8TH INTERNATIONAL ISPRS WORKSHOP LOWCOST 3D - SENSORS, ALGORITHMS, APPLICATIONS

Automatic Detection and 3D Modeling of City Furniture Objects using LiDAR and Imagery Mobile Mapping Data

Doi Hiba¹, Anass Yarroudh², Imane Jeddoub², Rafika Hajji¹, Roland Billen²

¹ College of Geomatic Sciences and Surveying Engineering, Hassan II IAV, Rabat 10101, Morocco ² GeoScITY, Geomatics Unit, UR SPHERES, University of Liège, Belgium

Thursday, 12/12/2024: 14:20 – 14:40

Università degli Studi di Brescia, Brescia, Italy

About the project

□ Final year master project at the College of Geomatic Sciences and Surveying Engineering, Hassan II Institute of Agronomy and Veterinary Medicine, in collaboration with the GeoScITY lab.

Erasmus+

Higher Education Student and Staff Mobility between programme and partner countries

Plan

Background

□ Motivation & Objectives

Methodology

□ Results and discussion

Background

Importance of comprehensive 3D city models

- Role in urban planning, infrastructure management, environmental analysis.
- Technological backbone of urban digital twins.

Motivations

Although **city furniture** objects like traffic lights, traffic signs, poles and bus stations play crucial role in the urban tissue, current research does not provide a complete method to automatically detect, localize and model these objects in accordance with 3D city models standards.

Motivation 1

Enrich existing 3D city models by integrating accurate and detailed representations of city furniture

Motivation 2

Address a significant gap in the current state of the art by providing a complete and integrated workflow that includes the detection, localization and 3D modeling of city furniture

Context

Motivations

- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- O Discussion
- ☆ Conclusion and Perspectives

Objectives

(中) Motivations

Context

(88) Objectives

(=)

(a) Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

- O Discussion
- ☆ Conclusion and Perspectives

Objective 1

Automatically detect various types of city furniture in images and LiDAR point clouds using deep learning techniques

Objective 2

City furniture positioning from images and LiDAR data

Objective 3

Retrieve features and characteristics of the detected urban furniture objects

Objective 4

Automated/parametric 3D modeling of city furniture using the extracted localization and features

Study area

(=)

Context

Liège City Belgium

Liège

Liège

Google Satellite

Cameras positions

Prepare Dataset

Grounding dino for reducing manual labeling

Direct Object De	etection	Cascaded Dete Classifica	ection and tion
Traffic light	1 classes	Traffic sign	60 classes
Lamppost	3 classes		
Bus Stop	1 classes		

Training The models

Training multiple YOLOv8 models

Direct Object Detection

	Bus Stop	Traffic light	Lamppost	Traffic signs
mloU	0,850	0,780	0,810	0,830
Precision	0,974	0,885	0,853	0,880
Recall	0,909	0,896	0,838	0,875
mAP50	0,942	0,946	0,909	0,927
mAP50-95	0,685	0,737	0,648	0,552

Evaluation metrics for all classes

	Single	Building	Double
Presision	0,854	0,953	0,753
Recall	0,769	0,745	1,000
mAP50	0,863	0,903	0,962
mAP50-95	0,594	0,962	0,699

Evaluation metrics for lamppost subclasses

Context

- Motivations
- (33) Objectives

(d) Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

- Discussion
- Conclusion andPerspectives

Cropped_images

Classification

Inteferentce

using trained mode

Traffic_sign

9 1.00 A14 0.00 F13 0.00

D3 straigh

23 1.00 A31 0.00

21 0.00

or left 0.00

Cascaded Object Classification

Accuracy_Top_1	Accuracy_Top_5	
0.99054	0.99369	

forbidden

drivers of vehicles transporting polluting that exceed the goods, as defined by combined length indicated on the sign indicated on the sign indicated on the sign

drivers of vehicles drivers of vehicles that exceed the that exceed the combined width combined height

C31a: Left turn C31b: Right turn C33: U-turns

forbidden

transportation

transporting

flammable or

defined by the

minister of transportation

forbidden

explosive goods, as the minister of

C35: Overtaking C37: End of the C35 vehicles with more restriction than two wheels and horse wagons forbidden

(=)

(F) Motivations

Context

- Objectives (88)
- Imagery-based Approach
- Camera-LiDAR Approach

Modeling Approach Ø)

- Discussion \bigcirc
- Conclusion and (값) Perspectives

Segment Anything Model (SAM) for image segmentation developed by Meta Research.

The use of the generated mask to identify the top and bottom pixels coordinate

Motivations

Objectives

- (a) Imagery-based Approach
- Camera-LiDAR Approach

Modeling Approach

- O Discussion
- Conclusion andPerspectives

Algorithm for calculating the line of bearing and vertical angle for a single object

We calculate the intersection between lines of bearing of the same object.

Extended Algorithm for Simultaneous Calculation of Lines of Bearing and Vertical Angles for Multiple Objects

We observed that points captured from a distant camera position significantly deviate from the ground control points. As a result, we decided to eliminate the distant points and, based on a threshold, retain only the closer points. Precision of our detection compared to PICC data

Metric	Value
Total Numbers of point	579
Mean error	0.27 m
RMSE	0.32 m

Context

Motivations

Objectives

Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

Discussion

Conclusion andPerspectives

Positioning

Liège

Object Type	Number of instance
Single Lamppost	933
Bat Lamppost	119
Bus Stop	34
Traffic Light	146
All Traffic sign combined	736

Arlon

Object Type	Number of instances
Single Lamppost	34
Bat Lamppost	18
Double Lamppost	3
Traffic Light	13
All Traffic sign combined	31

Results: Lamppost

- cluster point of single lamppost
- cluster point of wall-mounted street light

Results:

Lamppost

- Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach Ø)
- Discussion \bigcirc

Context

Motivations

Objectives

(=)

(88)

Conclusion and Perspectives

Feature extraction

Object Orientation and Height

We calculate the object **orientation** as the angle (**azimuth**) between a paramtric model where the object is parallel to the y-axis and the track/road axes. The object position relatively to the track line (left or righ) is also considered. We also calculate each object **height** as the difference between elevations of the top and the bottom points.

😑 Context

- Motivations
- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- O Discussion
- Conclusion and
 Perspectives

Camera-LiDAR Approach

Semantic segmentation

KPConv, or Kernel Point Convolution, is an architecture for processing 3D point clouds directly, without converting them into a grid or other structure. It uses points in space (kernel points) to apply convolution operations directly on the point cloud.

Our KPconv model was trained on *Toronto 3D* dataset with the following performance:

OA	mloU	Ground	Road marking	Natural	Building	Cable	Pole	Car	Fence
94.7%	79.0%	96.6%	61.7%	95.1%	80.1%	82.5%	78.4%	87.1%	41.8%

(=)

Context

Motivations

Objectives

- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- Discussion
- ☆ Conclusion and Perspectives

Instance > 5 m

Height condition

Image-Based Classification

(=)

(F)

(88)

(Q)

Ø)

 \bigcirc

(tì)

Context

Motivations

Objectives

Discussion

Conclusion and

Perspectives

Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

1_Reprojection 3D bounding box into 2D image

Image-Based Classification

	segment_id	final_cl	Х	Y	Z	height	index_level_0
1	2	Traffic_Light	254139,0535000	42015,64650122	392,803	3,01600000000	0
2	12	B1, D1b_right	253681,0595000	41946,58050122	390,003	3,32400000000	16
3	14	F49	253834,7705000	41792,48350122	380,074	2,766999999999	17
4	25	E9	254049,9455000	41980,3955012207	390,879	2,935999999999	18
5	27	E3	253652,9315000	41804,8765012207	380,514	3,278999999999	19
6	28	E9, F13	254187,1685000	42453,09150122	416,802	2,969999999999	20
7	29	Traffic_Light	254136,9475000	42395,56350122	415,6	3,068999999999996	1
8	30	B15	254196,2815000	42465,34150122	416,647	3,30500000000	21
9	33	Traffic_Light	254139,6545000	42024,8765012207	393,036	3,08600000000	2

Context

Motivations

(3) Objectives

- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- O Discussion
- ᢙ Conclusion and Perspectives

Context

Motivations

Objectives

- (a) Imagery-based Approach
- Camera-LiDAR Approach

Modeling Approach

🔿 Discussion

Conclusion and
 Perspectives

LiDAR-Based Classification

for each instance calculate the Global Registration with all the references

- Among the detected lampposts, certain classes, such as electric poles, are particularly challenging to classify.
- Noise in the data suggests that the point cloud requires further filtering and stricter constraints.
- The global registration method successfully identified the most distinct classes (0, 1, 2, 3, 4) with a precision rate of 0.91, assuming these were the only types present initially.
- However, the success of this method heavily depends on the elimination of noise and the presence of clearly defined classes from the outset. Before manual filtering was applied to our dataset, the success rate dropped to 50%.

LiDAR-Based Classification

(=)

(F)

(88)

(Q)

Ø

 \bigcirc

(tì)

Context

Motivations

Objectives

Discussion

Conclusion and

Perspectives

Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

id x y z h cityfurniture_type

Context

Motivations

- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- O Discussion
- Conclusion and
 Perspectives

CityJSON

CityJSON Format

· For each CityObject we should at least define

The type the geometry Object in our

The geometry could be an array of the

geometry object defined by CityJSON:

"type": "GeometryInstance", "template": 0, "boundaries": [372],

"transformationMatrix": [2.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0

Given the repetitive nature of the city

furniture in our model ,we have chosen to

utilize the geometry template in CityJSON.

the type and the geometry:

case is CityFurniture.

'type": "CityFurniture", 'geometry": [

•

Geometry Instance Definition

- "geometry-templates": {
 "templates": [
 {
 "type": "MultiSurface",
 "lod": "2.1",
 "boundaries": [
 [[0, 3, 2, 1]],

]
 },
 {

 }
],
 vertices-templates": [
 [0.0, 0.5, 0.0],

]
 }
- To use the geometry template we should first define the geometry template contenant les different template:Traffic light, traffic sign, lamppost and bus stop.
- Each "Cityobject" has the right to use only one geometry object as their geometry .

Texture and material Definition

For each template, we also define the texture and material using an Appearance Object. The Appearance Object serves as a reference, allowing us to consistently apply the same texture or material whenever needed in a geometry object.

The definition of the Appearance as an object

The reference to textures and materials is made through the Appearance definition.

Context

- Motivations
- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach

Modeling Approach

- Discussion
- Conclusion and
 Perspectives

Model handling

1. Object Transformation to CityJSON Format:

Conversion: The first step involves transforming your 3D objects from their native formats (such as .max, .fbx, or .obj) into the CityJSON format, specifically converting them into vertices and boundaries.

2. Merge geometries to one geometry object (Adapt the model to be used as a geometry template)

Lamppost

Traffic lights

Bus station

Traffic signs

Discussion

Comparison between Image-based approach and Camera LiDAR fusion Approach

	Imagery-based Approach	Camera-LiDAR Approach
Detection rate	Very high detection rate	Prone to omission and requiring more careful processing
Accuracy	32 cm accuracy (RMSE compared to PICC data)	Centemetric (0-10 cm), Depending on the accuracy of the LiDAR system
Classification quality	Accurate Due to the maturity of the object detection and classification models	Accurate for the imagery- based classification, but struggle with noise for the FGR/ICP registration method using point cloud

Context

Motivations

(33) Objectives

- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach

Discussion

ᢙ Conclusion and Perspectives

Discussion

Comparison between Image-based approach and Camera LiDAR fusion Approach

(a) Imagery-based Approach

Camera-LiDAR Approach

Modeling Approach

Discussion

(=)

(A)

(88)

Context

Motivations

Objectives

ᢙ Conclusion and Perspectives

Traffic light Imagery based approach

Traffic light Point Cloud approach

Context

- Motivations
- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach
- Modeling Approach
- Oiscussion
- ᢙ Conclusion and Perspectives

Discussion

Modeling limitations

There are more complex traffic signs, such as superimposed signs and merged traffic light and sign combinations, which require more intricate modeling. This issue could be addressed by performing spatial operations to cluster nearby objects, thereby diversifying the geometry templates for more complex models.

Conclusion

- 1. This study employed two approach for robust city furniture object detection, localization and modeling: an imagery-based approach and a camera-LiDAR fusion approach.
- 2. The imagery-based approach uses 360° images and trained YOLOv8 models for object detection, with Grounding DINO for fast label generation and a cascade detection/classification to classify traffic signs into 40 subclasses.
- 3. Object localization used photogrammetry and epipolar geometry, achieving high positional accuracy with an RMSE of 0.32 meters.
- 4. The camera-LiDAR fusion approach uses KPConv for 3D point cloud segmentation and LCC to separate instances, followed by classification using the already trained models.
- 5. Challenges included noise sensitivity in Fast Global Registration (FGR) during the camera-LiDAR fusion, suggesting a need for better outlier detection and potential use of advanced denoising techniques to improve classification accuracy.
- 6. Complex cases where traffic signs/lights are superimposed and merged need to be addressed in future studies.

- (=) Context
- 何 Motivations
- Objectives
- (a) Imagery-based Approach
- Camera-LiDAR Approach
- 🔗 Modeling Approach
- Discussion
- Conclusion and Perspectives

8TH INTERNATIONAL ISPRS WORKSHOP LOWCOST 3D - SENSORS, ALGORITHMS, APPLICATIONS

Automatic Detection and 3D Modeling of City Furniture Objects using LiDAR and Imagery Mobile Mapping Data

Doi Hiba¹, Anass Yarroudh², Imane Jeddoub², Rafika Hajji¹, Roland Billen²

¹ College of Geomatic Sciences and Surveying Engineering, Hassan II IAV, Rabat 10101, Morocco ² GeoScITY, Geomatics Unit, UR SPHERES, University of Liège, Belgium

Thursday, 12/12/2024: 14:20 – 14:40

Università degli Studi di Brescia, Brescia, Italy