
 

 

Characterization, prediction, 
and remediation of salt-affected 

soils in the High Valley of 
Cochabamba - Bolivia 

 

Demis Andrade Foronda 
 

 

  



  



 

 

COMMUNAUTÉ FRANÇAISE DE BELGIQUE 
UNIVERSITÉ DE LIÈGE – GEMBLOUX AGRO-BIO TECH 

 
 
 
 
 
 
 
 

Characterization, prediction, and 
remediation of salt-affected 

soils in the High Valley of 
Cochabamba - Bolivia 

 
 
 

Demis Andrade Foronda 
 
 

Dissertation originale présentée en vue de l’obtention du grade de doctorat en 
sciences agronomiques et ingénierie biologique 

 
 
 
 
 
 
 
Promoteur : Gilles Colinet 
Année civile: 2024 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© Demis Andrade Foronda, 2024. 

 

 



 

 

i 

 

Abstract 

 

In a broad sense, soil salinity relates to high levels of soluble salts in the soil 
solution phase and soil sodicity refers to an excess of sodium in the exchangeable 
complex, while alkalinity indicates the dominance of alkaline salts and high pH. 
Salt-affected soils are mainly caused by natural conditions and/or anthropogenic 
activities and negatively affect plant growth and soil-water properties. The High 
Valley of Cochabamba - Bolivia is characterized by low soil and crop productivity, 
and land degradation primarily due to salinization processes, which in turn, are 
driven by semiarid conditions, population increase, deforestation, and inadequate 
agricultural practices. Some studies have been conducted primarily focused on 
mapping and characterizing salt-affected soils in this region, but there are still gaps 
in soil information, prediction tools, and amelioration techniques for their proper 
management. Therefore, this study aimed to contribute to the sustainable 
management and rehabilitation of salt-affected soils in the High Valley through 
baseline soil information, salinity/sodicity prediction models, and insights into 
amendment-based remediation techniques. 

 

Regarding the characterization and classification of soil samples and profiles, the 
saline-sodic and saline classes dominate among the salt-affected soil samples, and 
most salt-affected soil profiles’ horizons showed high levels of salinity and 
sodicity. The alternative classification approach can overcome the confusion 
caused by the – USSL – saline-sodic soil class by considering the nature of soluble 
ions; in this context, some differences between the two methods, for salinity and 
sodicity distributions were observed. The spatial interpolation was unsatisfactory 
due to insufficient spatial correlation. Incorporating additional soil profiles and 
samples might improve the representativeness of the soil information, spatial 
prediction, and classification system. 

 

Concerning the performance evaluation of machine learning models to predict 
soil salinity/sodicity variables, random forests (RF) and support vector machines 
(SVM) regressions outperformed the partial least squares algorithm in estimating 
soil ESP and ECe, as well as for predicting salt-affected soil classes. Multivariate 
regressions predicting soil ESP as a function of EC, SAR, and pH showed relatively 
good performance, somewhat similar to simple regression predicting ESP from 
SAR. The models to predict soil ESP and EC from remote sensing-based and 
geomorphometric features showed relatively low performance. Overall, these 
models might contribute to the monitoring and management of salt-affected soils 
in the High Valley; however, validations with additional samples and predictor 
variables are essential to improve their accuracy. 
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According to the first soil-column experiment assessing the effectiveness of 
individual mineral and organic amendments with leaching in remediating saline-
sodic soils, gypsum was more effective than sulphur, while cattle/chicken manure 
was better than biochar and peat in lowering soil ESP, and any organic or mineral 
amendment was as efficient as water alone in decreasing soil ECe. The superiority 
of gypsum was mainly due to its Ca2+ content which displaces exchangeable Na+, 
while that of manure was probably due to its contribution of organic matter and 
divalent cations, which also improve soil-water properties. The second soil-column 
experiment evaluating the combined effect of manures and gypsum showed that 
either cattle or chicken manure together with gypsum at any dose was more 
effective than gypsum alone in reducing the soil ESP to below 5%; furthermore, 
except for water alone, all treatments were effective in lowering the soil ECe to 
below 1.6 dS m−1, and any combination was effective in decreasing soil pH to below 
8.7. Thus, the effectiveness of manure combined with gypsum was mainly due to 
their synergistic effect on adsorbed Na+ displacement and soil structure 
improvement. The addition of manure might enhance and hasten the effect of 
gypsum with leaching in ameliorating saline-sodic/sodic soils. Further validation 
of the most effective amendment-based remediation techniques through field 
experiments is recommended, and alternative approaches such as biosaline 
agriculture and phytoremediation should also be explored. 

 

In sum, the proper management and rehabilitation of salt-affected soils in the 
High Valley of Cochabamba relies on adequate characterization, correct 
classification, accurate estimation, and effective amelioration of these soils; 
consequently, this study contributes to these goals by providing: (1) comprehensive 
baseline soil information, (2) tailored prediction and classification tools, and (3) 
insights into amendment-based remediation techniques, all of which are subject to 
further refinement. 
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Résumé 

 

La salinité et la sodicité du sol sont essentiellement liées à une quantité élevée de 
sels dans la solution du sol pour la première et à un excès de sodium sur le complexe 
échangeable pour la deuxième. L’alcalinité correspond à une dominance de sels 
alcalins et à un pH élevé. Les sols sont affectés par la salinisation soit en relation 
avec des conditions naturelles défavorables ou suite aux activités anthropiques. La 
salinité a un impact négatif sur la croissance des plantes et la qualité de l’eau. La 
Haute Vallée de Cochabamba en Bolivie se caractérise par une faible productivité 
des agrosystèmes et une dégradation des sols, principalement suite à des processus 
de salinisation, eux-mêmes induits par des conditions climatiques semi-arides, 
l'augmentation de la population, la déforestation et des pratiques agricoles 
inadéquates. Les études précédentes menées sur cette zone étaient principalement 
axées sur la cartographie et la caractérisation des sols affectés par le sel, mais il 
reste encore des lacunes en matière de connaissance sur les caractéristiques des 
sols, d’outils de prédiction et de techniques de remédiation pour une gestion 
appropriée de ces sols. La bonne gestion et la réhabilitation des sols affectés par le 
sel reposent sur une classification rigoureuse, une estimation précise et une 
amélioration efficace de la salinité et de la sodicité. Par conséquent, cette recherche 
vise à contribuer à la gestion durable et à la réhabilitation des sols affectés par les 
sels dans la Haute Vallée de Cochabamba à travers l’acquisition d’informations de 
base sur les sols, la constitution de modèles de prédiction de la salinité/sodicité, et 
une évaluation de techniques de remédiation basées sur les amendements pour 
récupérer les sols salins/sodiques. 

 

D'après la caractérisation et la classification des échantillons et des profils de sols, 
les classes salines-sodiques et salines étaient dominantes parmi les échantillons de 
sol affectés par le sel, et la plupart des horizons des profils affectés par le sel et 
présentaient des niveaux élevés de salinité et de sodicité. Une classification 
alternative peut pallier le manque de discrimination de la classe saline-sodique de 
la USSL en considérant les ratios d'ions solubles. Des différences entre les 
distributions spatiales de salinité/sodicité ont été trouvées suite à l'application des 
deux méthodes. L'interpolation spatiale n'était pas satisfaisante en raison de la 
faible portée de la corrélation spatiale. Des profils de sol et des échantillons 
supplémentaires pourraient améliorer la représentativité des informations sur les 
sols, la prédiction spatiale et le système de classification adapté. 

 

En ce qui concerne l'évaluation des performances des modèles d'apprentissage 
automatique de prévision des variables exprimant la salinité/sodicité, les 
algorithmes par forêts aléatoires (RF) et des machines à vecteurs de support (SVM) 
régressions ont donné de meilleurs résultats que les techniques par moindres carrés 
partiels pour l'estimation de l'ESP et de l'ECe du sol, ainsi que pour la prévision des 
classes de sol affectées par la salinité. Les régressions multivariées pour prédire 
l'ESP du sol en fonction de EC, SAR et pH ont montré une performance 
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relativement bonne et quelque peu similaire au modèle simple pour estimer l'ESP à 
partir de SAR. Les modèles multivariés pour prédire l'ESP et l'EC du sol à partir de 
caractéristiques géomorphométriques et de télédétection, faciles d’accès ont montré 
une performance relativement faible. Ces modèles pourraient contribuer à une 
meilleure gestion des sols affectés par les sels dans la Haute Vallée. Cependant, ici 
encore, davantage d’échantillons et des variables supplémentaires sont nécessaires 
pour améliorer leurs précisions. 

 

Une première expérience en colonnes de sol visant à évaluer l'efficacité 
d’amendements minéraux et organiques avec lixiviation pour la remédiation des 
sols salins-sodiques a montré que le gypse était plus efficace que le soufre d’une 
part, ainsi que le fumier de bovin/poulet par rapport au biochar et à la tourbe par 
ailleurs, sur la réduction de l'ESP du sol. Par ailleurs l’ajout d’amendements qu’il 
soient organiques ou minéraux était aussi efficace que la seule lixiviation pour la 
réduction de l'ECe du sol. La supériorité du gypse était principalement due à sa 
teneur en Ca2+ qui déplace le Na+ échangeable, tandis que celle des fumiers était 
probablement due à leur teneur en matière organique et en cations divalents qui 
améliorent également les propriétés des sols. La deuxième expérience en colonne 
de sol visant à évaluer l'effet combiné des fumiers et du gypse a montré que le 
fumier de bovins ou de poulets associé au gypse, quelle que soit la dose, était plus 
efficace que le gypse seul, pour réduire l'ESP du sol à moins de 5 %, que tous les 
traitements, à l'exception de l’eau seule, étaient efficaces pour abaisser l'ECe du sol 
à moins de 1,6 dS m-1 , et que toutes les combinaisons étaient efficaces pour abaisser 
pH du sol à moins de 8,7. Ainsi, l'efficacité du fumier combiné au gypse était 
principalement due à leur effet synergique sur le déplacement du Na+ adsorbé et la 
structure du sol. L'ajout de fumier pourrait renforcer et accélérer l'effet du gypse 
avec la lixiviation dans l'amélioration des sols salins-sodiques. Il est recommandé 
de poursuivre les techniques de remise en état à base d'amendements les plus 
efficaces par le biais d'expériences sur le terrain, et d'explorer d'autres approches 
telles que l'agriculture biosaline et la phytoremédiation.  
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Resumen 

 

En términos generales, la salinidad del suelo se caracteriza por un elevado 
contenido de sales en la fase soluble, la sodicidad por un exceso de sodio en el 
complejo intercambiable del suelo, y la alcalinidad por la dominancia de sales 
alcalinas y pH elevado. Los suelos afectados por sales se generan por causas 
naturales y/o antropogénicas y afectan negativamente el crecimiento de las plantas 
y las propiedades suelo-agua. El Valle Alto de Cochabamba - Bolivia se caracteriza 
por la baja productividad de los cultivos y la degradación de suelos debido 
principalmente a procesos de salinización que, a su vez, se originan a partir de las 
condiciones semiáridas, aumento de la población, deforestación y prácticas 
agrícolas inadecuadas. Estudios previos se enfocaron principalmente en el mapeo 
y caracterización de suelos afectados por sales en esta región, no obstante, aún falta 
información actualizada sobre estos suelos, herramientas para predecir 
salinidad/sodicidad, y técnicas de remediación para mejorar el manejo de estos 
suelos. En ese contexto, el objetivo de este estudio fue contribuir al manejo 
sostenible y rehabilitación de suelos afectados por sales en el Valle Alto a través de 
la generación de una línea de base con información de suelos, la validación de 
modelos predictivos y evaluación del uso de enmiendas minerales/orgánicas para 
remediación de suelos salino/sódicos. 

 

En cuanto a la caracterización y clasificación de las muestras y perfiles de suelo, 
los suelos salino-sódicos y salinos fueron predominantes entre las muestras de 
suelo, y la mayoría de los perfiles de suelo afectados por sales presentaron altos 
niveles de salinidad y sodicidad. El método alternativo de clasificación de suelos 
contribuye a resolver la confusión generada por la clase de suelo salino-sódico del 
sistema de clasificación del USSL, considerando la naturaleza de las sales solubles; 
en este contexto, se observaron algunas diferencias en las distribuciones de 
salinidad y sodicidad entre los dos métodos. La interpolación espacial fue limitada 
debido a una correlación espacial insuficiente. Se requieren perfiles y muestras de 
suelo adicionales para mejorar la representatividad de la información de suelos, la 
predicción espacial y el sistema de clasificación. 

 

Respecto a la evaluación de los modelos de aprendizaje automático para predecir 
variables de salinidad/sodicidad de suelo, los algoritmos de random forests (RF) y 
support vector machines (SVM) obtuvieron mejor desempeño que aquel basado en 
partial least squares para estimar el porcentaje de sodio intercambiable (PSI) y la 
conductividad eléctrica (CE) del suelo, así como para predecir las clases de suelos 
afectados por sales. Las regresiones multivariables para predecir el PSI en función 
de las variables CE, relación de adsorción de sodio (RAS) y pH obtuvieron un 
rendimiento aceptable, y a la vez, similar al de la regresión univariada basada en la 
RAS. Los modelos para predecir el PSI y la CE del suelo a partir de variables – de 
fácil obtención – basadas en teledetección y geomorfometría, obtuvieron un 
desempeño regular. Los modelos obtenidos pueden contribuir al manejo sostenible 
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de los suelos afectados por sales en el Valle Alto; sin embargo, es esencial 
validarlos con muestras de suelo y variables predictoras adicionales para mejorar 
su precisión. 

 

Según el experimento preliminar en columnas de suelo para evaluar la eficacia 
individual de las enmiendas minerales y orgánicas con lixiviación para la 
recuperación de suelos salino-sódicos, el yeso fue más eficaz que el azufre, así 
como el estiércol de vacuno o la gallinaza comparado con el biocarbón o la turba, 
para reducir el PSI del suelo, y cualquier enmienda orgánica o mineral fue tan eficaz 
como el solo lavado para reducir la CEe del suelo. La superioridad del yeso se debió 
principalmente a su aporte de Ca2+ que desplaza al Na+ intercambiable, mientras 
que la de los estiércoles se debió probablemente a su contribución de materia 
orgánica y cationes divalentes que, a su vez, mejoraron las propiedades suelo-agua. 
El segundo experimento en columnas de suelo para evaluar el efecto combinado de 
estiércoles con el yeso, demostró que tanto el estiércol de vacuno como la gallinaza 
junto con el yeso independientemente de la dosis fueron más eficaces que solo yeso 
para reducir el PSI por debajo del 5%, además todos los tratamientos excepto el 
solo lavado fueron efectivos para disminuir la CEe por debajo de 1,6 dS m-1, y 
cualquier combinación fue efectiva en reducir el pH por debajo de 8,7. La notable 
eficacia del estiércol combinado con yeso radicó principalmente en el efecto 
sinérgico entre ambos para el desplazamiento del Na+ adsorbido y el mejoramiento 
de la estructura del suelo, lo cual sugiere que la adición de estiércol potencia y 
acelera el efecto del yeso con lavado para remediar suelos salino-sódicos/sódicos. 
Se recomienda validar las técnicas de remediación más efectivas a través de 
experimentos de campo, y considerar estrategias alternativas como la agricultura 
biosalina y la fitorremediación. 
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1. General context 

 

In general, salt-affected soils contain high levels of soluble salts as the major ions 
(sodium, potassium, calcium, magnesium, bicarbonate, chloride, carbonate, and 
sulphate) and/or significant amounts of sodium in the exchange complex, as well as 
in the soil solution, and basically include saline and/or sodic soils (Figure 1.1). 
Salinization is a major soil-degrading process in arid and semi-arid regions, 
originating from natural processes such as weathering, climate, and soil-water 
dynamics, as primary salinization and/or being induced by anthropogenic activities 
such as the inappropriate management of land and water resources, as secondary 
salinization. Salinity negatively affects root and plant growth through the osmotic 
effect caused by the high concentration of soluble salts. Because of excess adsorbed 
Na+, sodicity causes adverse effects on soil properties, such as an increase in soil pH, 
loss of physical structure (clay dispersion, swelling, and plugging of soil pores), and 
the deterioration of soil–water relations (decrease in infiltration, hydraulic 
conductivity, water retention and drainage), leading to soil erosion, crusting, 
compaction, runoff, waterlogging, nutrient imbalances and specific ion toxicity on 
plants, thus causing a reduction of soil productivity and crop production, and 
decreased biodiversity (Qadir et al., 2001a; Qadir and Schubert, 2002; Levy and 
Shainberg, 2005; Qadir et al., 2007; Keren, 2005; Stavi et al., 2021; Andrade Foronda 
and Colinet, 2023; FAO, 2022). 

 

Based on the data from 118 countries covering 73% of the global land area and the 
threshold values of ECe > 2 dS m-1, ESP > 15%, and pH > 8.2, the Global Map of Salt-
Affected Soils (FAO, 2021) indicates that more than 4,4% (85% saline, 10% sodic 
and 5% saline-sodic) of topsoils (0-30 cm) and 8,7% (62% saline, 24% sodic and 14% 
saline-sodic) of subsoils (30-100 cm) of the total land area is salt-affected; from this 
mapping, maps of salt-affected top/subsoils in Bolivia are shown in Appendix 1.1. 
Salt-affected soils in Bolivia exceed 5% of its territory and marginalize a large surface 
of agricultural lands, so their assessment as resources and the evaluation of cost-
effective amelioration strategies are indispensable (Hervé et al., 2002). FAO (2022) 
addressed numerous potential negative impacts of salinity and sodicity during the 
global symposium on salt-affected soils in 2021, through three main themes: (1) 
Assessment, mapping, and monitoring of salt-affected soils, (2) Integrated soil-water-
crop solutions in rehabilitation and management of salt-affected areas and (3) Agenda 
for action to prevent and rehabilitate salt-affected soils, protect natural saline and 
sodic soils, and scale-up sustainable soil management practices; in this regard, our 
research agrees with these topics by contributing to the assessment,  characterization 
and monitoring of salt-affected soils, as well as the evaluation of appropriate 
remediation techniques. 

 

The High Valley of Cochabamba used to be one of the most highly agriculturally 
productive valleys of Bolivia. However, nowadays it is characterized by low soil/crop 
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productivity and land degradation mainly due to salinization processes, which in turn 
are caused by the semi-arid conditions, increase in population, deforestation, and 
inadequate agricultural practices, among other factors. Salinity and sodicity in the 
High Valley negatively impact not only soil health and crop yields but farmers‘ 
income. In this context, this research aimed at contributing to the sustainable 
management and rehabilitation of soils affected by salinity/sodicity in the High Valley 
of Cochabamba to improve the soil quality for environmental health and crop 
productivity, thus the economic situation of farmers. Consequently, as a result of 
previously identified problems, research gaps and questions we formulated some 
research objectives: Generation of a database of soil information as a baseline for this 
study and context of the current status of soils in the study area, characterization and 
classification of salt-affected soil samples and profiles, comparison between two salt-
affected soil classifications systems about their output categories which could impact 
on soil management, performance evaluation of machine learning-based models in 
predicting salinity, sodicity and salt-affected soil classes from soluble salt ions, 
accuracy assessment of models to predict sodicity and salinity variables from easily 
obtained predictors, selection of  most accurate models and important variables which 
can be used to predict salt-affected soils in the study area, evaluation of the 
effectiveness of singly/combined mineral and organic amendments with leaching in 
ameliorating saline-sodic soil under controlled conditions, and identification of the 
most effective organic or mineral amendment(s) and/or their optimal combination(s) 
for improving soil salinity/sodicity. 

 

The structure of this manuscript is as follows : 

• The relevant concepts linked to salt-affected soils, as well as a general 
introduction to the specific situation of the study area (High Valley of 
Cochabamba) within the scope of the study, besides the research questions and 
gaps, objectives, and outline are presented next in this chapter 1.  

• The characterization of soil profiles and samples in the study area, as well as 
issues linked to the classification criteria of salt-affected soils and their spatial 
distribution are presented in Chapter 2. 

• Chapter 3 is dedicated to the performance evaluation of models to predict soil 
salinity and sodicity from the measurement of soluble salt ions, and other easily 
obtained features, using conventional and machine learning-based techniques. 

• In Chapter 4, results from experiments under controlled conditions to evaluate 
the effectiveness of singly/combined mineral and organic amendments with 
leaching in ameliorating saline-sodic soils, are commented on. 

• Finally, a general discussion, future perspectives, and overall conclusion of the 
study are presented in Chapter 5. 
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2. Salt affected soils: Concepts and definitions  

2.1. Salinity and saline soils 

Saline soils are characterized by significant levels of soluble salts comprising the 
major ions, namely, sodium (Na+), potassium (K+), calcium (Ca2+), magnesium 
(Mg2+), chloride (Cl−), and sulphate (SO4

2−). These soils mainly contain sulphates and 
chlorides of Ca2+ and Mg2+, and small quantities of K+, NH4

+, HCO3
−, CO3

−2, and NO3
− 

are also present. In contrast to sodic/alkali soils, saline soils are usually flocculated, 
well-structured, and as permeable as normal soils or even more, because of the 
presence of excess salts and low amounts of Na+ ion on exchange sites; moreover, 
during the salinization process, the accumulated salts are mostly NaCl, Na2SO4, 
CaCO3 and MgCO3 with a dominance of Na+  salts in the early stages and Ca2+ / Mg2+ 
salts accumulating gradually, thus developing saline soils and later white alkali soils 
(Choudhary and Kharche, 2015; Alemayehu and Haile, 2022). 

 

Saline soils are often recognized visually by the presence of efflorescence as white 
crusts of salts on the soil surface formed through evaporation during a drought period. 
Soil salinity negatively impacts root/plant growth and crop yield through the osmotic 
effect caused by the high concentration of soluble salts (Figure 1.2). Salinity levels 
are usually expressed as soil electrical conductivity (EC) in DeciSiemen per meter (dS 
m-1) as a standard unit measured either in saturated extract or in soil–water 
suspensions which measures the ability of soil-water to carry electrical current as an 
electrolytic process in the soil solution along with soluble ions. Salinity can also be 
expressed as the total soluble salts (TSS). Moreover, Abrol et al. (1980) observed that 
saline soils contain neutral soluble salts of Cl− and SO4

2− of Na+, Ca2+, and Mg2+; and 
also, that - instead of ECe – the nature of the soluble salts would be a more reliable 
indicator for differentiating saline from sodic/alkali soils. 

 

The threshold electrolyte concentration (TEC) refers to the electro-osmotic effect of 
saline solutions in counteracting the repulsive forces caused by the hydration of 
adsorbed sodium ions; and tough, the salt concentration is useful in maintaining soil 
structural integrity, but it is harmful to plants when it exceeds a threshold related to 
their salt tolerance (Rengasamy, 2016). Appendix 1.2b shows the relationship 
between salinity and sodicity, as well as the diagonal line that distinguishes between 
flocculated and dispersed soils. Saline-sodic soils normally contain excessive amounts 
of soluble salts and exchangeable Na+ from the combined processes of salinization 
and sodication, however, Chhabra (2004) warns about the ambiguity of saline-sodic 
soils in terms of salinity or sodicity behaviour normally determined by their Na+ and 
alkali salts to neutral salts ratios, besides soil pH, ESP and EC. 
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2.2. Sodicity and sodic soils 

Sodic soils have an accumulation of excess Na+ and variable amounts of free salts 
in soil solution and mainly occur under arid and semiarid climates. Sodication or 
alkalinization is a process which comprises the progressive leaching of soluble salts 
and the accumulation of adsorbed Na+ on the soil particles at concentrations which 
adversely affect the structure of soils (Marchuck, 2013); also characterized by a pH 
generally higher than 8.5 (Gupta et al., 1984). Alkali soils contain soluble salts capable 
of causing alkaline hydrolysis, which are predominately CO3

2− and HCO3
− of Na+, 

leading to an increase in SAR due to precipitation of soluble Ca2+ as CaCO3, and when 
soils accumulate CaCO3, there is a gradual increase in the proportion of Na+ in 
solution and thereby the proportion of the Na+ adsorbed on soil colloids also increases; 
then the addition of Na+-containing salts as carbonates to the soil may result in a 
saturation of Na+ in the soil exchange complex – known as sodication process -  and 
as the salt concentration increases, Ca2+ and Mg2+ may precipitate as their respective 
carbonates; (Abrol et al., 1980; Choudhary and Kharche, 2015); additionally, when 
the plants extract the water from the soil, the salts remain and become concentrated, 
causing the calcium to precipitate as calcium carbonate, while much of the Na+ 
remains in the soil-water (Alemayehu and Haile, 2022). Alkali soils from arid and 
semiarid lands contain free CaCO3 with concentrations of soluble Na+ and CO3

2− + 
HCO3

− as the dominant ions and very low Ca2+ and Mg2+; moreover, soil organic 
matter gets dissolved and forms black-alkali soils as organic–clay coatings on soil 
aggregates and on the soil surface caused by the high pH increased linearly with an 
increase in ESP (Chhabra 2004; Gupta and Abrol, 1990). 

 

The flocculating power of Calcium is 43 and magnesium is 27 times that of sodium, 
which – along with its larger ionic size in water – causes the dispersive effect in soil 
(Figure 1.2). The accumulation of adsorbed Na+ leads to the dispersion and swelling 
of soil particles with organic matter, occupying and clogging the soil pores and 
causing the deterioration of soil–water relations such as hydraulic conductivity and 
water-holding capacity, thus the loss of soil physical structure and aeration, crusting, 
compaction, runoff, waterlogging nutrient imbalances and soil erosion (Daba and 
Qureshi, 2021; Qadir and Schubert, 2002; Quirk and Schofield, 1955).  

 

Sodicity levels are usually determined as the exchangeable sodium percentage 
(ESP) through the amount of exchangeable Na+ as a proportion of either the cation 
exchange capacity (CEC), or the sum of exchangeable cations (Qadir et al., 2007; 
Sumner et al., 1998), or indirectly estimated by the sodium adsorption ratio (SAR) 
calculated from the soluble Na+ relative to the soluble Ca2+ + Mg2+ concentrations in 
a soil solution using the formula proposed by Richards et al. (1954), which also is 
used to characterize the presence of Na+ in irrigation water (Horneck et al., 2007). 
Normally, the soil dispersion correlates positively with the soil ESP, mainly when this 
exceeds 15%. The exchangeable cation ratio (ECR) is an index alternative to ESP, 
which takes into account the influence of exchangeable K+ ions on clay dispersion 
even at a minimum level of exchangeable Na+ (Marchuk et al., 2014). The cations 
ratio of soil structural stability (CROSS) is a cation ratio analogous to SAR, which 
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considers the differential dispersive effects of Na+ and K+ on clay dispersion and the 
differential flocculation powers of Ca2+ and Mg2+ (Rengasamy and Marchuk, 2011). 
The most used indicators of soil sodicity are summarized in Table 1.1. 

 

The term ‘alkali’ or ‘alkaline’ is usually a synonym of ‘sodic’, generating a certain 
degree of confusion since sodicity is more related to excess adsorbed Na+ and 
alkalinity to the dominance of alkaline salts besides the adsorbed Na+. Neutral and 
alkali salts usually determine the distinction between sodicity and alkalinity, so alkali 
soils normally have excess exchangeable Na+ and carbonates besides a pH above 8 
(Gupta and Abrol, 1990). Sometimes, the presence of Na+ carbonates passes unnoticed 
when obtained from paste extract, due to a portion of the dissolved carbonates that 
reacts with Ca2+ and precipitates as CaCO3; moreover, the high solubility of Na+ salts 
and the electroneutrality of aqueous solutions mean that the remaining Na+ charge is 
either balanced by sulphate ions or included into the exchange sites, which permit the 
use of efflorescence crusts (pH >8.4, Na/Cl ratio >1) as indicators of Na+ carbonates 
(Gupta and Abrol, 1990). 

Table 1.1 Indicators/indices used for measuring soil sodicity. 

Index/indicator Equation Unit Reference* 

Sodium adsorption 

ratio (SAR) 

 𝑁𝑎+

√𝐶𝑎2+  +  𝑀𝑔2+

2

 cations are 

expressed in 

mmolc L−1 

1 

Exchangeable 

sodium percentage 

(ESP) 

(
𝑁𝑎+ 

𝐶𝐸𝐶
) 100 

Na+ and CEC are 

expressed in 

cmolc kg−1 

1, 3 

Exchangeable 

sodium percentage 

(ESP) 

(
𝑁𝑎+

𝐶𝑎2+ + 𝑀𝑔2+ + 𝑁𝑎+ + 𝐾+
) 100 

cations are 

expressed in 

cmolc kg−1 

2, 3 

 

Cation’s ratio of soil 

structural stability 

(CROSS) 

 𝑁𝑎+ + 0.56 𝐾+

√𝐶𝑎2+  +  0.6 𝑀𝑔2+

2

 cations are 

expressed in 

mmolc L−1 

4 

Exchangeable 

cation ratio (ECR) 

(
𝑁𝑎+ + 0.56 𝐾+

𝐶𝑎2+ + 𝑀𝑔2+ + 𝑁𝑎+ + 𝐾+
) 100 

cations are 

expressed in 

cmolc kg−1 

5 

* (1) Richards et al., 1954; (2) Sumner et al. 1998; (3) Qadir et al. 2007; (4) Rengasamy and Marchuk, 

2011; (5) Marchuk et al., 2014. CEC = cation exchange capacity. 
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2.3. Causes and impacts of salinity and sodicity 

Some contributing factors to the process of salinization - based on Daba and Qureshi 
(2021), Choudhary and Kharche (2015) and Marchuck (2013) - are: 

- Climate-related factors in arid and semi-arid conditions, such as dryness, 
insufficient rainfall (< 500mm), and high evaporation/transpiration which 
exceeds precipitation, among others.  

- Soil-water management practices such as the use of low-quality irrigation water, 
inadequate irrigation methods, poor drainage, unsustainable use of fertilizers, 
lack of techniques for soil recovery/remediation, and removal of cover and 
deep-rooted vegetation, among others. 

- Geochemical weathering of rocks, saline parent materials, sources such as fossil 
salts of former marine and lacustrine deposits, atmospheric deposition, and salts 
brought down from the upstream rivers draining to the plains and subsequent 
deposition along with alluvial materials. 

- Groundwater-associated salinity which mostly occurs in dry lands and is caused 
by the salt inputs through natural processes of precipitation and the capillary 
rise from subsoil salt beds or shallow brackish groundwater accompanied by a 
lack of natural leaching due to topographic situation. 

- Non-groundwater associated -or transient- salinity caused by the temporal and 
spatial variations of salt accumulation in the root zone which mainly occurs in 
areas dominated by sodic subsoils. 

- Accumulation of dissolved Na+ as exchangeable Na+ due to vertical/horizontal 
leaching mainly in sub-humid regions. 

Additionally, Appendix 1.2a illustrates some causes of salinization. 

 

Some effects and impacts of salinity/sodicity - based on Daba and Qureshi (2021), 
Marchuck (2013), Qadir and Schubert (2002) and FAO (2022) – are:  

- A continuous osmotic phase that prevents water uptake by plants due to the 
osmotic pressure of saline soil solution, followed by a slower ionic phase when 
the accumulation of specific ions in the plant over some time causes ion toxicity 
or ion imbalance, leading to poor seedling emergence, limited plant/root 
growth, and limited plant nutrition due to water and nutrient uptake and gaseous 
exchange restrictions. 

- The increased adsorbed Na+ content affects the soil aggregation stability 
because of its dispersive action on soil particles, resulting in a change of the 
pore size distribution, a decrease of soil volume and soil compaction, thus 
negatively affecting bulk density, hydraulic conductivity, water-holding 
capacity, water/air circulation, and consequently the crop productivity. 

- Negative impact on soil ecosystem services comprising reduced soil fertility and 
ability of crops to take up water and the loss of soil-water properties, leading to 
soil degradation, low agricultural productivity, decrease in income and human 
quality of life, loss of biodiversity and disturbed ecosystem functions. 
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 Figure 1.1 Graphical illustration of salt-affected soil types according to their 
soluble/exchangeable ion composition. Ions’ size represents their relative 

amount/concentration. 

2.4. Characterization, classification, and prediction of salt-
affected soils 

Soil information usually includes the soil characterization in terms of soil profile 
description, comprising chemical, physical and morphological properties, in addition 
to geomorphology, pedology, soil formation and landscape processes. Moreover, soil 
sodicity and salinity variables such as soil ESP, SAR, EC, pH and major ions can be 
used for classification as the determination of salt-affected soil categories and spatial 
distribution of saline/sodic soils, as well as for the generation of prediction models, 
using these properties either as predictor or response variables. 
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Salt-affected soils can be classified by applying the widely used US Salinity Lab 
(USSL) classification by Richards et al. (1954). Chhabra et al. (2004) proposed an 
alternative classification analogous to that of Szabolcs (1989), which includes the ion 
ratios of (2CO3

2− + HCO3
−) / (Cl− + 2SO4

2−) and Na+ / (Cl− + 2SO4
2−) expressed in mol 

m−3, besides the soil ECe and ESP, for facilitating the subsequent management of salt-
affected soils (Table 1.2). The Australian classification (Rengasamy, 2010/2016) is 
somewhat analogous to that of the USSL but takes into account the pH levels and a 
pH threshold value of 8 since at this level the soil becomes alkaline and carbonates 
dominate the anions, and assumes a soil ESP threshold value of 6% because of the 
adverse effects of exchangeable Na+ on soil structure which start at this level in 
vertisols, due to smectite and montmorillonite as dominant clay minerals, with a 
higher specific surface area than that of illite and kaolinite, which promote soil 
dispersion even with a low increase in ESP in arid and semiarid regions (Isbell, 2002; 
Shainberg & Letey, 1984). The FAO’s criterion considers a pH threshold value of 8.2 
instead of 8.5 based on the conclusion of Abrol et al. (1980), who affirmed that 
precipitation of CaCO3 starts at a pH of 8.2 as an indicator of alkaline soil formation. 
McIntyre (1979) simply differentiated sodic from alkaline soils through the soil ESP 
and pH, respectively. There are other systems for classifying salt-affected soils based 
on salinity degree related to the content/composition of toxic salt ions (Pankova et al., 
2018), levels of salinity by intervals of ECe (Richards et al., 1954) and levels of 
sodicity by intervals of ESP (Abrol et al., 1988). 

Table 1.2 Some representative and widely used systems to classify salt-affected soils. 

System  Categories Property / Threshold value 

US Salinity 

Lab1 

Normal ESP < 15%, ECe < 4 dSm−1, pH < 8.5 

Saline ESP < 15%, ECe > 4 dSm−1, pH < 8.5 

Saline-sodic ESP > 15%, ECe > 4 dSm−1, pH < > 8.5 

Sodic ESP > 15%, ECe < 4 dSm−1, pH > 8.5 

Alternative2  

Normal ESP < 15%, ECe < 4 dSm−1, pH < 8.2 

Saline 
ESP < 15%, ECe > 4 dSm−1, pH < 8.2,  

Ratio 1* and Ratio 2† < 1 

Alkali 
ESP > 15% (> 6% in vertisols), ECe < 4 dSm−1  

(variable), pH > 8.2, Ratio 1* and/or Ratio 2† > 1 

Australian3   

Normal ESP < 6%, EC1 < 4 dSm−1, pH 6 - 8 

Saline ESP < 6%, ECe > 4 dSm−1, pH < 6 - > 9 

Saline-sodic ESP > 6%, ECe > 4 dSm−1, pH < 6 - > 9 

Sodic ESP > 6%, ECe < 4 dSm−1, pH < 6 - > 9 

(1) Richards et al. (1954), (2) Szabolcs (1989) and Chhabra (2004), (3) Rengasamy (2010). 

* Ratio 1 = (2CO3
2− + HCO3

−) / (Cl− + 2SO4
2−)        † Ratio 2 = Na+ / (Cl− + 2SO4

2−)  
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Some salinity and sodicity variables can be predicted from each other to lower costs 
and save time on lab determinations, consequently, some authors evaluated simple 
linear models to predict ESP, SAR, ESR and EC (Sonmez et al., 2008; Kargas et al., 
2020; Chi et al., 2011; Elbashier et al., 2016ab; Seilsepour et al., 2009; Seilsepour and 
Rashidi, 2008; Al-Busaidi and Cookson, 2003; Harron et al., 1983; Shirmohamm and 
Heydari, 2020; Annex 4). Moreover, multivariate models using conventional and 
novel techniques can be an alternative for such purposes. Machine learning (ML), as 
a process of learning from a system’s experience for self-improvement based on 
resultant information, can be used for obtaining more accurate and complex prediction 
models. Random Forest (RF)is an ensemble learning method that constructs multiple 
decision trees during training, which in classification tasks, aggregates the votes and 
outputs the mode from multiple decision trees to determine the final class prediction 
and for regression, RF averages the predictions from individual trees to produce a 
continuous output as the mean (Breiman, 2001). Support Vector Machines (SVM) is 
a supervised learning algorithm that finds a hyperplane in an N-dimensional space to 
distinctly classify data points or perform regression; then, in classification finds the 
hyperplane that best separates classes with the maximum margin (Cortes and Vapnik, 
1995), and Support Vector Regression (SVR) finds a hyperplane that best fits the 
continuous target variable within a certain margin of tolerance (Drucker et al., 1997). 
Partial Least Squares (PLS) is a statistical method that finds a linear regression model 
by projecting the predicted variables and the observable variables into a new space; 
so in classification, PLS Discriminant Analysis (PLS-DA) projects the data onto latent 
structures and then uses these for classification (Barker and Rayens, 2003), and for 
regression PLS creates latent variables in the new space to maximize the covariance 
between the predictor and response variables (Wold, 1966). 

 

Furthermore, some easily obtained variables, such as geo-environmental features 
including satellite image bands and derived salinity/vegetation indices, 
geomorphometric and physiographical, among other features, which in turn combined 
with field/lab measured characteristics such as chemical and physical properties, can 
be used as explanatory variables or covariates for the training and validation of 
prediction models for subsequent generation of maps through geostatistical methods 
as spatial interpolations.  

 

2.5. Remediation of salt-affected soils 

Remediation of salt-affected soils normally aims to eliminate the excess soluble 
salts and exchangeable sodium below the root zone to restore soil productivity and 
plant growth. Kumar et al. (2022) stated that technological interventions to rehabilitate 
salt-affected soils can play an important role in increasing agricultural productivity 
and farmer welfare; therefore, research should target alternative and efficient 
ameliorants, and suited practices to achieve significant benefits in productivity, 
profitability, and environment sustainability from salt-affected soils.  The 
amelioration of these soils can be achieved through physical, chemical and biological 
approaches:  
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2.5.1. Chemical approaches 

The amelioration of saline-sodic and sodic soils usually needs an external source of 
soluble calcium – ideally applied with non-saline irrigation water – to replace the 
excess sodium from the cation exchange sites of the rhizosphere (Ahmad et al., 2006), 
for facilitating the soil flocculation and subsequent improvement of soil structure, pH 
and nutrient availability. A basic illustration of the saline/sodic soil remediation 
principle is shown in Figure 1.2. Generally, there are two types of chemical/mineral 
amendments: Soluble sources of calcium such as Gypsum (CaSO4.2H2O), calcium 
chloride (CaCl2) and phospho-gypsum; and acids or acid-formers such as elemental 
sulphur (S), sulphuric acid (H2SO4), sulphates of iron and aluminium, and pyrites; 
furthermore, if CaCO3 present in the soil, then, needs the application of organic 
amendments or acid formers to enhance its solubility (Choudhary and Kharche, 2015). 
Ideally, amendments are applied after cropping and before leaching for initial 
reclamation and long-term maintenance of the soil. A general reaction of added 
calcium-based amendment or CaCO3 in soil, for displacing adsorbed sodium is: 

   Na+ –X + Ca2+ (S) = Ca2+ –X + 2Na+ (S) ↓,  

  Where, S is a solution and X is the exchange complex of the soil. 

 

Gypsum and sulphuric acid are widely used because of their relatively low cost and 
availability (Qadir et al., 2001a). When sulphur is applied to the sodic soil, it is 
oxidized by microbiological activity to form sulphuric acid, which then dissolves the 
calcite in the soil, generating the Ca2+ needed to remove the exchangeable Na+. 
Sulphuric acid can also react directly with Na2CO3 in the soil. The soil ESP is 
normally used to calculate the dose of gypsum necessary to remediate excess Na+, but 
it is also influenced by crop tolerance to sodicity and economic conditions. Due to the 
high pH of alkali soil, most likely as a result of Na2CO3, the addition of gypsum 
provides a source of Ca2+, which precipitates as CaCO3 and Ca (HCO3)2, leading to a 
decrease in pH (Wong et al., 2009), besides the reduction of the hydrolysis reactions 
associated with Na+ ions on the exchange complex. Moreover, Mahmoodabadi et al. 
(2013) suggested that the application of gypsum together with organic amendments, 
depending on their chemical composition, might promote some synergistic effects on 
soluble Na+ and K+ concentrations and have a positive impact on the properties of 
calcareous saline-sodic soils. 

 

2.5.2. Biological approaches 

The use of organic amendments is an alternative to mineral amendments for 
reclaiming sodic and saline-sodic soils, as they improve not only salinity/sodicity but 
also the soil structure through the enhancement of soil-water properties. Organic 
amendments, such as cattle manure, chicken manure, compost, peat and biochar, 
among others, promote plant growth thanks to their beneficial effects on the physical, 
chemical, nutritional and biological properties of the soil and facilitate the leaching of 
salts in saline/sodic soils, in harmony with the environment (Srivastava et al. 2016; 
Yaduvanshi and Swarup 2005; Oo et al. 2015). Adding organic amendments in sodic 
soils usually binds the small soil particles together into large water-stable aggregates, 
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increases porosity and thus improves the physical properties of the soil, and can also 
reduce input costs as a sustainable and efficient management method for reclaiming 
salt-affected soils (Srivastava et al., 2016; Chaganti et al., 2015), besides the beneficial 
impacts on nutritional and biological soil properties. Organic materials help in 
improving and maintaining soil structure, preventing erosion, supplying essential 
plant nutrients, and enhancing biological activity, besides reclaiming the sodic soils 
through their decomposition, which increases the partial pressure of CO2 and produces 
organic acids and subsequent increasing electrolyte concentration, mobilizing Ca2+ 
from dissolved soil calcite and facilitating the replacement of exchangeable Na+ by 
Ca2+ and Mg2+, thus, lowering the soil pH and ESP; therefore, the effectiveness of any 
organic amendment depends upon the amount of CO2 produced and the extent of 
reduction for making the soil porous by maintaining channels and voids which 
improve water penetration and leaching of the salts out of the root zone, even though, 
their coarse texture and slow decomposition (Choudhary and Kharche, 2015). 
Furthermore, Diacono and Montemurro (2015) concluded that most of the well-
known effects of organic materials on the chemical, biological, and physical 
properties of salt-affected soils are relevant in terms of effectiveness. 

 

Phytoremediation as vegetative bioremediation is a function of four main factors: 
CO2 partial pressure within the root zone, root proton release by N2-fixing plants, 
improvement of soil porosity by root expansion, and harvested-shoot sodium content 
(Qadir and Oster, 2004) nonetheless, the latter can be insignificant compared to the 
ability of some plants to solubilize CaCO3 in calcareous sodic or saline-sodic soils 
through their root respiration and H+ release, then, the released Ca2+ ions substitute 
Na+ ions on the soil cation exchange sites. However, this process is water/irrigation 
dependent and thus infeasible in arid and semi-arid regions; therefore, shoot-succulent 
halophytes, which can accumulate enormous Na+ quantities within their above-ground 
organs, can be considered for these zones (Shahid, 2002). Furthermore, in areas in 
which leaching salts with water is unfeasible or costly, planting salt-tolerant crops or 
forages that can grow under low to moderate saline conditions may be viable 
(Alemayehu and Haile, 2022), as a relatively recent approach of growing interest 
known as biosaline agriculture. 

 

2.5.3. Physical approaches 

These approaches involve physical and mechanical methods such as deep-
ploughing, sub-soiling, profile inversion, sanding, flushing and scrapping to remove 
the salts and improve permeability, and thereby, internal drainage within the soil 
profile depth for enhancing the infiltration or transportation of salts dissolved in water 
to deeper soil layers (Choudhary and Kharche, 2015).  Desalination and de-
alkalization of soils require proper land drainage and good quality irrigation water to 
remove dissolved soluble salts from the root zone and maintain the groundwater table, 
as well as the use of cultural practices such as minimum tillage, surface mulching, 
organic matter addition, green manures, crop residue management, selection of proper 
seeding/planting methods, and avoiding lands with a high groundwater table, among 
others (Daba and Qureshi, 2021).  
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Leaching excess salts and maintaining a favourable salt balance to prevent 
detrimental salt accumulation in the soil profile need enough water and proper 
drainage to leach salts below and out of the root zone but not into groundwater 
reserves. If drainage is impeded by a shallow water table, hardpan or bedrock, then an 
artificial drainage must be installed, or another use for the land might be considered. 
The signs of poor drainage include surface ponding, slow infiltration, or wetness for 
prolonged periods. The irrigation method and volume of applied water have an impact 
on salt accumulation/distribution, for instance, flood irrigation and an appropriate 
leaching fraction generally move salts below the root zone, drip-irrigation moves 
water away from the emitter and salts concentrate where the water evaporates, furrow-
irrigation moves water from the furrow into the bed via capillary flow (Alemayehu 
and Haile, 2022). For saline soil amelioration, flushing with non-saline water is used 
to remove excess soluble salts, which involves washing away the surface accumulated 
salts; however, under shallow water table conditions, salts can again rise and 
accumulate at the surface through evapotranspiration. Ideally, for a proper 
reclamation of any salt-affected soil – even through chemical/biological techniques – 
adequate drainage is indispensable. Moreover, Alemayehu and Haile (2022) state that 
if soluble salts are leached out of saline-sodic soils even with good quality irrigation 
water before the exchangeable Na+ is displaced, the level of this cation and pH would 
increase, then, the soil would change to adverse characteristics of sodic soils.  

 

Figure 1.2 Graphical illustration of salinity/sodicity effects and the principle of its 
remediation. Ions’ size represents their relative amount/concentration. 
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3. Study area: High Valley of Cochabamba 

 

Over the past century, the High Valley of Cochabamba was probably one of the 
most agriculturally productive valleys in Bolivia; however, it is currently 
characterized by low productivity as well a large surface of degraded areas mainly 
affected by soil salinity/sodicity. 

 

3.1. Location 

The study area is the High Valley, located in the Department of Cochabamba – 
Bolivia, between the latitude boundaries of –17°29′47.7″ to –17°39′48.6″ and 
longitudes of –66°5′16.8″ to –65°45′13.0″ at an average elevation of ~2750 m. The 
spatial location of the study area is represented in Figure 1.3.  

 

 

Figure 1.3 Study area location map - High Valley of Cochabamba, Bolivia (Landsat-8 
image, 2017 and Google Earth, 2018). 
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3.2. General description 

3.2.1. Climate: 

The climate of the valley is semiarid with a mean annual temperature of 14–17 °C 
and mean annual rainfall of 350–4000 mm. The climatic diagram (Figure 1.4a) for the 
period from 2000 to 2020 shows maximum annual precipitation in January, a short 
rainy period and a prolonged drought period from April to mid-November, added to 
the annual evapotranspiration trend (Figure 1.4b) leads to a significant water deficit. 
Moreover, there is a tendency to increase inter-annual variability over time, causing more 
extreme dry years and subsequent higher rainfall periods. 

 

 

Figure 1.4 Walter & Lieth climatic annual diagram 2000 - 2020 (a), and annual 
evapotranspiration, 1982 - 2010 (b). Based on data from San Benito Station - High Valley of 

Cochabamba, provided by SENAMHI – Bolivia. 

a 

b 
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3.2.2. Geomorphology and geology: 

The High Valley belongs to the meso-thermic interandean valleys originated from 
tectonic depressions filled in by quaternary lacustrine, glacio-lacustrine and alluvio-
lacustrine sediments. Regarding the geomorphic characterization of this area, most of 
the salt-affected soils are in the landscape of a valley with a relief type consisting of 
lagunary depressions, alluvio-lagunary/lagunary facies, a landform consisting of 
lagunary flats, and soil associations consisting of Ustalfic Haplargids/Ustochreptic 
Camborthids and Typic Salorthids/Natric Camborthids (Metternicht and Zinck, 
2010/1997). Appendix 1.3 shows the geopedologic map of the High Valley. Soils on 
alluvial and colluvio-alluvial depositions in piedmont areas exhibit an overall low 
development, and Entisols dominate on recent and actual fans, Glacis have more 
developed soils mainly in their proximal and distal parts where Haplargids are 
predominant, and Calciorthids occur in the proximal part of the dissected depositional 
Glacis where fragments of the calcic horizon are brought up to the surface as a 
consequence of ploughing (Metternicht, 1996).  The elevation and slope maps are 
represented in Figures 1.5a and 1.5b. 

 

3.2.3. Hydrography 

According to Metternicht (1996), catchment areas have variable extents, and 
streams are ephemeral and unstable carrying loads of sediments from the highlands 
during the rainy season, and most of the rivers and brooks have a torrential regime 
because of the climatic and geomorphic conditions. The Punata basin has its main 
catchment areas in the southern part, including the Calicanto, Siches, Escalera and 
Wasa Mayu rivers in Tarata, Cliza, Villa Rivero and Punata districts, respectively. 
The drainage network is controlled by tectonics, but towards the south of the Punata-
Cliza basin, gentler basement subsidence allowed the development of a more 
extensive and integrated drainage network. In the highlands, the rivers have a dendritic 
distribution pattern, and in the lowlands, some short streams drain to the lagunary 
depressions of the Punata-Cliza basin. The Topographic Wetness Index map is shown 
in Figure 1.6a. 

 

3.2.4. Soils: 

An insight into the characterization of soil profiles and the classification of salt-
affected soils in the High Valley can be found in Chapter 2.  

 

3.2.5. Vegetation: 

Some halophytic (Figure 1.7b, c) salt-tolerant genus such as Portulaca spp, Suaeda 
spp, Anoda spp, Sesuvium spp, Chenopodium spp, Aizoaceae spp, Cynodon spp, 
among others, mainly grow in patches at the middle and south of the valley. 
Additionally, Xerophytic trees, such as Prosopis spp, shrubs and cactus, and 
Schinus molle trees, are found as part of patches and hedges. 
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Figure 1.5 Elevation (a), slope (a), and Topographic Wetness Index (c) maps - High 
Valley of Cochabamba (based on the DEM, 2017) 

 

  

a 

b 
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Figure 1.6 Topographic Wetness Index (a) and 3D elevation (b) maps - High Valley of 
Cochabamba (based on the DEM, 2017). 

 

  

a 

b 
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Figure 1.7 Patch of saline-sodic soil in the High Valley (a), and native halophytes (Suaeda 
spp) in soil with salt efflorescence (b) and with cracks (c) due to sodicity. 

3.2.6. Agriculture: 

The most cultivated agricultural rain-fed/irrigated crops are corn (Zea mays), 
lucerne (Medicago sativa), and wheat (Triticum spp). Other cereals such as oat (Avena 
sativa), barley (Hordeum vulgare) and triticale (X Triticosecale Wittmack) are 
usually cultivated as forage crops. It should be remarked that these crops showed 
moderate to high tolerance to salinity. The percentage proportions of the agricultural 
land use about the surface (Figure 1.8a) show the prevalence of cultivation of cereals 
– mainly corn – and fallow lands normally related to the shifting agriculture; in this 
regard, the major agricultural land uses in the High Valley (Figure 1.8b)  are the 
intensive and the shifting agriculture mostly linked to rainfed crops and/or under 
irrigation. 

a 

b c 
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Figure 1.8 Treemap of agricultural land uses (%) in the High Valley, based on the 
agricultural survey of INE-2015 (a); and broad land use in the High Valley, based on 

AgroSig-2017 (b). 

 

a 

b 
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Figure 1.9 Colour composite image - High Valley of Cochabamba - Bolivia (based on 
Landsat-8 image, 2017). 
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3.3. Problem identification 

The High Valley of Cochabamba was one of the most agriculturally productive 
valleys in Bolivia during the 20th century; however, nowadays it is characterized by 
low soil productivity and soil degradation, thus impacting crop yields and farmers’ 
income. In a broad sense, the main driving factor of soil salinity/sodicity in the High 
Valley of Cochabamba is the semiarid condition characterized by a short rainy period 
along with a prolonged drought period, thus a climatic water deficit, considering that 
the formation of salt-affected soils normally occurs as a result of limited rainfall 
causing an insufficient amount of water to drain away or to groundwater the salts, as 
well as to meet the evaporation and transpiration needs, leading to a gradual salt 
accumulation in the soil through the capillary rise; moreover, the geochemical 
weathering and groundwater associated/non-associated salinization are also 
prevailing. Some other driving factors in the High Valley related to secondary 
salinization are the use of brackish or residual water for irrigation, inadequate use of 
fertilizers and deforestation along with the population increase.  

 

Metternicht (1996) mentioned some aspects which influence the salinization and 
sodication processes, such as the increase of salt concentration with depth due to the 
percolation of rainwater through the subsurface alluvio-lacustrine and lacustrine 
deposits, high concentrations of Na+ and Cl- in the groundwater from lacustrine 
deposits, the dominance of Natric Camborthids and Salorthids in flat landscape areas 
of lacustrine-lagunary clayey parent materials, sediments with salts which are carried 
by ephemeral streams from the highlands during the rainy season, and the use of 
irrigation water, mainly in playas and flat landforms of alluvio-lacustrine origin. 
Moreover, the Bolivian Society of Soils – in a report of 2015 – stated that this region 
is subject to salinization processes because salts tend to concentrate in the upper part 
of the soil and the infiltration of soluble salts is restricted due to low rainfall and the 
arid regime, which also means that soils are commonly dry for more than six months. 

 

During the phase of the on-site research for this study, some surveys and interviews 
were carried out in the study area. Among the stakeholders were farmers, agronomists, 
technicians, researchers and public workers from the agricultural sector, among 
others; specifically, the persons in charge of agricultural and livestock matter from the 
municipalities located in the study area, namely Punata, Cliza, San Benito, Arani, 
Villa Ribero, Tarata and Toco. The most relevant information identified as 
problems/needs about the impacts of salinity and sodicity in the High Valley were: 

• In general, there is a lack of awareness and preparedness for salinization 
processes and effective management of salt-affected soils among the 
stakeholders in the study area. 

• Insufficient knowledge on causes, effects, characterization and remediation of 
salt-affected soils not only from farmers but also technicians, decision-makers 
and policymakers.  
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• Following the above statement, the frequent erroneous identification of salt-
affected soil types and the differentiation between salinity and sodicity, thus of 
the proper method of amelioration. 

• The need for harmonious, comprehensive and updated baseline soil information 
to facilitate the subsequent management and monitoring of salt-affected soils. 

• Insufficient facilities to properly carry out laboratory soil analyses for an 
adequate soil description, characterization and remediation. 

• Some lab measurements such as that of soil ESP are usually costly and time-
consuming. 

• The necessity of a tailored salt-affected soil classification system which 
facilitates the management and monitoring of salt-affected soils. 

• The determination of some sodicity/salinity variables is time-consuming and 
expensive, which generates the need for accessible and effective tools, methods 
and variables under lab and/or field conditions.  

• The need for training and validation of site-specific methods for predicting 
salinity and sodicity, including machine learning-based techniques.  

• Lack of insight on accessible reclamation techniques for farmers, including 
chemical, biological and physical approaches.  

• For those amendment-based remediation techniques, a need for alternative low-
cost and readily available amendments previously tested under lab and/or field 
conditions. 

• The need for training on the use of monitoring/mapping techniques based on 
readily obtained features such as remotely sensed data and GIS. 

• The absence of a joint program among government entities and farmers’ 
associations for the continuous monitoring of salinity and sodicity. 

• The absence of joint research programs between municipalities and research 
institutions to investigate topics which enhance the management and 
rehabilitation of salt-affected soils.  

• A lack of insight and research on alternative approaches to rehabilitate salt-
affected soil such as the strategy of adaptation through value crops highly 
tolerant to salinity and sodicity.  

 

It should be remarked that the above-mentioned problems were screened and then 
selected according to the feasibility in function to the research relevance and 
availability of resources in order to formulate the research question and subsequent 
objectives; then the output of the filtering somehow represents the scope of the study. 
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4. Research approach and objectives of the thesis 

4.1. Research gaps 

Although some studies have already been conducted, mainly focusing on mapping 
and characterization of salt-affected soils, there are still some gaps in soil knowledge, 
tools and remediation techniques for the proper management of these soils in the High 
Valley. In that context and based on the previous on-site research and survey,  the 
following are specific problems/needs as research gaps to be addressed: 

 

• Knowledge to generate awareness and preparedness on salinization processes,  
characterization, remediation and management of salt-affected soils. 

• A comprehensive and updated soil information base to facilitate the subsequent 
management and monitoring of salt-affected soils. 

• The lack of a proper classification system to mitigate erroneous identifications 
and facilitate the management of salt-affected soils. 

• Accessible and effective methods and variables for determining salinity and 
sodicity to overcome the current use of expensive and time-consuming 
techniques.  

• Training and validation of tailored methods to predict salinity and sodicity 
variables, such as machine learning-based techniques.  

• Some insights into accessible methods to remediate salt-affected soils. 

• Evaluation of locally available amendments for saline-sodic and sodic soil 
remediation, under controlled and/or field conditions. 

 

4.2. Research questions 

Some research questions addressed in this study are: 

 

• What is the current context and status in terms of characteristics of salt-affected 
soils in the study area? 

• To what extent can the salt-affected soil classification system influence soil 
management? 

• How effective are machine learning algorithms in predicting salinity/sodicity 
and salt-affected soil classes from soluble salt ions? 

• To what extent can multivariate models accurately predict sodicity/salinity from 
easily measured/obtained features in the High Valley?  

• Which prediction models are suitable to be used and improved in the study area? 

• Which variables serve as the most reliable predictors of soil sodicity and 
salinity?  

• How effective are locally available mineral and/or organic amendments in 
remediating sodic and saline-sodic soils, under controlled conditions? 
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• How do soil properties change after remediation in response to different 
amendment treatments under controlled conditions? 

• Which mineral and/or organic amendment-based technique(s) is/are best for 
sodic/saline-sodic soil remediation under controlled conditions? 

• How does the addition of organic amendments affect the efficacy of mineral 
amendments in the remediation of sodic/saline-sodic soils? 

 

Consequently, the following statements were formulated as hypotheses, based on 
the previous research questions: 

 

• Baseline soil information reveals variation in the levels of salinity and sodicity 
across different locations in the High Valley, with values ranging from non-
saline to highly saline/sodic soils. 

• Different classification criteria for salt-affected soils lead to differences in soil 
categorization, which in turn significantly affect the subsequent selection and 
efficacy of rehabilitation strategies. 

• Prediction models based on both conventional and machine learning methods 
can accurately predict salinity and sodicity from soluble ions and other easily 
obtained features, aiding in the management of salt-affected soils. 

• At least one amendment-based remediation technique, involving either 
individual or combined mineral and organic amendment, shows statistically 
significant improvement in soil salinity/sodicity compared to other treatments, 
expressed for testing purposes as: 𝐻𝑎:  𝑋𝐴 ≠ 𝑋𝐵  ≠  𝑋𝐶  ≠  … 𝑋𝑁  , where,  Ha 
is the alternative hypothesis, and X̄ is the mean of a given treatment (A, B, C… 
N). 

 

4.3. Objectives of the thesis 

This study aims to contribute to the sustainable management and rehabilitation of 
salt-affected soils in the High Valley of Cochabamba through baseline soil 
information, models to predict salinity and sodicity, and some insights on amendment-
based remediation techniques. In this context, the specific objectives of the study 
were: 

• Generation of soil database information as a baseline for this study and context 
of the current status of soils in the High Valley. 

• Characterization and classification of salt-affected soil samples and profiles. 

• Comparison between two salt-affected soil classification systems about their 
output classes which could impact soil management. 

• Performance evaluation of machine learning-based models in predicting 
salinity, sodicity and salt-affected soil classes from soluble salt ions. 

• Accuracy assessment of multivariate models to predict sodicity and salinity 
variables from easily measured/obtained predictors. 
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• Selection of the most accurate models and important variables which can be 
used to predict salt-affected soils in the study area. 

• Assessment of the effectiveness of singly/combined mineral and organic 
amendments with leaching on saline-sodic soil properties under controlled 
conditions. 

• Identification of the most effective organic or mineral amendment(s) and/or 
their optimal combination(s) for improving soil salinity/sodicity. 

 

4.4. Outline of the thesis 

The outline of this research is briefly described in chapters, as follows: 

Chapter 1 

An introduction to the research including generalities about salinity, sodicity,  
characterization and remediation of salt-affected soils, as well as a general description 
of the study area, along with the research approach and objectives of this study.  

Chapter 2 

Characterization in terms of description of soil profiles in the study area, and the 
resulting implications of the use of salt-affected soil classification criteria, besides the 
spatial distribution. 

Chapter 3  

Performance evaluation of machine learning-based models to predict soil sodicity 
and salt-affected soil classes from soluble salt ions, as well as of conventional 
prediction models to estimate salinity and sodicity from other easily obtained features. 

Chapter 4 

The results from experiments under controlled conditions to evaluate the 
remediation effect of singly/combined mineral and organic amendment additions with 
leaching on saline-sodic soil properties. 

Chapter 5 

 A general discussion including the significance and limitations of the findings, 
future perspectives and recommendations, and overall conclusion. 

 

 

Figure 1.10 illustrates the structure of the manuscript about the objectives addressed 
through the research. 

` 
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Figure 1.10 Graphical illustration of the structure of the thesis in function to the research 
objectives and pathway.  
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1. Introduction 

 

A comprehensive knowledge of the soil characteristics in the study area is needed 
for achieving an effective management and rehabilitation of salt-affected soils besides 
a better understanding and awareness of driven factors for salinization and sodication 
processes in the study area. Therefore, a systematic soil survey to obtain a soil 
information database was carried out to assess soil profiles and to classify soil samples 
from the High Valley of Cochabamba.  

 

The widely used salt-affected soil classification from the US Salinity Lab (USSL) 
based on the threshold values of soil ECe of 4 dS m−1, ESP of 15%, and pH of 8.5, 
generates the saline, saline-sodic, and sodic soil classes (Figure 2.1a). Chhabra (2004) 
stated that soil classified as saline-sodic (by the USSL system) comprises, in turn, the 
alkali soils developed in situ (pH >8.5, ESP >15 and ECe >4 dS m−1) as well as soils 
formed due to high residual sodium carbonate (>2.5 mol m−3) irrigation waters (pH 
>8.5, SAR >13 and ECe >4 dS m−1), and those formed due to shallow saline water 
table high in SAR (pH of 7 to 8.5, SAR >13 and ECe >4 dS m−1); however, the saline-
sodic category generates some difficulties for soil management since pH can be not 
necessarily above the threshold value of 8.5 and because some saline-sodic soils with 
a high SAR– as saline soils - keep their physical structure and infiltration leading to a 
simultaneous decrease of ECe and SAR when are leached of excess soluble salts. This 
confusion also influences the requirements of leaching to remove soluble salts and/or 
amendments to lower ESP. In this regard, Chhabra (2004) - based on Szabolcs (1989) 
- proposed a classification (named Alternative in Figure 2.1b) which generates the 
saline and alkali categories by considering – besides soil ECe, ESP and pH – the nature 
of soluble salts, then overcoming the ambiguity of the saline-sodic USSL’ category; 
consequently, if soils classified as saline-sodic by the USSL criterion have the ion 
ratio of either (2CO3

2− + HCO3
−)/(Cl− + 2SO4

2−) and/or Na+/(Cl− + 2SO4
2−) in mol m−3 

> 1, should be reclaimed as alkali (natric) soils by applying amendments to lower their 
ESP followed by leaching, since when are leached to decrease excess soluble salts, 
their pH and ESP increase, causing a decrease in infiltration rate; while if soils have 
both ratios < 1, then, irrespective of their pH and SAR, should be treated as saline 
(salic) soils through leaching and/or lowering of the water table to decrease both SAR 
and ECe simultaneously. 

 

The term ‘alkali’ or ‘alkaline’ is usually a synonym of ‘sodic’, generating a certain 
degree of confusion since sodicity is more related to excess sodium and alkalinity to 
the dominance of alkaline salts.  Furthermore, neutral and alkali salts determine the 
distinction between sodicity and alkalinity, so alkali soils normally have an excess of 
exchangeable Na+ and carbonates besides a pH above 8 (Gupta and Abrol, 1990). 
Alkali soils from arid and semiarid lands contain free CaCO3 with concentrations of 
soluble Na+ and CO3

2− + HCO3−as the dominant ions, besides a pH above 8 and very 
low Ca2+ and Mg2+; moreover, soil organic matter gets dissolved and forms black-
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alkali soils due to organic–clay coatings on soil aggregates and on the surface caused 
by the high soil pH increased linearly with an increase in ESP (Chhabra 2004; Gupta 
and Abrol, 1990). Additionally, Abrol et al. (1980) reported that alkali soils contain 
soluble salts capable of alkaline hydrolysis which are predominately CO3

2− and HCO3− 
of Na+ leading to an increase in SAR due to precipitation of soluble Ca2+ as CaCO3, 
and also observed that saline soils contain neutral soluble salts of Cl− and SO42− of 
Na+, Ca2+, and Mg2+; and also that – instead of ECe – nature of the soluble salts would 
be a more reliable indicator for differentiating alkali from saline soils. 

 

This component of the study aims to generate soil information comprising the 
following objectives: Database soil information as a baseline for this study and context 
of the current state of soils in the High Valley, characterization and classification of 
salt-affected soil samples and profiles, looking for variations in the levels of salinity 
and sodicity across different locations in the High Valley, besides a comparison 
between two salt-affected soil classification systems about the differences which 
could impact on the subsequent management. 
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Figure 2.1 Graphical illustration of the USSL (Richards et al., 1954) (a), and the 
Alternative (Chhabra, 2004; Szabolcs, 1989) (b) salt-affected soil classification systems. 

 

  

a 

b 
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2. Methodology 

 

The study area was the High Valley of Cochabamba - Bolivia, located between the 
boundaries of latitude –17°29′47.7″ to –17°39′48.6″ and longitude of –66°5′16.8″ to 
–65°45′13.0″, at an elevation of ~2750 m. The soil survey including sampling and 
description of profiles was performed in May 2017 at the end of the autumn season, 
under the framework of the study by Weber (2018). 

 

Eight soil profiles (five salt-affected and three non-salt-affected) were assessed, and 
their dimensions were approximately one, two and 1.5-2.0 m in width, length and 
depth, respectively. The spatial location of the profiles (Appendix 2.1) was defined to 
somehow encompass the geomorphic landforms/soils (Appendix 1.3), municipalities 
and land uses. A composite sample made up of three subsamples was taken from each 
horizon, and turned into only one lab measurement due to technical and cost 
restrictions; in this regard, it can be noted the limitation in terms of reliability of the 
soil properties information, description and classification. For the soil sampling, 135 
valid samples were collected at a depth of ~25 cm as composite soil samples from five 
cores taken at a square surface of 3 x 3 m. The determination of the number of samples 
was based on the formula suggested by Legros (1996) and following the 
recommendation by Hengl (2007), a systematic random sampling method was 
applied. The spatial location of the soil samples is shown in Appendix 2.2.  

 

 The soil pH, ECe and the composition of soluble ions were measured in the 
extracted solution following the standard procedures of Richards et al. (1954) 
including the use of atomic absorption spectrometry (AAS) for cations (Na+, K+, Ca2+, 
Mg2+), titration and H2SO4 0.01N for carbonates (CO3

2−) and bicarbonates (HCO3−), 
titration and AgNO3 0.005N for chlorides(Cl−), and the turbidimetric method and 
BaCl2 for sulphates (SO4

2−), at the Soil-Water Lab, Faculty of Agricultural and 
Livestock Sciences – ‘Universidad Mayor de San Simón’ (Bolivia). The exchangeable 
cations were determined through a derived ISO 22171 method and AAS at the ‘Station 
Provinciale d’Analyses Agricoles’ Lab (Belgium) considering the remark of So et al. 
(2006) for overcoming the overestimation caused by the extractable cations. The 
sodium adsorption ratio (SAR) was calculated by using the formula (Eq. 1) proposed 
by Richards et al. (1954). The soil ESP was determined through the percentage ratio 
of Na+ to the sum of cations (Eq. 2) instead of the cation exchange capacity (CEC), 
following the recommendation of Qadir et al. (2007) and Sumner et al. (1998). The 
total organic carbon (TOC) was measured through the Walkley-Black method based 
on ISO 14235, the bioavailable elements using the Lakanen and Erviö method (AA 
and EDTA at a pH of 4.65) and AAS for Ca2+, Mg2+ and K+; colourimetry for P, and 
soil CEC by a modified Metson method at a pH of 7. The soil texture was obtained 
following the standard method NF X 31-107. Some morphological properties of soil 
profiles’ horizons and soil surface were described by using a field form (summarized 
in Appendix 2.3) based on the Guidelines for soil description of FAO (2006). Finally, 
the profiles were classified in terms of taxonomy based on the WRB for soil resources 
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(IUSS Working Group WRB. 2022) and Keys to Soil Taxonomy (Soil Survey Staff, 
2022). 

 

𝑆𝐴𝑅 =
 𝑁𝑎+

√𝐶𝑎2+  +  𝑀𝑔2+

2

                                                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

Where cations are expressed as a concentration in mmolc L−1 

𝐸𝑆𝑃 = (
𝑁𝑎+ 

𝐶𝑎2+ + 𝑀𝑔2+ + 𝑁𝑎+ + 𝐾+) 100                               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

Where cations are expressed as a concentration in cmolc kg−1. 

 

For comparison purposes, the salt-affected soil samples were classified by applying 
the USSL (Richards et al., 1954) and an alternative (Chhabra, 2004; Szabolcs, 1989) 
classification systems, which indicators and threshold values are listed in Figure 2.1. 
To avoid unclassified observations, a margin of +/- 10% was fixed for the threshold 
values of the Alternative classification. To generate the salinity and sodicity 
classifications, the saline-sodic class from the USSL system was reclassified as a 
saline or sodic class to be compared to the categories from the Alternative 
classification. Spatial distributions and predictions through some interpolation 
techniques were performed. Finally, the TOC and salt-affected soil categories were 
quantified on the soil texture triangle from the USDA system. The R software v.4.1.3 
(R Core Team, 2013) was used for statistical and geostatistical analysis together with 
some R packages such as soilassesment (Omuto, 2020), soiltexture (Moeys, 2018), 
aqp (Beaudette et al., 2013), raster (Hijmans, 2023), geoR (Ribeiro et al., 2024), sf 
(Pebesma, 2018), ggmap (Kahle and Wickham, 2013), tmap (Tennekes, 2018), rgdal 
(Bivand et al., 2023), rayshader (Morgan-Wall T, 2024), among others for data 
preparation, analysis and visualization. 
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3. Characterization of salt-affected soils 

3.1. General description 

In terms of geomorphic characterization of this area, most of the salt-affected areas 
are in the landscape of a valley with a relief type consisting of lagunary depressions, 
alluvio-lagunary/lagunary facies, a landform consisting of lagunary flats, and soil 
associations consisting of Ustalfic Haplargids/Ustochreptic Camborthids and Typic 
Salorthids/Natric Camborthids (Metternicht and Zinck, 1997). Some relevant 
geographical and physiographical features for the salt-affected (SP 1 – SP 5) and non-
salt-affected (SP 6, SP7, SP 8) soil profiles are listed in Table 2.1. 

Table 2.1 Relevant geographical and physiographical characteristics of the soil profiles. 

SP Location Longitude Latitude Elevation Slope Geomorphology* 

1 Santa Ana -65.861651 -17.544048 2714 <1% 

The old cone of the 

boundary between the 

central and distal part 

2 Cliza -65.899188 -17.607761 2717 2% 

Lagunary depression low 

(limit with the distal part 

of a glacis) 

3 San Benito -65.907701 -17.528609 2708 <1% Glacis (distal part) 

4 Aramasí -65.859688 -17.597974 2713 <1% Playa 

5 Arani -65.805878 -17.588081 2720 <1% 

Lagunary depression low 

(limit with the central 

part of a glacis) 

6 Tarata -66.007495 -17.608299 2743 <2% Glacis (distal part) 

7 Punata -65.824014 -17.526634 2758 5% Active dejection cone 

8 Cuchumuela -65.795681 -17.652989 2874 8% Glacis (proximal part) 

* Based on Metternicht and Zinck (1997) 
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3.2. Chemical properties  

Salinity/sodicity variables and exchangeable cations of the five salt-affected soil 
profiles are listed in Table 2.2, and the same information is shown in Appendix 2.4a 
for the non-salt-affected soil profiles. 

Table 2.2 Soil chemical properties: salinity/sodicity variables and exchangeable cations for 
each horizon of the salt-affected soil profiles. 

Soil 

profile 
Horizon 

Exchangeable cations  

(cmolc kg-1) 

 Soil salinity/sodicity  

variables 

Na+  K+  Ca2+  Mg2+  
 

pH 
ECe  

dS m-1 

ESP* 

% 
Class † 

SP 1 

Santa 

Ana 

Ap 9.45 0.23 5.75 0.63  9.56 28.52 58.8 Saline-sodic 

A2 5.13 0.16 5.60 0.72  9.80 21.96 44.2 Saline-sodic 

B 10.78 0.13 4.95 0.91  9.95 18.23 64.3 Saline-sodic 

C1 5.69 0.07 3.50 0.56  10.09 13.51 57.9 Saline-sodic 

2C2 4.99 0.09 2.30 0.44  9.90 7.98 63.8 Saline-sodic 

SP 2 

Cliza 

A 14.46 2.01 13.85 1.00  7.87 3.44 23.6 Sodic 

Bt1 7.70 1.61 3.25 0.59  9.43 9.41 46.2 Saline-sodic 

Bt2 9.50 0.87 5.80 1.09  10.03 9.66 58.5 Saline-sodic 

C 3.22 0.10 4.45 0.98  9.81 13.20 55.0 Saline-sodic 

SP 3 

San 

Benito 

A 8.15 0.18 6.35 0.51  7.71 21.81 36.8 Saline-sodic 

AB 13.29 0.60 10.50 1.79  9.80 10.07 56.9 Saline-sodic 

C 13.15 0.59 12.35 1.83  9.82 7.45 53.6 Saline-sodic 

2C 27.90 1.55 7.45 0.41  9.64 8.86 50.8 Saline-sodic 

2C2 19.28 0.83 6.60 0.38  9.89 10.19 47.1 Saline-sodic 

SP 4 

Aramasí 

A 25.93 0.80 8.75 0.44  9.68 69.28 74.8 Saline-sodic 

A2 21.77 1.13 12.00 1.54  10.10 48.79 71.2 Saline-sodic 

C 0.64 2.50 11.15 4.06  10.00 26.76 77.0 Saline-sodic 

C1 0.92 0.27 4.85 2.19  10.00 27.83 72.2 Saline-sodic 

2C2 0.63 0.14 7.90 2.30  9.50 13.18 59.7 Saline-sodic 

SP 5 

Arani 

Ap 0.40 1.27 29.70 2.00  7.28 1.45 3.5 Normal 

Bw 0.17 0.98 28.20 2.00  7.50 0.94 11.2 Normal 

C 0.07 0.50 35.35 2.22  7.56 2.91 5.7 Normal 

C2 0.05 0.40 25.75 2.03  7.98 5.50 49.0 Saline-sodic 

* Corrected values of exchangeable sodium percentage, considering the difference between extractable 

and exchangeable cations (So et al., 2006). 

† Salt-affected soil classes according to the US Salinity Lab classification (Richards et al., 1954) 
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Most of the profiles’ horizons are saline-sodic (according to the USSL 
classification) with high levels of soil ESP, ECe and pH, except that of Arani (SP 5). 
The distribution of soil ESP, ECe and pH levels (Table 2.2) in each salt-affected soil 
profile is graphically shown in Figure 2.2. The soil profiles of Santa Ana (SP 1), 
Aramasi (SP 4) and San Benito (SP 3) showed high levels of soil ESP and pH along 
the depth of their horizons and high soil ECe in their topsoil horizons.  

 

 

       

Figure 2.2 Variation of soil ESP (a), ECe (b), and pH (c) in the salt-affected soil profiles. 

  

a 

b c 
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The major soluble salt ions and the sodium adsorption ratio (SAR) by horizons for 
the salt-affected soil profiles are listed in Table 2.3, and the same information for the 
non-salt-affected soil profiles are listed in Appendix 2.4b. The upper horizons of the 
Santa Ana (SP 1) and Aramasí (SP 4) profiles are saturated with Na+ in the soil 
solution. Additionally, a graphical illustration of the distribution of soluble cations 
and soluble anions along the depth in the salt-affected soil profiles is shown in 
Appendix 2.5. 

 

Variables related to plant nutrition are listed in Table 2.4 and the same information 
for the non-salt-affected soil profiles is listed in Appendix 2.4c. Overall, the nutrient 
status is variable, and the total organic carbon (TOC) indicates a low soil organic 
matter (SOM) content. Soil profiles of Santa Ana (SP 1) and Arani (SP 5) are located 
within agricultural lands. Additionally, an illustration of the cation exchange capacity 
(CEC) values by horizons is shown in Appendix 2.6b. 

 

3.3. Physical properties  

Soil physical properties, namely, texture, colour and bulk density for each horizon 
of the salt-affected soil profiles are listed in Table 2.5. Most soil profiles’ horizons are 
silty-loam and/or silty-clay-loam. The Munsell colour values for each horizon of the 
salt-affected soil profiles (Table 2.5) are graphically shown in the morphological 
description of each soil profile (Figures 2.3 – 2.7). Soil physical properties of the non-
salt-affected soil profiles are listed in Appendix 2.4d. 

 

3.4. Morphological description 

At the time of the soil profile assessment (May 2017) was the end of the autumn 
season during the drought period, the days were sunny with no clouds and partially 
cloudy. Some relevant morphological characteristics are described for each salt-
affected soil profile in sections  3.4.1 to 3.4.5. 
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Table 2.3 Soil chemical properties: soluble ions and sodium adsorption ratio for each 
horizon of the salt-affected soil profiles. 

Soil 

profile 
Horizon 

Soluble Ions (cmolc L-1) 

SAR* 
Na+ K+ Ca2+ Mg2+ Cl− SO4

2− CO3
2− HCO3

− 

SP 1 

Santa 

Ana 

Ap 3.39 0.01 0.00 0.01 1.85 0.71 0.40 0.60 450.9 

A2 3.26 0.01 0.00 0.01 0.95 0.55 0.52 0.30 409.8 

B 1.87 0.00 0.00 0.01 0.63 0.68 0.61 0.25 256.5 

C1 2.08 0.01 0.00 0.01 0.53 0.37 0.69 0.34 286.5 

2C2 1.17 0.01 0.00 0.01 0.28 0.38 0.39 0.27 178.4 

SP 2 

Cliza 

A 0.24 0.01 0.00 0.01 0.15 0.05 0.00 0.10 32.4 

Bt1 0.47 0.02 0.00 0.01 0.15 0.50 0.15 0.04 64.1 

Bt2 1.65 0.02 0.00 0.01 0.35 0.18 1.01 0.20 237.0 

C 0.87 0.02 0.00 0.00 0.10 1.17 0.40 0.20 146.6 

SP 3 

San 

Benito 

A 3.27 0.00 0.14 0.09 0.65 2.31 0.02 0.08 96.4 

AB 1.30 0.01 0.02 0.01 0.25 1.11 0.00 0.08 107.3 

C 0.93 0.02 0.01 0.01 0.15 0.85 0.00 0.06 85.3 

2C 0.52 0.01 0.00 0.00 0.05 0.97 0.00 0.18 121.6 

2C2 0.83 0.00 0.00 0.00 0.10 0.30 0.39 0.10 170.5 

SP 4 

Aramasí 

A 8.70 0.04 0.02 0.01 0.90 0.40 3.00 0.00 814.4 

A2 5.65 0.02 0.00 0.01 2.50 0.30 4.00 0.15 913.8 

C 0.39 0.02 0.00 0.01 2.00 0.24 0.89 0.22 64.3 

C1 0.54 0.01 0.00 0.00 2.05 0.14 1.34 0.07 93.9 

2C2 0.55 0.01 0.03 0.01 1.00 0.02 0.20 0.20 41.9 

SP 5 

Arani 

Ap 0.08 0.02 0.05 0.01 0.08 0.02 0.00 0.07 4.6 

Bw 0.08 0.01 0.02 0.01 0.03 0.05 0.00 0.05 6.3 

C 0.23 0.01 0.00 0.01 0.10 0.12 0.00 0.08 36.3 

C2 0.16 0.01 0.02 0.00 0.08 0.05 0.00 0.03 15.6 

* Sodium adsorption ratio was calculated through the formula obtained by Richards et al. (1954). 
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Table 2.4 Soil chemical properties: available nutrients, organic carbon and CEC for each 
horizon of the salt-affected soil profiles. 

Soil 

profile) 
Horizon 

CEC * 

cmolc kg-1 

TOC 

% 

 Nutrient bioavailability (g kg-1) 

 P K Ca Mg 

SP 1 

Santa Ana 

Ap 9.3 0.28  0.06 0.08 1.66 0.12 

A2 9.0 0.29  0.03 0.06 1.61 0.13 

B 9.3 0.18  0.01 0.05 2.06 0.19 

C1 6.4 0.09  0.01 0.03 1.03 0.10 

2C2 3.2 0.04  0.04 0.03 1.04 0.08 

SP 2 

Cliza 

A 8.0 0.45  0.02 0.18 2.28 0.12 

Bt1 22.4 0.31  0.30 0.65 5.20 0.19 

Bt2 13.8 0.41  0.14 0.53 1.17 0.11 

C 8.6 0.08  0.06 0.30 1.98 0.20 

SP 3 

San Benito 

A 10.60 0.54  0.02 0.04 1.10 0.14 

AB 12.80 0.33  0.05 0.06 2.24 0.14 

C 10.90 0.15  0.10 0.07 2.05 0.10 

2C 18.60 0.34  0.11 0.20 9.25 0.55 

2C2 15.40 0.21  0.11 0.20 7.02 0.48 

SP 4 

Aramasí 

A 19.20 0.54  0.13 0.50 3.65 0.13 

A2 13.10 0.26  0.13 0.27 3.05 0.10 

C 10.80 0.19  0.09 0.18 1.76 0.06 

C1 16.40 0.25  0.15 0.26 4.14 0.10 

2C2 21.60 0.24  0.19 0.31 8.07 0.43 

SP 5 

Arani 

Ap 15.00 1.24  0.58 0.82 3.90 0.63 

Bw 8.30 0.29  0.02 0.11 1.17 0.29 

C 9.30 0.16  0.03 0.06 2.92 0.34 

C2 12.80 0.11  0.08 0.09 3.91 0.42 

* Some differences between the CEC values and the sum of exchangeable cations (Table 2.2) were 

mainly due to the inherent error of the measurement. 
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Table 2.5 Soil physical properties for each horizon of the salt-affected soil profiles. 

Soil 

profile 
Horizon Colour 

Depth 

(cm) 

Bulk 

density  

(g cm-3) 

Soil fractions – texture 

Clay  

% 

Silt  

% 

Sand  

% 

Textural 

class * 

SP 1 

Santa Ana 

Ap 10YR 5/6 0 -19 1.24 19.3 54.9 25.8 SiLo 

A2 2.5YR 4/6 19 - 34 1.40 20.3 53.3 26.3 SiLo 

B 2.5YR 5/6 34 - 48 1.38 23.6 51.4 25.0 SiLo 

C1 2.5Y 4/6 48 - 106 1.56 15.4 47.8 36.9 Lo 

2C2 2.5Y 4/3 106 - 132 1.47 11.5 24.3 64.3 SaLo 

SP 2 

Cliza 

A 10YR 6/4 0 -20 1.38 18.3 40.4 41.3 Lo 

Bt1 7.5 YR 4/6 20 - 39 1.56 41.5 46.2 12.4 SiCl 

Bt2 7.5YR 3/4 39 - 84 1.40 37.8 46.6 15.7 SiClLo 

C 7.5YR 5/8 84 - 148+ 1.39 23.7 41.8 34.5 Lo 

SP 3 

San 

Benito 

A 2.5Y 7/4 0 -20 1.45 22.2 53.7 24.1 SiLo 

AB 2.5Y 8/4 20 - 48 1.42 27.7 59.2 13.1 SiClLo 

C 2.5Y 7/4 48 - 80 1.50 24.7 57.8 17.5 SiLo 

2C 2.5Y 6/2 80 - 110 1.51 39.8 54.4 5.8 SiCl 

2C2 2.5Y 7/2 110 - 150+ 1.60 37.2 61.1 1.6 SiClLo 

SP 4 

Aramasí 

A 2.5Y 7/4 0 -11 1.61 33.4 63.8 2.8 SiClLo 

A2 10YR 6/6 11 -25 1.54 25.2 70.4 4.5 SiLo 

C 10YR 7/4 25 - 50 1.32 18.6 74.9 6.6 SiLo 

C1 10YR 7/3 50 - 76 1.53 33.0 62.2 4.8 SiClLo 

2C2 10YR 7/2 76 - 120+ 1.61 53.6 37.7 8.8 Cl 

SP 5 

Arani 

Ap 2.5Y 7/3 0 -30 1.32 28.5 59.7 11.8 SiClLo 

Bw 10YR 5/6 30 - 69 1.36 20.0 46.0 34.0 Lo 

C 2.5Y 5/4 69 - 91 1.44 22.1 45.1 32.9 Lo 

C2 2.5Y 4/3 91 – 140+ 1.4 27.4 46.9 25.7 Lo 

* Determination of textural classes through the USDA system. 
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3.4.1. Soil profile in Santa Ana (SP 1)  

 

                

         

Figure 2.3 Soil profile in Santa Ana (a), its landscape (b) and surface salt crust (c) 

  

a 

b c 
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Table 2.6 Description of the soil profile in Santa Ana (SP1) 

Horizon Depth Colour Main characteristics 

Ap 0 -19 10YR 5/6 Polyhedral and laminar structure. 

Salic horizon A2 19 - 34 2.5YR 4/6 

B 34 - 48 2.5YR 5/6 
 Slightly humid and massive 

structure 

C1 48 - 106 2.5Y 4/6 Humid, massive structure and soft 

consistency 

Salic horizon and oxidation spots 

at 2 C2 horizon 

2C2 106 - 132 2.5Y 4/3 

Surface: Saline efflorescence of thickness < 2 mm covering  40% surface. 

Gravel covering < 2% surface and thin cracks of wide < 1 cm. Rock outcrops (2 

- 5%) and coarse fragments covering 5 - 15% surface. Moderate water erosion. 

Agricultural land, which is irrigated with temporary flooding and wastewater, 

for cultivating corn and forage. Presence of halophytes. 

Whole profile: High salinity and sodicity along the profile (Table 2.2). Gravels 

up to 2% of the soil volume. Reaction to HCl 1M with low effervescence.  
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3.4.2. Soil profile in Cliza (SP 2)  

 

           

 

 

Figure 2.4 Soil profile in Cliza (a) and its landscape (b). 

  

a 

b 
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Table 2.7 Description of the soil profile in Cliza (SP 2) 

Horizon Depth Colour Main characteristics 

A 0 -20 10YR 6/4 

Moderately developed blocky 

structure. Slightly hard consistency 

and dryness 

Bt1 20 - 39 7.5 YR 4/6 Massive structure, hard 

consistency, with clay coatings and 

dryness 
Bt2 39 - 84 7.5YR 3/4 

C 84 - 148+ 7.5YR 5/8 
Poorly developed, massive 

structure and very hard consistency 

Surface: Gravel covering < 2% surface. Surface cracks of depth < 2 cm, wide 

1 - 2 cm and spaced between 0.5 - 2 m. Saline crusts with a thickness < 2 mm 

covering up to 15% surface. The vegetation is herbaceous and covers over 50% 

surface. 

Whole profile: High sodicity and moderately high salinity along the profile 

except A horizon (Table 2.2). Gravel up to 5% of the volume (except A 

horizon). Roots of diameter 0.5 - 5 mm. Reaction to HCl 1M with a no 

effervescent foam (except A horizon). Carbonates spots < 15% as dispersed 

powder (except A horizon).  
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3.4.3. Soil profile in San Benito (SP 3)  

 

           

 

 

Figure 2.5 Soil profile in San Benito (a) and its landscape (b). 

  

a 

b 
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Table 2.8 Description of the soil profile in San Benito (SP 3) 

Horizon Depth Colour Main characteristics 

A 0 -20 2.5Y 7/4 

Slightly hard consistency, 

granular structure, dryness and 

presence of some roots of 

diameter < 0.5 mm 

AB 20 - 48 2.5Y 8/4 
Moderately hard consistency, 

dryness, and small concretions 

C 48 - 80 2.5Y 7/4 
Hard consistency, moderate 

degree of wetness and blocky 

structure 

2C1 80 - 110 2.5Y 6/2 

2C2 110 - 150+ 2.5Y 7/2 

Surface: Herbaceous vegetation and residues of a former cultivation of forage 

crops. An artisan brick factory is next to the pit. Gravel covering < 2% surface. 

Thin cracks of wide < 1 cm, deep < 2 cm and spaced between 0.5 - 2 m. 

Whole profile: High salinity and sodicity along the profile (Table 2.2). Gravel 

covering < 5% of soil volume. Reaction to HCl 1M with a no effervescent foam 

(except A horizon). Carbonates spots < 15% as dispersed powder (except A 

horizon). 
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3.4.4. Soil profile in Aramasí (SP 4)  

 

           

 

Figure 2.6 Soil profile in Aramasí (a) and its landscape (b). 

  

a 

b 
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Table 2.9 Description of the soil profile in Aramasí (SP 4) 

Horizon Depth Colour Main characteristics 

A 0 -11 2.5Y 7/4 Hard consistency, slightly lamellar 

structure, marked dryness and 

roots of diameter < 0.5 mm 
A2 11 -25 10YR 6/6 

C 25 - 50 10YR 7/4 Poorly developed, very hard 

consistency and massive structure, 

reaction to HCl 1M as foam 

without effervescence, and small 

carbonate concretions 

C1 50 - 76 10YR 7/3 

2C2 76 - 120+ 10YR 7/2 

Surface: Vegetation is sparse with native halophytes and small bushes. Slightly 

hard crusts of thick < 2 mm. Saline crusts of thick < 2 mm covering up to 10% 

surface. Gravel covering up to 2% surface. Fine cracks of wide < 1 cm, depth up 

to 2 cm and spaced < 20 cm. 

Whole profile: Very high salinity and sodicity/alkalinity along the profile 

(Table 2.2). Dryness, low sand content and gravel < 2% of soil volume. Low 

porosity, high compaction and carbonate concretions (except A and A2 

horizons). 

 

  



Chapter 2| Characterization and classification of salt-affected soils 

51 

 

3.4.5. Soil profile in Arani (SP 5)  

 

           

 

Figure 2.7 Soil profile in Arani (a) and its landscape (b). 

  

a 

b 
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Table 2.10 Description of the soil profile in Arani (SP 5) 

Horizon Depth Colour Main characteristics 

Ap 0 -30 2.5Y 7/3 Polyhedral structure, dryness 

and roots of diameters 

between 0.5 and 5 mm 
Bw 30 - 69 10YR 5/6 

C1 69 - 91 2.5Y 5/4 Massive structure, wetness 

and oxidation spots, weak 

reaction to HCl 1M with no 

effervescence 

C2 91 – 140+ 2.5Y 4/3 

Surface: Agricultural land under preparation before ploughing. Gravel 

covering < 2% surface. Fine cracks of wide < 1 cm, depth < 2 cm and spaced 

between 2 - 5 meters. Saline efflorescence covers up to 2% surface. 

Whole profile: Only the C2 horizon shows slight salinity and high sodicity 

(Table 2.2). Gravel covering < 2% of soil volume. (except Ap horizon). 
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3.5. Taxonomic classification 

 

Taxonomic soil classifications of the soil profiles based on the soil's chemical, 
physical and morphological properties, following the guidelines of the WRB for soil 
resources (IUSS Working Group WRB. 2022) and the Keys to Soil Taxonomy (Soil 
Survey Staff, 2022) are listed in Table 2.11 and Table  2.12, respectively. 

Table 2.11 Taxonomic classification of the salt-affected soil profiles according to the WRB 
for soil resources (IUSS Working Group WRB. 2022). 

Profile Location Classification 

1 Santa Ana 

Cliza 

San Benito 

Aramasí 

Arani 

Tarata 

Punata 

Cucuchumuela 

Sodic Solonchak (Hypersalic, Siltic) 

2 Salic Sodic Vertisol (Calcaric) 

3 Salic Solonetz (Natric, Siltic) 

4 Salic Solonetz (Hypernatric, Siltic, Protocalcic) 

5 Cambisol (Loamic, Aric, Endosodic) 

6 Fragic Fluvic Cambisol (Loamic) 

7 Leptic Fluvisol (Fluvic) 

8 Calcic Regosol (Clayic) 

 

Table 2.12 Taxonomic classification of the salt-affected soil profiles according to the soil 
taxonomy (Soil Survey Staff, 2022) 

Profile Location Classification 

1 Santa Ana 

Cliza 

San Benito 

Aramasí 

Arani 

Tarata 

Punata 

Cucuchumuela 

Typic Natrustalid 

2 Salic Haplotorrerts 

3 Typic Natrargids 

4 Calcic Natrargids 

5 Haplocambids 

6 Haplic luvisol 

7 Typic Udifluvents 

8 Typic Ustorthents 
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4. Classification of salt-affected soils 

4.1. Salt-affected soil classification 

Some descriptive statistics of the soil properties for all the samples used for the 
classification are listed in Appendix 2.7. The average ionic concentrations are 
graphically represented in Appendix 2.8. The salinity/sodicity variables (SAR, ESP, 
Ece, pH, ECR and CROSS) as well as the salt-affected soil classes for the soil samples 
are listed in Appendix 2.9. The distribution of samples by classes according to the 
USSL classification (Figure 2.8a) comprises non-salt-affected (27.4%), saline 
(28.1%), saline-sodic (28.1%) and sodic (16.3%) soils, and resulting from the 
Alternative classification (Figure 2.8b), are non-salt-affected (40%), saline (36.3%) 
and alkali (23.7%); these frequencies also illustrate the count imbalance generated by 
the fewer number of sodic/alkali soil samples in the dataset. These frequencies 
represent the differences between the output counts from both classification systems, 
due to the ambiguity and consequent redistribution of the USSL’s saline-sodic class 
within the categories of the Alternative method, caused by the differences between 
both criteria in terms of indicator variables and their threshold values (Figure 2.1). 
Therefore, because of the confusion generated by the saline-sodic – USSL – category, 
it is essential to consider the approach from the Alternative classification method to 
foresee if a saline-sodic soil behaves – in terms of soil/plant affection – as saline or 
sodic/alkaline, then to be treated through leaching of excess soluble salts and/or by 
adding amendments to lower the soil ESP.  

 

    

Figure 2.8 Distribution of salt-affected soil classes according to the US Salinity Lab (a) 
and the Alternative (b) classification systems. 

The classification of soil salinity (Figure 2.9) according to the ECe intervals 
proposed by Richards et al. (1954) shows evident differences between the counts 
generated by the USSL and those by the Alternative classification systems, mainly 
within the intervals of 2 to 4 and 4 to 8 dS m-1, which could lead to misinterpretations 
in management of salinity. Besides the ambiguity of the saline-sodic – USSL – class, 
these differences can be explained by the fact that the Alternative system prioritizes 
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the alkali/neutral salt ions ratio ([2CO3
2− + HCO3

−] / [Cl− + 2SO4
2−]) above the soil 

EC to classify a soil as saline in contrast to the USSL method which only considers 
the EC; in this regard, Abrol et al. (1980), affirm that the nature of soluble salts would 
be a more suitable indicator than ECe for differentiating alkali from saline soils. 

 

 

 

Figure 2.9 Classification of salinity by intervals using the saline soil categories from the 
USSL (a) and the Alternative (b) classification systems. 

The classification of sodicity (Figure 2.10) based on the soil ESP intervals proposed 
by Abrol et al. (1988) shows lower differences between the counts generated from 
both systems compared to those for salinity classification (Figure 2.9). As for the 
classification of salinity, these differences were because the Alternative classification 
considers the ratio of alkaline salts (2CO3

2− + HCO3
−) and Na+ to neutral salts (Cl− + 
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2SO4
2−) along with ESP and pH for classifying soil as alkali in contrast to the USSL 

system which only uses the ESP and sometimes the pH to categorize a soil as sodic, 
also leading to the ambiguity of its saline-sodic class.  

 

 

      

Figure 2.10 Classification of sodicity by intervals using the sodic/alkaline categories from 
the USSL (a) and the Alternative (b) classification systems. 

4.2. Spatial distribution and interpolation 

The spatial locations of the salt-affected soil classes generated through the USSL 
(Figure 2.11a) and the Alternative (Figure 2.11b) classification systems illustrate the 
previously mentioned differences between both criteria’ outputs, which could 
generate some distortions when mapping salinity and sodicity, potentially affecting 
the effectiveness of soil management and remediation.  
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Figure 2.11 Spatial distribution of salt-affected soil categories, classified by the USSL (a) 
and the Alternative (b) classification systems (Background image: terrain/Stadia-Map, 2023) 

The spatial interpolation was not satisfactory (Appendix 2.11) because of the 
insufficient spatial correlation of soil ESP and EC mainly due to a relatively small 
number of observations to represent the study area and somehow related to the 
imbalance caused by the excess non-salt-affected soil samples. Although this 
insufficiency, a graphical representation of the spatial prediction of salinity as soil EC 
and sodicity as soil ESP by using the interpolation methods of ordinary kriging, 
universal kriging, simple kriging, inverse distance weighting (IDW) and nearest 
neighbour, is shown in Figure 2.12. The cross-validation metrics of RMSE  and MAE 
of the interpolations show that the kriging methods are relatively better than IDW and 
nearest-neighbour for both soil ESP and EC (Table 2.12). A complementary spatial 
interpolation of soil ESP and EC by using ordinary kriging is shown in Appendix 2.13.  
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Table 2.13 Errors from cross-validation of some interpolation methods. 

Variable Metric 
Ordinary 

kriging 

Universal 

kriging 

Simple 

kriging 
IDW 

Nearest 

neighbor 

ESP 
RMSE 19.2  19.4  19.2 21.4 20.6 

MAE 14.2 14.2 14.2 14.3 15.5 

EC 
RMSE 13.8  13.8 13.7 16.1 14.7 

MAE 7.2 7.2 7.1 7.5 7.0 

RMSE = Root mean squared error, MAE = mean absolute error IDW = inverse distance weighting, 

ESP = exchangeable sodium percentage, EC = electrical conductivity 

 

Some spatial predictions were generated under the framework of the survey by 
Weber (2018), who generated maps of soil salinity/sodicity variables from samplings, 
such as soil ESP and EC based on the inverse distance weighted interpolation method 
(Appendix 2.12) since the spatial scales show very abrupt and localized variations 
leading to a non-satisfactory prediction for kriging. The study of spatial prediction of 
salinity/alkalinity based on regression kriging in the High Valley by Araujo (2009), 
showed that saline soils are dominant (57.9%), followed by saline-sodic soils (18.8%) 
and according to the salinity and sodicity classification, 25.7% and 56.5% are slightly 
saline and slightly sodic, respectively. Metternicht (1996) combined remote sensing 
data and field-measured observations at a multi-scale level to estimate the intensity, 
rate and spatial distribution of salt-affected soils in the High Valley as well as to assess 
a synergistic approach for mapping and monitoring land degradation, then concluded 
that detailed discrimination of type and intensity of the degradation processes requires 
increased synergy among remotely-sensed, field and lab data, especially in 
salinity/alkalinity studies.  

 

4.3. Soil texture classification 

Textural classes for all the observations grouped by salt-affected soil – USSL – 
classes for the soil ECe and ESP were placed on the USDA textural triangle (Figure 
2.13), which also show the ambiguity of the saline-sodic class with high values of soil 
ESP and EC; additionally, a similar illustration for the Alternative classification is 
shown in Appendix 214. It can be observed that most samples belong to the loam, 
silty-loam, clay-loam and silty-clay-loam textural classes.  
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Figure 2.12 Spatial prediction of soil ESP (a) and EC (b) through various interpolation 
methods. 

b a 
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Figure 2.13 Textural classes by salt-affected soil (USSL) classes for the soil ECe (a) and 
ESP (b) of the sampling, on the soil textural triangle (USDA system). 

a 

b 
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Based on the total organic carbon (TOC) levels in the soil samples (Figure 2.14) and 

assuming that soil organic matter (SOM) contains ~58% of carbon, it can be 

mentioned that some soils in the High Valley contain on average ~1.26% of SOM, 

which is a low content considering that most of the surface is dedicated to agriculture 

and the fact that organic matter can enhance the soil properties and the dissolution of 

soil calcite to form Ca2+, which in turn contributes in lowering the Na+ in the 

exchangeable complex (Srivastava et al. 2016; Choudhary and Kharche, 2015). 

 

 

Figure 2.14 Total organic carbon (%) in the soil samples, mapped on the soil texture 
triangle (USDA system). 
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5. Conclusions 

 

Five salt-affected and three non-salt-affected soil profiles from the High Valley of 
Cochabamba were described and characterized. Most of the salt-affected profiles’ 
horizons showed high levels of salinity, sodicity and soil pH. The salt-affected profiles 
located in Santa Ana, Cliza, San Benito, Aramasí and Arani, were taxonomically 
classified – based on the WRB-SR 2022 – as Solonchak (Hypersalic, Siltic), Salic 
Sodic Vertisol (Calcaric), Salic Solonetz (Natric, Siltic), Salic Solonetz (Hypernatric, 
Siltic, Protocalcic) and Cambisol (Loamic, Aric, Endosodic), respectively; as well the 
non-salt-affected profiles of Tarata, Punata and Cucuchumuela were categorized as 
Fragic Fluvic Cambisol (Loamic), Leptic Fluvisol (Fluvic) and Calcic Regosol 
(Clayic), respectively. The dominant classes among the salt-affected soil samples 
were saline-sodic and saline. 

 

The saline-sodic class from the USSL classification (Richards et al., 1954) could 
impact the salt-affected soil management since soils under this category mostly 
behave as saline or alkaline, then need to be leached of excess soluble salts and/or 
treated with amendments to lower ESP; such confusion is overcome by the Alternative 
classification (Szabolcs, 1989; Chhabra, 2004) which considers – besides ESP, ECe 
and pH – the nature and ratios of soluble salt ions. After applying both classification 
criteria in soils from the High Valley, some differences in their derived 
salinity/sodicity distributions were found. The spatial interpolation was unsatisfactory 
due to the insufficient spatial correlation. Textural classes of silty-loam and silty-clay-
loam were dominant, and a low soil organic matter content was noticed in the 
sampling. 

 

Further characterization with additional soil samples and profiles is recommended 
to enhance the representativeness of the soil information database for improving the 
classification and spatial prediction of salt-affected soils, as well as further validation 
of the classification criteria and threshold values to define a tailored classification for 
proper soil management in the study area. 
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Adapted from: 

  (Annex 1) 

Andrade Foronda, D.; Colinet, G. Prediction of Soil Salinity/Sodicity and Salt-

Affected Soil Classes from Soluble Salt Ions Using Machine Learning Algorithms. 

Soil Syst. 2023, 7, 47. https://doi.org/10.3390/soilsystems7020047 

 

Abstract 

Tailored models to predict salinity and sodicity variables are essential for the 
classification, mapping and management of salt-affected soils. This study aimed to 
evaluate the performance of three machine learning (ML) algorithms, namely Partial 
Least-Squares (PLS), Support Vector Machines (SVM), and Random Forests (RF), in 
predicting soil exchangeable sodium percentage (ESP), electrical conductivity (ECe), 
and salt-affected soil classes, from the major soluble salt ions (Na+, K+, Ca2+, Mg2+, 
HCO3

−, Cl−, CO3
2−, SO4

2−) determined in soil samples from the High Valley. 
Additionally, some multivariate regressions to estimate soil sodicity and salinity from 
some soil properties and easily obtained features were assessed. According to the ML 
models’ evaluations, the SV and RF regressions performed the best for predicting the 
soil ECe, as well as the RF model for estimating the soil ESP. The random forest 
algorithm was superior in predicting the salt-affected soil categories. Soluble Na+, 
Ca2+, Mg2+, Cl−, and HCO3

− were the most important variables for all models. The 
random forests and SVR models can be used to predict soil ECe and ESP, as well as 
the salt-affected soil classes from soluble ions in the study area. Regression models to 
estimate ESP from EC + SAR and EC + pH + SAR performed relatively well and 
slightly better than the simple regression to predict ESP from SAR. Multivariate 
models to predict soil ESP and EC from easily obtained geomorphometric and remote 
sensed features showed a regular performance. The obtained models might contribute 
to the monitoring and management of salt-affected soils in the High Valley; however, 
additional soil samples and explanatory features are needed to improve their 
performances. 
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1. Introduction 

 

The determination of soil ESP from exchangeable cations is often time-consuming 
and cost-expensive, in contrast to the measurement of soluble ions-based variables in 
paste extract, which are often used to indirectly estimate sodicity.  Regression models 
can be fitted and validated to predict salinity/sodicity variables and classify soil 
categories. Some investigations focused on simple regression models for predicting 
soil ESP from SAR (Chi et al., 2011; Elbashier et al., 2016ab, Seilsepour et al., 2009; 
Annex 4), SAR from EC (Seilsepour and Rashidi, 2008; Al-Busaidi and Cookson, 
2003), ESR from SAR (Harron et al., 1983; Shirmohamm and Heydari, 2020), and 
soil EC measured in paste extract from EC measured in soil: water ratios (Sonmez et 
al., 2008; Kargas et al., 2020). Alternatively, some easily obtained features, such as 
satellite bands, salinity/vegetation indices, geomorphometric features, and other 
environmental covariates can be used to predict salt-term soil properties as well as to 
improve the performance of field-measured data-based models including physical and 
chemical soil–water properties. 

 

Data mining can be described as the capacity to identify patterns from data to 
establish relationships and models through data analysis, and machine learning (ML) 
is a process of learning from a system’s experience for self-improving based on 
resultant information. Moreover, supervised learning models the relationships and 
dependencies between the target prediction output and the input data/features to 
predict the output values for new data. Partial Least-Squares (PLS) - Discriminant 
Analysis (DA) is a supervised version of principal component analysis (PCA) which 
achieves dimensionality reduction with complete cognizance of the classes, arriving 
at a linear transformation that converts the data to a lower dimensional space with as 
small an error as possible (Ruiz-Perez et al., 2020); and the PLS regression combines 
features from PCA and multiple regression, allowing the reduction of the 
dimensionality while focusing on covariance. The Support Vector Machines (SVM) 
seek to design a decision surface and separate the margin between the different levels, 
finding this hyperplane using support vectors and margins; then, the SVM with linear 
kernel function fits an optimal hyperplane between the classes, making linear and 
separable small samples (Mohan et al., 2020), while support vector regression fits a 
line as the hyperplane with the maximum number of points. Breiman and Cutler’s 
Random Forests (RF) algorithm is a tree-based ensemble which generates trees built 
on resampled subsets of data, with each tree depending on an ensemble of random 
variables. The Random Forests algorithm combines the trees by unweighted voting 
and chooses the most voted class over all the tree ensembles at training time if the 
response is categorical or combines the resulting trees by unweighted averaging if the 
response is continuous (Cutler et al., 2012; Breiman, 2001). Machine Learning 
methods have been used to classify soils based on various features such as chemical, 
physical, and biological soil properties, as well as on specific criteria. Within the 
framework of ML algorithms, many methods have been progressively developed to 
automate the soil classification process, such as Decision Trees, k-Nearest Networks, 
Artificial Neural Networks, and SVM (Chandan, 2018); in that context, some 
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investigations on various soil type classifications using ML methods were carried out 
by Kovačević et al. (2010), Harlianto et al. (2017), Bhargavi and Jyothi, (2011), and 
Raza Ansari (2018). The review on ML and soil sciences by Padarian et al. (2019) 
concludes that the modelling of continuous and categorical soil properties is based on 
their relationships with environmental covariates and is mainly focused on mapping. 
Some key findings in the compilation by Motia and Reddy (2021) were that: the 
implementation of soil classification uses more ML methods than soil regression; the 
assessment of soil salinity still shows a low contribution from ML; SVM and RF 
methods are widely used in ML predictions of soil variables and classifications; and 
the RMSE and R2 are the top metrics used for performance evaluation of ML 
prediction models in soil analysis. Apart from simple/multivariate regression-based 
models, most of the studies based on ML methods in predicting and mapping salinity 
use variables from remote sensing such as spectral bands and derived indices and 
combined with other environmental covariates such as those related to the elevation, 
geology, hydrology, morphometry, and climate (Allbed and Kumar, 2013; Kaplan et 
al., 2023; Wang et al., 2021; Wu et al., 2018; Zarei et al., 2021; Zurqani et al., 2018; 
Li et al., 2023; Boudibi et al., 2021; Merembayev et al., 2022; Nabiollahi et al., 2021; 
Vermeulen and Van Niekerk, 2017; Wang et al., 2020), and to predict ESP from SAR 
compared to generalized regression neural networks (Gharaibeh et al., 2021). 
Furthermore, field-measured data (physical and chemical soil–water properties), 
which are used to a lesser extent, may improve the prediction performances for soil 
salinity, even more if alternative salt-related variables are considered.  

 

Prediction models may considerably vary in function to the soil properties and local 
conditions, thus the need for affordable and site-specific models to facilitate the 
characterization and management of salt-affected soils. In this sense, the objectives 
of this study were to assess the performance of machine learning-based models in 
predicting salinity, sodicity and salt-affected soil classes from soluble salt ions, 
evaluate the accuracy of classical multivariate models to predict sodicity and salinity 
variables from easily measured/obtained predictors and find out the most important 
variables and best models which can be used to predict salt-affected soils in the 
study area, thus aiding in the management of these soils. Moreover, the use of 
machine learning algorithms for predicting salinity/sodicity from soluble ions is 
somehow related to the alternative classification (addressed in Chapter 2) since 
prioritizes the nature and ratios of the major soluble salt ions above the soil ESP, 
EC and pH. 

 

 

  



Chapter 3 | Prediction of soil salinity/sodicity from soluble salt ions, soil properties, and other features 

69 

 

2. Methodology 

 

The soil samples were collected at a depth of ~25 cm from the High Valley of 
Cochabamba - Bolivia. Lab measurements, determination and calculations of soil 
properties were described in the methodology of Chapter 2 (section 2.2). Some 
descriptive statistics of the dataset are shown in Appendix 3.1a. 

 

Some multivariate models for predicting soil ESP, EC and salt-affected soil 
categories as response variables from soluble salt ions (Na+, K+, Ca2+, Mg2+, Cl−, 
SO4

2−, HCO3
−, CO3

−2) as explanatory variables, were calibrated and validated through 
three supervised ML algorithms, namely Partial Least-Squares (PLS) and Support 
Vector Machines (SVM) with linear kernel function as discriminating methods, and 
Random Forests (RF) as a tree-based method, for the respective regression (PLS-R, 
SV-R, RF-R) and classification (PLS-DA, SVM, RF-C) methods. The multivariate 
linear regressions to estimate soil ESP from soil chemical/physical properties (EC, 
pH, SAR, ions and texture) and those generated from some easily obtained features 
(remote sensing and elevation derived) were calibrated by using the mathematical 
multiple regression equation (Eq. 3). Additionally, a simple model to predict soil ESP 
from SAR was fitted through the linear regression mathematical formula (Eq. 4). 

 

𝑌 = 𝑋𝛽 + 𝜖                   (Equation 3) 

where Y is a n-dimensional vector, X is a n × p matrix, β is a p-dimensional vector, 
and 𝜖 is the n-dimensional (uncorrelated) error term. 

 

𝑌 = 𝑏0 + 𝑏1 ∗ 𝑥      (Equation 4) 

where Y is the dependent variable, b0 and b1 are the linear regression beta 
coefficients for the intercept and slope, respectively, and x is the independent variable.  

 

For the multivariate linear regressions and machine learning-based models, outliers 
were removed by applying a threshold value through the Mahalanobis distance from 
the principal component analysis (PCA). The Factor Analysis was performed to 
search for similar covariates regarding their mutual correlation and dimensionality 
reduction. For testing purposes, an internal validation was applied to overcome the 
possibility of hidden dependencies of the cross-validation (CV), by partitioning the 
model’s dataset into calibration (75%) and validation (25%) datasets. When 
necessary, data were scaled, and normalization was not needed. The flow process for 
the ML regression/classification models is shown in Figure 3.1. The models were 
trained with tenfold groups, and CV was repeated five times. The specific tuning of 
training parameters and CV of the models is shown in Appendix 3.1b. Subsequently, 
the prediction was applied to the testing datasets for each trained ML model, then the 
metrics performances were determined and compared. For the multivariate linear 
models, the independent variables were reduced by using the stepwise regression 
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algorithm as a step-by-step iterative model construction through the Akaike 
information criterion (AIC) as an estimator of the prediction error. 

 

The satellite Landsat 8 image (ID: LC08.L2SP.232072.20180910.20200830.02. T1, 
Datum: WGS84, UTM zone: 20, year: 2018, resolution: 30 m) was used to extract six 
bands, namely, B2 (Blue), B3 (Green), B4 (Red), B5 (NIR), B6 (SWIR1) and B7 
(SWIR2), and to calculate some salinity indices (Table 3.1) and vegetation indices 
(Appendix 3.2). Additionally, some geomorphometric factors (Appendix 3.3) namely 
elevation, slope, topographic position index (TPI), terrain ruggedness index (TRI), 
topographic wetness index (TWI) and flow direction were determined based on the 
digital elevation model (DEM). Subsequently, all these features together with soil 
properties (pH and soil texture), were used as predictor variables to fit the multivariate 
models for estimating the soil ESP and EC. 

 

The metrics used to assess the regression models’ performance were: the coefficient 
of determination - R2 (Eq. 5) which tells how well the predictor(s) can explain the 
variation in the response variable, the root mean square error – RMSE (Eq. 6)  as the 
residuals’ standard deviation for the predictions, the mean absolute error – MAE (Eq. 
7)  as the average magnitude of the errors, and the residual standard error – RSE (Eq. 
8)  as the standard deviation of the residual. For the ML classification models, the 
metrics were the overall accuracy (Eq. 9) as the correct classification of the data 
obtained by executing the model, and Cohen’s kappa statistics (Eq. 10) like the 
strength of the agreement as the extent to which the data are correct representations 
of the measured variables (McHugh, 2012). Additionally, the measures of sensitivity 
and specificity as the proportions of true positives and true negatives correctly 
predicted, respectively, were calculated for classification. 

 

The relative importance of the variables was assessed through the RF measures, 
namely per cent increase in mean square error (%incMSE) as the prediction error of 
each variable if omitted from the analysis and the increase in node purity as how much 
the model error increases when a particular variable is randomly permuted or shuffled, 
for regression models; and Mean Decrease Accuracy as how much accuracy the model 
losses by excluding each variable and Mean Decrease Gini as a measure of how each 
variable contributes to the homogeneity of the nodes and leaves, for classification 
models. To overcome the imbalance caused by the sodic category, the resampling 
method ‘Synthetic Minority Over-Sampling Technique’ was applied through the 
Smote function (Chawla et al., 2002). The stability of the models was assessed in 
function to three different data partitions (per cent calibration datasets of 70, 75 and 
80) as an indicator of the change in the level of performance. Finally, the models were 
assessed with additional explanatory variables, namely, soil pH, ECe, total organic 
carbon (TOC), and soil texture. 
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𝑅2 = 1 −
∑ (𝑝𝑖 − 𝑜𝑖)2𝑛

𝑖=1

∑ (𝑜̅  −  𝑜𝑖)2𝑛
𝑖=1

 (Equation 5) 

  

𝑅𝑀𝑆𝐸 = [𝑛−1 ∑ (𝑝𝑖 − 𝑜𝑖)2
𝑛

𝑖=1
]

1/2

 (Equation 6) 

  

𝑀𝐴𝐸 = 𝑛−1 ∑ |(𝑝𝑖 − 𝑜𝑖)|
𝑛

𝑖=1
 (Equation 7) 

  

𝑅𝑆𝐸 = [(𝑛 − 2)−1 ∑ (𝑝𝑖 − 𝑜𝑖)2
𝑛

𝑖=1
]

1/2

 (Equation 8) 

 

where n is the number of observations, pi is the predicted values, oi is the observed 
data, and 𝑜̅ is the mean for oi. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑
𝑇𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠

𝑛

𝑖=1
 (Equation 9) 

  

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜 −  𝑃𝑒

1 − 𝑃𝑒
 (Equation 10) 

where n is the number of classes, Po is the total agreement probability, and Pe is the 
agreement probability due to chance. 

 

Statistical analyses were performed by using the R software v.4.1.3 (R Core Team, 
2013). The multivariate and ML regression and classification models were trained and 
evaluated through the R package caret (Kuhn, 2022), randomForest (Liaw and 
Wiener, 2002), MASS (Venables and Ripley, 2002), car (Fox and Weisberg, 2019), 
among others for data preparation, analysis and visualization. 
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Figure 3.1 Flow chart of the methodological path of the study. 
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Table 3.1 Salinity indices derived from the satellite image bands, and their equations. 

Index Abbreviation Equation* Reference† 

Salinity Index 1 SI1 √𝐺 ∗ 𝑅 2, 3, 4, 5, 6 

Salinity Index 2 SI2 √𝐵 ∗ 𝑅 1, 3, 4, 5 

Salinity Index 3 SI3 √𝐵 + 𝑅 4 

Salinity Index 4 SI4 √𝐺2 + 𝑅2 1, 2, 3, 4 

Salinity Index 5 SI5 √𝐺2 + 𝑅2 + 𝑁𝐼𝑅2 1, 2, 4, 5, 6 

Salinity Index 6 SI6 
𝑅

𝑁𝐼𝑅
 𝑥 10 1, 2 

Salinity Index 7 SI7 
𝐵 ∗ 𝑅

𝐺
 3, 4, 5 

Salinity Index 8 SI8 
𝑅 ∗ 𝑁𝐼𝑅

𝐺
 4, 5 

Salinity Index 9 SI9 
𝐺 ∗ 𝑅

𝐵
 4 

Salinity Index 10 SI10 
𝐵

𝑅
 2, 4, 5 

Salinity Index 11 SI11 
𝐵 − 𝑅

𝐵 + 𝑅
 2, 4 

Normalized Salinity Index NDSI 
𝑅 − 𝑁𝐼𝑅

𝑅 + 𝑁𝐼𝑅
 1, 2, 6 

Salinity Ratio Index SAIO 
𝑅 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 2 

* B = B2 (blue), G = B3 (green), R = B4 (red), NIR = B5. 

† 1) Li Yanan 2021, 2) Wang F. et al. 2019, 3) Aksoy et al. 2022, 4) Wang J. et al. 2021, 5) 

Bouaziz et al. 2018, 6) Moreira et al., 2015. These references are not necessarily the original 

sources for the above-listed indices. 
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3. Results and discussion 

 

The correlation matrix of the explanatory variables (soluble ions, EC, SAR, 
pH and texture) and response variables (ESP and EC) used to calibrate/validate 
the machine learning-based and classical multivariate models, is shown in 
Figure 3.2. A correlation matrix for the remote sensing-based and 
geomorphometric variables as predictors is shown in Appendix 3.4. 

 

 

Figure 3.2 Correlation matrix for the predictors and response variables of the multivariate 
regressions. 

3.1. Machine learning regression models 

Among the assessed ML regression models to predict soil ECe, the SV-R and RF-R 
algorithms performed the best with relatively similar values of R2 and RMSE, followed 
by the ML-R and PLS-R models, which, in contrast, showed good cross-validation 
performances (Table 3.2). The overall high proportions of soil ECe variance explained 
by the soluble ions agree with the fact that the soluble major ions complex is a good 
predictor for the soil ECe and vice versa, coinciding with the high correlations between 
soil ECe and soluble ions as total dissolved salts (Simón and Garcı́a, 1999; Chang et 
al., 1983). As a partially related study, Wang, S. et al. (2019) found that RF regression 
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performed comprehensively better than SV-R among other ML models in predicting 
salinity from field-measured spectral and salinity data.  

 

Regarding the validation performances, the RF-R model was superior for estimating 
the soil ESP followed by the rest of the models with similar results; even so, they 
obtained relatively good cross-validation performances (Table 3.2); these results are 
partly related to the relationships between SAR, ESP and exchangeable sodium ratio 
(ESR) (Appendix 3.1c) and have some correspondence to the results obtained by Chi 
et al. (2011), Elbashier et al. (2016a,b), Seilsepour et al. (2009), and Annex 4, to 
predict the soil ESP form SAR, and also concur with those to estimate the ESR from 
SAR by Harron et al (1983) and Shirmohamm and Heydari (2020). Gharaibeh et al. 
(2021) obtained a very accurate prediction of ESP from easy-to-obtain soil features 
using generalized regression neural networks. Furthermore, the low performance of 
the PLS-R model agrees with the fact that it is better in cases where the number of 
explanatory variables is high or where multicollinearity is an issue. 

Table 3.2 Regression models’ performances for estimating ECe and ESP from soluble 
ions. 

 ECe  ESP 

Method RMSE MAE R2  RMSE MAE R2 

PLS-R 2.9 (3.3) 2.1 (2.0) 0.82 (0.72)  19.0 (13.6) 12.7 (10.5) 0.41 (0.63) 

SV-R 1.9 (3.5) 1.2 (1.9) 0.92 (0.74)  18.4 (14.0) 11.0 (9.6) 0.40 (0.65) 

RF-R 2.1 (3.7) 1.2 (1.8) 0.91 (0.66)  12.6 (12.4) 10.0 (9.2) 0.71 (0.60) 

ML-R 2.4 (2.8) 1.6 (-) 0.88 (0.81)  19.1 (13.6) 13.0 (-) 0.40 (0.54) 

Values in parentheses mean the cross-validation results. RMSE = root mean square error, MAE = mean 
absolute error, R2 = coefficient of determination, PLS = partial least squares, SV = support vector, RF = 
random forests, ML = multivariate linear, R = regression. 

According to the RF measures of percent increase in MSE and the increase in node 
purity, Na+ is the most important variable followed by Ca2+ for predicting the soil ESP 
and Na+ followed by Cl– and HCO3

– for estimating the soil ECe (Figure 3.3). Despite 
the relatively low importance of K+ in predicting soil ESP (Figure 3.3b), it might be 
important to keep this cation for modelling because it influences soil dispersion, as 
demonstrated through the exchangeable cation ratio (ECR) by Marchuk et al. (2014) 
and the cation ratio of soil structural stability (CROSS) by Rengasamy and Marchuk 
(2011) as alternative indicators for soil ESP and SAR, respectively.  
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Figure 3.3 Variable importance as the per cent increase in mean square error (%IncMSE) 
and the increase in node purity (IncNodePurity) from the RF algorithm for the soil ECe (a) 

and ESP (b). 

Despite the relatively strong relationships among chemical variables (Figure 3.2) it 
should be considered that ML algorithms deal with multicollinearity through 
regularizations and by focusing the prediction and accuracy instead of the influence 
among variables. Correlations between the contents of cations in the soil sorption 
complex and those in the soil–water solution are relatively low (Appendix 3.1c) in 
contrast to the findings of Porębska and Ostrowska (2016).  

a 

b 
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3.2. Machine learning classification models 

The distribution of samples according to the salt-affected soil classes was relatively 
balanced, except for the sodic soil category (Figure 3.4a). According to the PCA, 
around 98% of the variance was explained by seven out of eight components. The 
components are not so good for discriminating the clusters (Figure 3.4b); 
consequently, for a complete separation of the soil categories, ML classification 
algorithms were performed.  

 

 

Figure 3.4 Distribution of the observations (a), and PCA plot of observations (b) grouped 
by salt-affected soil categories. 

According to the internal validation, the RF-C model obtained the best performance 
with the highest prediction accuracy indicating a good classification with a significant 
strength of agreement beyond chance, followed by the SVM and PLS-DA models, 
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both with a regular classification accuracy and moderate agreement, and according to 
the cross-validation analysis, the RF-C and SVM algorithms performed better than 
the PLS-DA model with relatively similar results (Table 3.3). 

Table 3.3 Classification models’ performances for predicting salt-affected soil classes 
from soluble ions. 

Method 
Calibration-CV  Validation 

Accuracy Kappa  Accuracy Kappa 

PLS-DA 0.55 0.37  0.67 0.52 

SVM 0.63 0.49  0.70 0.58 

RF-C 0.61 0.47  0.87 0.82 

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement, 
PLS-DA = partial least squares – discriminant analysis, SVM = support vector machines, RF-C = random 
forests classification. 

The overall Out of Bag (OOB) error of the RF bootstrapping was 37.9%, and the 
error classes were 0.29, 0.38, 0.26, and 0.68 for normal, saline, saline-sodic, and sodic 
soil, respectively (Figure 3.5). The misclassification of sodic soil was mainly due to 
its imbalance as fewer counts in contrast to the other categories. The soil pH used to 
classify the soil may influence the quality of the classification models because it is not 
directly related to the soluble/exchangeable cations, as the soil ECe and ESP are. 
Based on the predictions in the confusion matrixes (Appendix 3.5a), the measure of 
sensitivity as the true positive rate was regular to good for predicting the normal, 
saline, and saline-sodic classes but poor for the sodic class; in addition, the RF-C 
model generated higher values of sensitivity than those of the SVM and PLS-DA 
models (Appendix 3.5b). 

 

Figure 3.5 RF overall out-of-bag and class errors in function to the number of trees. 
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Regarding the estimation of the variables’ relative importance using the RF Mean 
Decrease Accuracy and Mean Decrease Gini calculations, the soluble Na+ was the 
most relevant variable for classifying salt-affected soils, followed by Ca2+, Mg2+, and 
Cl– (Figure 3.6). These ranks coincide with the variable selection through RF 
backward elimination and become important for eventually discarding the less 
important variables if and when the performance of the model is improved. These 
importance estimations have some correspondence to the SAR and the relevance of 
neutral salts over alkali salts for these soils.  

 

 
 

 

Figure 3.6 Random forest's relative importance of the explanatory variables according to 
the measures of MeanDecreaseAccuracy (a) and MeanDecreaseGini (b). 

a 

b 
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Once the models were trained a second time by using the Smote function to 
overcome the imbalance generated by the sodic category as a minority class, the 
validation results showed a slight improvement for the SVM model, but a decrease in 
accuracy and kappa values for the RF-C model (Table 3.4), compared to those without 
resampling (Table 3.3). 

Table 3.4 Classification models’ performances for predicting salt-affected soil classes 
from soluble ions after applying the Smote function. 

Method 
Calibration-CV  Validation 

Accuracy Kappa  Accuracy Kappa 

PLS-DA 0.55 0.39  0.60 0.48 

SVM 0.61 0.46  0.73 0.62 

RF-C 0.60 0.45  0.77 0.68 

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement, 
PLS-DA = partial least squares – discriminant analysis, SVM = support vector machines, RF-C = random 
forests classification. 

Additional classification models were performed based on the Alternative 
classification (Szabolcs, 1989; Chhabra, 2004) used in Chapter 2. The three 
algorithms (RF-C, SVM and PLS-DA) showed relatively similar effectiveness for 
predicting the three categories (normal, saline and alkali) generated by the Alternative 
classification (Table 3.5), and were relatively more accurate than those obtained to 
predict the soil classes from the USSL classification. 

Table 3.5 Classification models’ performances for predicting salt-affected soil classes 
from soluble ions after using the Alternative classification. 

Method 
Calibration-CV  Validation 

Accuracy Kappa  Accuracy Kappa 

PLS-DA 0.67 0.45  0.77 0.62 

SVM 0.68 0.48  0.80 0.68 

RF-C 0.72 0.57  0.80 0.68 

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement, 
PLS-DA = partial least squares – discriminant analysis, SVM = support vector machines, RF-C = random 
forests classification. 

By adding the soil pH, ECe, TOC, clay, silt, and sand to the matrix of predictor 
variables, only the validation performances of the PLS and SV regressions to predict 
soil ESP showed a significant improvement (Table 3.6) compared to those in Table 
3.2. These results are partly related to those of Keshavarzi et al. (2016) who applied 
the AI-based models Multi-Layer Perceptron and Adaptive Neuro-Fuzzy Inference 
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System for predicting ESP from ECe, pH, and clay. Although the RF classification 
model obtained a significant increase in performance (Table 3.6) compared to those 
in Table 3.3, it should be noted the redundancy caused by the soil ECe and pH as 
explanatory variables and – at the same time – as classifiers of the explained soil 
categories; however, their further inclusion might be pertinent if more easily measured 
features are used, such as EC and pH determined in soil–water suspensions. 

Table 3.6 Models’ performances after adding features to the matrix of explanatory 
variables. 

Method 
 Regression—ESP  

Method 
 Classification 

 RMSE MAE R2   Accuracy Kappa 

PLS-R  12.5 (13.9) 10.5 (10.7) 0.62 (0.61)  PLS-DA  0.61 (0.56) 0.45 (0.39) 

SV-R  12.1 (14.6) 9.9 (11.0) 0.63 (0.61)  SVM  0.61 (0.60) 0.47 (0.45) 

RF-R  12.7 (12.7) 10.2 (9.4) 0.62 (0.64)  RF-C  0.90 (0.78) 0.87 (0.69) 

Values in parentheses indicate the cross-validation results. 

The model stability showed that RF regression models for predicting soil ECe and 
ESP obtained lower differences between performances of the three calibration data 
amounts than those of SV-R and PLS-R, whereas, for the classification models, PLS-
DA followed by the SVM method was more stable than the RF-C model in predicting 
soil categories (Table 3.7). 

Table 3.7 Validation performances from the stability assessment of the ML models. 

Model / Metrics Method 
Percent of Calibration Dataset 

Difference* 
70% 75% 80% 

ECe - Regression 

(RMSE/R2) 

PLS-R 3.5/0.68 2.9/0.82 2.3/0.92 1.2/0.24 

SV-R 3.4/0.71 2.0/0.92 1.9/0.95 1.5/0.24 

RF-R 2.9/0.79 2.1/0.91 3.0/0.88 1.7/0.15 

ESP - Regression 

(RMSE/R2) 

PLS-R 15.1/0.52 18.9/0.41 14.9/0.57 7.8/0.27 

SV-R 15.5/0.54 18.4/0.40 15.5/0.58 5.8/0.32 

RF-R 12.6/0.65 12.6/0.71 11.1/0.78 1.5/0.13 

Classification 

(Accuracy/Kappa) 

PLS-DA 0.65/0.51 0.67/0.52 0.71/0.57 0.06/0.06 

SVM 0.70/0.58 0.70/0.58 0.79/0.69 0.09/0.11 

RF-C 0.78/0.70 0.87/0.82 0.79/0.71 0.17/0.23 

* Difference = sum of absolute differences among the metric values of the three partitions. 
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Considering that it is important to apply tailored reclamation techniques based on 
proper classifications and predictive models for site-specific salt-affected soils 
(Shaygan and Baumgartl, 2022), these models become important tools for the 
monitoring and management of salt-affected soils in the study area, and as a source of 
alternative covariates for further modelling. Additional observations might be 
included in their datasets to improve the performance and stability of the 
classification/regression models, and for overcoming class imbalances and reinforcing 
the selection of variables. Additionally, the input of additional features such as remote 
sensing/derived data and field-measured soil properties can also be useful for 
improving the effectiveness of the models. 

 

3.3. Multivariate regression models 

The Pearson correlation values among the explanatory and response variables are 
shown in the correlation matrix (Figure 3.2). The maximum-likelihood factor analysis 
applied on the covariance matrix concerning their mutual correlation (Table 3.8), 
shows the notorious association between the soil ESP as response variable and EC, 
SAR and pH as predictors. In this case, soluble salt ions are somehow redundant with 
EC and SAR and then were discarded from the regression analysis. The factor analysis 
for the remote sensed-based and geomorphometric features is shown in Appendix 3.6. 

Table 3.8 Factor analysis for the multivariate regressions to predict soil sodicity. 

Analysis* (Loadings > 0.5) Variance 

 

 
 

* Factor analysis was performed through the R function Factanal (Varimax rotation). Var = variance 

   The multivariate regression models predicting soil ESP in function to soil EC + 
pH + SAR (initial) and EC + SAR (final) obtained through stepwise selection, showed 
relatively good performances, similar to that of the simple regression estimating ESP 
from SAR, indicating that EC and pH did not significantly improve the prediction 
effectiveness of SAR alone (Table 3.9). Although these predictors (pH, EC and SAR) 
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are relatively easy to determine in contrast to the soil ESP and performed relatively 
well, their use as predictors for the study area should be subject to further 
improvement and validation. Complementary, a previous performance evaluation of 
the simple univariate model to predict ESP from SAR is summarized in Annex 4. 

Table 3.9 Performance evaluation of the multivariate regressions to predict ESP from soil 
chemical properties.  

Model 
 Calibration  Validation 

 RSE R2  RMSE MAE R2 

𝐸𝑆𝑃 = 0.58 𝐸𝐶 + 1.38 𝑝𝐻 + 2.69 𝑆𝐴𝑅 − 7.46 

 (initial model - stepwise selection) 

 12.3 0.62  12.0 9.2 0.72 

  

 𝐸𝑆𝑃 = 0.59 𝐸𝐶 + 2.87 𝑆𝐴𝑅 + 3.04 

(final model - AIC = 483.7) 

 12.2 0.63  12.3 9.3 0.70 

        

𝐸𝑆𝑃 = 3.32 𝑆𝐴𝑅 + 4.97 (simple regression)  12.5 0.62  13.3 10.6 0.64 

 𝐸𝑆𝑃 = 1.11 𝐸𝐶 + 13.34 𝑝𝐻 − 97.97  14.0 0.51  11.8 10.3 0.70 

RSE = residual standard error, RMSE = root mean square error, MAE = mean absolute error, R2 = 
coefficient of determination, ESP = exchangeable sodium percentage, SAR = sodium adsorption ratio, 
EC = electrical conductivity. 

 

Despite the relatively low performance of multivariate regression models to predict 
soil ESP and EC from easily obtained features (Table 3.10), these models can be 
improved through supplementary sampling, geostatistical filtering, and additional 
geo-environmental features. The relatively low accuracy of these models was mainly 
due to the imbalanced dataset in terms of excess non-salt-affected soil samples which 
negatively affect the strength of the expected relationships, for instance between low 
elevation/slope and salinity/sodicity or salinity/vegetation indices. 
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Table 3.10 Screening and evaluation of multivariate models to predict soil ESP and EC 
from some easily obtained features. 

Initial model *  Final model** AIC† RSE R2 

ESP = green + red + NIR + SWIR1 + 

SWIR2 + SI1 + SI2 + SI3 + SI5 + SI6 

+ SI7 + SI8 + SI9 + SI10 + SI11 + 

SI13 + NDSI + SAIOI + ELEV + TPI 

+ TRI + FLD + SLOPE 

 ESP = green + red + 

SWIR2 + NIR + + SI1 + 

SI3 + SI6 + SI7 + SI8 + 

NDSI + SAIOI + ELEV + 

FLD 

509.1 11.7 0.46 

EC = green + red + NIR + SWIR1 + 

SWIR2 + SI1 + SI2 + SI3 + SI5 + SI6 

+ SI7 + SI8 + SI9 + SI10 + SI11 + 

SI13 + NDSI + SAIOI + ELEV + TPI 

+ TRI + FLD + SLOPE 

 EC = green + red + NIR 

+ SWIR1 + SWIR2 + SI1 

+ SI2 + SI3 + SI5 + SI6 

+ SI8 + SI9 + SI10 + 

SI11 + ELEV  

390.2 6.4 0.45 

* Predictors: satellite bands, salinity indices (Table 3.1), vegetation indices (Appendix 3.2), and 

geomorphometric factors (Appendix 3.3).  

** Estimated coefficients and P(>|t|) for the final models (Appendix 3.7). 

† Smallest Akaike information criterion values from the stepwise variable selection. 
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4. Conclusions 

 

The support vector (SV) and random forests (RF) regressions showed the best 
performances for predicting the soil ECe, whereas the RF model was superior for 
estimating the soil ESP. The RF classification algorithm showed the best prediction 
accuracy, followed by the support vector machines (SVM) and partial least squares 
(PLS-DA) models. The most important explanatory variables for all the prediction 
models were Na+, Ca2+, Mg2+, Cl–, and HCO3

−. The sodic class was poorly predicted, 
and the applied resampling method for overcoming its imbalance did not significantly 
improve the classification performances. The stability analysis showed that the 
amount of training data generated less impact on the RF regression models and the 
SVM and PLS-DA classifications. Additional explanatory variables somehow 
improved the PLS and SV regressions to predict ESP and the RF classification. It can 
be concluded that the RF and SV regression algorithms can be suitable to estimate the 
soil ECe and ESP, as well as the RF and SVM classification models to predict salt-
affected soil classes from soluble salt ions.  

 

Multivariate regressions to predict soil ESP in function to SAR, EC and pH showed 
a satisfactory performance, in turn relatively similar to that of the simple regression 
to predict ESP from SAR. Multivariate models to predict soil ESP and EC from easily 
obtained features showed a relatively low performance. 

 

The assessed models might contribute to the monitoring, mapping, and management 
of salt-affected soils in the High Valley; however, additional samples and geo-
environmental features can be considered for improving their performances. 
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Chapter 4  
 

Use of mineral and organic amendments 
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  (Annex 2) 

Andrade Foronda, D.; Colinet, G. Combined Application of Organic Amendments 
and Gypsum to Reclaim Saline–Alkali Soil. Agriculture 2022, 12, 1049. 
https://doi.org/10.3390/agriculture12071049 

 

   (Annex 3) 

Andrade Foronda, D. Reclamation of a Saline-Sodic Soil with Organic 
Amendments and Leaching. Environ. Sci. Proc. 2022, 16, 56. 
https://doi.org/10.3390/environsciproc2022016056 

 

Reclamation of saline-sodic soils with gypsum & sulphur in: FAO. (2022). Halt soil 

salinization, boost soil productivity - Proceedings Global Symposium on Salt-affected Soils. 

20–22/10/2021. p.175-176. Rome. doi: 10.4060/cb9565en 
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Abstract 

Two soil column experiments were carried out to evaluate the effectiveness of 
singly/combined organic and mineral amendments with leaching in remediating 
saline-sodic soils from the High Valley of Cochabamba. First, mineral amendments 
(gypsum and sulphur) at two doses (50 and 100%) and organic amendments (cattle 
manure, chicken manure, biochar and peat) at two levels (1 and 2% of OM w/w) with 
leaching besides no/amendment, were evaluated. The properties of the soil before 
were exchangeable sodium percentage (ESP) of 66.6%, electr ical  
conductivity (ECe) of 20.5 dS m-1, and pH of 8.55. Gypsum at a dose of 100% 
of the requirement was the most effective, followed by gypsum at 50% in improving 
the soil ESP and ECe; in contrast, sulphur was more efficient than gypsum in lowering 
the soil pH. Cattle manure at a dose of 2% performed the best in decreasing the soil 
ESP but, without reaching the threshold value of 15%, and any treatment was more 
effective than only water in lowering ECe below 4 dS m−1. Peat at a dose of 2% was 
efficient in lowering pH to 7.76. Gypsum was more effective than sulphur in lowering 
soil ESP because of its calcium content which facilitates the displacement of sodium 
and improvement of soil-water properties; and sulphur was less efficient than gypsum, 
probably due to the short time for incubation. Cattle manure was superior in reducing 
soil ESP and ECe mainly due to its organic matter and divalent cations content which 
can improve the soil structure and infiltration, whereas peat and biochar reduced the 
infiltration rate. Subsequently, cattle manure and chicken manure combined with 
gypsum at four levels (0, 50, 75, and 100%) were assessed through a second 
experiment. The soil-before properties were ESP 52.8%, ECe 24.1 dS m-1, and 
pH 9.6. Combined treatments (manure + gypsum) at any dose were more effective 
than those of sole gypsum at any level in reducing the initial soil ESP to below 5%, 
in turn, gypsum at a dose of 100% performed the best; ECe was lowered to below 1.6 
dS m−1 by any combination and sole gypsum at any dose, except sole water; and any 
combination of manure with gypsum lowered the pH to below 8.7. The addition of 
cattle manure or chicken manure might enhance the effect of gypsum due to their 
synergistic effect on Na+ displacement by their Ca2+ contribution and subsequent 
improvement of soil structure through the organic matter, leading to an enhancement 
of the leaching process. Soluble salts and Na+ were considerably reduced by any 
treatment at the first leaching. These studies suggest that either sole gypsum or 
cattle/chicken manure – or even better – combined, can be used for ameliorating 
saline-sodic soils. However, further investigation is needed considering intermediate 
doses, different soil types, and validation through field experiments. 
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1. Introduction 

 

Salinity affects root/plant growth through the osmotic effect due to the excess 
soluble salts. Sodicity causes many adverse effects, such as changes in exchangeable 
and soluble ions ratios, increase of soil pH, destabilization of soil structure, 
deterioration of soil hydraulic properties, increase in susceptibility to crusting, runoff, 
soil erosion, and osmotic-specific ion effects on plants (Qadir and Schubert, 2002). 
Leaching with non-saline water is used to remove excess soluble salts from saline 
soils, and mineral/organic amendments are usually added with leaching to remediate 
soils affected by sodicity.  

 

The amelioration of saline-sodic and sodic soils normally needs an external source 
of soluble Ca2+ to replace the excess Na+ from the cation exchange sites of the 
rhizosphere, and this is most effective with non-saline irrigation water (Ahmad et al., 
2006); then, the replaced Na+, together with the excess soluble salts, if present, are 
removed from the root zone through infiltrating water as a result of 
excessive/regulated irrigation (Qadir et al., 2001a), leading to soil flocculation and 
improvement of soil structure, pH and nutrient availability. Gypsum (CaSO4.2H2O) 
and sulphuric acid (H2SO4) are widely used because of their relatively low cost and 
availability (Qadir et al., 2001a). Gypsum application counters reduced hydraulic 
conductivity in Na+- dominated soils through Na+ – Ca2+ exchange, hydrolysis of Na+ 
through the ionic strength effect, and enhancing electrolytic concentration (Ahmad et 
al., 2016). Due to the high pH of alkali soil, most likely because of Na2CO3, the 
addition of gypsum provides a source of Ca2+ which precipitates as CaCO3 and Ca 
(HCO3)2 leading to a decrease in pH (Wong et al., 2009). The soil ESP is normally 
used to determine the dose of gypsum necessary to displace excess adsorbed sodium. 

 

The chemical reactions of added gypsum and sulphur in the sodic or saline-sodic 
soil - based on Choudhary and Kharche (2015) - are as follows: 

Gypsum: 

CaSO4 + 2Na [clay micelle] = Ca [clay-micelle] + Na2SO4 (Leachable)  

and/or CaSO4 + Na2CO3 = CaCO3 + Na2SO4 (leachable)  

 

Sulphur: 

Previous biological oxidation of elemental sulphur mainly by Thiobacillus 

2S + 2H2O + 3O2 = 2H2SO4 (sulphofication)           

H2SO4 + CaCO3 = CaSO4 + H2O + CO2   

or  H2SO4 + 2CaCO3 = CaSO4 + Ca (HCO3)2  

Then, CaSO4 reacts with the adsorbed Na+ and/or Na2CO3 as above for gypsum. 

 

The chemical amelioration strategy itself has become cost-intensive as an effect of 
increases in amendment costs (Qadir et al., 2001a); moreover, using organic instead 
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of inorganic materials can reduce input costs as a sustainable and efficient 
management method to reclaim salt-affected soils (Chaganti et al., 2015). Therefore, 
organic amendments can be considered either an alternative or a complement to 
mineral amendments. Fertilization with organic matter can be expected to improve 
salt-affected soils, regarding their chemical and physicochemical characteristics, by 
decreasing the exchangeable Na+ content and improving their physical properties by 
increasing the aggregate stability (Lax et al., 1994). Furthermore, Mahmoodabadi et 
al. (2013) suggested that the application of gypsum together with organic 
amendments, depending on their chemical composition, might promote some 
synergistic effects on soluble Na+ and K+ concentrations and have a positive impact 
on the properties of calcareous saline-sodic soils. An illustration of the influence of 
biochar – as a referent of organic amendments – on the physical/biological properties 
of salt-affected soils is shown in Appendix 4.1. 

 

Soil salinity and sodicity negatively affect the crop yields and consequently the 
farmers’ income; therefore, readily available and low-cost amendments are needed for 
reclaiming sodic/saline-sodic soils. Some local experiments under controlled 
conditions were carried out using soils from the study area (Annexes 2, 3, 5 and 6) 
and somehow showed that manures or gypsum alone was effective in improving soil 
sodicity and salinity. Amendment-based techniques were prioritized above other 
restoration methods because: (1) Mineral amendments are widely used because of 
their direct effect on Na+ displacement; (2) however, sometimes are cost-intensive, 
therefore organic amendments can be an alternative either for replacing or enhancing 
the effect of mineral amendments by improving the soil-water properties; and 
although (3) shoot-succulent halophytes can accumulate significant Na+ quantities 
within their above-ground organs, these can be insignificant compared to the ability 
of some plants to solubilize CaCO3 then release Ca2+ ions ; (4) which is also 
water/irrigation dependent and thus infeasible in arid and semi-arid regions; and then, 
(5) despite mineral amendments are also water-dependent, their amelioration effect is 
normally higher and accomplished in a shorter time than that of phytoremediation 
(Qadir et al, 2007; Qadir et al., 2001b; Shahid, 2002). 

 

Therefore, some soil-column experiments were carried out to evaluate the effect of 
individual/combined mineral and organic amendments with leaching in remediating 
soil salinity/sodicity and to identify the most effective organic or mineral 
amendment(s) and/or their combination(s). In terms of hypothesis, the assessment 
looks to accept or reject that at least one amended-based remediation technique, 
involving either individual or combined mineral and/or organic amendment, shows 
statistically significant improvement in soil salinity/sodicity compared to other 
treatments under controlled conditions, expressed for testing purpose as the alternative 
hypothesis: 𝐻𝑎:  𝑋𝐴 ≠ 𝑋𝐵  ≠  𝑋𝐶  ≠  … 𝑋𝑁  , where, and X̄ is the mean of a given 
treatment (A, B, C… N). 
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2. Materials and methods 

 

The soils were collected from a location in the High Valley (17°32′38.6” S, 
65°51′41.9” W) at an elevation of 2750 m and a depth of ~25 cm. The experiment was 
carried out at the Faculty of Agricultural and Livestock Sciences – UMSS (17°27′2.9” 
S, 66° 7′59.7” W). It should be remarked that even though the target soils are saline-
sodic – based on the USSL classification –, both behave as sodic/alkali according to 
the Alternative classification system (Chapter 2); moreover, considering that the soil 
in columns is closer to the soil under natural/field condition than that in the pots, the 
soil-column experiments are described next and the pot experiments’ results are 
summarized in Annexes 5 and 6.  

 

2.1. Singly mineral and organic amendments 

The soil properties before remediation are shown in Table 4.1. The purity of gypsum 
was 92% (18.5 % Ca2+) and the purity of sulphur was 97.5%. The gypsum requirement 
as a dose of 100% to reduce the initial soil ESP to 15% was calculated through the 
equation of Hoffman and Shannon (2007) and the sulphur requirement was 
determined by using a conversion factor (5.38 times gypsum requirement) as 
suggested by Richards et al. (1954). The organic amendments used to remediate the 
soil were: cattle manure locally collected, tropical peat as tree fern fibre from the 
tropical area, and biochar branded by Greenpoch SA (Belgium). Some properties of 
the organic amendments are listed in Table 4.2. 

Table 4.1 Chemical and physical properties of the soil before remediation. 

Property Value  Soluble ion Value (mmolc L
−1

) 

ESP (%) 66.6  Na
+
 339.2 

EC (dS m-1) 20.5  Mg
2+

 0.7 

pH 8.55  K
+
 1.5 

Clay (%) 18.2  HCO3

−
 40.3 

Silt (%) 52.1  CO3

2−
 20.0 

TOC (%) 0.3  Cl
−
 185.0 

CEC (cmolc kg
−1

) 5.0  SO4

2−
 71.1 

TOC = total organic carbon, CEC = cation exchange capacity. 
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Following the protocol of Ahmad et al. (2016), simulated soil columns (Figure 4.1a, 
Appendix 4.2) were assembled using PVC tubes (15 cm diameter), each one filled 
with 6.7 kg of 4 mm sieved soil in two layers, so the upper layer was mixed according 
to each treatment. The dose of the amendments was calculated on a dry weight soil 
basis (w/w) to reach one and two per cent of organic matter content. Distilled water 
was used for the leaching process to simulate the rainwater and was calculated as a 
pore volume (PV) using the formula provided by Kahlon et al. (2013) and Ahmad et 
al. (2016). After an initial soil saturation of 3/4 PV, two to four lixiviations (each of 
one PV=2L) were applied. The soil ESP was calculated using the formula (Eq. 2 – 
Chapter 2). The design was completely randomized, and the treatments were the 
combinations between mineral amendment (gypsum and sulphur) and dose (50 and 
100%) as well as between organic amendment (cattle manure, biochar and peat) and 
dose (1 and 2%) besides no amendment or only-leaching. The LSM-Tukey adjustment 
test was used to determine the significant differences between treatments at p < 0.05. 

Table 4.2 Some properties of the organic amendments (cattle manure, biochar, and peat). 

Property 
Cattle 

Manure 
Biochar* 

Tropical 

Peat † 

Na+ (cmolc kg−1) 0.1 0.0 0.0 

Ca2+ (cmolc kg−1) 4.7 0.5 1.5 

Mg2+ (cmolc kg−1) 7.7 0.4 3.1 

EC1:1 (dS m−1) 3.7 0.3 0.7 

pH1:1 8.5 9.7 3.6 

TOC (%) 23.7 33.0 22.5 

* Additional biochar properties are listed in Appendix 4.1. 

† Swelling capacity of 1.85 w/w (g water/g dry peat) 

 

2.2. Combined amendments 

The properties of the soil before remediation are listed in Table 4.3, and those of the 
organic amendments are shown in Table 4.4. The protocol to simulate soil columns 
by Ahmad et al. (2016) was adapted by using PVC tubes (height 100 cm and diameter 
10 cm) with five cm of gravel, glass fibre and plastic mesh were placed at their 
bottoms (Figure 4.1b, Appendix 4.2). The gypsum requirement at a level of 100% (8 
g gypsum kg−1 soil) needed to reduce the initial soil ESP to 15%, was calculated 
through the equation used by Lebron et al. (2002). The saline-alkali soil, gypsum and 
manures were homogenized and sieved at 4, 2 and 6 mm, respectively. Manures were 
applied at 2% of organic matter on a dry weight basis (w/w). Each of the columns was 
filled with 3.6 kg of soil to a height of 35 cm based on bulk density, then the treated 
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soil was placed in the upper layer (height of 20 cm). The properties of the leaching 
water were EC of 0.2 dS m−1, pH of 8.1, and Na+, Ca2+ and Mg2+ concentrations of 
0.9, 0.6 and 0.5 meq L−1, respectively. The pore volume (PV) of 1060 ml water was 
determined through the formula given by Kahlon et al. (2013). An initial 3/4 PV was 
added to saturate the soil, then four cycles (each of one PV) were applied until a 
relatively constant EC was reached in the leachates (Appendix 4.4b), and then the 
reclaimed soil was collected. 

Table 4.3 Chemical and physical properties of the saline–alkali soil before remediation. 

Property Value  Property Value 

Bulk density (g cm−3) 1.3  ECe (dS m−1) 24.1 

Clay (%) 17.8  pH 9.6 

Silt (%) 53.9  Na+ (mmolc L−1) 332.1* 

Sand (%) 28.3  Ca2+ (mmolc L−1) 0.5 

Saturation (%) 29.2  Mg2+ (mmolc L−1) 0.6 

CEC (cmolc kg−1) 11.2 *  K+ (mmolc L−1) 1.5 

Na+ (cmolc kg−1) 6.9 *  HCO3
− (mmolc L−1) 59.0 

Ca2+ (cmolc kg−1) 4.9 *  CO3
2− (mmolc L−1) 46.0 

Mg2+ (cmolc kg−1) 1.1 *  Cl− (mmolc L−1) 104.0 

K+ (cmolc kg−1) 0.1 *  SO4
2− (mmolc L−1) 52.5 

ESP (%) 52.8  CaCO3 (g kg−1) 3.57 

Values in mmolc L-1 and cmolc kg−1 are from soluble ions and exchangeable cations, respectively. 
* Remeasured values (difference between CEC and the sum of exchangeable cations represent an 
inherent error) 

 

The soil pH was determined in a 1:5 soil–water suspension through a derived ISO 
10390. The soil ECe and soluble ions were measured in the paste extract by using the 
standard procedures of Richards et al. (1954). Exchangeable cations were obtained 
through a derived ISO 22171 at a pH of 7 and AAS. The soil ESP was determined by 
applying the formula (Eq. 2 - Chapter 2), the estimated percentage of displaced Na+ 
was calculated through Equation (11) and the SAR using the formula (Eq. 1 - Chapter 
2). 

𝑁𝑎+
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 = 100 − (

 𝑁𝑎+
𝑆𝐴

 𝑁𝑎+
𝐴𝑀+𝑁𝑎+

𝑆𝐵 

) 100  (Equation 11) 

Where Nadisplaced is Na+ (%), SA is soil after, AM is amendment, and SB is soil before. 
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Table 4.4 Some properties of the organic amendments and gypsum. 

Property Cattle Manure Chicken Manure Gypsum* 

Na+ (cmolc kg−1) 20.7 12.7 0.2 

Ca2+ (cmolc kg−1) 10.7 6.6 424.7 

Mg2+ (cmolc kg−1) 4.5 3.4 0.8 

EC (dS m−1) 11.4 5.2 2.6 

pH 9.53 9.56 7.87 

TOC (%) 33.1 34.2 0.08 

Cations (Lakanen–Erviö, AA + EDTA, pH 4.65), pH (0.001 M CaCl2) and EC (1:5 suspension).  

* Purity of gypsum: 91.7% 

 

The experimental design was completely randomized with four replicates. The 
treatments comprised the combinations of amendments (cattle manure, chicken 
manure and no manure) and gypsum levels (GY levels (50, 75 and 100%), besides the 
only leaching treatment. The effects on soil ESP, ECe, pH and displaced Na+ as 
response variables were evaluated by using the Scott–Knott clustering algorithm (p = 
0·05). Statistical analysis was performed using the R software v.4.1.3 (R Core Team, 
2013). Additionally, a field experiment (Annex 7) assessing the same amendments 
was carried out at the same location where the target soil was collected for this study. 

 

 

 

 



Chapter 4 | Use of mineral and organic amendments to remediate salt-affected soils 

97 

 

 
 

 

Figure 4.1 Soil column experiment to assess singly (a) and combined (b) organic and 
mineral amendments. 

a 

b 
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3. Results and discussion 

3.1. Mineral amendments 

Significant differences were found for the combined effect together mineral 
amendment (gypsum and sulphur) with dose (50% and 100%) and organic amendment 
(cattle manure, peat and biochar) along with dose (1% and 2% of OM w/w), 
significant differences were found. The treatment of gypsum at a dose of 100% 
performed the best in decreasing the initial soil ESP (66.6%) by 65.5% followed by 
50% gypsum (by 55.2%), 100% sulphur, 50% sulphur and only water (Figure 4.2a). 
The treatments of gypsum at doses of 50 and 100% were more effective in reducing 
soil ECe from 20.5 to 0.9 and 1.6 dS m-1, respectively (Figure 4.2b). The soil pH 
showed a reduction from 8.55 to 7.5 and 7.8 for the treatments of sulphur at doses of 
50 and 100%, respectively, followed by gypsum and only water (Figure 4.2c).  

 

The effectiveness of gypsum in lowering the soil exchangeable sodium may confirm 
the influence of Ca2+ on displacing Na+ and improving the soil infiltration, in addition 
to the effect on leaching soluble salts through lixiviation. Sulphur was less efficient 
than gypsum probably due to insufficient incubation time and low soil organic matter 
content, but more effective for improving soil pH, maybe due to its acidic 
counteracting effect. The results about the effectiveness of gypsum were congruent 
with those obtained by Qadir et al. (1996), Tavares et al. (2012), and Ahmed et al. 
(2016); in contrast Manzano Banda et al. (2014) who found that leaching with water 
reduced soil salinity and sodicity to adequate levels for conventional crops, with and 
without the application of cattle manure, gypsum and sulfuric acid. 

 

The sodium concentration in the leachates was higher at the first lixiviation (900–
1200 mmolc L-1) for all treatments compared to those from the second to fourth cycle, 
and similar behaviour for the EC in a range of 45–58 dS m-1 at the first cycle 
(Appendix 4.3). The evolution of Na+ concentration and soluble salts in the leachates 
was congruent with the ESP and Ece values in the ameliorated soil. The soil salinity 
and sodicity were considerably reduced at the first lixiviation by over 90%, indicating 
that one leaching might be sufficient, at least under controlled conditions. 
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Figure 4.2 Effect of gypsum and sulphur addition on soil ESP (a), ECe (b), and pH (c), 
after remediation. Means sharing a letter are not significantly different (Tukey, p < 0.05) and 

the bars indicate the standard error. 

a 

b 

c 
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3.2. Organic amendments 

The results after remediation showed that soil ESP, ECe and pH differed 
significantly (p < 0.05) for the combined effect of organic amendment along with 
dose. Cattle manure at a dose of 2% performed the best in reducing the initial soil ESP 
(66.6) by 39%, followed by cattle manure at a dose of 1% (by 31.5%), and in turn by 
the rest of the treatments with a similar effect (Figure 4.3a). The treatments of cattle 
manure at doses of 1% and 2% were as effective as biochar and peat at a dose of 2% 
for lowering the initial ECe (20.5 dS m−1) by over 16 dS m−1, while 1% biochar and 
1% peat showed a lower effectiveness but higher than that of the only water (Figure 
4.3b). The treatment of peat at a dose of 2% decreased the initial soil pH (8.6) to 7.76, 
followed by cattle manure at doses of 1% and 2 %, and 1% peat in equal magnitude, 
in contrast to biochar which maintained the pH around its initial value (Figure 4.3c). 
It should be noted that the percolation time of peat and biochar was approximately 
double that of cattle manure. 

 

The superiority of cattle manure in decreasing the soil ESP and ECe can be partly 
attributed to its TOC, Ca2+ and Mg2+ contents, which contribute to the improvement 
of soil structure and infiltration, thus the displacing of adsorbed Na+ from the soil. The 
lower effectiveness of peat in reducing soil ESP was likely due to its swelling capacity 
(1.85 w/w of water/dry peat) which together with soil dispersion boosts the slowdown 
of the leaching process; in this sense,  Shaygan et al. (2017) suggested that the 
swelling effect of bentonite along with water decreased the hydraulic conductivity, 
thus increased the sealing of the pore system and percolation in the reclaimed soil. 
Biochar also showed a limited effect on sodicity, probably due to its insufficient 
ability to influence soil structure, in concordance to Chaganti and Crohn (2015) who 
indicated that the mode of action of biochar is physiochemical while composts provide 
a comprehensive reclamation when biological and physiochemical factors act 
together. Water by itself was less effective in decreasing adsorbed Na+ but lowered 
soil ECe to 4.2 dS m−1, coinciding with Mahmoodabadi et al. (2013) who found that 
ECe decreased significantly even for the unamended soil possibly caused by solute 
leaching; moreover, Manzano Banda et al. (2014) stated that flushing water reduced 
salinity with and without the application of manure. In contrast to biochar, the peat 
significantly reduced soil pH, mainly due to its very low pH, causing an acidic 
counteracting effect, as Chaganti et al. (2015) found that composts significantly 
improved soil CEC and pH, but the biochar did not. Furthermore, Saifullah et al. 
(2018) affirmed that although many studies reported significant decreases in SAR and 
ESP of sodic and saline-sodic soils as well as improvement in plant growth due to the 
sorption of Na+ salts by biochar, not necessarily represent a removal of Na+ out of the 
soil.  
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Figure 4.3 Soil ESP (a), ECe (b), and pH (c) after remediation for the effect of the organic 
amendment.  Means sharing a letter are not significantly different according to pairwise 

comparisons of LSM Tukey (p < 0.05). 

a 

b 

c 
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Overall, these results suggest that cattle manure, biochar and peat enhanced the 
effect of leaching in remediating soil salinity and sodicity through the positive impact 
of their organic matter content on soil structure, infiltration, and Na+ displacement, 
agreeing with Chaganti et al. (2015) who found that organic amendments significantly 
lowered the soil ECe, ESP and SAR compared to the non-amended soils, and also 
improved soil structure, aggregate stability and saturated hydraulic conductivity, even 
more in compost treated soils; Lax et al. (1994), who reported that the physical 
properties of the salinized soil, such as structural stability, infiltration rate, water-
holding capacity and washing capacity, were considerably improved by added organic 
matter from the solid waste application; and  Abdel-Fattah (2012), who concluded that 
water hyacinth and rice straw compost singly or combined facilitated a pronounced 
decrease in soil EC, pH, SAR, and ESP compared to the control (Abdel-Fattah, 2012). 
Despite organic amendments were effective in reclaiming salinity, the soil ESP and 
pH threshold values from the USSL classification were not reached. Furthermore, 
subsequent assessments of potential amendments for remediation should consider an 
environmental evaluation besides cost analysis. 

 

3.3. Combined amendments 

Soil ESP, pH, ECe and displaced Na+ in the reclaimed soil, as, differed significantly 
(p < 0·05) among the combinations. It should be mentioned that the treatment without 
amendments (only leaching) was not considered for the comparisons of means in 
Figure 4.4, but for those in Appendix 4.4a, since it received two cycles of leaching in 
54 days due to its longer percolation time, and because of the marked differences 
between the output groupings of means with and without this treatment.  

 

The soil ESP, ECe and pH values of the only leaching treatment, decreased by 54%, 
79% and 8%, respectively, over its soil-before value; moreover, the threshold values 
of ECe (4 dS m−1) and ESP (15%) from the USSL classification were reached with 
any treatment, except without amendment, however, that of soil pH (8.5) was only 
reached with chicken manure at any dose of gypsum (Figure 4.4, Appendix 4.4a). 
Cattle manure and chicken manure combined with any level of gypsum were more 
effective than sole gypsum treatments in lowering the initial soil ESP below 5%, and 
cattle manure and chicken manure at a dose of 100% gypsum were the most effective 
(Figure 4.4a). The soil-before ECe was decreased by over 90% with any combination, 
even those at any dose of gypsum, and chicken manure at a dose of 100% gypsum 
was the most effective (Figure 4.4b). The treatments with combined chicken manure 
and gypsum were more effective than the rest of the combinations for reducing soil 
pH (Figure 4.4c). The displaced Na+ values were relatively congruent with those of 
the ESP from reclaimed soil (Figure 4.5); however, it is only an alternative 
representation of Na+ removal and balance, which did not confirm the treatments’ 
effectiveness. 
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Figure 4.4 Combined effect of manures and gypsum levels on soil ESP (a), ECe (b), and 
pH (c), after remediation. Means sharing a letter are not significantly different, according to 

the Scott–Knott test (p = 0.05). GY = gypsum. 

a 

b 

c 
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Figure 4.5 Combined effect of manures and gypsum levels on sodium displacement. 
Means sharing a letter are not significantly different according to the Scott–Knott test (p = 

0.05). 

These results agree with those from other studies on the effectiveness of organic 
amendments combined with gypsum, such as that of Chaganti et al. (2015) who 
reported that combined applications of gypsum and composts were more effective 
than individual applications in improving soil properties such as sodium leaching, 
hydraulic conductivity, ESP, and SAR; as well, Prapagar et al. (2012) found that 
gypsum application combined with partially burnt paddy husk and cow dung reduced 
the soil EC, SAR and pH more effectively, compared to applying gypsum alone; 
moreover, Abdel-Fattah (2012) observed that gypsum combined with water hyacinth 
compost or rice straw compost enhanced the soil amelioration process and caused a 
higher decrease in salinity and sodicity than gypsum alone, and in turn, than the 
control. In contrast, some investigations differed from these results, such as that by 
Hernández Araujo (2012) who found no differences among organic amendments 
(compost, vermicompost and Lemna spp) at 1.5 or 3% w/w, nor combined with 
gypsum; and that by Manzano Banda et al. (2014) who reported that flushing water 
reduced the salinity and sodicity of two saline-sodic soils to satisfactory levels with 
and without the application of any amendment (cattle manure, gypsum and sulphuric 
acid). 

 

The effectiveness of cattle manure or chicken manure combined with any level of 
gypsum in reducing the soil ESP and soluble salts in the saline-alkali soil (Figure 
4.4a,b) can be explained by the positive impact of organic matter from manures and 
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Ca2+ from gypsum on the soil structure, leading to an enhancement in soil aggregation, 
porosity, infiltration, and subsequent leaching efficiency; furthermore, although the 
addition of gypsum by itself improved those characteristics, the superiority of the 
treatments from combined amendments independent of gypsum doses, suggests that 
the indirect effect of organic amendments on soil physical properties, then facilitating 
the removal of Na+ and salts was significant. In this regard, Ahmad et al. (2016) 
mentioned some factors that influence the leaching of salts and Na+ from soil, such as 
the difference between the soluble and exchangeable Na+ contents of soil, the quantity 
of gypsum added, soil texture, CEC, and the percolation time; coinciding partially 
with Shaygan et al. (2017) who stated that the dynamics of hydraulic conductivity 
depend on the magnitude of cation exchange and the subsequent changes in the pore 
system. Likewise, Chaganti and Crohn (2015) indicated that the chemical 
characteristics of composts are as important as those of biological factors in their 
potential for reclamation; therefore, to achieve a comprehensive physical and 
chemical amelioration of a saline-sodic soil, both factors must act synergistically.  

 

The lower effectiveness of the treatments with sole gypsum compared to that with 
combined gypsum and manures for reducing soil salinity/sodicity (Figure 4.4) was 
probably due to the boosting effect from that combination besides the initial high 
exchangeable Na+ of the soil and the Na+: Ca2+ + Mg2+ ratio of manures, leading to 
lower availability of Ca2+ and soil dispersion. However, the effect of sole gypsum was 
likely sufficient in promoting soil aggregation and subsequent leaching of soluble salts 
and Na+ from the soil, possibly boosted by the increased solubility of gypsum (~2–3 
fold) in the presence of NaCl, meaning that relatively more Ca2+ could infiltrate the 
soluble form, agreeing with Gupta and Gupta (2019), who stated that the solubility of 
gypsum in alkali soils is considerably higher than in normal soils and is also increased 
if it is applied in conjunction with manures; and coincides with Sim et al. (2018), who 
found that NaCl largely increases the solubility of gypsum. In addition, Ahmad et al. 
(2016) found that the increased addition of gypsum can improve the retention of Ca2+ 
+ Mg2+ and enhance leaching even for loamy sand and sandy loam soils. The order of 
effectiveness in lowering ESP for only gypsum treatments was: GY100 > GY75 = GY50 
> only water (Figure 4.4a), which coincides partially with that of Qadir et al. (1996), 
who also included phytoremediation by L. fusca (LF): GY100 > LF > GY50 > control.  

 

The significant reduction in soil pH by combined treatments (Figure 4.4c), despite 
the previous high pH of the manures and soil can be due to the displacing of sodium 
salts, agreeing with Wong et al. (2009) who affirmed that the high initial pH of soil, 
most likely as a result of Na2CO3, can be reduced through the addition and dissolution 
of gypsum as a source of Ca2+ which precipitates as CaCO3 and Ca(HCO3)2, resulting 
in a direct decrease in soil pH and later proton generation for further reductions. In 
addition, Chaganti et al. (2015) and Wong et al. (2009) concluded that adding 
composts likely increases the partial pressure of CO2 due to increased microbial 
activity during incubation and/or leaching, which can lead to the formation of 
inorganic and organic acids for further soil pH reductions. However, for the treatments 
with only gypsum, the soil pH after remediation showed minimal variation compared 
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to the initial pH (Figure 4.4c) likely because of the initial high ESP and soluble Na+ 
leading to soil dispersion, which probably counteracted the Ca2+ contribution from 
gypsum. Because the three gypsum levels combined with manures showed relatively 
low mean differences with some significant differences among them for lowering the 
soil ESP and pH, manures with gypsum at doses of 50% and 75% can be considered 
as cost-efficient alternatives for further validations. 

 

The percolation time (two cycles in 54 days) for the non-amendment treatment was 
considerably longer than that of the rest of the treatments (four cycles in a range of 
10–35 days) as shown in Figure 4.6. This behaviour can be due to soil dispersion 
caused by the high exchangeable Na+ in the soil before remediation, which can also 
explain the higher effectiveness in decreasing soil ESP and ECe of sole gypsum at any 
level compared to that of the non-amendment treatment. Moreover, Shaygan et al. 
(2017) suggested that an increased percolation time and a greater rate of cation 
exchange were associated with a greater leaching efficiency. 

 

Soluble salts expressed as EC (Appendix 4.4b) and SAR (Appendix 4.5) in the 
leachates decreased considerably for all treatments in the first leaching cycle; 
therefore, up to two leaching might be sufficient to reclaim this type of soil, at least 
under controlled conditions. This behaviour can be related to the increased leaching 
rate triggered by amendments and subsequent soil flocculation, which counteracted 
the soil dispersion caused by the high sodicity of the soil before remediation. These 
results agree with Abdel-Fattah (2012) who mentioned that the first cycle of leaching 
can readily leach salts and mobile ions, whether the soils are amended or not. This 
also concurs with Ahmad et al. (2016) and Hassan et al. (2011), who reported a higher 
removal of Na+ in the first leaching cycle than that in the following leachates, 
coinciding with higher hydraulic conductivity; moreover, they also concluded that the 
maximum salts and Na+ could come from the dissolved part, while the forthcoming 
fraction could come partially from the reactions taking place through the Na+ – Ca2+ 
exchange and influenced by the high initial ECe of soils that keeps them flocculated 
to pass the solution (Ahmad et al., 2006).  

 

It is important to highlight the fact that the original soil condition was altered before 
the column experiments for its homogenization as a controlled factor, and there was 
no measurement of soil-water properties as hydraulic conductivity or water retention, 
leading to a limitation in terms of interpretation and extrapolation of the findings to 
field conditions. 
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Figure 4.6 Percolation time in cumulate days in function to the applied leaching cycles 
(1st, 2nd, 3rd, and 4th). PV = pore volume 

Further research could assess different soil textures, other gypsum levels, and lower 
rates of manures. Moreover, other studies could evaluate a two-step process of 
washing with gypsum followed by organic amendment similar to that of Sastre-Conde 
et al. (2015), the influence of mulch with gypsum as investigated by Zhao et al. (2020), 
and the inclusion of phytoremediation techniques as studied by Qadir et al. (1996). 

 

The results from the field experiment showed that all treatments, except the control, 
were equally effective in decreasing the initial soil ESP; however, none of the 
treatments were effective in reducing the soil EC (Annex 7). These outcomes may be 
attributed to the water deficit caused by delayed rainfall in the early drought period 
and excessive evaporation during the remediation process. Therefore, further 
validation is needed, with the field experiment setup placed either at the beginning or 
middle of the rainy season. 

 

 

  

GY = gypsum 

CA = cattle manure 

CH = chicken manure 

50 = GY dose 50%  

75 = GY dose 75%  

100 = GY dose 100%  
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4. Conclusions  

 

Individual gypsum at a dose of 100% of the calculated requirement was the most 
effective in improving the soil ESP and ECe, followed by gypsum at 50%; this can be 
attributed mainly to the calcium from gypsum which displaces the sodium and 
improves soil-water properties. Treatments with sulphur were less efficient than those 
with gypsum for improving soil sodicity, probably due to the short incubation time 
besides the low soil organic matter content.  

 

Cattle manure at a dose of 2% organic matter was the best for decreasing soil ESP 
to 27.6%, and any treatment was more effective than that without amendment in 
lowering ECe below 4 dS m−1. Peat at a dose of 2% generated the highest reduction of 
soil pH (to 7.76). The superiority of cattle manure in reducing soil ESP and ECe was 
mainly due to the improvement of the soil structure through its organic matter and 
divalent cations contribution, whereas peat and biochar were less effective probably 
due to their influence on soil clogging and slowdown of leaching.  

 

The combined treatments of cattle manure or chicken manure with any level of 
gypsum were more effective than those of sole gypsum at any dose in reducing the 
initial soil ESP to below 5%, and any manure with 100% gypsum was most efficient. 
The soil before ECe and ESP levels decreased to below 1.6 dS m−1 and 14%, 
respectively, with any combination of amendments or sole gypsum at any level, except 
only water. Any combination of manure with gypsum lowered the pH to below 8.7. 
The effectiveness of combining organic amendments with gypsum can be explained 
by their synergistic effect on Na+ displacement resulting in the subsequent 
improvement of soil porosity, flocculation, and infiltration, leading to an enhancement 
in the leaching process. Manures with 50% and 75% gypsum levels could be an 
alternative to the 100% gypsum dose. Soluble salts and sodium were considerably 
lowered in all treatments during the first leaching cycle.  

 

Individual gypsum or cattle manure with leaching can be used to remediate sodic 
and saline-sodic soils; furthermore, the addition of cattle manure or chicken manure 
might enhance the effectiveness of gypsum with leaching for that amelioration; 
however, further validations through field experiments including different soil types 
and doses are needed. 
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1. General discussion 

 

As a contribution to the management and rehabilitation of salt-affected soils in the 
High Valley of Cochabamba - Bolivia, this study addressed various problems related 
to soil salinity and sodicity through the objectives formulated from research questions 
(section 4 - Chapter 1). Some aspects that have been left outside the scope of the study 
were: the identification and level of influence of drivers of salinization, the description 
of salinization processes, dynamics as spatiotemporal analysis, mapping, and other 
restoration strategies such as flushing, phytoremediation and biosaline agriculture, all 
of which were excluded due to the availability of resources, time and scientific 
pertinence, but can be considered in subsequent research.  Following this, a general 
discussion of the findings (Chapters 2, 3 and 4) from this study: 

 

1.1. Characterization and classification of salt-affected soils 

The characterization of eight soil profiles comprises the determination of chemical, 
physical, and morphological properties (sections 3.2 - 3.4, Chapter 2) as well as 
taxonomic classification (section 3.5, Chapter 2). High levels of sodicity and soil 
reaction were found along the horizons in the profiles’ depth of Santa Ana (SP 1), 
Aramasi (SP 4), and San Benito (SP 3), besides a high soil salinity in their top 
horizons, which in turn were classified as Sodic Solonchak (Hypersalic, Siltic), Salic 
Solonetz (Hypernatric, Siltic, Protocalcic), and Salic Solonetz (Natric, Siltic), 
respectively. 

 

The comparative analysis between the output categories and salinity/sodicity 
distributions from two salt-affected soil classification systems somehow demonstrates 
the potential impact of such differences on soil management and restoration, since the 
saline-sodic soil class from the USSL classification normally behaves as saline or 
sodic, nonetheless, such confusion can be overcome by the Alternative classification 
(Chhabra, 2004) which prioritizes the nature and ratios of soluble salt ions above the 
soil ESP, ECe and pH. Saline-sodic and saline soils (USSL method) and saline soils 
(Alternative method) were dominant in the sampling (section 4.1 - Chapter 2). It 
should be remarked that any classification system has implicit limitations for the 
identification of soil categories because its specific indicators of salinity/sodicity and 
threshold values (Rengasamy, 2016; Chhabra, 2004) are site-specific and normally 
based on the degree of affection to the soil condition and/or crop growth, thus subject 
to variability in terms of soil types and crop characteristics, hence the importance of 
generating or adapting a tailored classification system for a given region. 

 

As for the previous spatial predictions of salinity and sodicity in the High Valley by 
Weber (2018) and Araujo (2009), the spatial interpolation of soil ESP and EC was 
unsatisfactory due to the insufficient spatial correlation mainly caused by the limited 
number of observations about the surface of the study area and the imbalance caused 
by the excess non-salt-affected observations (section 4.2 – Chapter 2). Regarding the 
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soil texture, most of the samples were classified as loam, silty-loam, clay-loam, and 
silty-clay-loam, according to the USDA system; additionally, it is important to 
highlight the low soil organic matter as total organic carbon (mean of 0.7% ± SD of 
0.5%) for the whole sampling (section 4.3 – Chapter 2), considering the influence of 
organic matter on soil water properties and on the mobilization of Ca2+ from dissolved 
calcite, which in sum can potentially reduce the soil salinity and sodicity (Chaganti et 
al., 2015; Choudhary and Kharche, 2015). 

 

The low representativeness of the soil information database led to its limited 
usefulness for the characterization, classification, and spatial prediction of salt-
affected soils; in this regard, the survey was carried out according to methodological 
parameters (Weber, 2018) in terms of sampling size and sampling method, which was 
systematic-random for achieving a significant coverage of the area; however,  the salt-
affected soil samples were insufficient; therefore, complementary sampling and 
stratification can increase the representativeness of the soil database. Despite such 
limitations, the soil information represented a baseline for this study as well as an 
approximation for the current status of salt-affected soils in the High Valley. 

 

1.2. Prediction of salinity and sodicity 

The objective of generating predictive models lies in the need to reduce costs and 
time, rather than in forecasting values of interest; for instance, the determination of 
the ESP in soils is both time-consuming and costly (Keshavarzi et al., 2016). Like soil 
classification systems, predictive models are subject to local and specific 
characteristics; thus the accuracy of a given model is normally higher for the site in 
which it was developed because of the specific soil textures and other local factors. If 
models to predict soil salinity are developed in one specific area, they cannot be 
applied to another region because of differences in soil properties such as organic 
matter content and/or salt type (Das et al., 2023; Kahaer and Tashpolat, 2019). 
Therefore, models for predicting soil sodicity/salinity variables must be site-specific 
and subject to continuous improvement for local use. It is also important to note the 
link between the use of all the major soluble salt ions as explanatory variables in 
Chapter 3 and the Alternative classification (Chapter 2) which prioritizes the nature 
and proportion of these ions above/beside the conventional indicators (soil ESP, EC 
and pH) to properly classify salt-affected soils, thus we foresee their inclusion not 
only in conventional but also in complex predictive models. 

 

The machine learning (ML) algorithms of support vector (SV) and random forests 
(RF) regressions performed the best in predicting the soil ECe, as well as RF for 
estimating the soil ESP (section 3.1 – Chapter 3). The RF classification followed by 
SVM was superior in predicting salt-affected soil categories (section 3.2 – Chapter 3). 
As a result of the variable importance analysis through the RF algorithm, the most 
relevant explanatory variables were Na+, Ca2+, Mg2+, Cl–, and HCO3

−; however, this 
ranking relies on the heterogeneity of the samples and the sensitivity of the model. 
Additional explanatory variables (soil texture, pH and TOC) only improved the SV 
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and PLS regression to predict ESP and the RF classification, which means that 
supplementary predictors, not only field-measured soil properties (Keshavarzi et al., 
2016) but other easily obtained features – mentioned and cited in Chapter 3 – can 
significantly increase the accuracy of ML models.  

 

According to the performance evaluation of multivariate regressions to predict soil 
ESP as a function of other chemical properties (EC, pH and SAR), the model to 
estimate soil ESP from EC and SAR, and that from pH, EC and SAR were acceptable 
and similar to that from only SAR, which in turn, agrees with Annex 4; moreover, the 
multivariate models to predict soil ESP and EC from easily obtained 
geomorphometric and remote sensing-based features showed a relatively low 
performance (section 3.3 – Chapter 3), mainly due to the insufficient observations and 
the distortion caused by excess non-salt-affected samples in the features that normally 
correlate well with salt-affected soil, such as salinity indices and some 
geomorphometric indices; in this sense, additional samples and features along with 
refinement and stratification, could improve the models’ performances, also 
considering the methodology from some studies cited in Chapter 3. As a remark, the 
soil EC was considered as a response variable even though it is an easily measured 
property, because of its applicability in spatial predictions. 

 

Based on these results, the RF and SVM algorithms might be appropriate to predict 
soil ECe, ESP, and salt-affected soil categories from soluble salt ions, as well as the 
models to estimate the soil ESP from either SAR, EC + SAR or EC + SAR + pH, 
might contribute to the monitoring and management of salt-affected soils in the High 
Valley; however, additional samples and geo-environmental covariates, along with 
alternative modelling techniques and refinement can enhance their accuracy. In terms 
of limitations, although some ML models obtained good prediction effectiveness, 
overall models’ performances need to be improved before using them to estimate 
sodicity/salinity variables in the study area. 

 

1.3. Remediation of salt-affected soils 

The previous soil-column experiment showed that gypsum outperformed sulphur in 
lowering soil ESP, either gypsum or sulphur or water alone was effective in decreasing 
soil ECe; and also, that cattle manure or chicken manure was more effective than 
biochar and peat in improving soil sodicity, and any amendment except water alone 
was effective in improving soil salinity (sections 3.1, 3.2 – Chapter 4). The superiority 
of gypsum was mainly due to its Ca2+ content which displaces the exchangeable Na+ 
and improves the soil-water properties, and the low effectiveness of sulphur was 
probably due to the insufficient time of incubation and organic matter needed for Ca2+ 
formation, while manures performed the best mainly due to their organic matter and 
divalent cations contribution, which improve the soil structure and infiltration, 
whereas the peat and biochar were less effective probably due to their influence in 
clogging soil pores. The second soil-column experiment aimed to evaluate the 
combined effect of manures and gypsum showed that cattle manure or chicken manure 
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along with gypsum at any dose was more effective than gypsum alone at any level in 
reducing the initial soil ESP to below 5%, any combination of amendments or gypsum 
alone at any dose was efficient in lowering the soil ECe to below 1.6 dS m−1, and any 
combination of manure with gypsum lowered the pH to below 8.7 (section 3.3 – 
Chapter 4). The higher effectiveness of manures combined with gypsum in reclaiming 
soil sodicity/salinity can be explained by their synergistic effect on Na+ displacement 
and improvement of soil structure, leading to an enhancement of the leaching process. 
Even though gypsum or manure alone can effectively improve soil salinity/sodicity, 
the addition of manure might enhance and hasten the effect of gypsum with leaching 
in ameliorating saline-sodic soils, agreeing with Chaganti et al. (2015), Prapagar et al. 
(2012) and Abdel-Fattah (2012), who confirm the superiority of the combined 
amendments over gypsum alone; however, additional experiments mainly under field 
conditions are needed to validate these results as well as to enrich the insights into 
amendment-based amelioration, before promoting results among the farmers. 

 

Some reasons that amendment-based remediation techniques were prioritized above 
other restoration methods were: (1) Mineral/chemical amendments are widely used 
because of their direct effect on the displacement of adsorbed Na+ through their Ca2+ 
contribution; (2) however, they are sometimes cost-intensive (Qadir et al., 2007), 
therefore organic amendments can be an alternative either for replacing or enhancing 
the effect of mineral amendments (Prapagar et al., 2012), through their indirect 
amelioration effect in improving the soil-water properties (Qadir et al., 2001); also 
although, (3) shoot-succulent halophytes can accumulate significant Na+ quantities 
within their above-ground organs, and despite these can be insignificant compared to 
the ability of some plants to solubilize CaCO3 then release Ca2+ ions to substitute 
Na+ in calcareous sodic or saline-sodic soils through their root respiration and 
H+ release (Qadir et al., 2007; Qadir et al., 2001b), (4) which is also water/irrigation 
dependent and thus infeasible in arid and semi-arid regions (Shahid, 2002); and then, 
(5) although mineral amendments being also water dependent, their amelioration 
effect is normally higher and accomplished in a shorter time than that of 
phytoremediation and even organic amendments; consequently (6) the study mainly 
addressed the combination between mineral and organic amendments for remediating 
salt-affected soils. Furthermore, the reason that experiments under controlled 
conditions were carried out instead of under field conditions was to obtain specific 
results and variability by controlling factors and to evaluate more treatments in a 
shorter time, which is unfeasible under field conditions. 

 

In terms of limitations, despite these experiments under controlled conditions 
showing that organic and/or mineral amendment additions along with leaching were 
effective in remediating saline-sodic soils, the findings are still not suitable for 
diffusion among the farmers and decision-makers, as more assessments – mainly 
under field conditions – are needed. Moreover, it should be emphasized that the soil 
columns did not effectively mimic the natural condition of soils from the field, since 
the soil cores were altered and homogenized before the column experiments; 
therefore, these evaluations also aimed the balance between the benefit of testing in 
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non-disturbed as a mimicry of the natural soil, and the need of altering and 
homogenizing the soil to control as much as possible the experimental factors. 
Paradoxically, the physical condition of the non-disturbed soil was relatively similar 
to that of the altered soil probably due to its highly sodic thus dispersed condition. 

 

The soil hydraulic conductivity was not effectively measured, which is 
indispensable to discuss the behaviour of the lixiviation process and its implication in 
the leaching of salts and the amelioration effect in the soil; even so, the percolation 
time was measured (section 3.3 – Chapter 4), which is normally strongly and 
negatively correlated with hydraulic conductivity and infiltration. Further experiments 
should not only include the assessment of soil-water properties but also that of 
different soil textures as investigated by Ahmad et al. (2016); Hassan et al. (2011) and 
Kahlon et al. (2013).  

 

Despite the biochar, peat and sulphur not being as effective as gypsum and manures, 
it is important to note the environmental aspects such as the origin and ecosystem 
services for these and other similar amendments, which must be addressed in further 
investigations and subsequent agricultural extension; as for the temperate peat bogs, 
Barkham (1993) highlighted the need for proper management of peat resource in a 
sustainable way, not only from the economic perspective but also from the ecosystem 
services, thus human well-being. In the context of the study, there are no specific 
regulations addressing the origin, processing and use of temperate/tropical peat and 
biochar for soil restoration purposes. 

 

Finally, about the socio-economic aspect, these results might boost the rehabilitation 
of salt-affected soils in the High Valley and contribute to the enhancement of the 
soil/crop productivity, thus the farmer’s income. Eventually, farmers can also access 
alternative sources of income by cultivating value crops under biosaline agriculture. 
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2. Future perspectives 

To improve the representativeness, significance and usefulness of the baseline soil 
information, also considering the large surface of the study area, complementary 
sampling should be added to the soil database and additional soil profiles should be 
assessed, using the same protocols for sampling and measurements as those used in 
this study. Moreover, a subsoil sampling can be considered because of the behaviour 
of soluble salts in function to soil-water dynamics within the soil depth. Alternative 
sampling strategies such as stratified, covariate space coverage sampling (Brus, 2022) 
and conditioned latin hypercube (Minasny and McBratney, 2006) can also improve 
the significance of the soil information database. Considering the heterogeneity of 
soils within the High Valley and compared to other regions, it is important to define 
a site-specific classification system based on the adaptation and validation of at least 
the USSL (Richards et al., 1954) and the Alternative (Chhabra, 2004) criteria, along 
with their threshold values. Furthermore, the assessment of the sources of salts, 
irrigation water resources, mineralogy of clays, spatiotemporal analysis, and 
environmental/social aspects, among other factors affecting the salinization processes, 
is essential for achieving comprehensive soil management.  

 

As for the baseline soil information, additional observations might enhance the 
accuracy of prediction models, following the above recommendations about using 
similar protocols and alternative sampling methods. The use of easily obtained 
features as model covariates, such as those from remote sensing, geomorphometry, 
and physiography, among other geo-environmental characteristics and lab/field-
measured properties, can significantly improve the performance of models in 
predicting soil salinity and sodicity, thus improving the classification and spatial 
prediction of salt-affected soils. Aiming to reduce the costs for the measurement of 
salinity/sodicity variables, it is also recommended to generate regression models to 
predict soil EC, pH and soluble ions measured in paste extract in function to similar 
variables but easily measured in different soil:water suspensions. It should be 
remarked that although the numerous models already obtained by various authors, it 
is critical to develop site-specifically tailored models, considering the heterogeneity 
of soil types and soluble/adsorbed ions complexes in the soil. Finally, alternative novel 
methods as machine learning and deep learning algorithms can be trained and 
validated to evaluate and compare their performances. 

 

Regarding the amendment-based remediation, evaluations under field conditions are 
needed to accomplish results closer to real conditions than those under controlled 
conditions, then can be recommended to the farmers; in this context, it is important to 
validate the best-performed treatments from this study through on-field experiments 
such as that carried out by Quispe Zenteno et al. (2020) (Annex 7). However, 
additional experiments under controlled conditions are essential for assessing multiple 
factors such as various amendments, soil types and multiple doses (25%, 50%, 75%, 
100% and 125%). It is also recommended to assess soil-column instead of pot 
experiments, because of its height, soil volume and subsoil layer, which mimic the 
natural conditions of soil in a better way than that of the pots. 
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It could be important to research alternative remediation strategies such as 
phytoremediation, leaching/irrigation techniques, and physical/mechanical methods, 
among others, taking into account the limitations such as inputs’ costs, low availability 
of non-saline water, low farmers’ income, heterogeneity of soils, water-soil dynamics 
and semiarid condition in the High Valley. Regarding the phytoremediation strategy, 
Mamani Flores et al. (2020) assessed the phytodesalination capacity of four 
halophytes and found that the native halophytes Suaeda fruticosa Moq and Sesuvium 
portulacastrum were more effective than the alien halophytes Atriplex hortensis and 
Kochia scoparia in removing Na+ from soil (Annex 8). Other remediation techniques 
such as phytoremediation and organic matter addition can significantly improve soil 
health and thus the environmental conditions. Moreover, the origin of minerals and 
organic materials must be subjected to environmental evaluations before considering 
their use as potential amendments for salt-affected soil amelioration, either for 
research or promotion among the farmers. 

 

In sum, considering the semiarid conditions in the High Valley, the use of mineral 
and/or organic amendments and phytoremediation based on calcite dissolution can be 
unfeasible mainly due to their water dependence, in contrast to the phytoremediation 
based on harvesting Na+ from soil but inviable in terms of desalination capacity 
compared to the previously mentioned strategies (Qadir et al., 2007; Alemayehu and 
Haile, 2022); therefore, the biosaline agriculture (Negacz et al., 2021) as an adaptation 
strategy may be viable through the adaptive and subsequent agronomical evaluations 
of crops with low to high tolerance to salinity and sodicity, such as value halophytes 
(e.g. quinoa), forages, cover crops and vegetables among others. 

 

Considering that soil salinity and sodicity are the main types of land degradation in 
the High Valley of Cochabamba, these findings are only the starting point to push 
forward policies, technical efforts and research. In this context, additional factors 
which drive salinization processes should be considered in further assessment, such 
as deforestation, residual waters, use of fertilizers, etc. Overall, these results represent 
the foundations as baseline information and tools to be considered by all the 
stakeholders for boosting the sustainable management of salt-affected soils in the 
High Valley. From the perspective of research, these results become a baseline for 
further improvement and validation. Relevant stakeholders are the University (FCAyP 
– UMSS) and the National Institute of Agricultural, Livestock and Forestry Research 
(INIAF – Bolivia). Within the agricultural sector, although the farmers are normally 
organized in associations, it is more feasible to coordinate with the municipalities for 
conducting activities on agricultural extension and research. 
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3. General conclusion 

 

As the study aimed to contribute to sustainable management and effective 
rehabilitation of salt-affected soils in the High Valley of Cochabamba, the following 
general conclusions address the research questions and objectives.: 

 

The baseline soil information and database, as a foundation for managing and 
monitoring salt-affected soils in the High Valley of Cochabamba, require 
improvement through additional sampling and assessment to enhance 
representativeness. Furthermore, the classification system should be tailored to the 
study area to enable precise identification and management of these soils. 

 

The random forest and support vector machine algorithms, along with certain 
conventional multivariate models, may be suitable for estimating soil ESP, EC, and 
classifying salt-affected soils from soluble ions, other soil properties, and easily 
obtained features in the study area. Although these models meet the need for site-
specific prediction tools, they require enhancement for greater accuracy through larger 
datasets and additional predictors. 

 

Gypsum as a mineral amendment and cattle or chicken manure as an organic 
amendment were most effective in improving soil salinity and sodicity, particularly 
when combined. However, further assessment is needed under both controlled and 
field conditions, incorporating locally available amendments and considering socio-
economic and environmental factors. Additionally, other amelioration strategies, such 
as phytoremediation and biosaline agriculture, may be evaluated given the semi-arid 
conditions of the valley. 

 

The study results and some implications are summarized by objective in Table 5.1.  

 

In summary, this study highlights the following key points: 

 

Sustainable management and rehabilitation of salt-affected soils in the High 
Valley of Cochabamba rely on accurate classification, precise estimation, and 

effective amelioration of saline/sodic soils; consequently, this study contributes to 
these goals by providing: (1) comprehensive baseline soil information, (2) a 

foundation for tailored prediction and classification tools, and (3) insights into 
amendment-based remediation techniques—all of which require further refinement. 
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Appendices 

Appendix 1.1 

 
 

 

Figure A1.1 Spatial distribution of salt-affected soils in Bolivia (FAO/ ‘Viceministerio de 
Tierras’, 2020) 

a 

b 
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Appendix 1.2 
 

 

Figure A1.2a Some causes of salt accumulation in soils (Kumar et al., 2022). 

 

 

 

Figure A1.2b Empirical relationship between sodicity (ESP) and salinity (EC) 
(Rengasamy, 2016). 
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Appendix 1.3 
 

 

Figure A1.3 Geopedologic map - High Valley, Cochabamba, Bolivia (Metternicht, 1996) 

  



Characterization, prediction, and remediation of salt-affected soils in the High Valley 

142 

 

 
 

 
 

  



Appendices  

143 

 

Appendix 2.1 

 

Figure A2.1 Spatial location of the soil profiles in the High Valley of Cochabamba. 
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Appendix 2.2 

 

Figure A2.2 Spatial location of the soil samples in the High Valley of Cochabamba. 
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Appendix 2.3:  

Table A2.3 Summary of the field form used for soil description (adapted from FAO, 2006) 

 
Soil-formation factors  Soil-surface characteristics 

Weather (present/trainer) 

Soil climate (temperature/mould) 

Major Landform 

Position (undulating, flat) 

Slope (form, gradient)  

Land use / Vegetation / Crops 

Human influence 

 Rocks outcrops  

Coarse surface fragments (cover, size) 

Erosion (category, degree) 

Surface sealing (width, depth, distance) 

Surface cracks (width, depth, distance) 

Salt (cover, thickness) 

 

SOIL DESCRIPTION - HORIZONS 

Horizon boundary 

Depth HB (cm) 

Distinctness (cm) 

Topography 

 Primary constituents  

Texture of the fine earth fraction 

Rock fragments: Abundance / Size / 

Shape 

Soil colour (matrix)  

Munsell colour Chart  

 Mottling  

Mottles: Colour (Munsell) / Abundance /  

Size /Contrast / Boundary  

Carbonates, gypsum, salts  

Carbonates, Gypsum:  Content / Form 

Salt content (EC,25 ºC) 

 Field soil pH  

pH value 

 

Redox  

Reducing conditions (Munsell colour) 

 Odour  

Soil odour 

Organic matter content 

Organic matter estimation (Munsell) 

 Bulk density 

 Bulk density (g/cm3) 

Organization of constituents  

Structure: Grade / Type / Size 

Soil-water status 

Consistence: Dry / Moist / Stickiness / 

Plasticity 

 Voids (porosity)  

Porosity 

Voids: Type, Abundance (dm2) and 

Size (< > 2mm) / Very coarse (20–50mm) 

Concentrations  

Coatings: Abundance / Nature / Form 

Compaction: Degree / Nature / 

Structure /  Continuity 

 Concentrations  

Mineral concentrations: Kind / Size / 

Shape / Nature / Hardness / Colour / 

Abundance 

Biological activity  

Roots size (diameter <2mm, >2mm) 

Roots abundance 

Biological features: Kind / Abundance 

 Human-made materials  

Artefacts - kinds 

Transported material 
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Appendix 2.4 

Table A2.4a Soil chemical properties: salinity/sodicity parameters (ESP, EC and pH) and 
exchangeable cations for each horizon of the non-salt-affected soil profiles. 

Soil profile Horizon 

Exchangeable cations 

(mmolc kg-1) 
 Soil salinity variables 

Na+ K+ Ca2+ Mg2+  pH 
EC  

dS*m-1 

ESP* 

% 

Class 

USDA** 

SP 6 

Tarata 

AP 0.00 0.01 0.30 0.02  7.46 1.24 1.2 Normal 

AB 0.00 0.01 0.28 0.02  7.33 1.92 0.5 Normal 

C1 0.00 0.01 0.35 0.02  7.50 0.79 0.2 Normal 

C2 0.00 0.00 0.26 0.02  7.50 0.72 0.2 Normal 

C3 0.00 0.00 0.25 0.02  7.49 0.75 0.4 Normal 

SP 7  

Cuchumuela 

Ap 0.00 0.01 0.07 0.02  7.50 1.04 0.9 Normal 

Bt 0.01 0.02 0.12 0.05  7.67 0.78 2.7 Normal 

Bc 0.01 0.00 0.27 0.07  7.70 1.38 2.8 Normal 

Ck 0.01 0.04 0.32 0.06  7.74 1.83 2.3 Normal 

SP 8 

Punata 

A 0.00 0.00 0.04 0.01  7.03 0.25 1.6 Normal 

C 0.00 0.00 0.02 0.01  6.92 0.36 5.4 Normal 

 

Table A2.4b Soil chemical properties: soluble ions and sodium adsorption ratio for each 
horizon of the non-salt-affected soil profiles. 

Soil profile Horizon 
Soluble Ions (cmolc L-1) SAR 

Na+ K+ Ca2+ Mg2+ Cl- SO4
2- CO3

2- HCO3
-  

SP 6 

Tarata 

AP 0.03 0.01 0.03 0.03 0.02 0.02 0.00 0.04 2.1 

AB 0.11 0.01 0.09 0.05 0.05 0.07 0.00 0.06 4.4 

C1 0.04 0.01 0.02 0.01 0.00 0.02 0.00 0.02 3.4 

C2 0.03 0.00 0.01 0.01 0.01 0.01 0.00 0.03 4.3 

C3 0.06 0.00 0.01 0.01 0.00 0.03 0.00 0.03 7.6 

SP 7  

Cuchumuela 

Ap 0.01 0.01 0.11 0.03 0.05 0.08 0.00 0.03 0.5 

Bt 0.04 0.00 0.02 0.02 0.05 0.03 0.00 0.02 3.0 

Bc 0.05 0.01 0.01 0.03 0.03 0.02 0.00 0.02 3.9 

Ck 0.04 0.01 0.03 0.03 0.03 0.06 0.00 0.01 2.2 

SP 8 

Punata 

A 0.04 0.01 0.02 0.01 0.03 0.03 0.00 0.02 3.2 

C 0.07 0.01 0.02 0.02 0.05 0.03 0.00 0.04 5.4 
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Appendix 2.4  

Table A2.4c Soil chemical properties: available nutrients, organic carbon and CEC for 
each horizon of the non-salt-affected soil profiles. 

Soil profile Horizon CEC 
TOC 

% 

 Nutrient bioavailability (g*kg-1) 
 P K Ca Mg 

SP 6 

Tarata 

AP 16.2 0.99   0.14 0.44 10.02 0.32 

AB 15.0 0.78  0.04 0.32 13.42 0.37 

C1 14.0 0.09  0.03 0.18 22.95 0.46 

C2 11.2 0.05  0.08 0.14 12.91 0.34 

C3 12.5 0.02   0.02 0.15 12.20 0.36 

SP 7  

Cuchumuela 

Ap 12.5 1.13   0.01 0.27 1.60 0.22 

Bt 30.0 0.30  0.00 0.52 2.49 0.59 

Bc 40.0 0.13  0.16 1.21 6.37 0.85 

Ck 27.8 0.12   0.04 1.30 41.76 0.00 

SP 8 

Punata 

A 9.00 0.93   0.01 0.09 0.89 0.17 

C 4.00 0.28   0.01 0.03 0.41 0.08 

 

 

Table A2.4d Soil physical properties for each horizon of the non-salt-affected soil profiles. 

        Soil fractions - texture 

Soil profile Horizon Colour 
Depth 

cm 

Clay  

% 

Silt  

% 

Sand  

% 

Textural 

class 

SP 6 

Tarata 

AP 10YR 6/4 0 -20 24.6 42.2 33.3 Lo 

AB 10YR 5/4 20 - 36 25.1 41.5 33.4 Lo 

C1 10YR 5/6 36 - 93 10.8 65.1 24.1 SiLo 

C2 10YR 6/6 93 - 110 19.7 54.8 25.5 SiLo 

C3 10YR 6/8 110 -  150+ 19.5 49.5 31.0 Lo 

SP 7  

Cuchumuela 

Ap 7.5YR 4/4 0 -18 26.7 32.8 40.5 Lo 

Bt 2.5YR 2.5/2 18 - 70 63.5 16.3 20.1 Cl 

Bc 7.5 YR 3/4 70 - 94 49.2 36.0 14.9 Cl 

Ck 10YR 5/6 94 – 130+ 5.9 65.9 28.3 SiLo 

SP 8 

Punata 

A 2.5Y 6/6 0 -20 18.3 50.4 31.3 SiLo 

C 2.5Y 6/2 20 - 30 10.4 16.9 72.7 SaLo 
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Appendix 2.5 
 

 

Figure A2.5a Distribution of soluble cations in the salt-affected soil profiles. 

 

Figure A2.5b Distribution of soluble anions in the salt-affected soil profiles. 
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Appendix 2.6 
 

 

Figure A2.6a Illustration of the salt-affected soil profiles - classes (USSL classification) 
by horizon. 

 

Figure A2.6b Illustration of the salt-affected soil profiles - cation exchange capacity by 
horizon. 
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Appendix 2.7 

Table A2.7 Some descriptive statistics of top-soil properties used for classification. 

Item Mean SD CV Min Max Median Count 

ESP 18.9 22.7 1.2 0.1 89.9 9.2 135.0 

SAR   60.3 164.3 2.7 0.0 929.4 4.6 135.0 

ECe    8.8 13.6 1.6 0.3 78.9 4.2 135.0 

pHe    8.1 0.8 0.1 6.8 10.7 8.0 135.0 

Ca2+ 4.0 5.6 1.4 0.1 38.2 2.1 135.0 

Mg2+ 1.9 2.3 1.2 0.1 9.6 1.0 135.0 

Na+ 54.3 130.5 2.4 0.0 869.7 6.2 135.0 

K+ 0.6 0.6 1.1 0.0 3.9 0.4 135.0 

Cl– 29.3 66.6 2.3 0.0 377.0 5.0 135.0 

SO4
2– 18.9 39.5 2.1 1.2 231.3 3.8 135.0 

HCO3
– 5.9 8.1 1.4 0.0 60.0 3.0 135.0 

CO3
2– 12.7 48.6 3.8 0.0 400.0 0.0 135.0 

Clay   24.0 10.6 0.4 5.9 65.4 21.8 135.0 

Silt   46.5 10.7 0.2 16.3 74.9 46.7 135.0 

Sand   29.5 13.9 0.5 1.6 72.7 28.9 135.0 

TOC    0.7 0.5 0.7 0.0 3.0 0.7 135.0 

SD = standard deviation; CV = coefficient of variation. 

 

 

Figure A2.7 Average content of soluble ions for all the soil samples in cmolc L-1 
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Appendix 2.8 

 

Figure A2.8a Maucha’s diagram of average ionic concentrations for salt-affected soil 
classes (USSL classification) 
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Appendix 2.8 

 

Figure A2.8b Maucha’s diagram of average ionic concentrations for salt-affected soil 
classes (Alternative classification) 
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Appendix 2.9 

Table A2.9 Salinity/sodicity parameters and salt-term classification of soil samples 

ID ESP EC pHe ECR CROSS USSL Alternative* 

1 1.4 3.9 7.5 5.2 0.6 Normal Normal 

2 0.1 3.7 7.7 1.3 1.7 Normal Normal 

3 15.1 3.5 7.8 40.4 1.8 Sodic Normal 

4 23.9 4.8 8.3 26.0 2.7 Saline-sodic Alkali 

5 4.8 4.6 7.8 7.8 0.8 Saline Saline 

6 3.7 3.7 7.9 5.5 2.3 Normal Normal 

7 2.1 3.6 7.6 3.4 2.1 Normal Normal 

8 30.2 3.8 7.7 71.3 2.0 Sodic Normal 

9 16.3 3.9 7.7 56.6 2.3 Sodic Normal 

10 19.1 3.9 7.3 52.7 1.7 Sodic Normal 

11 24.4 11.2 7.5 49.8 6.1 Saline-sodic Saline 

12 47.0 23.8 7.6 63.8 4.5 Saline-sodic Saline 

13 3.2 3.9 7.2 5.5 3.9 Normal Normal 

14 3.8 4.3 7.9 6.5 1.4 Saline Saline 

15 71.6 3.6 7.5 71.9 3.4 Sodic Normal 

16 15.1 4.3 7.3 16.8 3.9 Saline-sodic Alkali 

17 17.8 4.6 7.1 20.3 4.1 Saline-sodic Saline 

18 89.9 78.9 10.6 93.0 38.7 Saline-sodic Alkali 

19 10.0 4.9 9.0 11.3 2.2 Saline Saline 

20 22.1 3.4 8.1 75.2 1.7 Sodic Normal 

21 4.9 4.9 7.4 8.1 0.9 Saline Saline 

22 19.3 3.5 7.8 58.3 1.3 Sodic Normal 

23 0.1 6.3 7.8 7.1 0.3 Saline Saline 

24 3.0 3.6 7.4 4.0 1.5 Normal Normal 

25 18.2 9.4 7.5 36.6 3.1 Saline-sodic Alkali 

26 4.8 5.3 7.7 12.4 1.9 Saline Saline 

27 0.4 3.7 7.7 2.1 1.4 Normal Normal 

28 0.2 3.5 7.6 1.9 0.6 Normal Normal 

29 1.3 3.6 7.7 3.6 0.9 Normal Normal 

30 11.6 4.5 7.8 13.3 1.4 Saline Saline 

31 16.6 4.0 8.0 17.7 2.2 Saline-sodic Alkali 

32 27.6 8.4 7.9 42.2 5.9 Saline-sodic Alkali 

33 11.1 4.8 7.9 12.4 2.6 Saline Saline 

34 0.3 3.6 7.9 1.8 1.6 Normal Normal 
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ID ESP EC pHe ECR CROSS USSL Alternative* 

35 70.3 27.9 10.7 78.2 25.0 Saline-sodic Alkali 

36 0.4 4.2 8.1 2.1 0.9 Saline Saline 

37 23.8 5.6 8.1 25.6 3.0 Saline-sodic Alkali 

38 45.9 56.4 9.9 68.1 25.2 Saline-sodic Alkali 

39 2.1 4.3 8.0 3.7 2.2 Saline Saline 

40 1.1 3.7 7.0 3.6 0.7 Normal Normal 

41 2.8 3.5 7.0 4.5 2.7 Normal Normal 

42 15.0 3.7 6.8 46.2 2.5 Sodic Normal 

43 0.5 4.1 7.6 2.6 0.7 Saline Saline 

44 17.2 4.1 7.0 18.8 2.0 Saline-sodic Saline 

45 48.9 14.7 7.2 55.5 2.6 Saline-sodic Saline 

46 28.3 3.9 7.7 77.9 1.2 Sodic Normal 

47 15.2 5.1 8.2 17.6 3.2 Saline-sodic Alkali 

48 2.6 4.1 7.8 8.4 0.7 Saline Saline 

49 10.5 5.1 7.9 11.3 2.7 Saline Alkali 

50 0.9 3.6 8.4 3.7 1.1 Normal Normal 

51 2.1 3.8 8.1 4.8 0.4 Normal Normal 

52 0.6 5.5 8.0 1.3 1.2 Saline Saline 

53 1.1 4.0 8.3 2.1 0.9 Saline Saline 

54 0.2 3.7 7.5 1.5 1.4 Normal Normal 

55 0.8 5.0 7.3 4.6 1.4 Saline Saline 

56 17.4 3.8 8.0 40.6 1.4 Sodic Normal 

57 1.2 4.1 8.1 3.1 1.0 Saline Saline 

58 26.2 3.7 8.5 82.0 3.0 Sodic Alkali 

59 9.2 6.7 8.0 15.4 2.0 Saline Saline 

60 0.1 3.6 8.0 1.8 2.2 Normal Normal 

61 14.5 15.6 8.3 32.0 2.8 Saline Saline 

62 23.1 5.2 7.8 54.5 8.3 Saline-sodic Alkali 

63 27.6 5.8 8.6 30.1 6.6 Saline-sodic Saline 

64 2.6 4.5 8.1 5.6 1.4 Saline Saline 

65 4.6 4.0 8.3 8.8 2.5 Saline Saline 

66 2.0 3.5 8.4 3.5 0.7 Normal Normal 

67 1.5 4.5 7.7 6.4 1.5 Saline Saline 

68 7.1 8.7 7.5 7.8 0.6 Saline Saline 

69 70.3 78.9 7.8 80.0 6.3 Saline-sodic Saline 

70 25.0 3.8 8.1 76.6 2.4 Sodic Normal 

71 21.5 7.6 8.2 22.8 4.6 Saline-sodic Saline 
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ID ESP EC pHe ECR CROSS USSL Alternative* 

72 0.4 5.3 8.1 2.5 1.1 Saline Saline 

73 15.6 3.6 8.1 16.5 6.8 Sodic Normal 

74 18.7 3.6 8.4 53.5 2.5 Sodic Alkali 

75 2.0 4.5 8.0 4.5 0.8 Saline Saline 

76 0.2 3.9 8.4 2.3 0.7 Normal Normal 

77 7.4 4.3 8.3 10.3 2.8 Saline Saline 

78 50.4 31.6 9.3 64.5 20.6 Saline-sodic Saline 

79 1.2 3.8 8.2 3.7 0.5 Normal Normal 

80 25.8 3.5 7.8 62.8 1.1 Sodic Normal 

81 14.3 21.2 7.9 37.1 1.0 Saline Saline 

82 0.1 3.7 8.2 1.6 0.9 Normal Normal 

83 3.3 7.8 7.9 11.2 2.1 Saline Saline 

84 4.7 4.2 8.3 10.1 2.0 Saline Saline 

85 4.2 4.7 8.3 5.8 1.6 Saline Saline 

86 2.1 3.8 8.2 4.8 2.6 Normal Normal 

87 35.8 6.7 8.0 36.8 5.0 Saline-sodic Alkali 

88 0.4 4.2 7.8 2.2 1.1 Saline Saline 

89 3.3 4.1 8.0 5.5 2.4 Saline Saline 

90 1.2 5.3 8.3 6.6 0.8 Saline Saline 

91 3.9 4.6 8.1 5.1 1.6 Saline Alkali 

92 3.3 4.7 7.9 5.5 0.4 Saline Saline 

93 2.5 3.9 8.1 3.9 2.2 Normal Normal 

94 11.3 5.0 8.3 17.7 2.4 Saline Alkali 

95 0.3 3.6 8.2 1.6 2.1 Normal Normal 

96 1.4 3.8 8.0 6.5 1.5 Normal Normal 

97 3.3 5.8 8.0 6.2 1.1 Saline Saline 

98 37.2 4.0 8.5 87.4 5.5 Sodic Alkali 

99 20.8 6.2 7.8 22.3 1.1 Saline-sodic Saline 

100 0.3 4.3 8.2 4.3 0.7 Saline Saline 

101 0.1 3.7 8.0 1.6 1.0 Normal Normal 

102 5.1 1.6 7.3 12.4 1.8 Normal Normal 

103 15.1 1.2 7.5 16.7 2.5 Sodic Normal 

104 50.4 1.1 8.0 51.2 4.1 Sodic Normal 

105 16.2 2.0 7.6 16.1 9.3 Sodic Normal 

106 77.0 33.4 10.0 78.1 12.5 Saline-sodic Alkali 

107 72.2 5.8 10.0 74.7 15.1 Saline-sodic Alkali 

108 59.8 31.5 9.5 63.4 6.0 Saline-sodic Alkali 
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ID ESP EC pHe ECR CROSS USSL Alternative* 

109 71.2 53.9 10.1 84.1 45.0 Saline-sodic Alkali 

110 74.8 66.9 9.7 87.2 29.3 Saline-sodic Alkali 

111 28.2 3.0 7.9 30.2 7.8 Sodic Normal 

112 48.8 3.0 9.4 52.2 11.1 Sodic Alkali 

113 55.0 5.9 9.8 64.0 18.0 Saline-sodic Saline 

114 58.5 15.5 10.0 75.8 22.5 Saline-sodic Alkali 

115 1.0 1.7 7.5 6.0 0.5 Normal Normal 

116 2.3 0.7 7.7 7.6 1.3 Normal Normal 

117 2.7 0.7 7.7 7.9 1.7 Normal Normal 

118 2.8 0.5 7.7 2.8 2.2 Normal Normal 

119 1.6 0.3 7.0 3.9 1.8 Normal Normal 

120 5.4 0.6 6.9 5.4 2.5 Normal Normal 

121 50.8 3.1 9.6 55.1 18.5 Sodic Alkali 

122 46.9 8.2 9.9 53.0 22.7 Saline-sodic Alkali 

123 53.6 7.6 9.8 62.2 9.6 Saline-sodic Saline 

124 56.9 11.3 9.8 66.3 10.2 Saline-sodic Saline 

125 47.0 25.4 7.7 73.8 5.6 Saline-sodic Saline 

126 63.8 14.0 9.9 76.5 19.5 Saline-sodic Alkali 

127 64.3 23.0 10.0 74.4 21.6 Saline-sodic Alkali 

128 57.9 19.9 10.1 75.8 24.2 Saline-sodic Alkali 

129 44.2 29.7 9.8 71.9 26.1 Saline-sodic Alkali 

130 58.8 40.1 9.6 76.5 28.2 Saline-sodic Alkali 

131 0.5 1.7 7.3 2.3 0.6 Normal Normal 

132 0.4 0.4 7.5 1.3 2.0 Normal Normal 

133 0.2 0.4 7.5 1.0 2.8 Normal Normal 

134 1.2 1.1 7.5 3.3 1.3 Normal Normal 

135 0.2 0.5 7.5 0.9 1.8 Normal Normal 

Sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), exchangeable cation 

ratio (ECR), cations ratio of soil structural stability (CROSS). USSL= US salinity lab,  

* Alternative = criterion by Chhabra (2004) and Szabolcs (1989), takes into account the soluble 

salt ions besides soil ESP, EC and pH. 

  



Appendices  

157 

 

Appendix 2.10 
 

 

Figure A2.10a Referential classification pathway of the USSL classifications based on the 

decision tree algorithm.  

 

 

Figure A2.10b Referential classification pathway of the Alternative classifications based 

on the decision tree algorithm. 

a 

b 
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Appendix 2.11 

 

 

 

Figure A2.11 Variogram and model fitting for soil ESP (a), EC (b) and fitted covariance 
models on a variogram (c). 
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Appendix 2.12 

 

 
 

 

 

Figure A2.12 Maps showing the spatial distribution for soil ESP (a) and EC (b), by using 
the inverse distance weighted interpolation method (Weber, 2018). 
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Appendix 2.13 

 

 

Figure A2.13 Spatial prediction for soil ESP (a) and EC (b), interpolated through ordinary 
kriging. Background image: terrain from Stadia-Map (2023) 
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Appendix 2.14 

 

 

Figure A2.14 Textural classes by salt-affected soil (Alternative) classes for soil ECe (a) 
and ESP (b) of the sampling, on the soil textural triangle (USDA system) 

a 

b 
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Appendix 3.1 

Table A3.1a Descriptive statistics of explanatory (soluble salt ions) and response variables 

Item Mean SD CV Min Max Median Count 

Ca2+ 3.7 4.5 1.2 0.1 26.2 2.2 125 

Mg2+ 1.7 1.9 1.1 0.09 9.4 1.0 125 

Na+ 27.4 54.9 2.0 0.02 326.1 5.6 125 

K+ 0.5 0.5 1.0 0.02 2.2 0.4 125 

Cl– 17.4 35.3 2.0 0 205.0 5 125 

SO4
2– 14.2 29.6 2.1 1.2 153.4 3.7 125 

HCO3
– 5.4 6.6 1.2 0.5 34.0 3.0 125 

CO3
2– 6.3 22.2 3.5 0.0 134.0 0.0 125 

ESP 16.3 20.4 1.2 0.1 77.0 4.9 125 

ECe 6.1 6.5 1.1 0.3 33.4 4.1 125 

SD = standard deviation; CV = coefficient of variation. 

Table A3.1b Setting of parameters for model training and cross-validation analysis. 

Model Algorithms Parameters/Values 

ECe and ESP 

Regression 

PLS-R Number of components: 1 (ECe), 3 (ESP) 

SV-R  CF grid: 0.01, 0.1, 0.25, 0.5, 1 

RF-R NT of 3000, MTRY of 5 (ECe), 2 (ESP) 

Multiple 

classification  

PLS-DA Number of components: 2 

SVM-C  CF grid: 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 

RF-C NT of 3000, NS of 10, MTRY of 2 

R = regression; C = classification; NT = number of trees; NS = minimum node size; MTRY = number of 
randomly selected predictors; CF = capacity factor for SVM. 

Table A3.1c Correlation matrix among sums of soluble and exchangeable cations, sodicity 
parameters, and ECe. 

 
Sum-Sol 

Cations 

Sum-Sol-

Anions 

Sum-Exc-

Cations 
SAR ESR ESP ECe 

Sum-Sol Cations 1       

Sum-Sol-Anions 0.78 1      

Sum-Exc-Cations 0.32 0.42 1     

SAR 0.90 0.75 0.33 1    

ESR 0.57 0.77 0.45 0.61 1   

ESP 0.66 0.75 0.50 0.66 0.93 1  

ECe 0.81 0.84 0.30 0.73 0.64 0.64 1 

Sum-Sol = Sum of soluble; Sum-Exc = Sum of exchangeable; SAR = sodium adsorption ratio; ESR = 
exchangeable sodium ratio (ESP/100-ESP). 
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Appendix 3.2 

 

Table A3.2 Vegetation indices derived from the satellite image bands, and their equations. 

Index Abbreviation Equation* Reference† 

Normalized Vegetation 

Index  

NDVI 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 1, 3, 4 

Normalized Difference 

Infrared Index  

NDII 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 2 

Extended NDVI ENDVI 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 − 𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 + 𝑅
 1,3 

Simple Ratio Vegetation 

Index  

SRVI 𝑁𝐼𝑅

𝑅
 3, 4 

Canopy Response 

Salinity Index  

CRSI 

√
(𝑁𝐼𝑅 ∗ 𝑅) − (𝐺 ∗ 𝐵)

(𝑁𝐼𝑅 ∗ 𝑅) + (𝐺 ∗ 𝐵)
 1, 3, 4 

Enhanced Vegetation 

Index  

EVI 
2.5 𝑥 

𝑁𝐼𝑅 − 𝑅

(𝑁𝐼𝑅 + 6𝑅 − 7.5𝐵 + 1)
 1, 3, 4 

Generalized Vegetation 

Index  

GDVI 𝑁𝐼𝑅2 − 𝑅2

𝑁𝐼𝑅2 + 𝑅2
 1, 3, 4 

Combined Spectral 

Response Index  

COSRI 𝐵 +  𝐺

𝑅 +  𝑁𝐼𝑅
∗ 𝑁𝐷𝑉𝐼 5 

Soil Regulation 

Vegetation Index  

SAVI (𝑁𝐼𝑅 − 𝑅)(1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 1, 3, 4 

Clay Index  CLEX 𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅2
 2 

Brightness index  BI √𝑅2 + 𝑁𝐼𝑅2 5 

* B = B2 (blue), G = B3 (green), R = B4 (red), NIR = B5, SWIR1 = B6, SWIR2 = B7. 

† 1) Li Yanan 2021, 2) Wang F. et al. 2019, 3) Aksoy et al. 2022, 4) Wang J. et al. 2021, 5) Moreira 

et al., 2015. These references are not necessarily the original sources for the above-listed indices. 
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Appendix 3.3 

 

 

Figure A3.3 Geomorphometric (elevation derived) features - High Valley of Cochabamba 
(based on DEM) 
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Appendix 3.4 

 

 

Figure A3.4 Correlation matrix for the geomorphometric features 

  



Characterization, prediction, and remediation of salt-affected soils in the High Valley 

166 

 

Appendix 3.5 
 

Table A3.5a Confusion matrixes of the predictions for the three ML classification 
algorithms. 

Class 
PLS-DA SVM-C RF-C 

NO SA SS SO NO SA SS SO NO SA SS SO 

Normal 9 2 1 5 9 2 1 4 9 0 0 1 

Saline 1 6 1 0 1 6 0 0 1 8 0 1 

Saline–sodic 0 0 5 0 0 0 5 0 0 0 7 1 

Sodic 0 0 0 0 0 0 1 1 0 0 0 2 

NO = normal; SA = saline; SS = saline–sodic; SO = sodic. 

 

Table A3.5b Sensitivity and specificity for the three classification models. 

Class 
Sensitivity Specificity 

PLS-DA SVM-C RF-C PLS-DA SVM-C RF-C 

Normal 0.90 0.90 0.90 0.60 0.65 0.95 

Saline 0.75 0.75 1.00 0.91 0.95 0.90 

Saline–sodic 0.71 0.71 1.00 1.00 1.00 0.96 

Sodic 0.00 0.20 0.40 1.00 0.96 1.00 
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Appendix 3.6 

Table A3.6 Factor analysis for the response and explanatory variables as geomorphometric 
features of multivariate regressions. Obtained through the R-base function Factanal. 
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Appendix 3.7 

Table A3.7a Coefficients and P(>|t|) values for the multivariate models to predict soil ESP 
from geomorphometric features as predictors. 

 

Table A3.7b Coefficients and P(>|t|) values for the multivariate models to predict soil EC 
from geomorphometric features as predictors. 
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Appendix 4.1 

 

Figure A4.1 Possible mechanisms for the effects of biochar on physical/biological 
properties of salt-affected soils (Saifullah et al., 2017) 

Table A4.1 Referential biochar properties from lab-test report (Eurofin – 2017, Germany) 
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Appendix 4.2 
 

 

Figure A4.2 Illustration showing the structure and setup of a soil column. 
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Appendix 4.3 

 

 

Figure A4.3a. Evolution of sodium concentration in the leachates. 

 

 

Figure A4.3b. Evolution of electrical conductivity in the leachates. 

a 

b 
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Appendix 4.4  

Table A4.4a Effect of manures combined with gypsum levels on soil properties, compared 
to the control. 

Treatment 
ESP 

(%) 

ECe 

(dS m−1) 
pH 

Leached 

Na+ (%) 

CH-GY100 1.23 a (98.2) 0.82 a (96.6) 8.45 a (12.0) 97.25 a 

CH-GY75 2.40 a (96.5) 1.00 a (95.9) 8.45 a (12.0) 94.16 b 

CH-GY50 2.95 a (95.6) 1.14 a (95.3) 8.44 a (12.1) 93.45 b 

CA-GY100 1.14 a (98.3) 0.92 a (96.2) 8.58 b (10.6) 97.71 a 

CA-GY75 3.05 a (95.5) 0.98 a (95.9) 8.69 c (9.5) 93.21 b 

CA-GY50 2.69 a (96.0) 1.23 b (94.9) 8.58 b (10.6) 94.80 b 

NM-GY100 6.31 b (90.7) 0.90 a (96.3) 9.15 e (4.7) 86.85 c 

NM-GY75 12.74 c (81.2) 1.35 b (94.4) 9.53 f (0.7) 72.91 d 

NM-GY50 13.81 c (79.6) 1.57 b (93.5) 9.46 f (1.5) 73.83 d 

Control 31.34 d (53.6) 5.00 c (79.3) 8.83 d (8.0) 40.78 e 

CH = chicken manure, CA = cattle manure, NM = no manure, GY = gypsum. Means sharing a letter are 

not significantly different according to the Scott-Knott test (p = 0.05). Values in parenthesis indicate the 

decrease (%) over the respective value of soil before reclamation. 

Table A4.4b Evolution of EC (dS m−1) in the leachates at each leaching cycle. 

 Cycle of Leaching 

Treatment 1 2 3 4 

Control * 83.0 (2.4) 31.6 (2.2) – – 

NM-GY50 71.5 (3.3) 5.3 (1.7) 4.3 (0.7) 2.4 (0.5) 

NM-GY75 67.5 (5.8) 5.4 (0.8) 4.6 (0.4) 2.6 (0.4) 

NM-GY100 69.3 (4.5) 6.2 (2.2) 4.6 (1.0) 2.8 (0.8) 

CA-GY50 78.4 (3.8) 5.7 (0.2) 3.6 (0.5) 1.5 (0.7) 

CA-GY75 78.2 (6.6) 5.1 (0.2) 3.9 (0.2) 2.3 (0.2) 

CA-GY100 77.0 (6.9) 6.3 (0.1) 3.5 (0.3) 2.2 (0.2) 

CH-GY50 75.4 (1.3) 6.7 (0.5) 4.3 (0.4) 2.2 (0.4) 

CH-GY75 81.9 (2.6) 6.0 (0.3) 3.5 (0.4) 2.6 (0.4) 

CH-GY100 72.5 (1.1) 8.5 (0.7) 3.4 (0.2) 2.3 (0.3) 

Values in parenthesis indicate the standard deviation. * Two cycles of leaching were applied to the control 

due to the length of its percolation time (Figure 8.3). 
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Appendix 4.5 

 

 

Figure A4.5 Evolution of sodium adsorption ratio (SAR) in the leachates at each leaching 
cycle. GY = gypsum, CA = cattle manure, CH = chicken manure. 
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ANNEX 2 
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ANNEX 4 

 

Summary of the article: Estimation of exchangeable sodium percentage from 
sodium adsorption ratio for salt-affected soils from the high valley of 
Cochabamba. 

Andrade Foronda, D.; Rodríguez G., E.; Colinet, G. (2020). Estimación del 
Porcentaje de Sodio Intercambiable en Función de la Relación de Adsorción de 
Sodio para Suelos Afectados por Sales. Rev. Agric. 62, 31–36. 

This study aimed to generate and evaluate simple regression models to estimate soil 
exchangeable percentage (ESP) from sodium adsorption ratio (SAR) and SAR from 
electrical conductivity (EC) based on a soil sampling from the High Valley of 
Cochabamba. 

 

Materials and methods 

The soil samples were collected at a depth of ~25 cm from the High Valley of 
Cochabamba - Bolivia. Some soil properties of the soil observations are listed in Table 
A4.1. Lab measurements, determination and calculations of continuous variables were 
done following the standard procedures of Richards et al. (1954). 

Table A4.1 Descriptive statistics of some soil properties for calibration (a) and validation 
(b) dataset. 

Property 
Calibration  Validation 

Mean Min Max SD  Mean Min Max SD 

ECe (dS.m-1) 2.22 0.17 20.60 3.31  2.88 0.34 31.50 7.19 

pH 7.93 6.84 8.97 0.39  7.72 6.92 9.82 0.69 

Sand (%) 30.81 4.60 57.46 13.02  28.99 8.75 72.71 14.53 

Silt (%) 46.31 23.00 73.46 9.74  44.07 16.33 65.86 13.56 

Clay (%) 22.88 7.48 65.40 9.69  26.94 5.88 63.54 15.48 

OM (%) 1.78 0.50 6.00 1.06  0.85 0.05 2.48 0.80 

SAR  7.22 0.01 58.40 10.90  17.94 0.50 75.90 22.88 

ESP (%) 8.60 0.00 60.97 11.50  13.22 0.20 61.70 19.99 

SD means standard deviation. 

The linear models to predict ESP from SAR and SAR from EC were generated 
through the following linear regression mathematical formula:  

    𝑌 = 𝑏0 + 𝑏1 ∗ 𝑥    
 Where Y is the dependent variable, b0 and b1 are the linear regression beta 
coefficients for the intercept and slope, respectively, and x is the independent variable.  
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The metrics used to assess the performance of simple regression models were the 
coefficient of determination - R2 (Eq. 5), the root mean square error – RMSE (Eq. 6) 
and the residual standard error – RSE (Eq. 8) Additionally, a paired sample T-test was 
used to assess the differences between the predicted and measured values. Statistical 
analysis was performed by using the R software v.3.1.9 (R Core Team, 2013).  

 

Results and discussion  

The correlation coefficient between soil exchangeable percentage (ESP) and sodium 
adsorption ratio (SAR) was high (0.92) and between SAR and electrical conductivity 
(EC) was moderately high (0.65). The linear regression to predict soil ESP from SAR 
(𝐸𝑆𝑃 = 0.9725 ∗ 𝑆𝐴𝑅 + 1.5765) showed a better association (R2 of 0.85, RSE of 4.5) 
between the variable to be predicted and the predictor, than that (R2 of 0.41, RSE of 
8.4) to predict SAR from EC (𝑆𝐴𝑅 = 2.129 ∗ 𝐸𝐶 + 2.499), as shown in Figure A4.1.  

 

 

 

Figure A4.1 Fitted linear regression models to predict ESP from SAR (a) and SAR from 
EC (b). 
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The paired sample T-test (Table A4.2) for the obtained model (𝐸𝑆𝑃 = 0.9725 ∗
𝑆𝐴𝑅 + 1.5765) showed that the predicted ESP values are not different from those of 
the measured ESP from the testing dataset. This result is consistent with the findings 
of Seilsepour et al. (2009); Elbashier et al. (2016a); Zare et al. (2014); and Chi et al. 
(2011), and the estimated ESP through the widely used USSL model (𝐸𝑆𝑃 =
0.01475 ∗ 𝑅𝐴𝑆 − 0.0126) was not significantly different from the measured values, 
thus more efficient than the obtained model. According to the approach of Bland and 
Altman (1999), the differences between the estimated and measured soil ESP values 
have a normal distribution since 95% of the predicted values fall between 5.81% ± 
1.96 SD of the measured values. Besides the addition of salt-affected soil samples to 
the dataset, logarithmic or square-root regressions can be fitted to probably 
outperform the linear model as evaluated by Chi et al. (2011). The T-test also shows 
that the difference between the predicted SAR from EC values (𝑆𝐴𝑅 = 2.129 ∗ 𝐸𝐶 +
2.499) and measured SAR values in the validation dataset was significantly different  
in contrast to that obtained by the model (𝑆𝐴𝑅 = 0.464 ∗ 𝐸𝐶 + 7.077) of Seilsepour 
and Rashidi (2008) which was assessed in a similar soil texture to that of this study 
(Table A4.2). 

Table A4.2 Paired sample T-test between the predicted and measured values for the 
generated and reference models to predict ESP from SAR and SAR from ECe. 

Model 
Average 

difference* 

SD of the 

difference* 

P 

value 

95% CI of the 

difference 

𝐸𝑆𝑃 = 0.9725 ∗ 𝑆𝐴𝑅 + 1.5765 1 5.81 12.40 0.063 -0.35, 11.98 

ESP from SAR (USSL)2 2.91 11.18 0.285 -2.65, 8.47 

𝑆𝐴𝑅 = 2.129 ∗ 𝐸𝐶 + 2.499 1 9.30 16.78 0.03 -17.64, -0.95 

𝑆𝐴𝑅 = 0.464 ∗ 𝐸𝐶 + 7.077 (SR)3 -0.11 1.26 0.747 -0.80, 0.59 

(1) Generated models, (2) ESP/(100 − ESP) = 0.01475*SAR − 0.0126 (Richards et al., 1954), 

 (3) Seilsepour and Rashidi (2008) 

* Expressed in percentage for soil ESP and dS m-1 for EC. 

 

Conclusion 

The simple regression to predict soil ESP from SAR  𝐸𝑆𝑃 = 0.9725 ∗ 𝑆𝐴𝑅 +
1.5765 was more efficient than that estimating SAR from EC; however, the model 
from the USSL still outperformed such obtained model in forecasting the ESP. Further 
validation is needed with additional samples to increase the accuracy of the model, 
then can be used for predicting ESP in the High Valley. 
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ANNEX 5 
 

Summary of the article:  

Gypsum and sulphur to reclaim saline-sodic soil: pot experiment. 

Andrade Foronda, D.; De Froidmont, C.; Colinet, G. (2020). Yeso Agrícola y Azufre 

para la Remediación de un Suelo Salino-Sódico del Valle Alto de Cochabamba. Rev. 
Agric. 62, 65–72. 

 

This experiment aimed to assess the effect of gypsum and sulphur at two doses in 
reclaiming sodicity and salinity of a saline-sodic soil from the High Valley of 
Cochabamba, and to identify the most effective amendment(s) and dose(s), and to 
identify the most effective amendment(s) and dose(s). 

 

Materials and methods 

The soil was collected in the High Valley of Cochabamba (17º 32'38.6" S, 
65º51'41.9" W) at a depth of 20 - 25 cm. The experiment was carried out in a 
greenhouse at the Faculty of Agricultural Sciences (UMSS - Bolivia). The soil 
properties were bulk density of 1.4 g cm-3, cation exchange capacity of 5.1 cmolc kg-

1, electrical conductivity (EC) of 22.7 dS m-1, exchangeable soil percentage (ESP) of 
69.7% pH of 9.6, 19.3% clay, 54.9% silt and 25.8% sand. The irrigation water had an 
EC of 2.3 dS m-1, pH of 8.1 and Na+ concentration of 25 mg L-1. The purity of gypsum 
(GY) was 91.7% (18.5% Ca2+), and the purity of sulphur (SU) was 97.5%. The 
gypsum requirement (GR) to lower the ESP to at least 15% was calculated through 
the equation used by Hoffman and Shannon (2007) and Lebron et al. (2002), and the 
sulphur requirement was determined as the GR multiplied by a factor of 5.38 
(Richards et al., 1954). The soil was dried, homogenized and 4mm sieved, and then 
mixed with GY or SU at a dose of 50% or 100% of the calculated GR and requirement. 
Each pot of 2.5 L volume was adapted to collect the leachate (Figure A2.1) and then 
filled with two kilograms of soil/mix over a layer of two cm gravel. The volume of 
leaching water was calculated through the pore volume. (PV) formula proposed by 
Kahlon et al. (2013) and Ahmad et al. (2016). An initial water volume of 490 ml (3/4 
PV) was added to saturate the soil, and then five lixiviations – each of 660 ml as one 
PV – were applied until a relatively constant EC was reached in the leachates. After 
reclamation, soil samples were collected from each pot and then analysed. The pH 
was determined through the 1N KCl method and the EC was measured in the soil: 
water (1:5) suspension and converted to EC of paste extract (ECe) using a conversion 
factor (Sonmez et al., 2008). Exchangeable cations were measured through the Metson 
method at pH 7 and atomic adsorption spectroscopy (AAS). Soil ESP and SAR were 
calculated by using the formulas proposed by Hazelton & Murphy (2007) and 
Richards et al. (1954), respectively. The experimental design was completely 
randomized with five replications. The treatments were: GY-50%, GY-100%, SU-
50%, SU-100%, and no amendment. Mean comparisons among treatments were 
performed by using the LSD–Tukey adjustment (p < 0.05). 
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A5.1 Figure Adapted pot for leachate collection. 

Results and discussion 

There were no significant differences in the combination between the amendment 
and dose levels. Gypsum was more effective than sulphur and only water in reducing 
the initial soil ESP (69.7%) by over 30% (Figure A5.2a). The initial soil ECe (22.7 dS 
m-1) decreased by over 50% either with gypsum or sulphur or without amendment 
(Figure A5.2b). Gypsum and sulphur reduced soil pH by equal magnitude (Figure 
A5.2c).  

Gypsum was superior in improving soil salinity/sodicity, agreeing with the results 
obtained by Qadir et al. (1996), Ahmad et al. (2016) and Tavares et al. (2012); 
however, Manzano Banda et al. (2014) found that only leaching was as effective as 
either gypsum, sulphur or manure in ameliorating saline-sodic soil. The lower 
effectiveness of sulphur was likely due to the insufficient incubation time and low soil 
organic matter content since sulphur needs to be oxidized by microbiological activity 
and oxygen to form sulphuric acid, which in turn dissolves the calcite in the soil 
generating the Ca2+ needed to remove the exchangeable Na+; in this regard, Hanson et 
al. (2006) stated that the effect of sulphur is slower in comparison to the direct 
application of sulphuric acid, therefore, it is presumed that a longer incubation time 
was needed for the sulphur treatments. Moreover, the reduction in soil ESP by gypsum 
was proportional to that of pH in concordance with the conclusions of Gupta et al. 
(1981) and Abrol et al. (1980). The efficiency of any treatment to lower EC can be 
explained by the effect of sole water on the leaching of soluble salts including Na+ 
which precipitates forming Na2SO4 as mentioned by Legros (2007) and Abdel-Fattah 
(2012). Because the interaction between the type of amendment and dose was not 
significant, it was likely that a dose of 50% of either gypsum or sulphur was sufficient 
to improve the soil sodicity. Further evaluations are needed, including intermediate 
doses – besides 50 and 100% – of 25%, 75% and 125% as well as different soil types.  
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Figure A5.2 Effect of gypsum and sulphur addition on soil ESP (a), ECe (b), and pH (c). 
The soil ESP and pH differences represent the subtractions between before and after 

remediation. Means sharing a letter are not significantly different. Tukey test (p< 0.05). 

a 

b 

c 
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The cumulative Na+ in the leachates (Figure A5.3) of gypsum treatments showed 
higher values than those of sulphur, in concordance to the soil ESP values after 
reclamation. In terms of salinity, leaching alone was as effective as gypsum or sulphur 
in lowering soil EC, agreeing with Manzano Banda et al. (2014) and Hernández 
Araujo (2012), who found that reduction in soil salinity and sodicity was largely due 
to the only-water additions in contrast to the amendment application. Moreover, the 
findings of Zambrana Yañez et al. (2020) - summarized in Annex 9 - show the effect 
of gypsum addition under non-leaching conditions. Overall, gypsum was more 
effective than sulphur in reclaiming the soil sodicity however, none of the 
amendments reached the soil ESP threshold value of 15% (USSL classification) 
probably due to the high initial ESP and clogging of soil pores and the insufficient 
incubation time and soil conditions for Sulphur. 

 

 

Figure A5.3 Cumulative sodium (mg) in the leachates 

Conclusions 

Gypsum and sulphur with leaching somehow improved the saline-sodic condition 
of the soil, however, without reaching the soil EC, pH and ESP threshold values of 
the USSL classification. Gypsum was more effective than sulphur in reducing soil 
ESP, mainly due to its readily available calcium content which facilitates the 
displacement of sodium and subsequent improvement of soil structure, in contrast to 
the sulphur which needed additional time for incubation and later calcium formation. 
The decrease in ECe with water alone was considerable (over 50%) to the same extent 
as the treatments with amendments. The dose of 50%, either for gypsum or sulphur, 
showed a similar effect as that of 100% in improving soil sodicity. Up to three 
lixiviations were sufficient for improving soil salinity and sodicity. Gypsum with 
leaching might be an alternative to remediate sodic and saline-sodic soils, however, 
further evaluations are needed considering intermediate doses such as 25% and 75% 
as well as different soil types, and a longer incubation period for sulphur addition. 
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ANNEX 6 

 
Summary of the article:  

Organic amendments to reclaim a saline-sodic soil: pot experiment. 

Castellón, D. ; Andrade Foronda, D. (2020). Enmiendas Orgánicas para la 

Remediación de Suelos Salino-Sódicos del Valle Alto de Cochabamba. Rev. Agric.62, 

57–64. (Coauthor) 

 

This pot experiment aimed to evaluate the effect of four organic amendments (cattle 
manure and chicken manure, biochar and peat) at two doses (1 and 2% of organic 
matter w/w) in ameliorating a saline-sodic soil from the High Valley of Cochabamba, 
and to identify the most effective amendment(s) and dose(s). 

 

Materials and methods 

The experiment was carried out in a greenhouse at the Centre for Vegetable Seeds 
Production - ‘Instituto Nacional de Investigación Agropecuaria’ (17°26'25.72" S, 
66°20'44.0" W). The soil was collected from the High Valley of Cochabamba 
(17°32'38.6" S, 65°51'41. 9" W) at a depth of ~25 cm and its properties were: silt-
loam texture, bulk density of 1.4 g cm-3, organic matter content of 1.2%, electrical 
conductivity (ECe) of 16.2 dS m-1, exchangeable sodium percentage (ESP) of 68.1% 
and pH of 9.66. The exchangeable Ca2+, Mg2+, K+ and Na+ contents were 80.2, 6.2, 
5.6 and 196.0 mg100g-1, respectively. The organic amendments – whose properties 
are shown in Table A6.1 – used for this study, were Biochar, tropical peat, cattle 
manure and chicken manure.  

Table A6.1 Chemical properties of organic amendments. 

Parameter Peat Biochar 
Cattle 

manure 

Chicken 

manure 

EC (dS.m-1) 0.72 1.03 3.75 5..48 

Organic matter (%) 22 13 47 34 

pH 3.6 9.74 8.5 8.0 

Ca 2+ (%) 0.62 1.25 1.87 14.37 

Mg 2+ (%) 0.75 0.75 1.88 3.38 

K + (%) 0.0 0.0 1.25 0.4 

Na + (%) 0.0 0.0 0.01 0.69 

N (%) 13 4.6 12 17.66 

P (%) 0.0 0.09 0.67 2.61 

EC = electrical conductivity 
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The soil was homogenized, dried and 2 mm sieved, and organic amendments were 
dried, and 4 mm sieved,  and then added to the soil (1300 g) at doses of 12 g and 24 g 
calculated as 1% and 2% of organic matter content on a dry soil basis, respectively. A 
leachate collector was connected to the bottom of each pot of ~1L volume. The soil 
along with amendment was placed over a one cm layer of gravel. The properties of 
leaching water were pH of 7.12, EC of 0.23 dS m-1, Ca2+ of 0.75 meq L-1, Mg2+ of 0.75 
meq L-1 and Na+ of 1.24 meq L-1; and its volume was calculated using the pore volume 
(PV) formula proposed by Ahmad et al. (2016). To saturate the soil, ¾ PV was added 
and then five PV (each of 390 ml) were applied to each pot until a relatively constant 
EC in the leachates was reached. The leachates were collected after each lixiviation 
and soil samples were collected after the fifth addition of water. Soil EC was measured 
in a 1:5 (soil: water) suspension and was converted to EC of paste extract through a 
factor (Sonmez et al., 2008). Exchangeable cations were determined through a 
modified Metson method at a pH of 7. Soluble Ca2+ and Mg2+ were determined 
through titration and Na+ was measured by using the Laqua Twin® Na-11 device. The 
soil ESP was calculated according to the formula proposed by Hazelton and Murphy 
(2007) and the SAR by applying the formula of Richards et al. (1954). The 
experimental design was completely randomized with two factors (amendment and 
dose). Tukey's (p < 0.05) was used for mean comparisons among treatments. 

 

Results and discussion 

The effect of amendment x dosage on soil ESP was significant (p < 0.05), but not 
for soil ECe and pH. Any amendment at any dose decreased the soil ESP by over 28% 
concerning the initial value (68.1%) followed by peat at a dose of 1% (Figure A6.1a); 
these results agree with those of Chaganti and Crohn (2015) and Chaganti (2014) who 
evaluated the effectiveness of composts and biochar in improving sodicity; however, 
it is important to remark the statement of Saifullah et al. (2018) who affirmed that 
removal of Na+ out of the soil can be insufficient despite many studies reported 
significant improvements in soil salinity/sodicity as well in plant growth because is 
mostly due to the sorption of Na+ salts by biochar. The soil ECe was reduced by over 
60% through any amendment (Figure A6.1b). Soil pH was slightly reduced by any 
amendment except biochar which increased the pH (Figure A6.1c) probably due to its 
initial pH (9.74) coinciding with García (2013). The effectiveness of organic 
amendments in reducing soil ESP and ECe, also agrees with the results of Sastre-
Conde et al. (2015), Guo et al. (2019), and David and Dimitrios (2002). The low 
effectiveness of peat was probably due to its high swelling capacity (1.85 g 
water/gpeat) which can lead to the clogging of the pores system. 

 

Conclusions 

Manures, biochar and peat were effective in reducing soil ESP and ECe, however 
without reaching the threshold values of the USSL classification, which can be 
explained by the insufficient Ca2+ for displacing exchangeable Na+ and then 
improving the soil structure, and due to the specific characteristics of the organic 
amendments. Further investigation is needed to validate the effectiveness of locally 
available amendments in different types of soil and various doses. 
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Figure A6.1 Effect of organic amendments on soil ESP (a), ECe (b); and pH (c). The ESP 
and pH differences represent the subtractions between before and after remediation. Means 
sharing a letter are not significantly different and the bars indicate the standard error. Tukey 

test (p< 0.05). 

a 

b 

c 
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ANNEX 7 

 

Summary of the article: Application of gypsum and organic amendments for 
reclaiming a saline-sodic soil 

Quispe Zenteno I.; Gutiérrez Rodríguez E.; Andrade Foronda D. (2020). Aplicación de 

yeso agrícola y enmiendas orgánicas para la remediación de suelos salino-sódicos. Rev. 

Agric.62, 57–64. (Coauthor) 

  

The objective of the study was to evaluate the effect of adding gypsum, cattle 
manure and chicken manure on the sodium exchangeable percentage (ESP), electrical 
conductivity (EC) and pH of a saline-sodic soil. The study was carried out at the 
location (17°32'38.6" S, 65°51'41. 9" W) of Santa Ana - High Valley of Cochabamba, 
through an experimental plot. The treatments were: Control, cattle manure, chicken 
manure, cattle manure and gypsum, chicken manure and gypsum, and sole gypsum. 
The dose for manures was 26 t/ha as 1% of organic matter (w/w), and 16 t/ha for 
gypsum as the requirement to reach the ESP threshold value of 15%. The soil before 
properties were a soil ESP of 80.2%, EC of 13.1 dS m-1 and pH of 8.53. All treatments 
except the control were equally effective in lowering the soil ESP, any amendment 
was not effective in decreasing the soil EC, and gypsum alone and chicken manure + 
gypsum were more effective in reducing the soil pH (Table A7.1), but without 
reaching the USSL threshold values. Further validation is needed in the early stage of 
the rainy period. 

Table A7.1 Average values of soil ESP, EC and pH in the reclaimed soil, for the 
treatments with manures and gypsum, besides the control (Based on Quispe Zenteno et al., 

2020) 

Treatment pH EC (dS m-1) ESP (%) 

Control 8.49 a 14.38 a 89.11 a 

Cattle manure 8.10 ab 17.20 a 30.80 b 

Chicken manure 7.73 ab 26.48 a 33.90 b 

Bovine manure + gypsum 7.86 ab 29.88 a 38.31 b 

Chicken manure + gypsum 7.58 b 16.77 a 26.66 b 

Gypsum 7.28 b 9.92 a 22.48 b 

Means sharing a letter are not significantly different, according to the test Tukey (P < 0.05). 

 

Moreover, in the year of the field experiment (2019) the average costs of the 
amendments were approximately: gypsum (2,300 USD ha-1), bovine manure (2,990 
USD ha-1) and chicken manure (3,180 USD ha-1), these costs are affordable 
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considering some average incomes per hectare from agricultural and livestock 
production in the area; however to have a proper economical evaluation and 
comparison, further assessment should consider farmers’ income alternatives, 
including grains, vegetables, and forage crops, cultivated on the reclaimed soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A7.1 Effect of manures or/and gypsum on soil ESP and %DM after remediation, 
where means sharing a letter are not significantly different (Tukey test, p< 0.05), besides 

costs (a). Setup and addition of amendments in the experimental plots (b) by Quispe Zenteno 
et al. (2020). 



Annexes  

215 

 

ANNEX 8 

Summary of the article: Evaluation of phytodesalination capacity of four 
halophytes for a saline-sodic soil 

Mamani Flores J.; Arzabe Maure O.; Andrade Foronda D. (2020). Evaluación de la 

capacidad de fitodesalinización de cuatro halófitas en un suelo salino-sódico. Rev. Agric.62, 

57–64. (Coauthor) 

 

Phytoremediation can be considered a low-cost alternative to chemical 
amelioration. Halophytes are plant species with a significant removal capacity of salts 
and Na+ from salt-affected soils. The study aimed to evaluate the potential of four 
halophytes to desalinize saline-sodic soil. The target soil (ECe of 47.0 dS m-1 and 3.4 
g Na+ kg-1 soil) was collected from the High Valley of Cochabamba-Bolivia. The 
assessed halophytes were: Suaeda fruticosa Moq, Sesuvium portulacastrum, Atriplex 
hortensis and Kochia scoparia (Figure A8.1). The pot experiment was carried out 
under non-leaching conditions for 70 days and using 37-day-old seedlings.  

 

 

Figure A8.1 Assessed halophytes for phytodesalination capacity (Mamani Flores et al., 
2020). 
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Table A8.1 Soil ECe and Na+ values after phytoremediation (p<0.05). Based on Mamani 
Flores et al. (2020). 

Halophyte ECe (dS m-1) Na+ (g kg-1 soil) 

S. fruticosa Moq 35.5 a 3.18 a 

S. portulacastrum 36.1 b 3.23 b 

A. hortensis 36.8 c 3.24 b 

K. scoparia 37.6 d 3.00 c 

 

The results showed that S. fruticosa Moq. and S. portulacastrum were relatively 
better than the alien halophytes in decreasing the soil ECe and Na+ content compared 
to the soil before. S. fruticosa and S. portulacastrum outperformed the alien halophytes 
in biomass production, sodium content in plant shoots and Phytodesalination capacity 
(Table A8.1 and Figure A8.2). Native halophytes were more effective than the alien 
species in soil desalination as well as in productivity, therefore, might be suitable for 
further field assessments in the study area. 

 

 

Figure A8.2 Phytodesalination capacity (t Na+ Ha-1) of halophytes based on their 
productivity as dry matter, and their sodium content in the aerial part (Adapted from Mamani 

Flores et al., 2020). 
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ANNEX 9 

 
Summary of the article: Influence of three organic amendments and gypsum on 
physicochemical parameters of a saline-sodic soil from the High Valley 

Zambrana Yañez N.; Arzabe Maure O.; Andrade Foronda D.; Troncoso Joffre A. (2020). 

Influencia de tres enmiendas orgánicas y yeso agrícola sobre los parámetros fisicoquímicos de 

un suelo salino sódico del Valle Alto de Cochabamba. Rev. Agric.62, 57–64. (Coauthor) 

 

The farmers from the high Valley of Cochabamba suffer production losses due to 
the negative effects of salt-affected soils on plant growth and soil quality. The 
objective of this study was to evaluate the effect of adding organic amendments, 
namely, cattle manure, litter topsoil (Schinus molle L.) and activated charcoal 
compared to gypsum on soil pH, electrical conductivity (EC), exchangeable sodium 
percentage (ESP), and sodium adsorption ratio (SAR) and CO2 emissions, under 
controlled and non-leaching conditions. The amendments were added to a saline-sodic 
soil and incubated for three months, then, the soil after remediation was analyzed. It 
was found that the application of organic amendments and gypsum showed a 
significant effect in decreasing the soil pH, but not the soil EC, and an increase in 
exchangeable /soluble sodium. 

Table A9.1 Soil pH, electrical conductivity and exchangeable sodium percentage of the 
soil before and after reclamation (Based on Zambrana Yañez. et al, 2020) 

 

Treatment 

Soil before  Soil after 

pH EC (dS m-1) ESP  pH EC (dS m-1) ESP 

Charcoal 7 38.5 46  7.1 (a) 35.36 (a) 57 (a) 

Cattle manure 8.19 46.21 66  7.89 * 42.43 (a) 64 

Plant litter 8.06 39.15 54  7.6 (a) 46.39 (a) 66 

Gypsum 7.94 40.28 45  7.33 (a) 40.95 (a) 57 (a) 

Dunnett's clustering test (confidence of 95%). Means not labelled with the letter (a) are 

significantly different (*) from the control (gypsum) mean. 
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ANNEX 10 

 

 

Figure A10.1 Pot experiment (by Castellón, D., 2018) to evaluate the effect of organic 
amendments in reclaiming a saline-sodic soil. 

 a      b 

Figure A10.2 Preparation and setup of soil columns (a) and extraction of soil column 
sample after reclamation (b).  
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Figure A 10.3 Field plot to test adaptation of salt-tolerant forage crop in the High Valley. 

 

Figure A 10.4 Collection of native halophytes  for the research by Mamani, J. (2019) in a 
saline-sodic soil patch (High Valley) 
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