.

4.3 KNO scaling violation

Using our model, the KNO scaling violation was also examined. The predictions for the
full-phase space multiplicity distribution in p+p(p̄) collision, in KNO form at various energies,
spanning from ISR to LHC ones, are displayed in figure 6 and figure 7.

Figure 6 with a logarithmic scale shows that the high-multiplicity tail rises with increasing
energy. At the same time, by looking at the figure 7 with a linear scale along with a zoom
into the low-multiplicity region we can see that the maximum of the distribution shifts
towards smaller values of z.

This interpretation demonstrates the dynamic behaviour of the system, especially as the
energy level rises, and further validates the violation of the KNO scaling. Interestingly, we
can also see that beyond the ISR energy range, the width of the distribution gets larger with
increasing energy, which underscores the strong violation of the KNO scaling. It is worth
noting that this finding resonates with experimental observations [7].

Most importantly, based on the picture that KNO scaling violation is an extension
of geometrical scaling violation, we can also claim that the strong violation of the former
stems from the strong violation of the latter, emphasizing the interconnected nature of
these phenomena within the U -matrix representation and stressing the latter’s pivotal role
in describing collision geometry and the processes of multi-particle production in hadron
collisions.

To further illustrate the role of the U -matrix scheme, we examined the average number
of particles ⟨n(b, s)⟩ as a function of impact parameter b for various collision energies, as
its pattern offers insights into the collision geometry and the distribution of particles in
the transverse plane. The result is illustrated in figure 8. Based on this figure, it is
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Figure 6. Logarithmic view of the multiplicity distributions from ISR to LHC energies in full-phase
space.
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Figure 8. The energy dependence of the average multiplicity in the impact parameter space.
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Figure 9. Second derivative of the average multiplicity in the impact parameter space.

clear that, at central collision, (b = 0), the magnitude of the average number of particles
increases with increasing energy. This is quite anticipated since central collisions yield more
produced particles than peripheral collisions [40]. This trend causes the tail of the multiplicity
distribution to extend to higher values and eventually to a broader distribution as energy
increases, indicating the possibility of rare high-multiplicity events.
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A possible explanation for the broadening of the multiplicity distribution might be related
to the effect of using the U -matrix scheme. Indeed, as previously illustrated in figure 1,
the disparity found between the eikonal and U -matrix schemes is noticeable at the central
impact parameter, where the overlap of hadronic matter distributions is greater with the
latter scheme. This discrepancy not only influences the inelastic overlap function, and hence
the overall magnitude of multiplicity, but it also has a significant impact on the tail of
the multiplicity distribution.

In addition, irrespective of the energy level, the average number of particles generally
decreases as the impact parameter b increases, which eventually leads to a decrease in the
magnitude of the multiplicity distribution. This phenomenon aligns with the notion that
larger impact parameters lead to less violent collisions, resulting in events with smaller
multiplicities [40].

Furthermore, as figure 8 manifests, the average number of particles is energy-dependent,
increasing with higher collision energies at each impact parameter. This behaviour is also
expected in high-energy physics experiments, where higher energies often result in increased
particle production [7].

Figure 8 shows that the curvature of the average number of particles changes, at a specific
impact parameter, regardless of the energy level. More quantitatively, we show the second
derivative of the average number of particles as a function of the impact parameter in figure 9,
illustrating a change of sign of this function which demonstrates the existence of an inflection
point at exactly 0.7 fm. This change in the curvature could signify a shift in the particle
production behaviour. For instance, at this specific impact parameter value, there might be a
change in the interaction dynamics or the nature of the collision process. It should be noted
that this result is in line with what has been reported in [41], where the inflection point was
roughly estimated to be at around 1fm. The fact that the inflection point is specifically at
around 1 fm suggests that there is something unique or significant about collisions occurring
at this distance. This could be related to the characteristics of the colliding particles or the
structure of the hadrons involved. This common behaviour underscores the notion of the
critical phenomenon in hadronic interactions [42].

On the whole, the shape of the multiplicity distribution is influenced not only by the
impact parameter and collision energy but also by the unitarisation scheme, particularly the
U -matrix, which reinforces our claim that this distribution is scheme-dependent, as outlined
in the introductory section. Besides, the tail of the multiplicity distribution gives insights into
the rare but significant events that constitute the overall dynamics of high-energy collisions
and hence highlights the importance of this scheme in multi-particle production processes.

In light of this result, the U -matrix scheme may prove to be a significant alternative for
addressing multi-particle production challenges at ultra-high energies, including the muon
puzzle in cosmic ray interactions at this energy level. In situations such as these, where
extreme conditions and rare events are likely to play a significant role, scheme-dependent
effects on multiplicity distribution become relevant.

Having said that, it is vital to consider this scheme in enhancing the existing hadronic
interaction models to tackle several lingering issues in high and ultra-high energy physics.
However, this is beyond the remit of this study.
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√
s [GeV ] C2 C3 C4 C5
30.4 1.29 ± 0.05 1.97± 0.09 3.45± 0.21 6.68± 0.52

1.28 1.94 3.36 6.47
44.5 1.28 ± 0.04 1.95± 0.07 3.40± 0.17 6.58± 0.47

1.3 2.01 3.55 6.99
52.6 1.29 ± 0.03 1.98± 0.06 3.48± 0.15 6.81± 0.42

1.3 2.04 3.64 7.24
62.2 1.29 ± 0.03 1.97± 0.06 3.40± 0.14 6.43± 0.33

1.31 2.07 3.73 7.51
300 1.34 ± 0.02 2.21± 0.04 4.26± 0.07 9.23± 0.17

1.41 2.46 4.95 11.17
546 1.41 ± 0.03 2.52± 0.05 5.31± 0.10 12.72± 0.24

1.46 2.67 5.63 13.38
1000 1.41 ± 0.02 2.47± 0.05 5.11± 0.13 11.87± 0.36

1.52 2.91 6.5 16.33
1800 1.47 ± 0.02 2.78± 0.03 6.23± 0.07 15.91± 0.21

1.59 3.21 7.57 20.18
7000 1.78 4.14 11.36 35.3
8000 1.81 4.26 11.87 37.51
13000 1.89 4.73 14.03 47.19
14000 1.91 4.81 14.41 48.93

Table 3. Cq Moments: experimental data with error bar and theoretical predictions. Data points are
from [43].

4.4 Hadronic multi-particle correlations

Now that we have estimated the multiplicity distribution Pn across various energies, it
seems appropriate to characterize it in an attempt to obtain a better understanding of the
dynamics of the particle production process in hadron collisions. In order to fulfil this purpose,
the normalized ordinary higher-order moments (q > 2) of this distribution are analyzed.
Technically speaking, Pn’s moments of order q are defined as follows:

Cq = Mq/M
q
1 , (4.4)

and
Mq =

∞∑

n=0
nqPn, (4.5)

Our results, along with their comparison with the experimental data,1 are given in table 3
and illustrated in figure 10 (left and middle panels).

Based on figure 10, we can see that, as energy levels rise, our proposed model predicts a
gradual increase in the ordinary higher-order moments, represented by C2, C3, C4, and C5.
Surprisingly, while our predictions match with the data points within the ISR energy range,

1See compilation in [43].
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Figure 10. Experimental and Theoretical Cq moments, q = 2, 3 (left panel), q = 4,5 (middle panel).
f2 moment versus the average number of produced particles (right panel).

it is clear that the model overestimates the fluctuations and correlations in the multiplicity
distribution with rising energy, notably above LHC energy. In order to further illustrate
this overestimation, we computed the f2 moment (or the two-particle correlation parameter),
as a means of examining the correlation between pairs of particles during a collision event,
which is defined by the following formula:

f2 =< n(n− 1) > − < n >2 (4.6)

Interestingly, as illustrated in figure 10 (right panel), there is a noteworthy and sudden
increase in the two-particle correlation parameter versus the average number of produced parti-
cles, indicating the existence of strong correlations among the charged particles. Consequently,
we can infer that the model incorporates correlations in the final state, despite being con-
structed on the basis of independent particle production. So the question that arises is where
this correlation emerges from. As the overall hadronic multiplicity distribution is constructed
by summing contributions from parton-parton collisions occurring at each impact parameter
weighted by the inelastic overlap function, this overestimation of correlation is linked to the
weight in this superposition model, and hence to the unitarisation scheme, in comparison
with the predictions provided by an eikonal geometrical independent string model [43].

Our model’s outcomes of a pronounced KNO scaling violation, together with the un-
expected overestimation of the fluctuations and correlations with increasing energy, can
potentially be attributed to statistical fluctuations. Hence, we may claim that in this U -
matrix representation, pomeron exchange may involve more intricate dynamics, such as
collective effects, non-perturbative QCD dynamics, or other interactions, leading to different
statistical fluctuations beyond a simple Poissonian eikonal summation [44].
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5 Conclusions

The first part of the results’ section was concerned with the description of the geometrical
scaling violation. In fact, the energy evolution of the elastic-to-total cross-section ratio was
investigated using both the eikonal and U -matrix schemes. The results have revealed that when
energy rises, this ratio increases non-linearly and more rapidly with the U -matrix scheme than
with the eikonal, implying a stronger violation of the geometrical scaling. This pronounced
violation was understood in terms of the divergence in the behaviour of the inelastic overlap
function, particularly at the central impact parameter, where the magnitude of this function
is greater with the U -matrix scheme than the eikonal, regardless of the energy level.

The second part of the results’ section was devoted to the hadronic multiplicity dis-
tributions. Our model was tuned and all parameters were obtained from the best fits to
various hadronic multiplicity distributions data over a wide range of energies. It has been
found that the present model provides a reasonable description of the different multiplicity
distributions at each energy. Interestingly, our findings about the energy dependence of the
hadron mean multiplicity agree well with Troshin and Tyurin’s analyses of the multiparticle
production in the antishadowing model [37]. This agreement adds to the growing body of
evidence supporting the fundamental principles underlying the U -Matrix approach, which
ensures reliable extrapolations to novel collision energy regimes.

Based on our model, the KNO scaling violation was investigated as well. Our results,
related to the behaviour of the tail, as well as the maximum of the multiplicity distribution, and
especially to the strong KNO scaling violation, are in line with the experimental findings [7].
The broadening of the multiplicity distribution has been also confirmed with the behaviour
of the particles’ distribution in the transverse plane at various collision energies. Besides, the
interesting finding of an inflection point in the average number of particles’ curve irrespective
of the energy level, corroborates with another finding [41] and highlights the concept of a
critical phenomenon in hadronic interactions.

Besides, the normalized ordinary higher-order moments (q > 2) of the multiplicity
distribution were analyzed. Another surprising result was related to our model’s overestimation
of the fluctuations and correlations in the multiplicity distribution as energy rises, notably
above LHC energy. It is argued that this overestimation, is linked to the weight in this
superposition model, and hence to the unitarisation scheme. It should be noted that the
shape of the hadron multiplicity distribution is influenced not only by the impact parameter
and collision energy but also by the unitarisation scheme, particularly the U -matrix.

On the whole, the results of this study, such as those related to the strong geometrical
scaling violation and its resultant pronounced KNO scaling violation, coupled with the
overestimation of the charged particles’ correlation, can potentially be attributed to statistical
fluctuations inherent in the U -matrix scheme. Hence, we may argue that in this U -matrix
representation, pomeron exchange may involve more intricate dynamics, leading to different
statistical fluctuations beyond a simple Poissonian eikonal summation.

As any research, this study is not without limitations. For instance, the assumption
that each created string has an equal probability of turning into a pair of charged hadrons
is acceptable but only as a first approximation. To refine the present model for a more
reliable description, we can consider the introduction of charged particle correlations in
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the final state by incorporating, for example, string fusion, overlapping processes, or other
interactions leading to correlated string dynamics as evidenced by theoretical predictions [12]
and experimental observations [8]. Additionally, it is important to investigate the impact
of the implicit different statistical fluctuations in pomeron exchanges within the U -matrix
representation, along with the correlation and/or collective behaviour in the production
of final state particles.

The study concludes by proposing the U -matrix scheme as a noteworthy alternative
for tackling challenges related to multi-particle production in hadron collisions, especially
in scenarios where extreme conditions and rare events play a significant role in high and
ultra-high energy physics. It also prompts an inquiry into the fundamental nature of pomeron
exchange within the U -matrix scheme in comparison to the eikonal, despite that both schemes
verify the unitarity constraint principle.
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6.3 Further results

In this section, we present additional insights into the behavior of the

normalized moments Cq at different LHC energies. We observe that the

moments at higher energies, specifically at 13 TeV, are notably larger

compared to those at lower energies such as 7000 GeV. This increase may

be explained by the enhanced contribution of mini-jets, as well as the

onset of saturation effects, which are expected to become more significant

at higher energies. These phenomena are anticipated to be particularly

pronounced in heavy ion collisions, where the larger number of parton

interactions could play a key role. While our current model focuses on

proton-proton collisions, future studies will extend this analysis to heavy

ion collisions.

Comparison from Lower LHC Energies (example: 7000 GeV) to higher

LHC energies (example: 13 TeV) from Table 3 of the Cq Moments :

• C2 increases from 1.78 to 1.89

• C3 increases from 4.14 to 4.73

• C4 increases from 11.36 to 14.03

• C5 increases significantly from 35.3 to 47.19.

In addition, one might wonder about the value of the K parameter if

it were left free in the fit and how this would affect the predictions at

LHC energies. To address this, we analyze the results of the fits with

the K parameter released. As can be seen from the Fig. 6.1, the shape

parameter k of the elementary multiplicity distribution generally shows

a trend of decreasing with increasing energy, particularly noticeable from

lower to higher energy ranges. This decrease in k can be described by the

following function, which was obtained by a chi-squared fitting to the k

values derived from the model fitting:

k(
√
s) = a · ln(√s)b (6.1)

where a = 15.48± 2.52 and b = −0.23± 0.08.

Note that the two other parameters of the model, namely the hadron

mean multiplicity and the λ parameter, are almost insensitive to this

change, as shown in the Fig. 6.2 and Fig. 6.3 with their best-fit func-

tions, and Fig. 6.4 illustrates the predictions of the fits at LHC energy in

this case.
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Figure 6.1: The energy dependence of the parameter k
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It is worth noting that the differences observed at different
√
(s) in-

deed have implications for cosmic ray data, particularly concerning par-

ticle production rates and energy distribution. Specifically, the observed

increase in the ratio of elastic-to-total cross-section with energy, notably

more pronounced in the U -matrix case compared to the eikonal case, sig-

nifies a heightened contribution from inelastic scattering processes. This

observation aligns with studies, such as [9], which explore the influence

of increasing effective cross-sections for hadron inelastic interactions with

rising energy, especially regarding high-energy cosmic ray hadron energy

spectrum shape. Fig. 6.5 and Fig. 6.6 illustrate the predictions at 13 TeV
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Figure 6.5: Prediction of the multiplicity distribution at 13 TeV
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Figure 6.6: Prediction of the mean hadron multiplicity at 13 TeV

The Fig. 6.6 shows a continuous growth of ⟨n(b, s)⟩ with energy, partic-

ularly in central collisions, and there are no signs of saturation behavior,

such as a slowing down or plateauing of the growth rate of ⟨n(b, s)⟩ at

higher energies. Based on this observation, we may infer that this trend

is more closely related to mini-jet production.

Finally, the physical reason for the inflection point at 0.7 fm could be

related to the typical size of the proton. For Pb ions, we anticipate that the

inflection point would shift due to their larger size and different internal

structure.



7 Multi-pomeron exchange nature

7.1 Context of the work

The findings presented in the previous chapters, especially those showing

that, when compared to the eikonal scheme, the U -matrix offers a better

description of certain hadronic observables, raise the question about the

fundamental nature of pomeron exchange within the latter scheme, despite

that both schemes satisfy the unitarity condition. This has sparked our

interest and motivated us to delve deeper into the study of the U -matrix

scheme in the context of the Soft QCD processes.

As a matter of fact, the description of the Soft QCD processes, occurring

at low momentum transfer which is governed by non-perturbative effects,

is not an easy task. This is simply because perturbative QCD strategies

are not applicable in this case.

To remedy this, we are compelled to use phenomenological models that

hinge on fundamental principles of quantum field theory, such as unitarity,

analyticity and crossing, in conjunction with empirical parametrizations.

Hadronization, the process by which the quarks and gluons generated in

high-energy collisions turn into hadrons in the final state, is viewed as one

of the most significant QCD processes. In fact, several phenomenological

models have been used to describe this process; for example, we can cite the

string models which have been employed together with the Gribov-Regge

theory, like in Sibyll and QGSJET.

In fact, multi-pomeron exchange is crucial to the hadronization process

in these string models. More specifically, the color strings are stretched

between the projectile and target partons during the first stage. According

to the Gribov-Regge theory, the pair of strings’ construction corresponds

to the cut pomeron. The strings are then hadronized, yielding the observed

hadrons.

The Gribov-Regge theory states that the unitarization of the elastic

scattering amplitude is the technique by which multi-pomeron exchange is

accomplished in order to satisfy the unitarity principle.

One example of satisfying the unitarity principle into these models while

102
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addressing multi-pomeron exchanges is the widely utilized eikonal approxi-

mation. Direct and indirect evidence, however, has shown that the eikonal

or its extended quasi-eikonal schemes used in these models, while describ-

ing some hadronic observables reasonably well, are not sufficient for a

comprehensive description of the physics in question, especially in hadron

collisions at (ultra-) high energies. Fundamentally, there is no good reason

for pomerons to be independent as they are exchanged between composite

particles consisting of bound quarks and gluons. As a result, it is the-

orized that interactions between quarks and gluons may cause pomeron

exchanges to be correlated and interdependent.

There are fundamental problems with string models that need to be

addressed. The generated particles in these models are thought to origi-

nate from the exchanged pomerons-each composed of two strings. In this

approach, the probability of configurations including n string pairs is equal

to the probability of exchanging a specific number of these n pomerons,

which is poissonian according to the eikonal scheme.

But for the reasons listed below, this approach is erratic. While all

of the pomerons in the Gribov-Regge model are the same, the first and

subsequent pairs in the string picture are of distinct nature. Another

reason behind the inconsistency is related to the energy sharing between

the strings. In fact, energy is properly shared in the string (chain) model,

while it is completely overlooked in the Gribov-Regge theory.

Actually, we can claim that the mismatch resulting from the afore-

mentioned inconsistencies is associated with the eikonal scheme since the

Gribov-Regge probability is Poisonian.

Indeed, the problems indicated above could be resolved, for instance,

by developing a consistent approach that distinguishes between the first

string pair and subsequent pairs. To do so, it could be necessary to modify

the Gribov-Regge theory in order to differentiate between initial and sub-

sequent pomerons or to adjust the string model to better fit the uniform

treatment in Gribov-Regge theory.

They can also be dealt with by devising a method to include detailed

energy sharing among the strings in the Gribov-Regge theory. This could

entail mapping the Gribov-Regge probability onto a framework that incor-

porates energy sharing, or expanding the Gribov-Regge model to include

energy distribution among the pomerons.

In addition, considering an alternative scheme which may provide an-

other probability of the pomerons exchanged, namely the U -matrix, could
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be another solution to the aforementioned issues.

By taking these possible solutions into consideration , we believe that

a more consistent and accurate predictive model for soft QCD processes

may be developed.

In this study, we attempted to give a probabilistic interpretation of

pomeron exchange within the U -matrix scheme. In order to achieve this,

we employed a spectral representation of pomeron exchange in perturba-

tive Reggeon field theory, derived from the Kancheli formalism. This al-

lowed us to determine both the pomeron topological cross-section and the

pomeron multiplicity distribution, irrespective of the unitarization scheme

employed. After that, we looked at the pomeron multiplicity distribu-

tions’ statistical characteristics, especially their moments, to learn more

about the correlation between the pomerons that were exchanged in each

scheme. Additionally, we investigated how these pomeron weights affected

the multiplicities in pp collisions and explained how the mismatch between

Gribov-Regge theory and string models might be resolved by using the U -

matrix technique.
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The pomeron topological cross-section is derived for the eikonal and the U -matrix unitarization
schemes using a generalized expansion of the unitarized elastic amplitude in an effort to exam-
ine pomeron characteristics, namely the multiplicity distribution, fluctuation, and correlation, and
to reveal the impact of pomeron weights on the pp multiplicity distribution. The results demon-
strate that the U -matrix inherently incorporates a larger amount of diffraction production into the
multi-pomeron vertices, yielding a larger pomerons’ variability regardless of the energy range, while
such fluctuations become significant only beyond a specific high-energy threshold in the eikonal and
quasi-eikonal schemes. Most importantly, our findings indicate that within the U -matrix scheme,
an increase in exchanged pomerons results in more pronounced higher-order pomeron correlations,
which are affected by the energy and the impact parameter. Interestingly, our outcomes also high-
light that the correlated pomeron exchanges within the U -matrix summation play a key role in
enhancing multi-parton collisions. In light of these results, we can argue that the U -matrix is fun-
damentally more valid for theories with growing cross-sections with energy, such as QCD at high
energies.

I. INTRODUCTION

In the study of hadronic interactions at high energy,
understanding soft QCD processes that occur at low mo-
mentum transfer is a daunting task since perturbative
QCD techniques are inapplicable and, to date, there is
no fundamental theory that underlies these processes.
That being said, we can approach them through phe-
nomenological models that are based on fundamental
principles of quantum field theory – such as unitarity,
analyticity and crossing symmetry, along with empirical
parametrizations. In order to improve these models, ex-
tensive data comparisons from collider experiments and
cosmic-ray air showers are necessary to validate their un-
derlying assumptions and fine-tune their parameteriza-
tions.

One of the most important soft QCD processes is
Hadronization, which involves the transformation of
quarks and gluons produced in high-energy collisions into
the observed hadrons. Indeed, this process has been de-
scribed by a number of phenomenological models imple-
mented in Monte Carlo event generators. For instance,
we can cite the Lund string model [1] in conjunction with
the Gribov-Regge theory [2], in Sibyll [3] and QGSJET
[4]. In these models, multi-pomeron exchanges play a
crucial role in the hadronization process. The unitariza-
tion of the elastic scattering amplitude allows for their
inclusion, with the eikonal approximation being the most
commonly used method satisfying the unitarity principle
in this context.

In these models, multi-pomeron exchanges play a cru-
cial role in the hadronization process. The unitarization

∗ rami.oueslati@uliege.be

of the elastic scattering amplitude allows for their in-
clusion, with an eikonal-like unitarisation scheme being
the most commonly used method satisfying the unitar-
ity principle in this context. Indeed, the formation of
string pairs, which corresponds to cut pomerons in the
Gribov-Regge framework, is influenced by the weights of
the pomerons. These strings, stretched between projec-
tile and target partons, undergo hadronization, leading
to the production of observed hadrons. However, despite
the reasonable description of some hadronic observables
provided by the eikonal or its extended version the quasi-
eikonal, both direct and indirect evidence indicate that
these approaches are inadequate for a complete under-
standing of the physics in question, particularly in hadron
collisions at (ultra-) high energies. As such, a more com-
prehensive approach is necessary to accurately describe
the complex dynamics involved in these processes.

In [5], it has been shown that pomeron exchange
in an eikonal-like scheme is a Poisson-distributed vari-
able, where the number of exchanged pomerons is sta-
tistically independent. From a fundamental standpoint,
since pomerons are exchanged between composite parti-
cles consisting of bound quarks and gluons, there is no
sound reason why they should be independent. Hence,
it is hypothesized that pomeron exchanges may be cor-
related and interdependent as a result of interactions be-
tween the quarks and gluons. This raises the question of
identifying the appropriate unitarization scheme for such
dependent exchanges.

From a phenomenological point of view, modelling
problems caused by an eikonal-like unitarization tech-
nique are numerous. For instance, it has been demon-
strated in [6] that shadow corrections to the rapidly rising
contribution of the input supercritical pomeron, which
arise from pomeron rescatterings or, equivalently, from
considering the survival probability factor, do not resolve
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the Finkelstein-Kajantie problem. Consequently, it has
been argued that an alternative method for unitarization
is necessary.

Another fundamental issue that needs to be addressed
relates to string models for hadronization [7]. In these
models, the probability of configurations with n string
pairs is given by the probability of having n exchanged
pomerons, which is a Poisson distribution through the
eikonal scheme. Nevertheless, this approach is inconsis-
tent for the following reasons.

To begin with, in the string model, the first pair of
quark-antiquark strings and the subsequent pairs are fun-
damentally different. This distinction arises because the
first string pair is formed from the initial quarks of the
colliding protons, while the subsequent pairs are typi-
cally generated from secondary interactions. These sec-
ondary interactions involve different quark content and a
different distribution of energy among the strings, with
the first string pair generally receiving a larger share of
the available energy compared to the subsequent pairs.
Conversely, in the Gribov-Regge theory, all elementary
interactions -pomerons- are treated as identical. Thus
there is no distinction between the initial and subsequent
interactions and all pomerons are dealt with statistically
uniformly. Additionally, in the Gribov-Regge framework,
the energy sharing among the different pomerons is not
considered. These inconsistencies result in a mismatch
when using the Gribov-Regge pomeron probability distri-
bution for configurations with different numbers of string
pairs. Therefore, we can argue that this mismatch is at-
tributed to the eikonal scheme given that the Gribov-
Regge pomeron probability is essentially Poisonian and
basically defined from the eikonal scheme. Consequently,
considering an alternative unitarisation scheme, namely
the U -matrix, could be a solution to the aforementioned
issues. In fact, throughout the years, various arguments
have been furnished in favor of the U -matrix scheme.

For instance, in [8], a phenomenological model based
on the picture depicting the KNO scaling violation as an
extension of the geometrical scaling violation and using
the U -matrix unitarization scheme has been presented
within the framework of the geometrical approach in an
attempt to describe multi-particle production. In this
study, it has been suggested that the U -matrix scheme
may serve as a noteworthy alternative for tackling chal-
lenges related to multi-particle production in hadron col-
lisions, especially in scenarios where extreme conditions
and rare events play a significant role in high and ultra-
high energy physics. It also prompts an inquiry into the
fundamental nature of pomeron exchange within the U -
matrix scheme in comparison to the eikonal, despite that
both schemes verify the unitarity constraint principle.

In another study [9], owing to the fact that corre-
lations could arise from hadron fluctuations in various
diffractive configurations, a multi-channel model was in-
troduced to better describe diffractive cross-sections by
enhancing these hadron fluctuations. This model has
shown that U -matrix unitarization is likely incompatible

with the assumption of uncorrelated pomeron exchange,
primarily because the findings are independent of the de-
tails of the diffractive states.

In addition, the rational form of unitarization (e.g., the
U -matrix) has long been supported by arguments based
on the analytical features of the scattering amplitude. It
has been demonstrated that, in contrast to the exponen-
tial form of unitarization (e.g., the eikonal), this type of
unitarization far more easily replicates correct analytical
characteristics of the amplitude in the complex energy
plane [10]. Moreover, much research (e.g., [8, 11]) has
highlighted the efficacy of the rational form in offering
a more accurate description of the underlying physics in
hadronic collisions at high energy.

At ultra-high energy, it has been shown that the
eikonal causes problems in describing the data obtained
from cosmic-ray air showers. Indeed, the development
of air showers can be significantly affected by diffractive
collisions [12]. For example, based on the predictions
of MC simulations, it has been revealed that diffractive
collisions have an impact on the prediction of observ-
ables in ultra-high energy cosmic ray experiments, such
as the depth of the maximum of the shower development
Xmax and the depth of the maximum of the muon pro-
ductions in an air shower Xµ

max. As it has been revealed
in [13] the single diffractive data preferred the U -matrix
scheme over the eikonal, particularly at ultra-high en-
ergy. Switching from the commonly used eikonal in these
MC simulations could hence reshape our understanding
of cosmic-ray physics.

Overall, selecting the appropriate elastic scatter-
ing amplitude unitarisation is primordial in high-
energy hadron scattering, particularly for various phe-
nomenological models and generators. Indeed, multi-
pomeron exchange weights considerably impact high-
energy hadron amplitudes, thereby directly affecting
hadron process cross-sections. This includes the energy-
dependent growth pattern of inclusive cross-sections and
the shape of produced particle multiplicity distributions
[14, 15].

The study set out to understand the nature and role of
pomeron exchanges in the U -matrix scheme in compari-
son to an eikonal-like one. It also aims to shed light on
the impact of the pomeron weights for QCD processes.

This work is organized as follows. In the next section,
we will outline the theoretical framework of the pomeron
vertices in Gribov-Regge theory, along with a detailed
review of the generalized representation of the unitarized
elastic scattering amplitude, as proposed by Kancheli.
Section III will present and thoroughly discuss the re-
sults. Section IV will summarize the main findings and
implications of the study.
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II. POMERONS VERTICES IN
GRIBOV-REGGE THEORY

Unitarization in the Gribov-Regge theory [2] is accom-
plished by summing the contributions from all multi-
reggeon exchanges. Using this method, the Reggeon ver-
tices, referring to the coupling between the exchanged
Reggeons and the external particle, are used to calculate
the amplitudes for multi-Reggeon exchanges and their
values determine the weights of the n-reggeon exchange.
It is worth noting that it is difficult to compute the val-
ues of these vertices from first principles. In fact, from a
phenomenological procedure, they are parameters deter-
mined by fitting to experimental data using some func-
tional form. However, as previously stated in the first
section, there is no specific reason to assume that these
weights should adhere to the simple Glauber-eikonal
form. Therefore, a more thorough treatment of them
is needed. In [16], the structure of these multi-pomeron
vertices has been analyzed and generalized to take into
account more complex interactions, specifically the con-
tribution from diffraction production in the weights of
multi-reggeon exchange. In this section, the formalism
put forth in [16] will be thoroughly reviewed as it lies the
theoretical foundations for our objectives.

We begin with the expression of the unitarized elastic
hadronic amplitude represented as follows :

F (s, t) =

∞∑

n=1

Fn(s, t), (1)

with the n Reggeon exchange amplitude given by :

Fn(s, t ≃ −k2⊥) =
−i

nn!

∫
N2

n(k⊥i)

·
n∏

i=1

d2k⊥i

(2π)2
·D(s, k⊥i)δ

2
(
k⊥ −

∑
k⊥i

)
, (2)

where at high energy, the primary amplitude F1(s, t) can
be represented either as a pomeron exchange or as a more
intricate set of reggeon diagrams and its factorized form

is given by

F1(s, t) = G(k⊥)D(s, k⊥)G(k⊥), (3)

where D(s, k⊥) refers to the Green function of the
Pomeron. As stated in [17], the vertex function Nn(k⊥i)
in (2), representing the emission of n pomerons with
transverse momenta k⊥i by the external hadron parti-
cle, can be expressed through integrals of the product
of G vertices. Likewise, the vertices can be expanded
over on mass shell states of diffractive-like beams [18],
thereby accounting for the contribution from diffractive
production in the multi-reggeon exchange weights :

Nn(ki) =
∑

ν1,ν2,..νn

∫
G1 ν1

(Pin, p
(1)
i )Gν1ν2

(p
(1)
i , p

(2)
j ) · · ·

· · ·Gνn−11(p
(n−1)
i , Pout)

n−1∏

i=1

dΩνi(p
(1)
i ), (4)

where Gν1ν2(p
(1)
i , p

(2)
j , k⊥) is the transition amplitude for

a beam of ν1 particles with momenta p
(1)
i into a beam of

ν2 particles with momenta p
(2)
j , and with the emission of

a pomeron with the transverse momentum k⊥. In (4), the
dΩν(pi) represents the element of the ν particles phase-
space volume. The Eq. (4) incorporates both the summa-
tion and integration over all conceivable physical states
of the particles in the beams and thus accounts for their
full masses. It is important to note that the multi-particle
amplitudes Gν1ν2

are complex and may contain unrelated
contributions, whereas the vertex functions Nn(ki) are
real.
Considering a non-local field operator Ĝ(k) describ-

ing the pomeron emission vertices Gν1ν2(k) between the
initial and final states of the external particle, the expres-
sion (4) for the vertex functions Nn(ki) can be written in
a symbolic operator form as the average of the product
of this field operator Ĝ(k) :

Nn(ki) = ⟨Pin|Ĝ(k1)Ĝ(k2) · · · Ĝ(kn)|Pout⟩ (5)

This product can further be decomposed over the com-
plete set of physical states of the beams |ν⟩ as follows

Nn(ki) =
∑

ν1,...,νn−1

⟨Pin|Ĝ(k1)|ν1⟩⟨ν1|Ĝ(k2)|ν2⟩⟨ν2|Ĝ(k3)|ν3⟩ · · · ⟨νn−2|Ĝ(kn−1)|νn−1⟩⟨νn−1|Ĝ(kn)|Pout⟩ (6)

One can simplify the handling of the vertex operators
Ĝ(k) by redefining the basis for the beam states |ν⟩ where
Ĝ(k) has a simple diagonal form :

Ĝ(k)|ν⟩ = gν(k)|ν⟩, (7)

with gν(k) acting as eigenvalues. Then the expression
Eq. (6) is simplified as the summation over all possi-
ble beam states, with the contribution from each state
weighted by a function w(ν) and the product of its asso-
ciated vertex functions for the different momentum com-
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ponents ki :

Nn(ki) =
∑

ν

w(ν)
n∏

1

gν(ki) (8)

where w(ν) can be interpreted as the probability of find-
ing the fast hadron in the state | ν⟩ and is given by:

w(ν) = ⟨Pin|ν⟩ ⟨ν|Pout⟩ (9)

Following this simplification, the S-matrix in the impact
parameter representation can be written as follows:

S(s, b) =
∑

ν1ν2

w(ν1)w(ν2)
∞∑

n=0

( i χν1ν2(s, b))
n

n!
(10)

=
∑

ν1ν2

w(ν1)w(ν2)e
iχν1ν2

(s,b)

where

χν1ν2(s, b) =

∫
d2k⊥e

ibk⊥gν1(k⊥)D(s, k⊥)gν2(k⊥) (11)

One can further simplify the expression for the vertices
by factorizing the vertex function gν(k) into a universal
term g(k) and a state-dependent coefficient λ(ν), with a
small non-factorizable correction g̃(ν, k) :

gν(k) = g(k)λ(ν) + g̃(ν, k) (12)

then the vertices can be represented as :

Nn(ki) ≃ βn

n∏

1

g(ki), (13)

where

βn =
∑

ν

w(ν) (λ(ν))n (14)

Under this assumption of factorization, the vertices sim-
plify to a product of universal functions g(ki), weighted
by βn, which encapsulates the sum over the probabilities
w(ν) and the coefficients (λ(ν))n.

All in all we obtain the following expression for the
S-Matrix in the impact parameter representation :

S(s, b) =
∞∑

n=0

β2
n

n!
(i χ(s, b))

n
(15)

where the real coefficients βn ≥ 1 are largely arbitrary.
Yet, their expressions will be determined depending on
the unitarisation scheme chosen for the elastic amplitude,
which will be illustrated in the forthcoming section.

The above equation provides a generalized expansion
of the S-matrix whereby the coefficients govern the con-
tributions of different orders of the interaction between
the particles. Technically, the expansion is developed as

a power series increasingly summing over complex inter-
action terms dictated by the function χ(s, b) which in-
corporates the scattering dynamics. Each term’s weight
is controlled by the coefficient βn, reflecting the relative
probability of different interaction strengths leading to
the scattering process.
It is often not feasible to work directly with an infi-

nite series due to the computational cost of calculating
each term and the potential difficulty of evaluating the
convergence characteristics. Yet, it might be possible to
gain a better understanding of the series’ structure in
(38) by constructing a more compact and manageable
formulation. This can be accomplished in a few different
ways, for instance by mapping the series into an integral.
By using spectral theory, for example, hidden spectral
properties may be uncovered. To do so, we replace the
coefficients βn in (38) with the following expression :

βn =

∫ ∞

0

dτ τn φ(τ) , (16)

then the S[χ] matrix can be rewritten as a combination
of Glauber-type eikonal terms:

S(s, b) ≡ S[χ] =

∫ ∞

0

dτ ρ(τ) eiτχ(s,b) (17)

ρ(τ) =

∫ ∞

0

dτ1
τ1

φ(τ1)φ(τ/τ1) (18)

where ρ(τ) functions as a weight. The constraints β0 =
β1 = 1 are imposed by the normalization condition for
S[χ] and w(ν). This results in the following relations:

∫ ∞

0

dτ ρ(τ) =

∫ ∞

0

dτ τρ(τ) = 1 (19)

It is worth noting that, in the Glauber eikonal case, the
single-particle state in beams contributes very little to
Nn(ki). When this occurs, the integrals in (4) disappear
and the expression for Nn(ki) becomes a simple product
of n elastic pomeron vertices as :

Nn(ki) =
n∏

i=1

g(ki), (20)

where g(k) = G11(p, p+ k).
Using the generalised S matrix representation, we can

write some general relationships for cross-sections at a
given impact parameter and are dimensionless, which are
expressed using the function S[χ(s, b)], and are valid for
any spectral density ρ(τ).

• The total cross-section :

σtot(s, b) = 2(1−Re(S[χ])), (21)
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• The elastic cross-section

σel(s, b) = | 1− S[χ] |2, (22)

• The total inelastic cross-section

σin(s, b) = σtot − σel = 1− |S[χ]|2 (23)

• The total cross-section of diffraction generation :
single σsd and double σdd

σdif (s, b) = σin − σin, cut = 2σsd + σdd

= S[2iIm(χ)]− | S[χ] | 2 (24)

• The cross-section corresponding to processes when
at least one pomeron is s-cut : when we cut a sin-
gle pomeron from the elastic amplitude, this corre-
sponds to taking the imaginary part of the corre-
sponding partial-wave amplitude. From the optical
theorem, we know that this is related to the cross-
section for cutting a single pomeron. Therefore

σin, cut(s, b) = 1− S[2i Im(χ)] (25)

and so the pomeron topological cross-section: these
are the contributions of diagrams with n cut
pomerons and of the arbitrary number of uncut
pomeron lines

σn(s, b) =

∫ ∞

0

dτρ(τ)
(2τIm(χ))n

n!
e−2τIm(χ) (26)

where ρ(τ) is a spectral density. The pomeron
topological cross-section resembles a superposition
of Poisson distributions, where each term repre-
sents the contribution of a Poisson distribution
with mean (2τ Im(χ)) weighted by the spectral den-
sity ρ(τ).

III. RESULTS

A. Pomeron topological cross-section

This section is concerned with the investigation of the
pomeron dynamics by utilizing the general representation
of the S-Matrix. First of all, we start with highlighting
the link between this general representation and the uni-
tarization scheme and then with the pomeron weights.
Let’s examine two prominent unitarization schemes: the
eikonal and the U -matrix. They are distinguished by

their respective spectral functions ρ(τ), i.e. the βn co-
efficients. For instance, if we consider a simple spectral
function as a delta function,

ρ(τ) = δ(τ − 1) , (27)

then we obtain for the unitarised elastic scattering am-
plitude, the following expression :

A(s, b) = i
[
1− eiχ(s,b)

]
(28)

which is the eikonal form of the unitarisation scheme [19].
In this case, using Eq. 26 , the pomeron topological cross-
section is given by

σn(s, b) =
(2Im(χ))n

n!
e−2Im(χ) (29)

While if we take for the spectral function, the expression
:

ρ(τ) =
e−τ/c

c
(30)

[20] and with c = 1
2 then we get for the unitarised elastic

scattering amplitude, this form :

A(s, b) =
χ(s, b)

1− iχ(s, b)/2
(31)

which is the U -Matrix form of the unitarisation scheme
[19], and for the pomeron topological cross-section,
Eq. 26 gives :

σn(s, b) =
(Im(χ))n

(1 + Im(χ))1+n
(32)

It is worth noting that different schemes for unitariz-
ing the elastic amplitude, and hence various approaches
to ensure the unitarity constraint, arise from the gener-
alized S matrix form, which depends on the choice of
the spectral function. Owing to the ambiguity of select-
ing the appropriate unitarisation scheme, particularly for
hadron scattering at high energy, in spite of satisfying
the unitarity constraint, one can resort to some general
procedure. Indeed, it is significant to note that the opti-
mization of a phenomenological model from the general
expansion of the S-matrix may facilitate the identifica-
tion of the suitable scheme. This can be achieved by
fitting experimental data to some observables, such as
total, elastic and inelastic cross-sections, among others.
Then, the adequate scheme can be determined by deriv-
ing the appropriate spectral function from the best fits.
In the eikonal case, the number of pomerons is a ran-

dom variable Poisson distributed [5]. Therefore, one may
inquire about the nature of the probability distribution
for the number of pomeron exchanged in alternative ap-
proaches, mainly the U -matrix scheme. As a matter of
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fact, the expression 26 of the pomeron topological cross-
section σn(s, b), as a superposition of Poisson distribu-
tion, can be understood as a mixed Poisson distribution,
in which the conditional distribution of the number of
pomeron exchanged, given a certain rate parameter, is
a Poisson distribution. Nevertheless, the rate parame-
ter itself, in the mixed poisson framework, is handled as
a random variable with its own distribution [21]. Thus,
one can query what kind of features can be obtained with
this random rate parameter rather than with a fixed Pois-
son rate parameter for all events. To achieve this, let a

random variable X satisfies a mixed Poisson distribution
with density π(λ), then the probability distribution has
this form :

Pr(X = n) =

∫ ∞

0

λn

n!
e−λ π(λ) dλ. (33)

If we consider that the Poisson rate parameter is dis-
tributed according to an exponential distribution, π(λ) =
1
γ e

−λ
γ and using integration by parts n times yields:

Pr(X = n) =
1

n!

∞∫

0

λn e−λ 1

γ
e−

λ
γ dλ =

(
γ

1 + γ

)n(
1

1 + γ

)
(34)

we get X ∼ Geo
(

1
1+γ

)
. And so the pomeron probabil-

ity distribution in case of the U -matrix scheme gives the
probability distribution of the number of failures until
the first success of the exchanged pomerons.

Pr(X = n) = (1− p)n p (35)

for n = 0, 1, 2, 3, ...., where

p =
1

1 + γ
(36)

Thus, when compounding a Poisson distribution with
rate parameter distributed according to an exponential
distribution yields a geometric distribution. Or accord-
ing to (32), for the pomeron topological cross-section in
the U -Matrix case, we have :

P (X = n) =

(
γ

1 + γ

)n(
1

1 + γ

)
= σn(s, b) =

(Im(χ(s, b))n

(1 + Im(χ(s, b))1+n
, (37)

with γ = Im(χ(s, b)). Consequently, within the U -
matrix scheme, the number of pomerons is a random
variable that follows a geometric distribution, and hence
pomeron exchanges are no longer independent, and this
dependency implies collective phenomena such as corre-
lation among the exchanged pomerons. This outcome
distinguishes the U -matrix scheme from others, particu-
larly the eikonal, which lacks these properties.

Another approach in [22] involves deriving the
pomeron topological cross-section by applying the AGK
cutting rules and using the coefficients obtained in each
scheme by expanding the elastic scattering amplitude in
impact parameter space as a power series of the Born
term. The resulting expression is very similar to our
result 32, with the main difference being an additional
multiplicative factor of 2. Moreover, it was shown that
the U -matrix unitarization is inconsistent with the AGK
rules and in turn that the U -matrix scheme cannot be
used for the unitarization of the pomeron with inter-
cept greater than 1. Nevertheless, using the generalized

representation of the S matrix 38, and the constraints
β0 = 1 imposed by the normalization condition for S[χ]
and w(ν) :

S(s, b) = β2
0 +

∞∑

n=1

β2
n

n!
(i χ(s, b))

n
= 1 + i A(s, b) (38)

we obtain a generalized expansion of the unitarized elas-
tic amplitude in impact parameter space :

A(s, b) = −i
∞∑

n=1

β2
n

n!
(i χ(s, b))

n
(39)

To obtain the expression of the unitarized elastic ampli-
tude in each scheme, fixing in 39, the weight’s coefficient
β2
n, reflecting the relative probability of different interac-

tion strengths.
For the eikonal, case, let β2

n = 1 and so (39) implies
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A(s, b) = i[1− eiχ(s,b)] = −i
∞∑

n=1

[iχ(s, b)]n

n!
= i

∞∑

n=1

Ceik
n · (−1)n−1[Ω(s, b)]n, (40)

where Ω(s, b) ≡ −2iχ(s, b) is the opacity of pp interac-
tion, and the coefficients of the power series are as in
[22]:

Ceik
n = 2−n/n!, (41)

and for the U -matrix case, let β2
n = cn n! [20] with

c = 1
2 , then (39) gives

A(s, b) =
χ̂(s, b)

1− iχ̂(s, b)/2
= −2i

∞∑

n=1

[iχ̂(s, b)]n

2n
= i

∞∑

n=1

CU
n · (−1)n−1[Ω̂(s, b)]n, (42)

where Ω̂(s, b) ≡ −2iχ̂(s, b) is the respective opacity, and
the coefficients of the power series are :

CU
n = 1/4n (43)

Note that, as opposed to [22], the first two terms of the
pomeron exchange in the eikonal (40) and the U -matrix

(42) schemes (with Ω = P = Ω̂) are not the same. Using
the expression from [22] of the pomeron topological cross-
section derived by applying the AGK cutting rules :

σk(s, b) = 2
∑

n

Cn · (−1)n−k2n−1n![P(s, b)]n

k!(n− k)!
. (44)

and replacing in (44) the coefficients Cn by CU
n in the U

matrix case, we get

σk
U (s, b) =

[
Imχ̂(s, b)

1 + Imχ̂(s, b)

]k
1

1 + Imχ̂(s, b)
(45)

exactly the same as our result (32). Regarding the prob-
lem of the inconsistency of the U -matrix unitarization
with the AGK rules, we have from the unitarity equation
in impact parameter space and (42) that:

Ginel(s, b) = 2ImA(s, b)− |A(s, b)|2

=
2Imχ̂(s, b)

(1− iχ̂(s, b)/2)(1 + iχ̂∗(s, b)/2)
, (46)

and from (45) we get

Ginel(s, b) =
∑

k

σk
U (s, b) =

Imχ̂(s, b)

1 + Imχ̂(s, b)
. (47)

In particular, at very large s → ∞ according to (46)
Ginel → 0 whereas from (47) Ginel → 1 .It is worth
noting that the limit Ginel → 1 provides a more physi-
cally consistent approximation of inelastic scattering at

large χ̂, as it better reflects the suppression of contri-
butions compared to the unphysical saturation implied
by Ginel → 2 in [22], bringing it closer to the expected
asymptotic behavior of Ginel → 0. Moreover, the dis-
crepancy between the limit of convergence of Ginel in our
result and the physical limit of convergence arises from
the fact that, in the application of the AGK cutting rules
in [22], the cut amplitude does not include contributions
from the cross-section of the diffractive states, which cor-
responds to the production of states accompanied by a
rapidity gap. Indeed, the AGK cutting rules relate dif-
ferent cuts of the same diagram, potentially leading to
subtle connections or cancellations.

B. Pomeron multiplicity distribution

Let us quantify the implications of this finding in an
explicit model. The starting point is the single pomeron
scattering amplitude, i.e. the Born term. We parame-
terise it as

a(s, t) = g2p F1(t)
2

(
s

s0

)α(t)

ξ(t) , (48)

using the pomeron trajectory α(t), the proton elastic
form factor F1(t) and the coupling pomeron-proton gp,
with ξ(t) the signature factor

ξ(t) = −e
−iπα(t)

2 . (49)

and the pomeron trajectory close to a straight line

α(t) = 1 + ϵ+ α′t. (50)

In the impact-parameter representation, where the
Fourier transform of the amplitude a (s, t) rescaled by
2s is equivalent to a partial wave

χ(s, b) =

∫
d2q

(2π)
2

a(s, t)

2s
eiq·b. (51)
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We used a dipole-like form factor for the proton F1 =
1/(1 − t/t0)

2. The parameters ϵ and α′ describing the
pomeron trajectory, the coupling constant gp and t0 the
form-factor scale, are adjusted from a fit to up-to-date
hadron collider data on total, elastic and inelastic cross-
sections both for the eikonal and U -matrix unitarisation
schemes [23] and are provided in table I.

In order to understand the hadronic dynamics at high
and ultra-high energies, particularly in terms of the spa-
tial distribution of the interactions and their implications
for particle production, we examined the behaviour of
the pomeron topological cross-section in the impact pa-
rameter space with energy and the number of pomerons
exchanged, in both the eikonal and U -matrix cases, as
shown in Fig. 1 and Fig. 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

b [fm]

0.00

0.02
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0.08
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0.12

σ
n
(s
,b

)

Eikonal Scheme  2P @ 300 GeV

 4P @ 300 GeV

 2P @ 13 TeV

 4P @ 13 TeV

 2P @ 57 TeV

 4P @ 57 TeV

FIG. 1. Impact parameter evolution of the Pomeron Topo-
logical cross-section in the Eikonal case.

As can be seen from both figures, this function exhibits
a distinct pattern in impact parameter space regardless
of the scheme used. Nevertheless in each scheme, it has
a broadly similar shape irrespective of both the energy
level and the number of the pomerons exchanged. More
specifically, as shown in the eikonal case, this function is
predominantly peripheral, indicating a substantial con-
tribution at large impact parameters. This implies that
the majority of pomeron interactions are more likely to
occur when the colliding hadrons pass through each other
at large distances, reflecting that the interactions are
”softer” in nature, meaning they involve long-range pro-
cesses, likely mediated by soft pomeron exchanges. On
the other hand, in the U matrix case, we can clearly see
that this function is primarily central, suggesting that
pomeron interactions tend to happen when the colliding
hadrons pass through each other in close proximity, en-

0.0 0.5 1.0 1.5 2.0 2.5 3.0

b [fm]
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U Matrix Scheme

 2P @ 300 GeV

 4P @ 300 GeV

 2P @ 13 TeV

 4P @ 13 TeV

 2P @ 57 TeV

 4P @ 57 TeV

FIG. 2. Impact parameter evolution of the Pomeron Topo-
logical cross-section in the U -Matrix case.

tailing that the collisions tend to involve higher energy
densities, leading to more intense interactions in the core
of the colliding hadrons.
Furthermore, another aspect observed from these fig-

ures is that, with the exponential scheme, this function
tends to decline in the same manner with respect to the
impact parameter as energy increases. Notably, for a
given n, the peak of this function shifts toward larger
values of b with increasing energy, while the magnitude
of the peak remains approximately constant. This sug-
gests that the spatial region, where the interactions take
place, expands with increasing energy, making peripheral
collisions even more dominant at ultra-high energy. Most
importantly, this peripheral behaviour and constancy of
the peak’s magnitude are indicative of reaching a satura-
tion effect where the available parton density limits the
increase in the interaction strength even with increasing
energy.
Whereas, with the rational scheme, this cross-section

typically shows a more gradual decrease with increasing
impact parameter as energy rises. More interestingly, for
a given n, the maximum remains near the centre of the
collision, and its value increases with energy. This indi-
cates that the strength of the pomeron interactions grows
at the core of the collision and we can understand that
more partons are involved in the interaction in the cen-
tral region. This reflects a regime where the interactions
are still increasing, indicating that saturation has not yet
been reached in the central collision region.
Additionally, according to these figures, it is clear that,

for a fixed energy, with two and four pomerons exchanged
the magnitude of this function decreases as n increases
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Scheme ϵ α′ gp t0
χ2

d.o.f

Eikonal 0.11± 0.01 0.31± 0.19 7.3± 0.9 1.9± 0.4 1.442

U-matrix 0.10± 0.01 0.37± 0.28 7.5± 0.8 2.5± 0.6 1.436

TABLE I. χ2/d.o.f and best-fit parameters obtained using the eikonal and U -matrix unitarisation schemes.

for both schemes. We may suggest that higher-order
pomeron exchanges become less significant at higher en-
ergies depending on their nature.
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FIG. 3. Energy evolution of the Pomeron topological cross-
section in the Eikonal case.

The energy evolution of the pomeron topological cross-
sections for 1, 2, 3, 4 and 5-pomerons exchanged has also
been examined in both the eikonal and U -matrix cases.
By looking at Fig. 3 and Fig. 4, we can generally see
that these cross-sections roughly exhibit the same be-
havior in both schemes. To be more specific, for each
pomeron exchanged, the cross-sections increase as en-
ergy rises, with the contribution of 1-pomeron exchanged
showing the highest value across all energy ranges. This
suggests that the interactions are primarily governed by
the simplest diagrams in the pomeron exchange frame-
work, especially at lower energies. As for the higher-
order pomeron exchanges σ2pom, σ3pom, etc.), they con-
tribute gradually less. It also shows that all cross-sections
tend to reach a maximum then decline abruptly at ex-
treme energies, indicating a signature of the unitarity
constraint. It is significant to note that in comparison
with the eikonal case, this unitarity constraint signature
is hit at a slightly higher energy for each pomeron ex-
changed in the U -matrix case. Indeed, this demonstrates
the different energy levels at which unitarity effects take
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FIG. 4. Energy evolution of the Pomeron topological cross-
section in the U Matrix case.

over for each pomeron contribution in these two schemes.
Furthermore, before reaching the energy threshold

of the unitarity signature, it is evident that all cross-
sections’ curvatures, starting from 2 pomerons ex-
changed, significantly change at energies beyond 104 GeV
in the eikonal case. It should be noted that with more
pomerons being exchanged, this effect intensifies. Con-
versely, in the U -matrix case, despite taking into con-
sideration several pomeron exchanges, the cross-sections
show a more constant and progressive behaviour without
any change in curvature.
The pomeron multiplicity distribution Wn(s), i.e., the

probability of n pomerons exchanged in an inelastic col-
lision at the energy s, is given by

Wn =
σn∑
n′ σn′

(52)

Using the ansatz for the single pomeron exchange am-
plitude in the eikonal and U -Matrix cases, we compute
Wn. The results are plotted in Fig. 5 for three collision
energy scales.
Fig. 5 clearly shows that in the eikonal case, the ex-

change of a large number of pomerons is significantly
suppressed compared to the U -matrix case. In the latter
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FIG. 5. Pomeron multiplicity distribution in both cases,
eikonal and U -matrix.

scheme, the exchange of one pomeron enhances the prob-
ability of exchanging additional pomerons, and then the
pomeron multiplicity distribution would deviate from a
Poissonian one. This remarkable difference entails that
multi-pomeron exchange is different in the two schemes.
In particular, it may result from the presence of collective
phenomena, such as correlations between the exchanged
pomerons in contrast to what would be expected from an
independent exchange.

It goes without saying that the role of the multi-
pomeron exchange becomes more significant as energy
grows. In the case of a Poisson distribution, the mean
and the variance are equal. In hadronic interactions,
however, their relationship tends to vary depending on
a number of factors, such as the energy of the interac-
tion. As a matter of fact, in order to highlight the role of
the multi-pomeron exchange, particularly at high energy,
we investigated the energy evolution of the mean and the
variance of the number of pomerons exchanged. Using
the probabilities in each scheme, we can calculate the
mean and variance of the number of cut-pomerons as a
function of the energy:

⟨n⟩ =
∞∑

n′=0

n′Wn′ (53)

and

Var(n) =
∞∑

n′=0

n′2Wn′ − ⟨n⟩2. (54)

By looking at Fig. 6, we can clearly see that in the
eikonal case both the mean and the variance of the ex-
changed pomerons increase more considerably with en-
ergy. In addition, it is evident that the mean-variance

relationship shows a noticeable shift around 104 GeV.
More precisely, at energies below 104 GeV, we can notice
that the variance is steadily smaller than the mean. This
suggests that the fluctuations of the exchanged pomerons
are not as severe as they are in the average behavior.
This also points to a more consistent and stable interac-
tion dynamics at lower energy, where more predictable
contributions govern the pomeron exchanges. Neverthe-
less, at energies above 104 GeV, the variance exceeds the
mean with a disproportionate growth.

It is significant to note that the result regarding the
energy evolution of both the mean and the variance of
the pomerons exchanged aligns with that reported in the
quasi-eikonal framework [24]. Most importantly, they un-
cover a significant distinction in the energy shift of the
mean-variance relationship. Indeed, the transition in the
quasi-eikonal case, where the variance exceeds the mean,
takes place at a lower energy scale, around 200 GeV.
In contrast, this transition is seen at a greater energy,
roughly 104 GeV, in the eikonal case. One of the possible
explanations for this discrepancy is linked to the fact that
the quasi-eikonal unitarization is an extended eikonal-like
scheme, with an extra factor c in the expression of this
unitarisation scheme accounting for the modification of
the simple eikonal due to inelastic diffractive states. For
instance, a value of c = 1.5 is utilized, corresponding
to a 50% contribution of low-mass diffractive states, in
comparison to the elastic ones. Hence, the additional dy-
namics from the diffractive process in the quasi-eikonal
scheme make the number of exchanged pomerons more
variable, which lowers the energy threshold for the tran-
sition regime in which the variance is greater than the
mean.

Fig. 7 demonstrates the evolution of both the mean
and the variance with energy in the U -matrix scheme. As
can be seen, the mean number of pomerons exchanged
progressively rises as energy grows and it keeps increasing
at higher energies.

As far as the variance is concerned, it exhibits a sim-
ilar increase. However, surprisingly enough, it is con-
stantly greater than the mean throughout the whole en-
ergy range. This suggests that the number of pomerons
exchanged shows greater fluctuations than the average at
each energy level, and this deviation becomes more sig-
nificant as energy rises. As a matter of fact, this striking
result can be explained in terms of the vertices, i.e., the
pomeron weights, pertaining to hadronic interactions at
high energy. More precisely, on the one hand, we can
infer that the U -matrix scheme intrinsically incorporates
diffraction production into the multi-pomeron vertices, as
they are weighted by the probabilities of the fast hadron
being in various diffractive states (13), reflecting a wider
range of interaction possibilities. The eikonal scheme, on
the other hand, having a simpler vertex structure (20) has
restricted variability at lower energies and exhibits fluc-
tuations that only exceed the mean at higher energies,
where the role of the multi-pomeron exchanges becomes
substantial.
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FIG. 6. Mean and variance of the number of pomerons in
the eikonal and U Matrix case

Due to the fact that the U -matrix scheme yields larger
fluctuations of the number of pomerons exchanged irre-
spective of the energy range in comparison to the simpler
eikonal and the quasi-eikonal schemes, we can argue that
it accounts for more complex interaction dynamics and
for a larger amount of diffraction production. Interest-
ingly, this resonates with a result obtained in [13] and
most importantly helps explain why the U -matrix scheme
describes the single diffractive data slightly better than
the eikonal regardless of the data employed.

The disparity between the U -matrix and eikonal frame-
works, with respect to the fluctuations in the number of
pomerons exchanged, is most likely due to the diffrac-
tive states’ overlap. It is significant to note that, the
difference between the two schemes with regards to the
parametrized hadronic overlap function is marginal (48).
However, in the U -matrix scheme, there is a consider-
able diffractive states’ overlap, which increases pomerons’
variability and gives rise to more pronounced fluctua-
tions. Conversely, since the eikonal scheme does not
take into consideration such overlap, it shows simpler
dynamics with suppressed fluctuations at lower energies.
This comparison sheds light on the role that the U -matrix
scheme plays in accounting for more intricate dynamics,
particularly, when considering scattering processes with
significant diffractive contributions.

Overall, despite the marginal difference in the func-
tional form of the pomeron input in both schemes, we can
deduce that the mechanism of unitarization significantly
affects the fluctuations in the number of pomerons ex-
changed, and claim that the U -matrix scheme offers an ef-
ficient phenomenological approach to consider pomerons’
variability regardless of the energy range, while such fluc-
tuations become significant only beyond specific high-
energy thresholds in the other schemes, namely the

eikonal and quasi-eikonal.
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FIG. 7. Mean and variance of the number of pomerons in
the eikonal and U Matrix case

The intriguing energy shift with regards to the mean-
variance relationship hints at a transition in the underly-
ing dynamics of the hadronic scattering process with re-
spect to the energy regime. Thus, in order to better com-
prehend this energy transition, we will examine the f2
moment of the pomeron multiplicity distribution, i.e., the
two-particle correlation parameter, measuring the corre-
lation between pairs of pomerons, across various energies
within both the eikonal and U -matrix frameworks. This
parameter is defined as follows :

f2 =< n(n− 1) > − < n >2= D2
2− < n > (55)

where D2 is the dispersion: D2
2 =< n2 > − < n >2.

The two-particle correlation parameter has three possible
values: negative, zero, and positive, in accordance with
the multiplicity distributions that are narrower, equal to,
or broader than a Poisson distribution.
By looking at Fig. 8, we can vividly see in the eikonal

case that the f2 moment displays a changing behavior
in variation with energy. Indeed, at energies below 104

GeV, the f2 moment is negative. This suggests that the
pomeron multiplicity distribution is narrower than the
Poisson distribution. This also implies that the parti-
cle production fluctuations are suppressed and the num-
ber of pomeron exchanges is distributed uniformly. At
104 GeV, the value of the f2 moment is zero, which is
indicative of the alignment of both the pomeron mul-
tiplicity and the Poisson distributions. This entails in-
dependent and randomly occurring events. At energies
above 104 GeV, the f2 moment becomes positive. This
demonstrates that the pomeron multiplicity distribution
is broader than the Poisson distribution, indicating an
enhancement of pomeron fluctuations.
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Turning now to the U-matrix case, Fig. 8 strikingly
shows that the f2 moment remains positive throughout
various energy ranges, suggesting that the pomeron mul-
tiplicity distribution is constantly broader than the Pois-
son distribution and hence indicating an enhancement of
pomeron fluctuations. These fluctuations become more
noticeable with increasing energy and are remarkably
constantly larger than those yielded in the eikonal case.
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FIG. 8. The two-particle correlation parameter versus the
interaction energy in the eikonal and U Matrix case

Fig. 9 displays the behavior of the f2 parameter with
respect to the mean number of pomerons in the eikonal
and U -matrix cases, specifically for energies exceeding
104 GeV, where both schemes manifest pomeron fluctu-
ations. It is apparent from this figure that both schemes
yield amplified fluctuations. It also shows that the in-
creasing mean number of pomerons with energy results in
a rise in the correlation between pairs of pomerons. Nev-
ertheless, it is worth noting that when comparing the two
schemes, the correlation between pairs of pomerons rises
considerably faster as the number of exchanged pomerons
increases in the U-matrix scheme. This signifies that
this latter incorporates enhanced correlations, indicating
strong multi-pomeron dynamics.

It is evident from the sharper increase in f2 in the U -
matrix case that the two approaches handle high-energy
hadronic interactions differently, with the U -matrix re-
vealing more noticeable pomeron collective effects and
non-linear pomeron exchanges.

These results strongly confirm our previous assertion
that the U -matrix scheme naturally comprises pomeron
statistical fluctuations that are distinct from those in
eikonal-like schemes and further explain their impact on
the properties of hadronic multi-particle production, in
particular the unexpected overestimation of the fluctua-
tions and correlations between final state particles with
increasing energy in pp collisions, as shown in [8].

In view of the aforementioned results, we understand
that the energy transition in the underpinning dynamics
of the scattering process, which is only present in eikonal-
like schemes, stems from a movement from a regime of
suppressed pomeron fluctuations to a regime of enhanced
fluctuations with increasing energy.
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FIG. 9. The two-pomeron correlation parameter versus the
average pomeron in the eikonal and U Matrix case

In light of the presence of enhanced pomeron fluctu-
ations and a broader distribution within the U -matrix
scheme, it is argued that the exchanged pomerons exhibit
correlations which could be the result of collective ef-
fects, such as those stemming from the overlap of diffrac-
tive states that are in turn, emerging from the pomeron
weights.
In an attempt to better comprehend these correlations,

the higher-order moments of the pomeron multiplicity
distribution were analyzed, as will be seen in the forth-
coming subsection.

C. Pomeron correlations

In order to elucidate the nature of correlations among
the pomerons exchanged in hadronic collisions, we exam-
ine the normalized factorial moments Fq of the pomeron
multiplicity distribution. In fact, the moment Fq equals
unity for all rank q in the case of an independent exchange
of pomerons. Nevertheless, Fq is greater (less) than unity
depending on whether the exchanged pomerons are corre-
lated (anti-correlated) [25]. These moments are provided
by

Fq =
1

⟨n⟩q
∞∑

n=q

n(n− 1)...(n− q + 1)Pn , (56)

where ⟨n⟩ =
∑

n nWn is the average multiplicity and
q is the rank of the moment. In the eikonal case, regard-
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less of the energy scale, the normalized factorial moment
remains equal to 1 for all ranks q, reflecting a Poisson
distribution of the exchanged pomerons and indicating
an uncorrelated distribution of events. In case of the
U -matrix scheme, the moments are given by :

E(Xq) = p Li−q(1− p) (57)

where Li−q(1− p) is the polylogarithm function. So the
normalized factorial moment of rank q is given by :

Fq(s) =
p Li−q(1− p)

( 1−p
p )q

(58)

and p defined by 36.
Fig. 10 illustrates the behavior of the normalized fac-

torial moments of pomerons exchanged in function of the
rank q of pomerons and across various impact parameter
b values within the framework of the U -matrix scheme,
specifically at 13 GeV and 57 GeV. According to this fig-
ure, we can see that the normalized factorial moments
Fq exhibit a considerably increasing pattern with q at
both energies, indicating stronger higher-order correla-
tions, where pomeron correlations emerge from q = 3
at 13 GeV, with two pomerons showing anti-correlation.
However, they appear starting from q = 2 at 57 GeV,
with all pomerons being positively correlated.

In both energies, when b = 0 fm, Fq is the highest sug-
gesting that the strongest correlations occur in central
collisions. Nevertheless, when b rises, we observe a de-
crease in Fq, indicating weaker correlations in less-central
collisions because of a reduced interaction overlap. When
comparing the two energies, Fq values are consistently
greater at 57 GeV than at 13 GeV for all pomerons ex-
changed and impact parameter b, showing that pomeron
correlations become more intense as center-of-mass en-
ergy increases. In addition, at both energies, Fq remains
dependent on b, with correlations decreasing as b rises.
Yet, it is significant to note that at 57 GeV we have
stronger correlations even at larger b. This highlights
that increasing collision energy mediates the influence of
the impact parameter on the correlation strength while
simultaneously strengthening correlations and reducing
the prevalence of anti-correlation effects.

On the whole, both the energy and the impact pa-
rameter b have a combined impact on the correlation
between pomerons exchanged, indicating that these two
parameters are not entirely independent when it comes
to influencing the number of elementary interactions.

To delve deeper in the interdependence between these
two factors, we demonstrate in Fig. 11, 12, 13 and 14 the
impact parameter evolution of the normalised factorial
moment for various energy scales and different pomerons
exchanged. One intriguing trend revealed by this evolu-
tion is that for each energy, Fq shows an inflection point
at a specific value of b at which the correlation strength
changes noticeably. Moreover, we can see that as energy

increases, this inflection point moves to larger impact
parameters, implying that the correlations between ex-
changed pomerons spread out more in transverse space.
And, at extremely high energies, it reaches a value of
about 1 fm, where correlations are roughly zero. In this
regard, we suggest that as energy grows, the spatial scope
of the interactions becomes more significant, reflecting an
interdependence between the energy scale and the trans-
verse position of pomerons.
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FIG. 10. Normalized factorial moment of pomeron exchanges
as a function of the rank q and for different impact parameter
b values with the U Matrix scheme

As a matter of fact, the aforementioned findings come
in support of a previous suggestion that the U -matrix
unitarization is probably incompatible with uncorrelated
pomeron exchanges as there was no improvement in the
description of the single diffractive data with a multi-
channel model compared to a two-channel one [9]. To be
more specific, [9] a multi-channel model of high-energy
hadron interactions was created by considering a full par-
ton configuration space and using the U -matrix unita-
rization scheme. Moreover, the mean number of interac-
tions between partons was assumed to be expressed as a
product of the single-pomeron scattering amplitude, to-
gether with functions of the impact parameter and con-
figurations. Furthermore, we assumed that the impact
parameter had no effect on the distribution of parton
configurations. Nevertheless, in the present study, the
interdependence effect observed between s and b on the
number of pomerons exchanged breaks down the rigor-
ous validity of such factorization within the U -matrix
scheme. Furthermore, aside from its ease of use as a
workable framework, as with the eikonal approach, this
factorization assumption is short of a compelling theo-
retical foundation. As a result, the parton distribution
functions cannot be efficiently separated into longitudinal
and transverse components.
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FIG. 11. Impact parameter evolution of the normalized
factorial moment at 200 GeV

0.0 0.5 1.0 1.5

b [fm]

0.0

0.2

0.4

0.6

0.8

1.0

F
q
 

@ 900 GeV

2 pomerons

3 pomerons

4 pomerons

5 pomerons

FIG. 12. Impact parameter evolution of the normalized
factorial moment at 900 GeV

We can contend that the U -matrix approach offers
a more suitable framework, as it provides a more ac-
curate representation of the underlying elementary in-
teractions, by taking into account the interdependence
on all hadronic degrees of freedom. Moreover, correla-
tions between pomerons allow the hadron’s internal par-
tonic structure to evolve dynamically during the scat-
tering process. Thus, the U -matrix scheme does not re-
quire the hadrons to be frozen in their internal partonic
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FIG. 13. Impact parameter evolution of the normalized
factorial moment at 13 TeV

0.0 0.5 1.0 1.5 2.0

b [fm]

0

2

4

6

8

F
q
 

@ 57 TeV

2 pomerons

3 pomerons

4 pomerons

5 pomerons

FIG. 14. Impact parameter evolution of the normalized
factorial moment at 57 TeV

configurations during the interaction, unlike the eikonal.
Furthermore, by allowing for correlation between the ex-
changed pomerons, one can take into account the fact
that the first pair of quark-antiquark strings is different
from subsequent pairs, as the pomeron weights influence
the dynamics of string pair formation. Consequently, the
inconsistencies between the string model and the Gribov-
Regge theory in hadronization models could be partially
resolved within the U -matrix scheme.
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D. Multiplicities in pp collisions

Correlations between partons are known to occur as a
result of the fundamental dynamics of partonic interac-
tions as well as the spatial and momentum structure of
the hadron. In fact, these correlations are critical in iden-
tifying the topological cross-sections for processes, such
as double and triple parton scattering, which in turn
influence the observed multiplicity patterns and cross-
sections in hadronic collisions.

This subsection elucidates the role of the correlated
multi-pomeron exchange in hadronic collisions by ana-
lyzing the multiplicity distribution of pp and p̄p colli-
sions from the point of view of multi-parton interactions,
as described by string models along with the Regge Phe-
nomenology ( see the introduction section). According to
this conjunction, a cut in the multi-pomeron exchange di-
agram is responsible for the hadrons yielded in the final
state. More precisely, a cut of n pomerons results in 2n
chains that connect to the partons of the initial hadrons.
The number n, representing the pairs of simultaneously
colliding partons from the different hadrons involved in
the interaction, corresponds to the number of resulting
showers. For instance, n = 1 translates into a single
collision of one pair of partons emerging from the two
colliding hadrons, which is ascribed to the Regge pole.
n = 2 corresponds to a double collision of two pairs of
partons from the different hadrons, which refers to the
exchange of two pomerons, and so on.

In our analysis of the cross-section corresponding to
the production of N secondary hadrons, σN (s), diffrac-
tion processes were not considered so as to overlook long-
distance correlations among particles within the same
shower and the picture of the hadronic multi-particle
production based on the Dual Parton Model (DPM) pre-
sented in [26] was followed mainly for comparison pur-
poses.

In fact, in order to simplify our analysis, we assumed
that the multiplicity distribution maintains its Poisso-
nian character regardless of the energy scale, in spite
of the known phenomenon of the violation of the KNO
scaling [27] which entails that as energy increases, the
hadronic multiplicity distribution broadens and deviates
from a purely Poissonian nature :

Pn(N) =
⟨Nn⟩N
N !

e−⟨Nn⟩ (59)

where ⟨Nn⟩ represents the mean number of particles
produced in n showers and is taken proportional to the
mean multiplicity for a single shower :

⟨Nn⟩ = n⟨N1⟩ (60)

and the mean multiplicity for a single shower is modelled
as :

⟨N1⟩ = a+ b ln (s/s0) (61)

representing a logarithmic growth with centre-of-mass
energy s, in agreement with experimental observations
at low energy, with a = −7.3 and b = 2.56 from [26].
Thus, the total inelastic cross-section is constructed as a
sum over contributions from n-shower events:

σin(N, s) = σ1P1(N)+σ2(P2(N)+σ3P3(N)+ . . . , (62)

where the pomerons weights σn(ξn) are given after im-
pact parameter integration of the cross-section for the
production of n showers in both schemes (32), (29) and

ξn = ln
(

s
s0n2

)
. We retain three terms in 62 since the

quadruple (or four-parton pair) collision has a small ef-
fect.
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FIG. 15. Topological cross sections σN in the eikonal and U
Matrix approximation with exchanges of three effective soft
Pomerons.

By looking at Fig. 15 and Fig. 16, the shoulder, asso-
ciated with the double collision, is clearly visible at low
energies in the eikonal case, which is in concordance with
the quasi-eikonal case [26]. Interestingly enough, in the
U -matrix case, this second peak of σN (s) is rather slightly
resolved and tends to become broader and lower with
increasing energy as opposed to the eikonal case. This
behavior can be explained by the impact of correlated
pomeron exchanges given that parton correlations en-
hance the probability of multi-parton collisions and hence
re-distribute the contributions throughout the topologi-
cal cross-sections. Thus, in the U -matrix scheme, cor-
related pomeron exchanges play a key role in enhancing
multi-parton collisions, particularly double parton colli-
sions.
These outcomes suggest that pomeron exchanges in

the U -matrix framework embed a probability of concur-
rently finding partons with momentum fractions x1 and
x2 within the hadron, which is represented by a non-zero
correlation function F (x1, x2), emphasizing the deviation
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FIG. 16. Topological cross sections σN in the eikonal and U
Matrix approximation with exchanges of three effective soft
Pomerons.

from independent multi-parton interactions. In this re-
gard, one may wonder how the U -matrix approach could
allow disentangling correlations in multiple parton inter-
actions, specifically separating the effects of fractional
momentum correlations from those of transverse coordi-
nate correlations, which is beyond the remit of this paper.

It is worth noting that in [26], the Dual Parton Model
(DPM) was used to describe the double-parton collision,
while solely taking the soft pomeron as the main com-
ponent mediating the interactions between partons and
comparing it to its hard counterpart. It has been argued
that soft interactions are also responsible for the dou-
ble inelastic parton collisions, which is confirmed by our
result.

Moreover, given that the DPM is based on the quasi-
eikonal scheme, we can infer that the incorporation of
higher levels of diffractive production, resulting in an en-
hanced parton correlation, makes the U -matrix scheme a
more reliable approach to the description of multi-parton
collisions, compared to both the eikonal and quasi-eikonal
schemes.

Owing that the soft interactions are also responsible for
the double parton collisions, while a cut pomeron com-
prises contributions from both hard and soft processes,
this makes us wonder about its nature, particularly in
relation to the hard-soft hadronic physics transition, and
may pave the way for a unified description of high-energy
hadronic collisions in the context of the U -matrix.

IV. CONCLUSION

The chief purpose of the present paper was to under-
stand the nature of the pomeron exchanges in hadronic
interaction. Using a generalized representation of the

unitarized hadronic elastic amplitude, the pomeron topo-
logical cross section was derived for both the U-matrix
and eikonal schemes. Our results have demonstrated that
the mechanism of the multi-pomeron exchange summa-
tion is distinct in each scheme at many levels. To be more
specific, it has been found that in the impact parameter
space, the elementary interactions tend to occur at the
core of the collision in the U - matrix case as opposed to
the eikonal case.
In addition, in both schemes, it has been shown that

the pomeron topological cross-section for each higher-
order exchanged pomeron increases with increasing en-
ergy and tends to reach a maximum then suddenly de-
creases at extreme energies, which marks the unitarity
constraint. However, this unitarity constraint mark is
reached at a somewhat higher energy for each pomeron
exchanged in the U -matrix case. The disparity between
the two schemes has also been shown concerning the
curvature of this cross-section. More specifically, in the
eikonal case, it considerably changed at energies beyond
104 GeV. In the U -matrix case, no change was observed.
Furthermore, the pomeron multiplicity distribution

has been computed. In the U -matrix case, the pomeron
exchange is a random variable geometrically distributed,
and the exchange of one pomeron has been demon-
strated to enhance the probability of exchanging addi-
tional pomerons.
Moreover, in the U -matrix case, the number of

pomerons exchanged has shown greater fluctuations than
the average at each energy level, and this deviation be-
comes more significant as energy rises. It has been de-
duced that the U -matrix scheme intrinsically incorpo-
rates diffraction production into the multi-pomeron ver-
tices, reflecting a larger pomerons’ variability regardless
of the energy range, while such fluctuations become sig-
nificant only beyond a specific high-energy threshold in
the eikonal and quasi-eikonal schemes.
Furthermore, the pomeron exchange in the U -matrix

scheme exhibits collective effects, as an increase in the
number of exchanged pomerons leads to more pro-
nounced higher-order pomeron correlations, which de-
pend on both the energy and the impact parameter.
This behavior contrasts with the independent pomeron
exchange characteristic of the eikonal scheme.
Last but not least, the impact of pomeron weights on

the proton-proton multiplicity distribution has been ex-
amined from the point of view of multi-parton interac-
tions. The results have revealed that, in the U -matrix
scheme, correlated pomeron exchanges play a key role
in enhancing multi-parton collisions, particularly double
parton collisions.
We understand from the findings of this study that the

pomeron distribution is fixed by the unitarization scheme
chosen to satisfy the unitarity constraint, and that this
choice cannot be arbitrary.
In light of these results, although there is no funda-

mental theory to compute the vertices in hadronic inter-
actions at high energy, we can claim that the U -matrix
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scheme may incorporate the proper vertices for such phe-
nomena. We also argue that the distribution of the num-
ber of elementary interactions pertaining to the U -matrix
scheme should be implemented in Monte Carlo event gen-
erator in order to have more realistic predictions for high
and ultra-high energy hadronic observables.
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8 Conclusion

The chief goal of this thesis was to improve the modelling of hadronic inter-

actions at high and ultra-high energies. To do so, the intricate dynamics of

hadronic interactions were investigated at high energies, utilizing a com-

bination of theoretical modelling and empirical data analysis in order to

get a deeper understanding of proton-proton pp and proton-antiproton pp̄

scattering. The problem of the S-matrix’s unitarity lies at the core of this

research, attempting to select the most accurate unitarisation scheme for

composite particle interactions, such as hadrons, at high energies.

Practically, we focused on two unitarization schemes, namely the com-

monly used eikonal and the U -matrix, both of which were rigorously tested

for their efficiency in predicting various key hadronic observables, such as

the total, elastic, inelastic and diffractive cross-sections, as well as the

multiplicity distributions, which are essential for both high-energy parti-

cle physics and astrophysical applications.

A brief review of what has been accomplished in the preceding pages

will show to what degree this goal has been reached.

In the first study, the implications of high-energy collider data up to√
s = 13 TeV on the best fits to total, elastic, and non-diffractive inelas-

tic cross-sections for pp and pp̄ scattering were examined using the two

schemes. The findings demonstrated that, in comparison to the eikonal

scheme, the U-matrix produces cross-sections that also fit the data, with

marginal differences at energies relevant to present and near-future collid-

ers. Although the overall inelastic cross-sections align, there are consider-

able differences in the amplitudes at each order in the series expansions,

which could have implications for Monte Carlo showering codes.

In order to gain a more comprehensive understanding of high-energy

hadronic interactions, the second study builds on the prior analysis by in-

cluding diffractive interactions and using the two schemes in the context

of a two-channel model. Best fits to the parameters governing the pp and

pp̄ total, elastic, inelastic and single diffractive cross sections we identified

using up-to-date collider data, including 13 TeV from recent LHC exper-

iments. The results have shown that both schemes generally fit the data,
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with a minor preference for the U -matrix. While the best-fit total, elastic,

and inelastic cross-sections are almost equal up to energies of 13 TeV when

employing either of them, this difference is ascribed, particularly at high

energies, to the single diffractive cross-section. It should be noted that,

at the cost of an additional parameter, the extended version of these two

schemes has yielded a marginal improvement in the fits.

Moving on to the third study, it aimed to provide a phenomenological

description of the hadronic interaction at high energy through expand-

ing the two-channel model into a multi-channel one, mainly using the U -

matrix scheme. The results have indicated that the multi-channel model

accurately describes the total, elastic, inelastic, and single-diffractive cross-

sections, with only a minor difference from the two-channel one. Further-

more, it has been found that the model used fell short in estimating the

double-diffractive cross-section, which further corroborates the results of

the previous study. To remedy this, it has been proposed that an addi-

tional contribution, i.e., pomeron interaction can be introduced as a way

to provide an adequate description of this cross-section.

In addition, the results have demonstrated that the present model de-

scribes well the ρ parameter at different high energies, but it is unable to

estimate the TOTEM data at 13 TeV. In order to overcome this flaw, it

has been suggested that an Odderon contribution is needed to be included.

Moreover, despite similarities in the way the two models describe various

hadronic observables, it has been shown that both furnish different pre-

dictions for the single-diffractive cross-sections, particularly at ultra-high

energies, which represents an interesting direction for future research on

ultra-high energy cosmic rays. Most importantly, the study has concluded

by assuming that the U -matrix scheme is more likely to account for po-

tential correlations between pomeron exchanges. Additionally, it has sug-

gested that the two-channel model, as opposed to the multi-channel one,

is adequate for modelling high-energy hadronic interactions, particularly

single diffractive scattering, using the U-matrix scheme, even at ultra-high

energies, provided that any potential pomeron correlations are disregarded.

In the fourth study, a phenomenological model for multi-particle pro-

duction in hadron collisions based on the geometrical approach and using

the U-Matrix scheme has been introduced. The model has been fine-tuned

and all parameters have been derived from optimal fits to various hadronic

full phase space multiplicity distributions data in p+ p(p̄) collisions across

a broad range of energies. Broadly speaking, the results have revealed that
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our model furnishes a reasonable description of these multiplicity distribu-

tions at various energies. Besides, they have demonstrated a pronounced

violation of the geometrical scaling, which eventually resulted in a sig-

nificant violation of the KNO scaling. The study has also analyzed the

higher-order moments of the multiplicity distribution. We have observed

an unexpected overestimation of the fluctuations and correlations between

final state particles with increasing energy, particularly above LHC energy.

It is claimed that this overestimation is due to statistical fluctuations em-

bedded in the U -matrix scheme. Furthermore, the findings of this study

have shed light on the key role of the U-matrix scheme in the impact of

collision geometry on multi-particle production processes at high energy.

Lastly, in the fifth study, irrespective of the unitarization scheme em-

ployed, both the Pomeron topological cross-section and the Pomeron mul-

tiplicity distribution have been determined based on the Kancheli formal-

ism. Interestingly, it has been found that compared to the eikonal scheme,

in the U -matrix, pomerons are geometrically distributed and hence are

correlated. Then, the role of pomeron correlation in pp multiplicity dis-

tribution has been examined. We have also explained how the mismatch

between the Gribov-Regge theory and string models might be resolved by

using the U -matrix technique.

In fact, this thesis adds to the body of knowledge in the field of high-

energy hadronic interactions, especially when it comes to the study of

cosmic ray physics and particle collisions at ultra-high energies. In partic-

ular, the choice of the U -matrix unitarization scheme as the focus of this

research has been contributive as it has proved to be a useful tool, fur-

nishing improved predictions for various cross-sections and shedding light

on complex phenomena, such as multi-particle production and pomeron

exchange. Additionally, the U -matrix scheme has demonstrated reliable

extrapolation capabilities to ultra-high energy regimes, making it a promis-

ing candidate for future studies and applications.

Thus, implementing this scheme in Monte Carlo event generator codes

could be a potentially fruitful avenue for future research, since these sim-

ulation codes are essential for the interpretation of experimental data and

the prediction of particle collision results. Hence, this will furnish more

accurate and reliable studies for future particle collider experiments and

cosmic-ray physics.

Overall, this thesis has established a solid framework for further in-

vestigation into hadronic interactions at ultrahigh energies, offering novel
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theoretical perspectives and useful techniques that will propel further de-

velopments in particle physics and astrophysics. In fact, this thesis is only

a modest beginning in dealing with that probably never-ending task and

challenge.
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