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Abstract

In a broad sense, soil salinity relates to high levels of soluble salts in the soil
solution phase and soil sodicity refers to an excess of sodium in the exchangeable
complex, while alkalinity indicates the dominance of alkaline salts and high pH.
Salt-affected soils are mainly caused by natural conditions and/or anthropogenic
activities and negatively affect plant growth and soil-water properties. The High
Valley of Cochabamba - Bolivia is characterized by low soil and crop productivity,
and land degradation primarily due to salinization processes, which in turn, are
driven by semiarid conditions, population increase, deforestation, and inadequate
agricultural practices. Some studies have been conducted primarily focused on
mapping and characterizing salt-affected soils in this region, but there are still gaps
in soil information, prediction tools, and amelioration techniques for their proper
management. Therefore, this study aimed to contribute to the sustainable
management and rehabilitation of salt-affected soils in the High Valley through
baseline soil information, salinity/sodicity prediction models, and insights into
amendment-based remediation techniques.

Regarding the characterization and classification of soil samples and profiles, the
saline-sodic and saline classes dominate among the salt-affected soil samples, and
most salt-affected soil profiles’ horizons showed high levels of salinity and
sodicity. The alternative classification approach can overcome the confusion
caused by the — USSL — saline-sodic soil class by considering the nature of soluble
ions; in this context, some differences between the two methods, for salinity and
sodicity distributions were observed. The spatial interpolation was unsatisfactory
due to insufficient spatial correlation. Incorporating additional soil profiles and
samples might improve the representativeness of the soil information, spatial
prediction, and classification system.

Concerning the performance evaluation of machine learning models to predict
soil salinity/sodicity variables, random forests (RF) and support vector machines
(SVM) regressions outperformed the partial least squares algorithm in estimating
soil ESP and EC., as well as for predicting salt-affected soil classes. Multivariate
regressions predicting soil ESP as a function of EC, SAR, and pH showed relatively
good performance, somewhat similar to simple regression predicting ESP from
SAR. The models to predict soil ESP and EC from remote sensing-based and
geomorphometric features showed relatively low performance. Overall, these
models might contribute to the monitoring and management of salt-affected soils
in the High Valley; however, validations with additional samples and predictor
variables are essential to improve their accuracy.



According to the first soil-column experiment assessing the effectiveness of
individual mineral and organic amendments with leaching in remediating saline-
sodic soils, gypsum was more effective than sulphur, while cattle/chicken manure
was better than biochar and peat in lowering soil ESP, and any organic or mineral
amendment was as efficient as water alone in decreasing soil EC.. The superiority
of gypsum was mainly due to its Ca?* content which displaces exchangeable Na*,
while that of manure was probably due to its contribution of organic matter and
divalent cations, which also improve soil-water properties. The second soil-column
experiment evaluating the combined effect of manures and gypsum showed that
either cattle or chicken manure together with gypsum at any dose was more
effective than gypsum alone in reducing the soil ESP to below 5%; furthermore,
except for water alone, all treatments were effective in lowering the soil EC. to
below 1.6 dS m™, and any combination was effective in decreasing soil pH to below
8.7. Thus, the effectiveness of manure combined with gypsum was mainly due to
their synergistic effect on adsorbed Na* displacement and soil structure
improvement. The addition of manure might enhance and hasten the effect of
gypsum with leaching in ameliorating saline-sodic/sodic soils. Further validation
of the most effective amendment-based remediation techniques through field
experiments is recommended, and alternative approaches such as biosaline
agriculture and phytoremediation should also be explored.

In sum, the proper management and rehabilitation of salt-affected soils in the
High Valley of Cochabamba relies on adequate characterization, correct
classification, accurate estimation, and effective amelioration of these soils;
consequently, this study contributes to these goals by providing: (1) comprehensive
baseline soil information, (2) tailored prediction and classification tools, and (3)
insights into amendment-based remediation techniques, all of which are subject to
further refinement.



Résumé

La salinité et la sodicité du sol sont essentiellement liées a une quantité élevée de
sels dans la solution du sol pour la premiére et a un excés de sodium sur le complexe
échangeable pour la deuxiéme. L’alcalinité correspond a une dominance de sels
alcalins et a un pH élevé. Les sols sont affectés par la salinisation soit en relation
avec des conditions naturelles défavorables ou suite aux activités anthropiques. La
salinité a un impact négatif sur la croissance des plantes et la qualité de I’eau. La
Haute Vallée de Cochabamba en Bolivie se caractérise par une faible productivité
des agrosystémes et une dégradation des sols, principalement suite a des processus
de salinisation, eux-mémes induits par des conditions climatiques semi-arides,
l'augmentation de la population, la déforestation et des pratiques agricoles
inadéquates. Les études précédentes menées sur cette zone étaient principalement
axées sur la cartographie et la caractérisation des sols affectés par le sel, mais il
reste encore des lacunes en matiére de connaissance sur les caractéristiques des
sols, d’outils de prédiction et de techniques de remédiation pour une gestion
appropriée de ces sols. La bonne gestion et la réhabilitation des sols affectés par le
sel reposent sur une classification rigoureuse, une estimation précise et une
amélioration efficace de la salinité et de la sodicité. Par conséquent, cette recherche
vise a contribuer a la gestion durable et a la réhabilitation des sols affectés par les
sels dans la Haute Vallée de Cochabamba a travers 1’acquisition d’informations de
base sur les sols, la constitution de modéles de prédiction de la salinité/sodicité, et
une évaluation de techniques de remédiation basées sur les amendements pour
récupérer les sols salins/sodiques.

D'apreés la caractérisation et la classification des échantillons et des profils de sols,
les classes salines-sodiques et salines étaient dominantes parmi les échantillons de
sol affectés par le sel, et la plupart des horizons des profils affectés par le sel et
présentaient des niveaux élevés de salinité et de sodicité. Une classification
alternative peut pallier le mangue de discrimination de la classe saline-sodique de
la USSL en considérant les ratios d'ions solubles. Des différences entre les
distributions spatiales de salinité/sodicité ont été trouvées suite a I'application des
deux méthodes. L'interpolation spatiale n'était pas satisfaisante en raison de la
faible portée de la corrélation spatiale. Des profils de sol et des échantillons
supplémentaires pourraient améliorer la représentativité des informations sur les
sols, la prédiction spatiale et le systeme de classification adapté.

En ce qui concerne I'évaluation des performances des modéles d'apprentissage
automatique de prévision des variables exprimant la salinité/sodicité, les
algorithmes par foréts aléatoires (RF) et des machines a vecteurs de support (SVM)
régressions ont donné de meilleurs résultats que les techniques par moindres carrés
partiels pour I'estimation de I'ESP et de I'ECe du sol, ainsi que pour la prévision des
classes de sol affectées par la salinité. Les régressions multivariées pour prédire
I'ESP du sol en fonction de EC, SAR et pH ont montré une performance



relativement bonne et quelque peu similaire au modéle simple pour estimer I'ESP a
partir de SAR. Les modeles multivariés pour prédire I'ESP et I'EC du sol a partir de
caractéristiques géomorphométriques et de télédétection, faciles d’acces ont montré
une performance relativement faible. Ces modéles pourraient contribuer a une
meilleure gestion des sols affectés par les sels dans la Haute Vallée. Cependant, ici
encore, davantage d’échantillons et des variables supplémentaires sont nécessaires
pour améliorer leurs précisions.

N

Une premiére expérience en colonnes de sol visant a évaluer l'efficacité
d’amendements minéraux et organiques avec lixiviation pour la remédiation des
sols salins-sodiques a montré que le gypse était plus efficace que le soufre d’une
part, ainsi que le fumier de bovin/poulet par rapport au biochar et a la tourbe par
ailleurs, sur la réduction de I'ESP du sol. Par ailleurs I’ajout d’amendements qu’il
soient organiques ou minéraux était aussi efficace que la seule lixiviation pour la
réduction de I'ECe du sol. La supériorité du gypse était principalement due a sa
teneur en Ca?* qui déplace le Na* échangeable, tandis que celle des fumiers était
probablement due a leur teneur en matiére organique et en cations divalents qui
améliorent également les propriétés des sols. La deuxiéme expérience en colonne
de sol visant a évaluer I'effet combiné des fumiers et du gypse a montré que le
fumier de bovins ou de poulets associé au gypse, quelle que soit la dose, était plus
efficace que le gypse seul, pour réduire I'ESP du sol @ moins de 5 %, que tous les
traitements, a I'exception de 1’eau seule, étaient efficaces pour abaisser 1'ECe du sol
amoins de 1,6 dSm™, et que toutes les combinaisons étaient efficaces pour abaisser
pH du sol a moins de 8,7. Ainsi, l'efficacité du fumier combiné au gypse était
principalement due a leur effet synergique sur le déplacement du Na* adsorbé et la
structure du sol. L'ajout de fumier pourrait renforcer et accélérer I'effet du gypse
avec la lixiviation dans I'amélioration des sols salins-sodiques. Il est recommandé
de poursuivre les techniques de remise en état a base d'amendements les plus
efficaces par le biais d'expériences sur le terrain, et d'explorer d'autres approches
telles que l'agriculture biosaline et la phytoremédiation.



Resumen

En términos generales, la salinidad del suelo se caracteriza por un elevado
contenido de sales en la fase soluble, la sodicidad por un exceso de sodio en el
complejo intercambiable del suelo, y la alcalinidad por la dominancia de sales
alcalinas y pH elevado. Los suelos afectados por sales se generan por causas
naturales y/o antropogénicas y afectan negativamente el crecimiento de las plantas
y las propiedades suelo-agua. El Valle Alto de Cochabamba - Bolivia se caracteriza
por la baja productividad de los cultivos y la degradacion de suelos debido
principalmente a procesos de salinizacion que, a su vez, se originan a partir de las
condiciones semiaridas, aumento de la poblacion, deforestacion y préacticas
agricolas inadecuadas. Estudios previos se enfocaron principalmente en el mapeo
y caracterizacion de suelos afectados por sales en esta region, no obstante, aun falta
informacién actualizada sobre estos suelos, herramientas para predecir
salinidad/sodicidad, y técnicas de remediacion para mejorar el manejo de estos
suelos. En ese contexto, el objetivo de este estudio fue contribuir al manejo
sostenible y rehabilitacion de suelos afectados por sales en el Valle Alto a través de
la generacion de una linea de base con informacién de suelos, la validacion de
modelos predictivos y evaluacion del uso de enmiendas minerales/organicas para
remediacion de suelos salino/sodicos.

En cuanto a la caracterizacion y clasificacion de las muestras y perfiles de suelo,
los suelos salino-sddicos y salinos fueron predominantes entre las muestras de
suelo, y la mayoria de los perfiles de suelo afectados por sales presentaron altos
niveles de salinidad y sodicidad. EI método alternativo de clasificacion de suelos
contribuye a resolver la confusién generada por la clase de suelo salino-sodico del
sistema de clasificacion del USSL, considerando la naturaleza de las sales solubles;
en este contexto, se observaron algunas diferencias en las distribuciones de
salinidad y sodicidad entre los dos métodos. La interpolacion espacial fue limitada
debido a una correlacion espacial insuficiente. Se requieren perfiles y muestras de
suelo adicionales para mejorar la representatividad de la informacion de suelos, la
prediccion espacial y el sistema de clasificacion.

Respecto a la evaluacion de los modelos de aprendizaje automatico para predecir
variables de salinidad/sodicidad de suelo, los algoritmos de random forests (RF) y
support vector machines (SVM) obtuvieron mejor desempefio que aquel basado en
partial least squares para estimar el porcentaje de sodio intercambiable (PSI) y la
conductividad eléctrica (CE) del suelo, asi como para predecir las clases de suelos
afectados por sales. Las regresiones multivariables para predecir el PSI en funcién
de las variables CE, relacion de adsorcion de sodio (RAS) y pH obtuvieron un
rendimiento aceptable, y a la vez, similar al de la regresion univariada basada en la
RAS. Los modelos para predecir el PSI'y la CE del suelo a partir de variables — de
facil obtencion — basadas en teledeteccion y geomorfometria, obtuvieron un
desempefio regular. Los modelos obtenidos pueden contribuir al manejo sostenible



de los suelos afectados por sales en el Valle Alto; sin embargo, es esencial
validarlos con muestras de suelo y variables predictoras adicionales para mejorar
su precision.

Segun el experimento preliminar en columnas de suelo para evaluar la eficacia
individual de las enmiendas minerales y organicas con lixiviacién para la
recuperacion de suelos salino-sodicos, el yeso fue mas eficaz que el azufre, asi
como el estiércol de vacuno o la gallinaza comparado con el biocarbén o la turba,
para reducir el PSI del suelo, y cualquier enmienda organica o mineral fue tan eficaz
como el solo lavado para reducir la CE. del suelo. La superioridad del yeso se debid
principalmente a su aporte de Ca?* que desplaza al Na* intercambiable, mientras
que la de los estiércoles se debié probablemente a su contribucion de materia
organica y cationes divalentes que, a su vez, mejoraron las propiedades suelo-agua.
El segundo experimento en columnas de suelo para evaluar el efecto combinado de
estiércoles con el yeso, demostré gue tanto el estiércol de vacuno como la gallinaza
junto con el yeso independientemente de la dosis fueron mas eficaces que solo yeso
para reducir el PSI por debajo del 5%, ademas todos los tratamientos excepto el
solo lavado fueron efectivos para disminuir la CE. por debajo de 1,6 dS m?, y
cualquier combinacion fue efectiva en reducir el pH por debajo de 8,7. La notable
eficacia del estiércol combinado con yeso radicé principalmente en el efecto
sinérgico entre ambos para el desplazamiento del Na* adsorbido y el mejoramiento
de la estructura del suelo, lo cual sugiere que la adicién de estiércol potencia y
acelera el efecto del yeso con lavado para remediar suelos salino-sédicos/sodicos.
Se recomienda validar las técnicas de remediacion mas efectivas a través de
experimentos de campo, y considerar estrategias alternativas como la agricultura
biosalina y la fitorremediacion.

Vi
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Chapterl| Introduction

1. General context

In general, salt-affected soils contain high levels of soluble salts as the major ions
(sodium, potassium, calcium, magnesium, bicarbonate, chloride, carbonate, and
sulphate) and/or significant amounts of sodium in the exchange complex, as well as
in the soil solution, and basically include saline and/or sodic soils (Figure 1.1).
Salinization is a major soil-degrading process in arid and semi-arid regions,
originating from natural processes such as weathering, climate, and soil-water
dynamics, as primary salinization and/or being induced by anthropogenic activities
such as the inappropriate management of land and water resources, as secondary
salinization. Salinity negatively affects root and plant growth through the osmotic
effect caused by the high concentration of soluble salts. Because of excess adsorbed
Na*, sodicity causes adverse effects on soil properties, such as an increase in soil pH,
loss of physical structure (clay dispersion, swelling, and plugging of soil pores), and
the deterioration of soil-water relations (decrease in infiltration, hydraulic
conductivity, water retention and drainage), leading to soil erosion, crusting,
compaction, runoff, waterlogging, nutrient imbalances and specific ion toxicity on
plants, thus causing a reduction of soil productivity and crop production, and
decreased biodiversity (Qadir et al., 2001a; Qadir and Schubert, 2002; Levy and
Shainberg, 2005; Qadir et al., 2007; Keren, 2005; Stavi et al., 2021; Andrade Foronda
and Colinet, 2023; FAO, 2022).

Based on the data from 118 countries covering 73% of the global land area and the
threshold values of EC. > 2 dS m, ESP > 15%, and pH > 8.2, the Global Map of Salt-
Affected Soils (FAO, 2021) indicates that more than 4,4% (85% saline, 10% sodic
and 5% saline-sodic) of topsoils (0-30 cm) and 8,7% (62% saline, 24% sodic and 14%
saline-sodic) of subsoils (30-100 cm) of the total land area is salt-affected; from this
mapping, maps of salt-affected top/subsoils in Bolivia are shown in Appendix 1.1.
Salt-affected soils in Bolivia exceed 5% of its territory and marginalize a large surface
of agricultural lands, so their assessment as resources and the evaluation of cost-
effective amelioration strategies are indispensable (Hervé et al., 2002). FAO (2022)
addressed numerous potential negative impacts of salinity and sodicity during the
global symposium on salt-affected soils in 2021, through three main themes: (1)
Assessment, mapping, and monitoring of salt-affected soils, (2) Integrated soil-water-
crop solutions in rehabilitation and management of salt-affected areas and (3) Agenda
for action to prevent and rehabilitate salt-affected soils, protect natural saline and
sodic soils, and scale-up sustainable soil management practices; in this regard, our
research agrees with these topics by contributing to the assessment, characterization
and monitoring of salt-affected soils, as well as the evaluation of appropriate
remediation techniques.

The High Valley of Cochabamba used to be one of the most highly agriculturally
productive valleys of Bolivia. However, nowadays it is characterized by low soil/crop
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productivity and land degradation mainly due to salinization processes, which in turn
are caused by the semi-arid conditions, increase in population, deforestation, and
inadequate agricultural practices, among other factors. Salinity and sodicity in the
High Valley negatively impact not only soil health and crop yields but farmers"
income. In this context, this research aimed at contributing to the sustainable
management and rehabilitation of soils affected by salinity/sodicity in the High Valley
of Cochabamba to improve the soil quality for environmental health and crop
productivity, thus the economic situation of farmers. Consequently, as a result of
previously identified problems, research gaps and questions we formulated some
research objectives: Generation of a database of soil information as a baseline for this
study and context of the current status of soils in the study area, characterization and
classification of salt-affected soil samples and profiles, comparison between two salt-
affected soil classifications systems about their output categories which could impact
on soil management, performance evaluation of machine learning-based models in
predicting salinity, sodicity and salt-affected soil classes from soluble salt ions,
accuracy assessment of models to predict sodicity and salinity variables from easily
obtained predictors, selection of most accurate models and important variables which
can be used to predict salt-affected soils in the study area, evaluation of the
effectiveness of singly/combined mineral and organic amendments with leaching in
ameliorating saline-sodic soil under controlled conditions, and identification of the
most effective organic or mineral amendment(s) and/or their optimal combination(s)
for improving soil salinity/sodicity.

The structure of this manuscript is as follows :

e The relevant concepts linked to salt-affected soils, as well as a general
introduction to the specific situation of the study area (High Valley of
Cochabamba) within the scope of the study, besides the research questions and
gaps, objectives, and outline are presented next in this chapter 1.

e The characterization of soil profiles and samples in the study area, as well as
issues linked to the classification criteria of salt-affected soils and their spatial
distribution are presented in Chapter 2.

e Chapter 3 is dedicated to the performance evaluation of models to predict soil
salinity and sodicity from the measurement of soluble salt ions, and other easily
obtained features, using conventional and machine learning-based techniques.

e In Chapter 4, results from experiments under controlled conditions to evaluate
the effectiveness of singly/combined mineral and organic amendments with
leaching in ameliorating saline-sodic soils, are commented on.

o Finally, a general discussion, future perspectives, and overall conclusion of the
study are presented in Chapter 5.
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2. Salt affected soils: Concepts and definitions

2.1. Salinity and saline soils

Saline soils are characterized by significant levels of soluble salts comprising the
major ions, namely, sodium (Na*), potassium (K*), calcium (Ca?"), magnesium
(Mg?"), chloride (CI"), and sulphate (SO4>"). These soils mainly contain sulphates and
chlorides of Ca?* and Mg?*, and small quantities of K*, NH4s*, HCO5~, CO3 2, and NO3~
are also present. In contrast to sodic/alkali soils, saline soils are usually flocculated,
well-structured, and as permeable as normal soils or even more, because of the
presence of excess salts and low amounts of Na* ion on exchange sites; moreover,
during the salinization process, the accumulated salts are mostly NaCl, Na,SOsa,
CaCOj3 and MgCOs with a dominance of Na* salts in the early stages and Ca?*/ Mg?*
salts accumulating gradually, thus developing saline soils and later white alkali soils
(Choudhary and Kharche, 2015; Alemayehu and Haile, 2022).

Saline soils are often recognized visually by the presence of efflorescence as white
crusts of salts on the soil surface formed through evaporation during a drought period.
Soil salinity negatively impacts root/plant growth and crop yield through the osmotic
effect caused by the high concentration of soluble salts (Figure 1.2). Salinity levels
are usually expressed as soil electrical conductivity (EC) in DeciSiemen per meter (dS
m?) as a standard unit measured either in saturated extract or in soil-water
suspensions which measures the ability of soil-water to carry electrical current as an
electrolytic process in the soil solution along with soluble ions. Salinity can also be
expressed as the total soluble salts (TSS). Moreover, Abrol et al. (1980) observed that
saline soils contain neutral soluble salts of CI~ and SO*>" of Na*, Ca?*, and Mg?*; and
also, that - instead of EC. — the nature of the soluble salts would be a more reliable
indicator for differentiating saline from sodic/alkali soils.

The threshold electrolyte concentration (TEC) refers to the electro-osmotic effect of
saline solutions in counteracting the repulsive forces caused by the hydration of
adsorbed sodium ions; and tough, the salt concentration is useful in maintaining soil
structural integrity, but it is harmful to plants when it exceeds a threshold related to
their salt tolerance (Rengasamy, 2016). Appendix 1.2b shows the relationship
between salinity and sodicity, as well as the diagonal line that distinguishes between
flocculated and dispersed soils. Saline-sodic soils normally contain excessive amounts
of soluble salts and exchangeable Na+ from the combined processes of salinization
and sodication, however, Chhabra (2004) warns about the ambiguity of saline-sodic
soils in terms of salinity or sodicity behaviour normally determined by their Na* and
alkali salts to neutral salts ratios, besides soil pH, ESP and EC.
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2.2. Sodicity and sodic soils

Sodic soils have an accumulation of excess Na™ and variable amounts of free salts
in soil solution and mainly occur under arid and semiarid climates. Sodication or
alkalinization is a process which comprises the progressive leaching of soluble salts
and the accumulation of adsorbed Na* on the soil particles at concentrations which
adversely affect the structure of soils (Marchuck, 2013); also characterized by a pH
generally higher than 8.5 (Gupta et al., 1984). Alkali soils contain soluble salts capable
of causing alkaline hydrolysis, which are predominately COs*>" and HCO3 of Na*,
leading to an increase in SAR due to precipitation of soluble Ca?* as CaCOs, and when
soils accumulate CaCOs, there is a gradual increase in the proportion of Na* in
solution and thereby the proportion of the Na* adsorbed on soil colloids also increases;
then the addition of Na*-containing salts as carbonates to the soil may result in a
saturation of Na* in the soil exchange complex — known as sodication process - and
as the salt concentration increases, Ca?* and Mg?* may precipitate as their respective
carbonates; (Abrol et al., 1980; Choudhary and Kharche, 2015); additionally, when
the plants extract the water from the soil, the salts remain and become concentrated,
causing the calcium to precipitate as calcium carbonate, while much of the Na*
remains in the soil-water (Alemayehu and Haile, 2022). Alkali soils from arid and
semiarid lands contain free CaCO3 with concentrations of soluble Na* and CO3*™ +
HCOs™ as the dominant ions and very low Ca®* and Mg?*; moreover, soil organic
matter gets dissolved and forms black-alkali soils as organic—clay coatings on soil
aggregates and on the soil surface caused by the high pH increased linearly with an
increase in ESP (Chhabra 2004; Gupta and Abrol, 1990).

The flocculating power of Calcium is 43 and magnesium is 27 times that of sodium,
which — along with its larger ionic size in water — causes the dispersive effect in soil
(Figure 1.2). The accumulation of adsorbed Na* leads to the dispersion and swelling
of soil particles with organic matter, occupying and clogging the soil pores and
causing the deterioration of soil-water relations such as hydraulic conductivity and
water-holding capacity, thus the loss of soil physical structure and aeration, crusting,
compaction, runoff, waterlogging nutrient imbalances and soil erosion (Daba and
Qureshi, 2021; Qadir and Schubert, 2002; Quirk and Schofield, 1955).

Sodicity levels are usually determined as the exchangeable sodium percentage
(ESP) through the amount of exchangeable Na* as a proportion of either the cation
exchange capacity (CEC), or the sum of exchangeable cations (Qadir et al., 2007,
Sumner et al., 1998), or indirectly estimated by the sodium adsorption ratio (SAR)
calculated from the soluble Na* relative to the soluble Ca?* + Mg?* concentrations in
a soil solution using the formula proposed by Richards et al. (1954), which also is
used to characterize the presence of Na* in irrigation water (Horneck et al., 2007).
Normally, the soil dispersion correlates positively with the soil ESP, mainly when this
exceeds 15%. The exchangeable cation ratio (ECR) is an index alternative to ESP,
which takes into account the influence of exchangeable K* ions on clay dispersion
even at a minimum level of exchangeable Na* (Marchuk et al., 2014). The cations
ratio of soil structural stability (CROSS) is a cation ratio analogous to SAR, which

6
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considers the differential dispersive effects of Na* and K* on clay dispersion and the
differential flocculation powers of Ca?* and Mg?* (Rengasamy and Marchuk, 2011).
The most used indicators of soil sodicity are summarized in Table 1.1.

The term ‘alkali’ or ‘alkaline’ is usually a synonym of ‘sodic’, generating a certain
degree of confusion since sodicity is more related to excess adsorbed Na* and
alkalinity to the dominance of alkaline salts besides the adsorbed Na*. Neutral and
alkali salts usually determine the distinction between sodicity and alkalinity, so alkali
soils normally have excess exchangeable Na* and carbonates besides a pH above 8
(Gupta and Abrol, 1990). Sometimes, the presence of Na* carbonates passes unnoticed
when obtained from paste extract, due to a portion of the dissolved carbonates that
reacts with Ca?* and precipitates as CaCOs; moreover, the high solubility of Na* salts
and the electroneutrality of aqueous solutions mean that the remaining Na* charge is
either balanced by sulphate ions or included into the exchange sites, which permit the
use of efflorescence crusts (pH >8.4, Na/Cl ratio >1) as indicators of Na* carbonates
(Gupta and Abrol, 1990).

Table 1.1 Indicators/indices used for measuring soil sodicity.

Index/indicator Equation Unit Reference*
Na* i
Sodium adsorption Ca®* + Mag2+ cations are
ratio (SAR) / g expressed in 1
2 mmol L™
Exchangeable Na* 100 Na* and CEC are
sodium percentage CEC expressed in 1,3
(ESP) cmol kg™
Exchangeable Na* 100 cations are 23
sodium percentage \ Ca?* + Mg2* + Nat + K+ expressed in ’
(ESP) cmolc kg™
. . . Nat + 056 Kt .
Cation’s ratio of soil cations are
structural ~ stability \/Cd“ + 0.6 Mg+ expressed in 4
(CROSS) 2 mmol, L

Exchangeable
cation ratio (ECR)

Na* +0.56 K* oo cationsare
Ca’?t + Mg?**t + Na*t + K+ expressed in 5
cmolc kg™

* (1) Richards et al., 1954; (2) Sumner et al. 1998; (3) Qadir et al. 2007; (4) Rengasamy and Marchuk,
2011; (5) Marchuk et al., 2014. CEC = cation exchange capacity.
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2.3. Causes and impacts of salinity and sodicity

Some contributing factors to the process of salinization - based on Daba and Qureshi
(2021), Choudhary and Kharche (2015) and Marchuck (2013) - are:

Climate-related factors in arid and semi-arid conditions, such as dryness,
insufficient rainfall (< 500mm), and high evaporation/transpiration which
exceeds precipitation, among others.

Soil-water management practices such as the use of low-quality irrigation water,
inadequate irrigation methods, poor drainage, unsustainable use of fertilizers,
lack of techniques for soil recovery/remediation, and removal of cover and
deep-rooted vegetation, among others.

Geochemical weathering of rocks, saline parent materials, sources such as fossil
salts of former marine and lacustrine deposits, atmospheric deposition, and salts
brought down from the upstream rivers draining to the plains and subsequent
deposition along with alluvial materials.

Groundwater-associated salinity which mostly occurs in dry lands and is caused
by the salt inputs through natural processes of precipitation and the capillary
rise from subsoil salt beds or shallow brackish groundwater accompanied by a
lack of natural leaching due to topographic situation.

Non-groundwater associated -or transient- salinity caused by the temporal and
spatial variations of salt accumulation in the root zone which mainly occurs in
areas dominated by sodic subsoils.

Accumulation of dissolved Na+ as exchangeable Na+ due to vertical/horizontal
leaching mainly in sub-humid regions.

Additionally, Appendix 1.2a illustrates some causes of salinization.

Some effects and impacts of salinity/sodicity - based on Daba and Qureshi (2021),
Marchuck (2013), Qadir and Schubert (2002) and FAO (2022) — are:

A continuous osmotic phase that prevents water uptake by plants due to the
osmotic pressure of saline soil solution, followed by a slower ionic phase when
the accumulation of specific ions in the plant over some time causes ion toxicity
or ion imbalance, leading to poor seedling emergence, limited plant/root
growth, and limited plant nutrition due to water and nutrient uptake and gaseous
exchange restrictions.

The increased adsorbed Na* content affects the soil aggregation stability
because of its dispersive action on soil particles, resulting in a change of the
pore size distribution, a decrease of soil volume and soil compaction, thus
negatively affecting bulk density, hydraulic conductivity, water-holding
capacity, water/air circulation, and consequently the crop productivity.

Negative impact on soil ecosystem services comprising reduced soil fertility and
ability of crops to take up water and the loss of soil-water properties, leading to
soil degradation, low agricultural productivity, decrease in income and human
quality of life, loss of biodiversity and disturbed ecosystem functions.
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Figure 1.1 Graphical illustration of salt-affected soil types according to their
soluble/exchangeable ion composition. Ions’ size represents their relative
amount/concentration.

2.4. Characterization, classification, and prediction of salt-
affected soils

Soil information usually includes the soil characterization in terms of soil profile
description, comprising chemical, physical and morphological properties, in addition
to geomorphology, pedology, soil formation and landscape processes. Moreover, soil
sodicity and salinity variables such as soil ESP, SAR, EC, pH and major ions can be
used for classification as the determination of salt-affected soil categories and spatial
distribution of saline/sodic soils, as well as for the generation of prediction models,
using these properties either as predictor or response variables.
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Salt-affected soils can be classified by applying the widely used US Salinity Lab
(USSL) classification by Richards et al. (1954). Chhabra et al. (2004) proposed an
alternative classification analogous to that of Szabolcs (1989), which includes the ion
ratios of (2C0O3?> + HCO3") / (CI~ + 2504*) and Na* / (CI~ + 2S04>") expressed in mol
m~3, besides the soil EC. and ESP, for facilitating the subsequent management of salt-
affected soils (Table 1.2). The Australian classification (Rengasamy, 2010/2016) is
somewhat analogous to that of the USSL but takes into account the pH levels and a
pH threshold value of 8 since at this level the soil becomes alkaline and carbonates
dominate the anions, and assumes a soil ESP threshold value of 6% because of the
adverse effects of exchangeable Na* on soil structure which start at this level in
vertisols, due to smectite and montmorillonite as dominant clay minerals, with a
higher specific surface area than that of illite and kaolinite, which promote soil
dispersion even with a low increase in ESP in arid and semiarid regions (Isbell, 2002;
Shainberg & Letey, 1984). The FAO’s criterion considers a pH threshold value of 8.2
instead of 8.5 based on the conclusion of Abrol et al. (1980), who affirmed that
precipitation of CaCOs starts at a pH of 8.2 as an indicator of alkaline soil formation.
Mclintyre (1979) simply differentiated sodic from alkaline soils through the soil ESP
and pH, respectively. There are other systems for classifying salt-affected soils based
on salinity degree related to the content/composition of toxic salt ions (Pankova et al.,
2018), levels of salinity by intervals of EC. (Richards et al., 1954) and levels of
sodicity by intervals of ESP (Abrol et al., 1988).

Table 1.2 Some representative and widely used systems to classify salt-affected soils.

System Categories Property / Threshold value

Normal ESP < 15%, EC.< 4 dSm™, pH < 8.5

US Salinity Saline ESP < 15%, EC.> 4 dSm™, pH < 8.5
Lab* Saline-sodic ~ ESP > 15%, ECe> 4 dSm™%, pH <> 8.5

Sodic ESP > 15%, EC.< 4 dSm™, pH > 8.5

Normal ESP < 15%, ECe< 4 dSm™, pH < 8.2

Sal ESP < 15%, ECe> 4 dSm™?, pH < 8.2,
aline
Alternative? Ratio 1* and Ratio 27 < 1

ESP > 15% (> 6% in vertisols), ECe < 4 dSm™
(variable), pH > 8.2, Ratio 1* and/or Ratio 27> 1

Normal ESP < 6%, EC1<4dSm™, pH 6 -8
Saline ESP < 6%, ECe>4dSm™, pH<6->9
Saline-sodic  ESP > 6%, EC.>4dSm™,pH<6->9
Sodic ESP > 6%, ECe<4dSm™, pH<6->9

(1) Richards et al. (1954), (2) Szabolcs (1989) and Chhabra (2004), (3) Rengasamy (2010).
* Ratio 1 = (2C0O3> + HCO3") / (CI~ + 2S504>) 1 Ratio 2 = Na*/ (CI” + 2S04>)

Alkali

Australian®
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Some salinity and sodicity variables can be predicted from each other to lower costs
and save time on lab determinations, consequently, some authors evaluated simple
linear models to predict ESP, SAR, ESR and EC (Sonmez et al., 2008; Kargas et al.,
2020; Chi et al., 2011; Elbashier et al., 2016ab; Seilsepour et al., 2009; Seilsepour and
Rashidi, 2008; Al-Busaidi and Cookson, 2003; Harron et al., 1983; Shirmohamm and
Heydari, 2020; Annex 4). Moreover, multivariate models using conventional and
novel techniques can be an alternative for such purposes. Machine learning (ML), as
a process of learning from a system’s experience for self-improvement based on
resultant information, can be used for obtaining more accurate and complex prediction
models. Random Forest (RF)is an ensemble learning method that constructs multiple
decision trees during training, which in classification tasks, aggregates the votes and
outputs the mode from multiple decision trees to determine the final class prediction
and for regression, RF averages the predictions from individual trees to produce a
continuous output as the mean (Breiman, 2001). Support Vector Machines (SVM) is
a supervised learning algorithm that finds a hyperplane in an N-dimensional space to
distinctly classify data points or perform regression; then, in classification finds the
hyperplane that best separates classes with the maximum margin (Cortes and Vapnik,
1995), and Support Vector Regression (SVR) finds a hyperplane that best fits the
continuous target variable within a certain margin of tolerance (Drucker et al., 1997).
Partial Least Squares (PLS) is a statistical method that finds a linear regression model
by projecting the predicted variables and the observable variables into a new space;
so in classification, PLS Discriminant Analysis (PLS-DA) projects the data onto latent
structures and then uses these for classification (Barker and Rayens, 2003), and for
regression PLS creates latent variables in the new space to maximize the covariance
between the predictor and response variables (Wold, 1966).

Furthermore, some easily obtained variables, such as geo-environmental features
including satellite image bands and derived salinity/vegetation indices,
geomorphometric and physiographical, among other features, which in turn combined
with field/lab measured characteristics such as chemical and physical properties, can
be used as explanatory variables or covariates for the training and validation of
prediction models for subsequent generation of maps through geostatistical methods
as spatial interpolations.

2.5. Remediation of salt-affected soils

Remediation of salt-affected soils normally aims to eliminate the excess soluble
salts and exchangeable sodium below the root zone to restore soil productivity and
plant growth. Kumar et al. (2022) stated that technological interventions to rehabilitate
salt-affected soils can play an important role in increasing agricultural productivity
and farmer welfare; therefore, research should target alternative and efficient
ameliorants, and suited practices to achieve significant benefits in productivity,
profitability, and environment sustainability from salt-affected soils.  The
amelioration of these soils can be achieved through physical, chemical and biological
approaches:
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2.5.1. Chemical approaches

The amelioration of saline-sodic and sodic soils usually needs an external source of
soluble calcium — ideally applied with non-saline irrigation water — to replace the
excess sodium from the cation exchange sites of the rhizosphere (Ahmad et al., 2006),
for facilitating the soil flocculation and subsequent improvement of soil structure, pH
and nutrient availability. A basic illustration of the saline/sodic soil remediation
principle is shown in Figure 1.2. Generally, there are two types of chemical/mineral
amendments: Soluble sources of calcium such as Gypsum (CaS0..2H20), calcium
chloride (CaCly) and phospho-gypsum; and acids or acid-formers such as elemental
sulphur (S), sulphuric acid (H2S04), sulphates of iron and aluminium, and pyrites;
furthermore, if CaCOs present in the soil, then, needs the application of organic
amendments or acid formers to enhance its solubility (Choudhary and Kharche, 2015).
Ideally, amendments are applied after cropping and before leaching for initial
reclamation and long-term maintenance of the soil. A general reaction of added
calcium-based amendment or CaCOs in soil, for displacing adsorbed sodium is:

Na*—X + Ca?* (S) = Ca?* —X + 2Na* (S) |,
Where, S is a solution and X is the exchange complex of the soil.

Gypsum and sulphuric acid are widely used because of their relatively low cost and
availability (Qadir et al., 2001a). When sulphur is applied to the sodic soil, it is
oxidized by microbiological activity to form sulphuric acid, which then dissolves the
calcite in the soil, generating the Ca?* needed to remove the exchangeable Na*.
Sulphuric acid can also react directly with Na,COs; in the soil. The soil ESP is
normally used to calculate the dose of gypsum necessary to remediate excess Na*, but
it is also influenced by crop tolerance to sodicity and economic conditions. Due to the
high pH of alkali soil, most likely as a result of Na,COs, the addition of gypsum
provides a source of Ca?*, which precipitates as CaCOs and Ca (HCOs),, leading to a
decrease in pH (Wong et al., 2009), besides the reduction of the hydrolysis reactions
associated with Na* ions on the exchange complex. Moreover, Mahmoodabadi et al.
(2013) suggested that the application of gypsum together with organic amendments,
depending on their chemical composition, might promote some synergistic effects on
soluble Na* and K* concentrations and have a positive impact on the properties of
calcareous saline-sodic soils.

2.5.2. Biological approaches

The use of organic amendments is an alternative to mineral amendments for
reclaiming sodic and saline-sodic soils, as they improve not only salinity/sodicity but
also the soil structure through the enhancement of soil-water properties. Organic
amendments, such as cattle manure, chicken manure, compost, peat and biochar,
among others, promote plant growth thanks to their beneficial effects on the physical,
chemical, nutritional and biological properties of the soil and facilitate the leaching of
salts in saline/sodic soils, in harmony with the environment (Srivastava et al. 2016;
Yaduvanshi and Swarup 2005; Oo et al. 2015). Adding organic amendments in sodic
soils usually binds the small soil particles together into large water-stable aggregates,
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increases porosity and thus improves the physical properties of the soil, and can also
reduce input costs as a sustainable and efficient management method for reclaiming
salt-affected soils (Srivastava et al., 2016; Chaganti et al., 2015), besides the beneficial
impacts on nutritional and biological soil properties. Organic materials help in
improving and maintaining soil structure, preventing erosion, supplying essential
plant nutrients, and enhancing biological activity, besides reclaiming the sodic soils
through their decomposition, which increases the partial pressure of CO; and produces
organic acids and subsequent increasing electrolyte concentration, mobilizing Ca?*
from dissolved soil calcite and facilitating the replacement of exchangeable Na* by
Ca?" and Mg?*, thus, lowering the soil pH and ESP; therefore, the effectiveness of any
organic amendment depends upon the amount of CO; produced and the extent of
reduction for making the soil porous by maintaining channels and voids which
improve water penetration and leaching of the salts out of the root zone, even though,
their coarse texture and slow decomposition (Choudhary and Kharche, 2015).
Furthermore, Diacono and Montemurro (2015) concluded that most of the well-
known effects of organic materials on the chemical, biological, and physical
properties of salt-affected soils are relevant in terms of effectiveness.

Phytoremediation as vegetative bioremediation is a function of four main factors:
CO; partial pressure within the root zone, root proton release by N.-fixing plants,
improvement of soil porosity by root expansion, and harvested-shoot sodium content
(Qadir and Oster, 2004) nonetheless, the latter can be insignificant compared to the
ability of some plants to solubilize CaCOs in calcareous sodic or saline-sodic soils
through their root respiration and H* release, then, the released Ca?* ions substitute
Na* ions on the soil cation exchange sites. However, this process is water/irrigation
dependent and thus infeasible in arid and semi-arid regions; therefore, shoot-succulent
halophytes, which can accumulate enormous Na* quantities within their above-ground
organs, can be considered for these zones (Shahid, 2002). Furthermore, in areas in
which leaching salts with water is unfeasible or costly, planting salt-tolerant crops or
forages that can grow under low to moderate saline conditions may be viable
(Alemayehu and Haile, 2022), as a relatively recent approach of growing interest
known as biosaline agriculture.

2.5.3. Physical approaches

These approaches involve physical and mechanical methods such as deep-
ploughing, sub-soiling, profile inversion, sanding, flushing and scrapping to remove
the salts and improve permeability, and thereby, internal drainage within the soil
profile depth for enhancing the infiltration or transportation of salts dissolved in water
to deeper soil layers (Choudhary and Kharche, 2015). Desalination and de-
alkalization of soils require proper land drainage and good quality irrigation water to
remove dissolved soluble salts from the root zone and maintain the groundwater table,
as well as the use of cultural practices such as minimum tillage, surface mulching,
organic matter addition, green manures, crop residue management, selection of proper
seeding/planting methods, and avoiding lands with a high groundwater table, among
others (Daba and Qureshi, 2021).
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Leaching excess salts and maintaining a favourable salt balance to prevent
detrimental salt accumulation in the soil profile need enough water and proper
drainage to leach salts below and out of the root zone but not into groundwater
reserves. If drainage is impeded by a shallow water table, hardpan or bedrock, then an
artificial drainage must be installed, or another use for the land might be considered.
The signs of poor drainage include surface ponding, slow infiltration, or wetness for
prolonged periods. The irrigation method and volume of applied water have an impact
on salt accumulation/distribution, for instance, flood irrigation and an appropriate
leaching fraction generally move salts below the root zone, drip-irrigation moves
water away from the emitter and salts concentrate where the water evaporates, furrow-
irrigation moves water from the furrow into the bed via capillary flow (Alemayehu
and Haile, 2022). For saline soil amelioration, flushing with non-saline water is used
to remove excess soluble salts, which involves washing away the surface accumulated
salts; however, under shallow water table conditions, salts can again rise and
accumulate at the surface through evapotranspiration. Ideally, for a proper
reclamation of any salt-affected soil — even through chemical/biological techniques —
adequate drainage is indispensable. Moreover, Alemayehu and Haile (2022) state that
if soluble salts are leached out of saline-sodic soils even with good quality irrigation
water before the exchangeable Na* is displaced, the level of this cation and pH would
increase, then, the soil would change to adverse characteristics of sodic soils.

Remediation

Soluble

Sodicity

Osmotic
effect

Figure 1.2 Graphical illustration of salinity/sodicity effects and the principle of its
remediation. Ions’ size represents their relative amount/concentration.
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3. Study area: High Valley of Cochabamba

Over the past century, the High Valley of Cochabamba was probably one of the
most agriculturally productive valleys in Bolivia; however, it is currently
characterized by low productivity as well a large surface of degraded areas mainly
affected by soil salinity/sodicity.

3.1. Location

The study area is the High Valley, located in the Department of Cochabamba —
Bolivia, between the latitude boundaries of —17°29'47.7" to —17°39'48.6" and
longitudes of —66°5'16.8" to —65°45'13.0" at an average elevation of ~2750 m. The
spatial location of the study area is represented in Figure 1.3.

-66.10 -66.05 -66.00 -65.95 -65.90 -65.85 -65.80 -65.75

Figure 1.3 Study area location map - High Valley of Cochabamba, Bolivia (Landsat-8
image, 2017 and Google Earth, 2018).
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3.2. General description

3.2.1. Climate:

The climate of the valley is semiarid with a mean annual temperature of 14-17 °C
and mean annual rainfall of 350—-4000 mm. The climatic diagram (Figure 1.4a) for the
period from 2000 to 2020 shows maximum annual precipitation in January, a short
rainy period and a prolonged drought period from April to mid-November, added to
the annual evapotranspiration trend (Figure 1.4b) leads to a significant water deficit.
Moreover, there is a tendency to increase inter-annual variability over time, causing more
extreme dry years and subsequent higher rainfall periods.

San Benito (2710 m)

2000 - 2020 15.3C 381 mm
b r 300
c mm
50 100
40 80
31.8
30 ~ 60
20
-5.9
10
0
150
100
E
E

50

(0]

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC
e Actual evapotranspiration (mm)

====Potential evapotranspiration (mm) - HearGreaves

Figure 1.4 Walter & Lieth climatic annual diagram 2000 - 2020 (a), and annual
evapotranspiration, 1982 - 2010 (b). Based on data from San Benito Station - High Valley of
Cochabamba, provided by SENAMHI — Bolivia.
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3.2.2. Geomorphology and geology:

The High Valley belongs to the meso-thermic interandean valleys originated from
tectonic depressions filled in by quaternary lacustrine, glacio-lacustrine and alluvio-
lacustrine sediments. Regarding the geomorphic characterization of this area, most of
the salt-affected soils are in the landscape of a valley with a relief type consisting of
lagunary depressions, alluvio-lagunary/lagunary facies, a landform consisting of
lagunary flats, and soil associations consisting of Ustalfic Haplargids/Ustochreptic
Camborthids and Typic Salorthids/Natric Camborthids (Metternicht and Zinck,
2010/1997). Appendix 1.3 shows the geopedologic map of the High Valley. Soils on
alluvial and colluvio-alluvial depositions in piedmont areas exhibit an overall low
development, and Entisols dominate on recent and actual fans, Glacis have more
developed soils mainly in their proximal and distal parts where Haplargids are
predominant, and Calciorthids occur in the proximal part of the dissected depositional
Glacis where fragments of the calcic horizon are brought up to the surface as a
consequence of ploughing (Metternicht, 1996). The elevation and slope maps are
represented in Figures 1.5a and 1.5b.

3.2.3. Hydrography

According to Metternicht (1996), catchment areas have variable extents, and
streams are ephemeral and unstable carrying loads of sediments from the highlands
during the rainy season, and most of the rivers and brooks have a torrential regime
because of the climatic and geomorphic conditions. The Punata basin has its main
catchment areas in the southern part, including the Calicanto, Siches, Escalera and
Wasa Mayu rivers in Tarata, Cliza, Villa Rivero and Punata districts, respectively.
The drainage network is controlled by tectonics, but towards the south of the Punata-
Cliza basin, gentler basement subsidence allowed the development of a more
extensive and integrated drainage network. In the highlands, the rivers have a dendritic
distribution pattern, and in the lowlands, some short streams drain to the lagunary
depressions of the Punata-Cliza basin. The Topographic Wetness Index map is shown
in Figure 1.6a.

3.2.4. Soils:

An insight into the characterization of soil profiles and the classification of salt-
affected soils in the High Valley can be found in Chapter 2.

3.2.5. Vegetation:

Some halophytic (Figure 1.7b, c) salt-tolerant genus such as Portulaca spp, Suaeda
spp, Anoda spp, Sesuvium spp, Chenopodium spp, Aizoaceae spp, Cynodon spp,
among others, mainly grow in patches at the middle and south of the valley.
Additionally, Xerophytic trees, such as Prosopis spp, shrubs and cactus, and
Schinus molle trees, are found as part of patches and hedges.
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Figure 1.5 Elevation (a), slope (a), and Topographic Wetness Index (c) maps - High
Valley of Cochabamba (based on the DEM, 2017)
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Figure 1.6 Topographic Wetness Index (a) and 3D elevation (b) maps - High Valley of
Cochabamba (based on the DEM, 2017).
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Figure 1.7 Patch of saline-sodic soil in the High Valley (a), and native halophytes (Suaeda
spp) in soil with salt efflorescence (b) and with cracks (c) due to sodicity.

3.2.6. Agriculture:

The most cultivated agricultural rain-fed/irrigated crops are corn (Zea mays),
lucerne (Medicago sativa), and wheat (Triticum spp). Other cereals such as oat (Avena
sativa), barley (Hordeum vulgare) and triticale (X Triticosecale Wittmack) are
usually cultivated as forage crops. It should be remarked that these crops showed
moderate to high tolerance to salinity. The percentage proportions of the agricultural
land use about the surface (Figure 1.8a) show the prevalence of cultivation of cereals
— mainly corn — and fallow lands normally related to the shifting agriculture; in this
regard, the major agricultural land uses in the High Valley (Figure 1.8b) are the
intensive and the shifting agriculture mostly linked to rainfed crops and/or under
irrigation.
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Figure 1.8 Treemap of agricultural land uses (%) in the High Valley, based on the
agricultural survey of INE-2015 (a); and broad land use in the High Valley, based on
AgroSig-2017 (b).
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Figure 1.9 Colour composite image - High Valley of Cochabamba - Bolivia (based on
Landsat-8 image, 2017).

22



Chapterl| Introduction

3.3. Problem identification

The High Valley of Cochabamba was one of the most agriculturally productive
valleys in Bolivia during the 20th century; however, nowadays it is characterized by
low soil productivity and soil degradation, thus impacting crop yields and farmers’
income. In a broad sense, the main driving factor of soil salinity/sodicity in the High
Valley of Cochabamba is the semiarid condition characterized by a short rainy period
along with a prolonged drought period, thus a climatic water deficit, considering that
the formation of salt-affected soils normally occurs as a result of limited rainfall
causing an insufficient amount of water to drain away or to groundwater the salts, as
well as to meet the evaporation and transpiration needs, leading to a gradual salt
accumulation in the soil through the capillary rise; moreover, the geochemical
weathering and groundwater associated/non-associated salinization are also
prevailing. Some other driving factors in the High Valley related to secondary
salinization are the use of brackish or residual water for irrigation, inadequate use of
fertilizers and deforestation along with the population increase.

Metternicht (1996) mentioned some aspects which influence the salinization and
sodication processes, such as the increase of salt concentration with depth due to the
percolation of rainwater through the subsurface alluvio-lacustrine and lacustrine
deposits, high concentrations of Na* and CI" in the groundwater from lacustrine
deposits, the dominance of Natric Camborthids and Salorthids in flat landscape areas
of lacustrine-lagunary clayey parent materials, sediments with salts which are carried
by ephemeral streams from the highlands during the rainy season, and the use of
irrigation water, mainly in playas and flat landforms of alluvio-lacustrine origin.
Moreover, the Bolivian Society of Soils — in a report of 2015 — stated that this region
is subject to salinization processes because salts tend to concentrate in the upper part
of the soil and the infiltration of soluble salts is restricted due to low rainfall and the
arid regime, which also means that soils are commonly dry for more than six months.

During the phase of the on-site research for this study, some surveys and interviews
were carried out in the study area. Among the stakeholders were farmers, agronomists,
technicians, researchers and public workers from the agricultural sector, among
others; specifically, the persons in charge of agricultural and livestock matter from the
municipalities located in the study area, namely Punata, Cliza, San Benito, Arani,
Villa Ribero, Tarata and Toco. The most relevant information identified as
problems/needs about the impacts of salinity and sodicity in the High Valley were:

e In general, there is a lack of awareness and preparedness for salinization
processes and effective management of salt-affected soils among the
stakeholders in the study area.

o Insufficient knowledge on causes, effects, characterization and remediation of
salt-affected soils not only from farmers but also technicians, decision-makers
and policymakers.
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e Following the above statement, the frequent erroneous identification of salt-
affected soil types and the differentiation between salinity and sodicity, thus of
the proper method of amelioration.

e The need for harmonious, comprehensive and updated baseline soil information
to facilitate the subsequent management and monitoring of salt-affected soils.

o Insufficient facilities to properly carry out laboratory soil analyses for an
adequate soil description, characterization and remediation.

e Some lab measurements such as that of soil ESP are usually costly and time-
consuming.

e The necessity of a tailored salt-affected soil classification system which
facilitates the management and monitoring of salt-affected soils.

e The determination of some sodicity/salinity variables is time-consuming and
expensive, which generates the need for accessible and effective tools, methods
and variables under lab and/or field conditions.

e The need for training and validation of site-specific methods for predicting
salinity and sodicity, including machine learning-based techniques.

e Lack of insight on accessible reclamation techniques for farmers, including
chemical, biological and physical approaches.

¢ For those amendment-based remediation techniques, a need for alternative low-
cost and readily available amendments previously tested under lab and/or field
conditions.

e The need for training on the use of monitoring/mapping techniques based on
readily obtained features such as remotely sensed data and GIS.

e The absence of a joint program among government entities and farmers’
associations for the continuous monitoring of salinity and sodicity.

e The absence of joint research programs between municipalities and research
institutions to investigate topics which enhance the management and
rehabilitation of salt-affected soils.

e A lack of insight and research on alternative approaches to rehabilitate salt-
affected soil such as the strategy of adaptation through value crops highly
tolerant to salinity and sodicity.

It should be remarked that the above-mentioned problems were screened and then
selected according to the feasibility in function to the research relevance and
availability of resources in order to formulate the research question and subsequent
objectives; then the output of the filtering somehow represents the scope of the study.
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4. Research approach and objectives of the thesis
4.1. Research gaps

Although some studies have already been conducted, mainly focusing on mapping
and characterization of salt-affected soils, there are still some gaps in soil knowledge,
tools and remediation techniques for the proper management of these soils in the High
Valley. In that context and based on the previous on-site research and survey, the
following are specific problems/needs as research gaps to be addressed:

¢ Knowledge to generate awareness and preparedness on salinization processes,
characterization, remediation and management of salt-affected soils.

e A comprehensive and updated soil information base to facilitate the subsequent
management and monitoring of salt-affected soils.

e The lack of a proper classification system to mitigate erroneous identifications
and facilitate the management of salt-affected soils.

e Accessible and effective methods and variables for determining salinity and
sodicity to overcome the current use of expensive and time-consuming
techniques.

e Training and validation of tailored methods to predict salinity and sodicity
variables, such as machine learning-based techniques.

e Some insights into accessible methods to remediate salt-affected soils.

e Evaluation of locally available amendments for saline-sodic and sodic soil
remediation, under controlled and/or field conditions.

4.2. Research questions
Some research questions addressed in this study are:

e What is the current context and status in terms of characteristics of salt-affected
soils in the study area?

e To what extent can the salt-affected soil classification system influence soil
management?

e How effective are machine learning algorithms in predicting salinity/sodicity
and salt-affected soil classes from soluble salt ions?

e Towhat extent can multivariate models accurately predict sodicity/salinity from
easily measured/obtained features in the High Valley?

¢ Which prediction models are suitable to be used and improved in the study area?

e Which variables serve as the most reliable predictors of soil sodicity and
salinity?

e How effective are locally available mineral and/or organic amendments in
remediating sodic and saline-sodic soils, under controlled conditions?
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e How do soil properties change after remediation in response to different
amendment treatments under controlled conditions?

¢ Which mineral and/or organic amendment-based technique(s) is/are best for
sodic/saline-sodic soil remediation under controlled conditions?

o How does the addition of organic amendments affect the efficacy of mineral
amendments in the remediation of sodic/saline-sodic soils?

Consequently, the following statements were formulated as hypotheses, based on
the previous research questions:

e Baseline soil information reveals variation in the levels of salinity and sodicity
across different locations in the High Valley, with values ranging from non-
saline to highly saline/sodic soils.

o Different classification criteria for salt-affected soils lead to differences in soil
categorization, which in turn significantly affect the subsequent selection and
efficacy of rehabilitation strategies.

e Prediction models based on both conventional and machine learning methods
can accurately predict salinity and sodicity from soluble ions and other easily
obtained features, aiding in the management of salt-affected soils.

e At least one amendment-based remediation technique, involving either
individual or combined mineral and organic amendment, shows statistically
significant improvement in soil salinity/sodicity compared to other treatments,
expressed for testing purposes as: H,: X, # Xg # X # ... Xy , where, Ha
is the alternative hypothesis, and X is the mean of a given treatment (4, B, C...
N).

4.3. Objectives of the thesis

This study aims to contribute to the sustainable management and rehabilitation of
salt-affected soils in the High Valley of Cochabamba through baseline soil
information, models to predict salinity and sodicity, and some insights on amendment-
based remediation techniques. In this context, the specific objectives of the study
were:

e Generation of soil database information as a baseline for this study and context
of the current status of soils in the High Valley.

e Characterization and classification of salt-affected soil samples and profiles.

e Comparison between two salt-affected soil classification systems about their
output classes which could impact soil management.

e Performance evaluation of machine learning-based models in predicting
salinity, sodicity and salt-affected soil classes from soluble salt ions.

e Accuracy assessment of multivariate models to predict sodicity and salinity
variables from easily measured/obtained predictors.
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e Selection of the most accurate models and important variables which can be
used to predict salt-affected soils in the study area.

o Assessment of the effectiveness of singly/combined mineral and organic
amendments with leaching on saline-sodic soil properties under controlled
conditions.

¢ Identification of the most effective organic or mineral amendment(s) and/or
their optimal combination(s) for improving soil salinity/sodicity.

4.4. Outline of the thesis

The outline of this research is briefly described in chapters, as follows:

Chapter 1

An introduction to the research including generalities about salinity, sodicity,
characterization and remediation of salt-affected soils, as well as a general description
of the study area, along with the research approach and objectives of this study.

Chapter 2

Characterization in terms of description of soil profiles in the study area, and the
resulting implications of the use of salt-affected soil classification criteria, besides the
spatial distribution.

Chapter 3

Performance evaluation of machine learning-based models to predict soil sodicity
and salt-affected soil classes from soluble salt ions, as well as of conventional
prediction models to estimate salinity and sodicity from other easily obtained features.

Chapter 4

The results from experiments under controlled conditions to evaluate the
remediation effect of singly/combined mineral and organic amendment additions with
leaching on saline-sodic soil properties.

Chapter 5

A general discussion including the significance and limitations of the findings,
future perspectives and recommendations, and overall conclusion.

Figure 1.10 illustrates the structure of the manuscript about the objectives addressed
through the research.

~
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Figure 1.10 Graphical illustration of the structure of the thesis in function to the research
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1. Introduction

A comprehensive knowledge of the soil characteristics in the study area is needed
for achieving an effective management and rehabilitation of salt-affected soils besides
a better understanding and awareness of driven factors for salinization and sodication
processes in the study area. Therefore, a systematic soil survey to obtain a soil
information database was carried out to assess soil profiles and to classify soil samples
from the High Valley of Cochabamba.

The widely used salt-affected soil classification from the US Salinity Lab (USSL)
based on the threshold values of soil EC. of 4 dS m™, ESP of 15%, and pH of 8.5,
generates the saline, saline-sodic, and sodic soil classes (Figure 2.1a). Chhabra (2004)
stated that soil classified as saline-sodic (by the USSL system) comprises, in turn, the
alkali soils developed in situ (pH >8.5, ESP >15 and EC. >4 dS m?) as well as soils
formed due to high residual sodium carbonate (>2.5 mol m2) irrigation waters (pH
>8.5, SAR >13 and EC. >4 dS m™?), and those formed due to shallow saline water
table high in SAR (pH of 7 to 8.5, SAR >13 and EC. >4 dS m™?); however, the saline-
sodic category generates some difficulties for soil management since pH can be not
necessarily above the threshold value of 8.5 and because some saline-sodic soils with
a high SAR- as saline soils - keep their physical structure and infiltration leading to a
simultaneous decrease of EC. and SAR when are leached of excess soluble salts. This
confusion also influences the requirements of leaching to remove soluble salts and/or
amendments to lower ESP. In this regard, Chhabra (2004) - based on Szabolcs (1989)
- proposed a classification (named Alternative in Figure 2.1b) which generates the
saline and alkali categories by considering — besides soil ECe, ESP and pH — the nature
of soluble salts, then overcoming the ambiguity of the saline-sodic USSL’ category;
consequently, if soils classified as saline-sodic by the USSL criterion have the ion
ratio of either (2CO3s* + HCO3)/(CI™ + 2S04>") and/or Na*/(CIl~ + 2S04*") in mol m™3
> 1, should be reclaimed as alkali (natric) soils by applying amendments to lower their
ESP followed by leaching, since when are leached to decrease excess soluble salts,
their pH and ESP increase, causing a decrease in infiltration rate; while if soils have
both ratios < 1, then, irrespective of their pH and SAR, should be treated as saline
(salic) soils through leaching and/or lowering of the water table to decrease both SAR
and EC, simultaneously.

The term ‘alkali’ or ‘alkaline’ is usually a synonym of ‘sodic’, generating a certain
degree of confusion since sodicity is more related to excess sodium and alkalinity to
the dominance of alkaline salts. Furthermore, neutral and alkali salts determine the
distinction between sodicity and alkalinity, so alkali soils normally have an excess of
exchangeable Na+ and carbonates besides a pH above 8 (Gupta and Abrol, 1990).
Alkali soils from arid and semiarid lands contain free CaCO3 with concentrations of
soluble Na* and CO4z*" + HCO* as the dominant ions, besides a pH above 8 and very
low Ca?" and Mg?"; moreover, soil organic matter gets dissolved and forms black-
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Characterization, prediction, and remediation of salt-affected soils in the High Valley

alkali soils due to organic—clay coatings on soil aggregates and on the surface caused
by the high soil pH increased linearly with an increase in ESP (Chhabra 2004; Gupta
and Abrol, 1990). Additionally, Abrol et al. (1980) reported that alkali soils contain
soluble salts capable of alkaline hydrolysis which are predominately COs?>~ and HCO*~
of Na* leading to an increase in SAR due to precipitation of soluble Ca?" as CaCOs,
and also observed that saline soils contain neutral soluble salts of CI~ and SO4*" of
Na*, Ca?*, and Mg?*; and also that — instead of EC. — nature of the soluble salts would
be a more reliable indicator for differentiating alkali from saline soils.

This component of the study aims to generate soil information comprising the
following objectives: Database soil information as a baseline for this study and context
of the current state of soils in the High Valley, characterization and classification of
salt-affected soil samples and profiles, looking for variations in the levels of salinity
and sodicity across different locations in the High Valley, besides a comparison
between two salt-affected soil classification systems about the differences which
could impact on the subsequent management.
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Characterization, prediction, and remediation of salt-affected soils in the High Valley

2. Methodology

The study area was the High Valley of Cochabamba - Bolivia, located between the
boundaries of latitude —17°29'47.7" to —17°39'48.6" and longitude of —66°5'16.8" to
—65°45'13.0", at an elevation of ~2750 m. The soil survey including sampling and
description of profiles was performed in May 2017 at the end of the autumn season,
under the framework of the study by Weber (2018).

Eight soil profiles (five salt-affected and three non-salt-affected) were assessed, and
their dimensions were approximately one, two and 1.5-2.0 m in width, length and
depth, respectively. The spatial location of the profiles (Appendix 2.1) was defined to
somehow encompass the geomorphic landforms/soils (Appendix 1.3), municipalities
and land uses. A composite sample made up of three subsamples was taken from each
horizon, and turned into only one lab measurement due to technical and cost
restrictions; in this regard, it can be noted the limitation in terms of reliability of the
soil properties information, description and classification. For the soil sampling, 135
valid samples were collected at a depth of ~25 cm as composite soil samples from five
cores taken at a square surface of 3 x 3 m. The determination of the number of samples
was based on the formula suggested by Legros (1996) and following the
recommendation by Hengl (2007), a systematic random sampling method was
applied. The spatial location of the soil samples is shown in Appendix 2.2.

The soil pH, EC. and the composition of soluble ions were measured in the
extracted solution following the standard procedures of Richards et al. (1954)
including the use of atomic absorption spectrometry (AAS) for cations (Na*, K*, Ca?*,
Mg?*), titration and H,SO, 0.01N for carbonates (COs*) and bicarbonates (HCO*),
titration and AgNOs 0.005N for chlorides(CI™), and the turbidimetric method and
BaCl, for sulphates (SO.>"), at the Soil-Water Lab, Faculty of Agricultural and
Livestock Sciences — ‘Universidad Mayor de San Simén’ (Bolivia). The exchangeable
cations were determined through a derived 1SO 22171 method and AAS at the ‘Station
Provinciale d’Analyses Agricoles” Lab (Belgium) considering the remark of So et al.
(2006) for overcoming the overestimation caused by the extractable cations. The
sodium adsorption ratio (SAR) was calculated by using the formula (Eq. 1) proposed
by Richards et al. (1954). The soil ESP was determined through the percentage ratio
of Na* to the sum of cations (Eg. 2) instead of the cation exchange capacity (CEC),
following the recommendation of Qadir et al. (2007) and Sumner et al. (1998). The
total organic carbon (TOC) was measured through the Walkley-Black method based
on I1SO 14235, the bioavailable elements using the Lakanen and Ervié method (AA
and EDTA at a pH of 4.65) and AAS for Ca*", Mg?* and K*; colourimetry for P, and
soil CEC by a modified Metson method at a pH of 7. The soil texture was obtained
following the standard method NF X 31-107. Some morphological properties of soil
profiles’ horizons and soil surface were described by using a field form (summarized
in Appendix 2.3) based on the Guidelines for soil description of FAO (2006). Finally,
the profiles were classified in terms of taxonomy based on the WRB for soil resources
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(TUSS Working Group WRB. 2022) and Keys to Soil Taxonomy (Soil Survey Staff,
2022).

Na*
SAR = (Equation 1)

Ca?t + Mgz+
\ 2

Where cations are expressed as a concentration in mmol; L™

Na* ,
ESP = (Ca“ T Mg?t ¥ Na* + K+> 100 (Equation 2)

Where cations are expressed as a concentration in cmolc kg 2.

For comparison purposes, the salt-affected soil samples were classified by applying
the USSL (Richards et al., 1954) and an alternative (Chhabra, 2004; Szabolcs, 1989)
classification systems, which indicators and threshold values are listed in Figure 2.1.
To avoid unclassified observations, a margin of +/- 10% was fixed for the threshold
values of the Alternative classification. To generate the salinity and sodicity
classifications, the saline-sodic class from the USSL system was reclassified as a
saline or sodic class to be compared to the categories from the Alternative
classification. Spatial distributions and predictions through some interpolation
techniques were performed. Finally, the TOC and salt-affected soil categories were
guantified on the soil texture triangle from the USDA system. The R software v.4.1.3
(R Core Team, 2013) was used for statistical and geostatistical analysis together with
some R packages such as soilassesment (Omuto, 2020), soiltexture (Moeys, 2018),
agp (Beaudette et al., 2013), raster (Hijmans, 2023), geoR (Ribeiro et al., 2024), sf
(Pebesma, 2018), ggmap (Kahle and Wickham, 2013), tmap (Tennekes, 2018), rgdal
(Bivand et al., 2023), rayshader (Morgan-Wall T, 2024), among others for data
preparation, analysis and visualization.
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3. Characterization of salt-affected soils

3.1. General description

In terms of geomorphic characterization of this area, most of the salt-affected areas
are in the landscape of a valley with a relief type consisting of lagunary depressions,
alluvio-lagunary/lagunary facies, a landform consisting of lagunary flats, and soil
associations consisting of Ustalfic Haplargids/Ustochreptic Camborthids and Typic
Salorthids/Natric Camborthids (Metternicht and Zinck, 1997). Some relevant
geographical and physiographical features for the salt-affected (SP 1 — SP 5) and non-
salt-affected (SP 6, SP7, SP 8) soil profiles are listed in Table 2.1.

Table 2.1 Relevant geographical and physiographical characteristics of the soil profiles.

SP  Location Longitude  Latitude Elevation Slope Geomorphology*

The old cone of the
1 SantaAna -65.861651 -17.544048 2714 <1%  boundary between the

central and distal part

Lagunary depression low
2 Cliza -65.899188 -17.607761 2717 2% (limit with the distal part

of a glacis)

3 SanBenito -65.907701 -17.528609 2708 <1%  Glacis (distal part)

4 Aramasi -65.859688 -17.597974 2713 <1% Playa

Lagunary depression low
5 Arani -65.805878 -17.588081 2720 <1% (limit with the central

part of a glacis)

6 Tarata -66.007495 -17.608299 2743 <2%  Glacis (distal part)

7 Punata -65.824014 -17.526634 2758 5%  Active dejection cone

8 Cuchumuela -65.795681 -17.652989 2874 8%  Glacis (proximal part)

* Based on Metternicht and Zinck (1997)
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3.2. Chemical properties

Salinity/sodicity variables and exchangeable cations of the five salt-affected soil
profiles are listed in Table 2.2, and the same information is shown in Appendix 2.4a
for the non-salt-affected soil profiles.

Table 2.2 Soil chemical properties: salinity/sodicity variables and exchangeable cations for
each horizon of the salt-affected soil profiles.

Exchangeable cations Soil salinity/sodicity
Soil . (cmolckg™) variables
profile Horizon EC. ESP*

Na* K* Ca* Mg?* pH Class +

aSmt %

Ap 945 0.23 5.75 0.63 956 28,52 58.8 Saline-sodic
SP1 A2 513 0.16 560 0.72 9.80 21.96 44.2 Saline-sodic
Santa B 10.78 0.13 495 0091 9.95 18.23 64.3 Saline-sodic
Ana C1 569 0.07 350 0.56 10.09 13,51 57.9 Saline-sodic
2C2 499 0.09 230 044 990 7.98 63.8 Saline-sodic

A 1446 201 1385 1.00 787 344 236 Sodic

SP 2 Btl 770 161 3.25 0.59 9.43 9.41  46.2 Saline-sodic
Cliza Bt2 950 087 580 1.09 10.03 966 585 Saline-sodic
C 322 010 445 0.8 9.81 1320 55.0 Saline-sodic

A 8.15 0.18 6.35 0.51 7.71 21.81 36.8 Saline-sodic
SP 3 AB 1329 060 1050 179 9.80 10.07 56.9 Saline-sodic
San C 13.15 059 1235 1.83 9.82 7.45 53.6 Saline-sodic
Benito | »c 2700 155 745 041 964 886 50.8 Saline-sodic
2C2 1928 0.83 6.60 0.38 9.89 10.19 47.1 Saline-sodic

A 2593 080 875 044 9.68 69.28 74.8 Saline-sodic
A2 21.77 113 1200 154 10.10 48.79 71.2 Saline-sodic
C 0.64 250 11.15 4.06 10.00 26.76 77.0 Saline-sodic
Cl 092 0.27 4385 2.19 10.00 27.83 72.2 Saline-sodic
2C2 0.63 0.14 7.90 2.30 950 13.18 59.7 Saline-sodic

SP 4
Aramasi

Ap 040 127 29.70 2.00 7.28 1.45 35 Normal
SP5 Bw 0.17 098 2820 2.0 7.50 094 112 Normal
Arani C 0.07 050 3535 222 7.56 291 5.7 Normal
c2 0.05 040 2575 203 7.98 5,50 49.0 Saline-sodic

* Corrected values of exchangeable sodium percentage, considering the difference between extractable
and exchangeable cations (So et al., 2006).
+ Salt-affected soil classes according to the US Salinity Lab classification (Richards et al., 1954)
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Most of the profiles’ horizons are saline-sodic (according to the USSL
classification) with high levels of soil ESP, ECe and pH, except that of Arani (SP 5).
The distribution of soil ESP, EC. and pH levels (Table 2.2) in each salt-affected soil
profile is graphically shown in Figure 2.2. The soil profiles of Santa Ana (SP 1),
Aramasi (SP 4) and San Benito (SP 3) showed high levels of soil ESP and pH along
the depth of their horizons and high soil EC. in their topsoil horizons.
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Figure 2.2 Variation of soil ESP (a), ECe (b), and pH (c) in the salt-affected soil profiles.
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The major soluble salt ions and the sodium adsorption ratio (SAR) by horizons for
the salt-affected soil profiles are listed in Table 2.3, and the same information for the
non-salt-affected soil profiles are listed in Appendix 2.4b. The upper horizons of the
Santa Ana (SP 1) and Aramasi (SP 4) profiles are saturated with Na* in the soil
solution. Additionally, a graphical illustration of the distribution of soluble cations
and soluble anions along the depth in the salt-affected soil profiles is shown in
Appendix 2.5.

Variables related to plant nutrition are listed in Table 2.4 and the same information
for the non-salt-affected soil profiles is listed in Appendix 2.4c. Overall, the nutrient
status is variable, and the total organic carbon (TOC) indicates a low soil organic
matter (SOM) content. Soil profiles of Santa Ana (SP 1) and Arani (SP 5) are located
within agricultural lands. Additionally, an illustration of the cation exchange capacity
(CEC) values by horizons is shown in Appendix 2.6b.

3.3. Physical properties

Soil physical properties, namely, texture, colour and bulk density for each horizon
of the salt-affected soil profiles are listed in Table 2.5. Most soil profiles’ horizons are
silty-loam and/or silty-clay-loam. The Munsell colour values for each horizon of the
salt-affected soil profiles (Table 2.5) are graphically shown in the morphological
description of each soil profile (Figures 2.3 —2.7). Soil physical properties of the non-
salt-affected soil profiles are listed in Appendix 2.4d.

3.4. Morphological description

At the time of the soil profile assessment (May 2017) was the end of the autumn
season during the drought period, the days were sunny with no clouds and partially
cloudy. Some relevant morphological characteristics are described for each salt-
affected soil profile in sections 3.4.1to0 3.4.5.

39



Characterization, prediction, and remediation of salt-affected soils in the High Valley

Table 2.3 Soil chemical properties: soluble ions and sodium adsorption ratio for each

horizon of the salt-affected soil profiles.

Soluble lons (cmolc L?)

prS(())fIiIIe Horizon " - k*  ca+ Mg¥ CIF SO& CO# HCOr %
Ap_ 339 00l 000 00l 18 071 040 060 4509
sp1 | A2 326 00l 000 00l 095 055 052 030 4098
Santa | B 187 000 000 00l 063 068 061 025 2565
Ana | c1 208 001 000 001 053 037 069 034 2865
2c2 117 001 000 001 028 038 039 027 1784
A 024 00L 000 00L 015 005 000 010 324
sP2 | BtL 047 002 000 00l 015 050 015 004 64.1
Cliza | B2 165 002 000 001 035 018 101 020 2370
C 087 002 000 000 010 117 040 020 1466
A 327 000 014 009 065 231 002 008 94
sp3 | AB 130 001 002 00l 025 111 000 008 107.3
San C 093 002 00l 00l 015 085 000 006 853
Benito | 2c 052 001 000 000 005 097 000 018 1216
2c2 083 000 000 000 010 030 039 010 1705
A 870 004 002 00l 090 040 300 000 8144
A2 565 002 000 00l 250 030 400 015 91338
A:n;i C 039 002 000 00l 200 024 08 022 643
CL 054 001 000 000 205 014 134 007 939
2c2 055 001 003 00l 100 002 020 020 419
Ap 008 002 005 00l 008 002 000 007 46
sP5 | Bw 008 00l 002 00l 003 005 000 005 63
Arni | C 023 001 000 00l 010 012 000 008 363
C2 016 001 002 000 008 005 000 003 156

* Sodium adsorption ratio was calculated through the formula obtained by Richards et al. (1954).
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Table 2.4 Soil chemical properties: available nutrients, organic carbon and CEC for each
horizon of the salt-affected soil profiles.

Nutrient bioavailability (g kg™)

Soil Horizon CEC* TOC

profile) cmolckgw % =) K Ca Mg
Ap 9.3 0.28 0.06 0.08 1.66 0.12
A2 9.0 0.29 0.03 0.06 1.61 0.13

SP1
B 9.3 0.18 0.01 0.05 2.06 0.19

Santa Ana

C1 6.4 0.09 0.01 0.03 1.03 0.10
2C2 3.2 0.04 0.04 0.03 1.04 0.08
A 8.0 0.45 0.02 0.18 2.28 0.12
Sp 2 Btl 22.4 0.31 0.30 0.65 5.20 0.19
Cliza Bt2 13.8 0.41 0.14 0.53 1.17 0.11
C 8.6 0.08 0.06 0.30 1.98 0.20
A 10.60 0.54 0.02 0.04 1.10 0.14
AB 12.80 0.33 0.05 0.06 2.24 0.14

SP3
] C 10.90 0.15 0.10 0.07 2.05 0.10

San Benito

2C 18.60 0.34 0.11 0.20 9.25 0.55
2C2 15.40 0.21 0.11 0.20 7.02 0.48
A 19.20 0.54 0.13 0.50 3.65 0.13
A2 13.10 0.26 0.13 0.27 3.05 0.10

SP 4
. C 10.80 0.19 0.09 0.18 1.76 0.06

Aramasi

C1 16.40 0.25 0.15 0.26 4.14 0.10
2C2 21.60 0.24 0.19 0.31 8.07 0.43
Ap 15.00 1.24 0.58 0.82 3.90 0.63
SP5 Bw 8.30 0.29 0.02 0.11 1.17 0.29
Arani C 9.30 0.16 0.03 0.06 2.92 0.34
Cc2 12.80 0.11 0.08 0.09 3.91 0.42

* Some differences between the CEC values and the sum of exchangeable cations (Table 2.2) were
mainly due to the inherent error of the measurement.
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Table 2.5 Soil physical properties for each horizon of the salt-affected soil profiles.

) Bulk Soil fractions — texture
Soil . Depth X -
- Horizon Colour density Clay Silt Sand Textural
profile (cm) 3
(gem™) o % % class *
Ap 10YR 5/6 0-19 1.24 19.3 54.9 25.8 SiLo
A2 2.5YR 4/6 19-34 1.40 20.3 533 26.3 SiLo
SP1
B 2.5YR 5/6 34 -48 1.38 236 514 25.0 SiLo
Santa Ana
C1 2.5Y 4/6 48 - 106 1.56 154 47.8 36.9 Lo
2C2 2.5Y 4/3 106 - 132 1.47 115 243 64.3 SaLo
A 10YR 6/4 0-20 1.38 18.3 40.4 41.3 Lo
SP2 Btl 7.5 YR 4/6 20-39 1.56 415 46.2 12.4 SiCl
Cliza Bt2 75YR3/4 39-84 1.40 378 46.6 157 SiClLo
C 75YR5/8 84 -148+ 1.39 23.7 418 345 Lo
A 2.5Y 7/4 0-20 1.45 22.2 537 24.1 SiLo
SP 3 AB 2.5Y 8/4 20-48 1.42 277 59.2 13.1 SiClLo
San C 2.5Y 7/4 48 - 80 1.50 247 578 17.5 SiLo
Benito 2C 25Y6/2 80-110 151 398 544 58 SiCl
2C2 2.5Y 7/2 110 - 150+ 1.60 37.2 611 1.6 SiClLo
A 2.5Y 7/4 0-11 1.61 334 63.8 2.8 SiClLo
A2 10YR 6/6 11-25 1.54 252 704 45 SiLo
SP 4
. C 10YR 7/4 25-50 1.32 18.6 74.9 6.6 SiLo
Aramasi
C1 10YR 7/3 50-76 1.53 33.0 62.2 4.8 SiClLo
2C2 10YR7/2 76 -120+ 1.61 53.6 37.7 8.8 Cl
Ap 2.5Y 7/3 0-30 1.32 28,5 597 11.8 SiClLo
SP5 Bw 10YR 5/6 30-69 1.36 20.0 46.0 34.0 Lo
Arani C 2.5Y 5/4 69-91 1.44 221 451 32.9 Lo
Cc2 2.5Y 4/3 91140+ 1.4 274  46.9 25.7 Lo

* Determination of textural classes through the USDA system.
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3.4.1. Soil profile in Santa Ana (SP 1)
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Figure 2.3 Soil profile in Santa Ana (a), its landscape (b) and surface salt crust (c)
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Table 2.6 Description of the soil profile in Santa Ana (SP1)

Horizon Depth Colour Main characteristics
Ap 0-19 10YR5/6  polyhedral and laminar structure.
A2 19 - 34 25YR4/6  Salichorizon
Slightly humid and massive
B 34-48 2.5YR 5/6
structure
C1 48 - 106 2.5Y 4/6 Humid, massive structure and soft

consistency

2C2 106 - 132 2.5Y 4/3 Salic horizon and oxidation spots
at 2 C2 horizon

Surface: Saline efflorescence of thickness < 2 mm covering ~ 40% surface.
Gravel covering < 2% surface and thin cracks of wide < 1 cm. Rock outcrops (2
- 5%) and coarse fragments covering 5 - 15% surface. Moderate water erosion.
Agricultural land, which is irrigated with temporary flooding and wastewater,

for cultivating corn and forage. Presence of halophytes.

Whole profile: High salinity and sodicity along the profile (Table 2.2). Gravels
up to 2% of the soil volume. Reaction to HCI 1M with low effervescence.
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3.4.2. Soil profile in Cliza (SP 2)
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Figure 2.4 Soil profile in Cliza (a) and its landscape (b).
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Table 2.7 Description of the soil profile in Cliza (SP 2)

Horizon Depth Colour Main characteristics

Moderately developed blocky

A 0-20 10YR 6/4  structure. Slightly hard consistency
and dryness

Btl 20-39 7.5YR4/6 Massive structure, hard
consistency, with clay coatings and

Bt2 39-84 75YR 3/4
dryness
Poorly developed, massive

C 84 - 148+ 7.5YR5/8

structure and very hard consistency

Surface: Gravel covering < 2% surface. Surface cracks of depth < 2 cm, wide
1 - 2 cm and spaced between 0.5 - 2 m. Saline crusts with a thickness <2 mm
covering up to 15% surface. The vegetation is herbaceous and covers over 50%

surface.

Whole profile: High sodicity and moderately high salinity along the profile
except A horizon (Table 2.2). Gravel up to 5% of the volume (except A
horizon). Roots of diameter 0.5 - 5 mm. Reaction to HClI 1M with a no
effervescent foam (except A horizon). Carbonates spots < 15% as dispersed

powder (except A horizon).
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3.4.3. Soil profile in San Benito (SP 3)
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Figure 2.5 Soil profile in San Benito (a) and its landscape (b).
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Table 2.8 Description of the soil profile in San Benito (SP 3)

Horizon Depth Colour Main characteristics
Slightly hard consistency,
granular structure, dryness and

A 0-20 2.5Y 7/4
presence of some roots of
diameter < 0.5 mm
Moderately hard consistency,
AB 20 - 48 2.5Y 8/4 )
dryness, and small concretions
¢ 48 - 80 2.5y 74 Hard consistency, moderate
2C1 80-110 2.5Y 6/2 degree of wetness and blocky
202 110-150+  25y72  STUCLre

Surface: Herbaceous vegetation and residues of a former cultivation of forage

crops. An artisan brick factory is next to the pit. Gravel covering < 2% surface.

Thin cracks of wide < 1 cm, deep < 2 cm and spaced between 0.5 - 2 m.

Whole profile: High salinity and sodicity along the profile (Table 2.2). Gravel

covering < 5% of soil volume. Reaction to HCI 1M with a no effervescent foam

(except A horizon). Carbonates spots < 15% as dispersed powder (except A

horizon).
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3.4.4. Soil profile in Aramasi (SP 4)
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Figure 2.6 Soil profile in Aramasi (a) and its landscape (b).
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Table 2.9 Description of the soil profile in Aramasi (SP 4)

Horizon Depth Colour Main characteristics
A 0-11 2.5Y 7/4 Hard consistency, slightly lamellar
structure, marked dryness and
A2 11-25 10YR6/6 ot of diameter < 0.5 mm
C 25-50 10YR 7/4  Poorly developed, very hard
c1 50 - 76 10YR7/3  consistency and massive structure,
reaction to HCI 1M as foam
2C2 76 - 120+ 10YR 7/2  Without effervescence, and small

carbonate concretions

Surface: Vegetation is sparse with native halophytes and small bushes. Slightly

hard crusts of thick <2 mm. Saline crusts of thick < 2 mm covering up to 10%

surface. Gravel covering up to 2% surface. Fine cracks of wide < 1 cm, depth up

to 2 cm and spaced < 20 cm.

Whole profile: Very high salinity and sodicity/alkalinity along the profile

(Table 2.2). Dryness, low sand content and gravel < 2% of soil volume. Low

porosity, high compaction and carbonate concretions (except A and A2

horizons).
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3.4.5. Soil profile in Arani (SP 5)

SP5:Aranl
— Ocm

2.8v_7/2

10YR_5/8

25v_ 54 — B0 cm

— 100 ¢cm

2.5v_43

— 120 cm

— 140 cm

Figure 2.7 Soil profile in Arani (a) and its landscape (b).
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Table 2.10 Description of the soil profile in Arani (SP 5)

Horizon Depth Colour Main characteristics
Ap 0-30 2.5Y 7/3 Polyhedral structure, dryness
and roots of diameters
Bw 30-69 10YRS/6 | etween 0.5 and 5 mm
C1 69 - 91 2.5Y 5/4 Massive structure, wetness
and oxidation spots, weak
c2 91 — 140+ 25Y 4/3 reaction to HCI 1M with no

effervescence

Surface: Agricultural land under preparation before ploughing. Gravel
covering < 2% surface. Fine cracks of wide < 1 cm, depth <2 cm and spaced

between 2 - 5 meters. Saline efflorescence covers up to 2% surface.

Whole profile: Only the C2 horizon shows slight salinity and high sodicity
(Table 2.2). Gravel covering < 2% of soil volume. (except Ap horizon).
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3.5. Taxonomic classification

Taxonomic soil classifications of the soil profiles based on the soil's chemical,
physical and morphological properties, following the guidelines of the WRB for soil
resources (IUSS Working Group WRB. 2022) and the Keys to Soil Taxonomy (Soil
Survey Staff, 2022) are listed in Table 2.11 and Table 2.12, respectively.

Table 2.11 Taxonomic classification of the salt-affected soil profiles according to the WRB
for soil resources (IUSS Working Group WRB. 2022).

Profile Location Classification
1 Santa Ana Sodic Solonchak (Hypersalic, Siltic)
2 Cliza Salic Sodic Vertisol (Calcaric)
3 San Benito Salic Solonetz (Natric, Siltic)
4 Aramasi Salic Solonetz (Hypernatric, Siltic, Protocalcic)
5 Arani Cambisol (Loamic, Aric, Endosodic)
6 Tarata Fragic Fluvic Cambisol (Loamic)
7 Punata Leptic Fluvisol (Fluvic)
8 Cucuchumuela Calcic Regosol (Clayic)

Table 2.12 Taxonomic classification of the salt-affected soil profiles according to the soil

taxonomy (Soil Survey Staff, 2022)

Profile Location Classification
1 Santa Ana Typic Natrustalid
2 Cliza Salic Haplotorrerts
3 San Benito Typic Natrargids
4 Aramasi Calcic Natrargids
5 Arani Haplocambids
6 Tarata Haplic luvisol
7 Punata Typic Udifluvents
8 Cucuchumuela Typic Ustorthents
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4. Classification of salt-affected soils

4.1. Salt-affected soil classification

Some descriptive statistics of the soil properties for all the samples used for the
classification are listed in Appendix 2.7. The average ionic concentrations are
graphically represented in Appendix 2.8. The salinity/sodicity variables (SAR, ESP,
Ec., pH, ECR and CROSS) as well as the salt-affected soil classes for the soil samples
are listed in Appendix 2.9. The distribution of samples by classes according to the
USSL classification (Figure 2.8a) comprises non-salt-affected (27.4%), saline
(28.1%), saline-sodic (28.1%) and sodic (16.3%) soils, and resulting from the
Alternative classification (Figure 2.8b), are non-salt-affected (40%), saline (36.3%)
and alkali (23.7%); these frequencies also illustrate the count imbalance generated by
the fewer number of sodic/alkali soil samples in the dataset. These frequencies
represent the differences between the output counts from both classification systems,
due to the ambiguity and consequent redistribution of the USSL’s saline-sodic class
within the categories of the Alternative method, caused by the differences between
both criteria in terms of indicator variables and their threshold values (Figure 2.1).
Therefore, because of the confusion generated by the saline-sodic — USSL — category,
it is essential to consider the approach from the Alternative classification method to
foresee if a saline-sodic soil behaves — in terms of soil/plant affection — as saline or
sodic/alkaline, then to be treated through leaching of excess soluble salts and/or by

adding amendments to lower the soil ESP.

30

Count
n
o

Count

Normal Saline Saline_sodic Sodic Normal Saline Alkali
Classes Classes

Figure 2.8 Distribution of salt-affected soil classes according to the US Salinity Lab (a)
and the Alternative (b) classification systems.

The classification of soil salinity (Figure 2.9) according to the EC. intervals
proposed by Richards et al. (1954) shows evident differences between the counts
generated by the USSL and those by the Alternative classification systems, mainly
within the intervals of 2 to 4 and 4 to 8 dS m™*, which could lead to misinterpretations
in management of salinity. Besides the ambiguity of the saline-sodic — USSL - class,
these differences can be explained by the fact that the Alternative system prioritizes
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the alkali/neutral salt ions ratio ([2COs> + HCOs7] / [CI™ + 2S04>7]) above the soil
EC to classify a soil as saline in contrast to the USSL method which only considers
the EC; in this regard, Abrol et al. (1980), affirm that the nature of soluble salts would
be a more suitable indicator than EC. for differentiating alkali from saline soils.
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(]
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€
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Ranges of salinity - EC. (dS m™)

Figure 2.9 Classification of salinity by intervals using the saline soil categories from the
USSL (a) and the Alternative (b) classification systems.

The classification of sodicity (Figure 2.10) based on the soil ESP intervals proposed
by Abrol et al. (1988) shows lower differences between the counts generated from
both systems compared to those for salinity classification (Figure 2.9). As for the
classification of salinity, these differences were because the Alternative classification
considers the ratio of alkaline salts (2CO3>" + HCO3") and Na* to neutral salts (CI- +
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2504%") along with ESP and pH for classifying soil as alkali in contrast to the USSL
system which only uses the ESP and sometimes the pH to categorize a soil as sodic,
also leading to the ambiguity of its saline-sodic class.
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Figure 2.10 Classification of sodicity by intervals using the sodic/alkaline categories from
the USSL (a) and the Alternative (b) classification systems.

4.2. Spatial distribution and interpolation

The spatial locations of the salt-affected soil classes generated through the USSL
(Figure 2.11a) and the Alternative (Figure 2.11b) classification systems illustrate the
previously mentioned differences between both criteria’ outputs, which could
generate some distortions when mapping salinity and sodicity, potentially affecting
the effectiveness of soil management and remediation.
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Figure 2.11 Spatial distribution of salt-affected soil categories, classified by the USSL (a)
and the Alternative (b) classification systems (Background image: terrain/Stadia-Map, 2023)

The spatial interpolation was not satisfactory (Appendix 2.11) because of the
insufficient spatial correlation of soil ESP and EC mainly due to a relatively small
number of observations to represent the study area and somehow related to the
imbalance caused by the excess non-salt-affected soil samples. Although this
insufficiency, a graphical representation of the spatial prediction of salinity as soil EC
and sodicity as soil ESP by using the interpolation methods of ordinary kriging,
universal kriging, simple kriging, inverse distance weighting (IDW) and nearest
neighbour, is shown in Figure 2.12. The cross-validation metrics of RMSE and MAE
of the interpolations show that the kriging methods are relatively better than IDW and
nearest-neighbour for both soil ESP and EC (Table 2.12). A complementary spatial
interpolation of soil ESP and EC by using ordinary kriging is shown in Appendix 2.13.
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Table 2.13 Errors from cross-validation of some interpolation methods.

Variable  Metric Or(?u‘lary Unllve.rsal Sll.nPle Nf:arest
kriging kriging kriging neighbor
RMSE 19.2 19.4 19.2 21.4 20.6
ESP
MAE 14.2 14.2 14.2 14.3 15.5
RMSE 13.8 13.8 13.7 16.1 14.7
EC
MAE 7.2 7.2 7.1 7.5 7.0

RMSE = Root mean squared error, MAE = mean absolute error IDW = inverse distance weighting,
ESP = exchangeable sodium percentage, EC = electrical conductivity

Some spatial predictions were generated under the framework of the survey by
Weber (2018), who generated maps of soil salinity/sodicity variables from samplings,
such as soil ESP and EC based on the inverse distance weighted interpolation method
(Appendix 2.12) since the spatial scales show very abrupt and localized variations
leading to a non-satisfactory prediction for kriging. The study of spatial prediction of
salinity/alkalinity based on regression kriging in the High Valley by Araujo (2009),
showed that saline soils are dominant (57.9%), followed by saline-sodic soils (18.8%)
and according to the salinity and sodicity classification, 25.7% and 56.5% are slightly
saline and slightly sodic, respectively. Metternicht (1996) combined remote sensing
data and field-measured observations at a multi-scale level to estimate the intensity,
rate and spatial distribution of salt-affected soils in the High Valley as well as to assess
a synergistic approach for mapping and monitoring land degradation, then concluded
that detailed discrimination of type and intensity of the degradation processes requires
increased synergy among remotely-sensed, field and lab data, especially in
salinity/alkalinity studies.

4.3. Soil texture classification

Textural classes for all the observations grouped by salt-affected soil — USSL —
classes for the soil EC. and ESP were placed on the USDA textural triangle (Figure
2.13), which also show the ambiguity of the saline-sodic class with high values of soil
ESP and EC; additionally, a similar illustration for the Alternative classification is
shown in Appendix 214. It can be observed that most samples belong to the loam,
silty-loam, clay-loam and silty-clay-loam textural classes.
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Figure 2.12 Spatial prediction of soil ESP (a) and EC (b) through various interpolation
methods.
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Based on the total organic carbon (TOC) levels in the soil samples (Figure 2.14) and
assuming that soil organic matter (SOM) contains ~58% of carbon, it can be
mentioned that some soils in the High Valley contain on average ~1.26% of SOM,
which is a low content considering that most of the surface is dedicated to agriculture
and the fact that organic matter can enhance the soil properties and the dissolution of
soil calcite to form Ca?*, which in turn contributes in lowering the Na* in the
exchangeable complex (Srivastava et al. 2016; Choudhary and Kharche, 2015).
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Figure 2.14 Total organic carbon (%) in the soil samples, mapped on the soil texture
triangle (USDA system).
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5. Conclusions

Five salt-affected and three non-salt-affected soil profiles from the High Valley of
Cochabamba were described and characterized. Most of the salt-affected profiles’
horizons showed high levels of salinity, sodicity and soil pH. The salt-affected profiles
located in Santa Ana, Cliza, San Benito, Aramasi and Arani, were taxonomically
classified — based on the WRB-SR 2022 — as Solonchak (Hypersalic, Siltic), Salic
Sodic Vertisol (Calcaric), Salic Solonetz (Natric, Siltic), Salic Solonetz (Hypernatric,
Siltic, Protocalcic) and Cambisol (Loamic, Aric, Endosodic), respectively; as well the
non-salt-affected profiles of Tarata, Punata and Cucuchumuela were categorized as
Fragic Fluvic Cambisol (Loamic), Leptic Fluvisol (Fluvic) and Calcic Regosol
(Clayic), respectively. The dominant classes among the salt-affected soil samples
were saline-sodic and saline.

The saline-sodic class from the USSL classification (Richards et al., 1954) could
impact the salt-affected soil management since soils under this category mostly
behave as saline or alkaline, then need to be leached of excess soluble salts and/or
treated with amendments to lower ESP; such confusion is overcome by the Alternative
classification (Szabolcs, 1989; Chhabra, 2004) which considers — besides ESP, ECe
and pH — the nature and ratios of soluble salt ions. After applying both classification
criteria in soils from the High Valley, some differences in their derived
salinity/sodicity distributions were found. The spatial interpolation was unsatisfactory
due to the insufficient spatial correlation. Textural classes of silty-loam and silty-clay-
loam were dominant, and a low soil organic matter content was noticed in the
sampling.

Further characterization with additional soil samples and profiles is recommended
to enhance the representativeness of the soil information database for improving the
classification and spatial prediction of salt-affected soils, as well as further validation
of the classification criteria and threshold values to define a tailored classification for
proper soil management in the study area.
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Andrade Foronda, D.; Colinet, G. Prediction of Soil Salinity/Sodicity and Salt-
Affected Soil Classes from Soluble Salt lons Using Machine Learning Algorithms.
Soil Syst. 2023, 7, 47. https://doi.org/10.3390/soilsystems7020047

Abstract

Tailored models to predict salinity and sodicity variables are essential for the
classification, mapping and management of salt-affected soils. This study aimed to
evaluate the performance of three machine learning (ML) algorithms, namely Partial
Least-Squares (PLS), Support Vector Machines (SVM), and Random Forests (RF), in
predicting soil exchangeable sodium percentage (ESP), electrical conductivity (ECe),
and salt-affected soil classes, from the major soluble salt ions (Na*, K*, Ca?*, Mg?*,
HCOs-, Cl, COs*, SO4*) determined in soil samples from the High Valley.
Additionally, some multivariate regressions to estimate soil sodicity and salinity from
some soil properties and easily obtained features were assessed. According to the ML
models’ evaluations, the SV and RF regressions performed the best for predicting the
soil ECe, as well as the RF model for estimating the soil ESP. The random forest
algorithm was superior in predicting the salt-affected soil categories. Soluble Na,
Ca*, Mg#, CI-, and HCO3;~ were the most important variables for all models. The
random forests and SVR models can be used to predict soil EC. and ESP, as well as
the salt-affected soil classes from soluble ions in the study area. Regression models to
estimate ESP from EC + SAR and EC + pH + SAR performed relatively well and
slightly better than the simple regression to predict ESP from SAR. Multivariate
models to predict soil ESP and EC from easily obtained geomorphometric and remote
sensed features showed a regular performance. The obtained models might contribute
to the monitoring and management of salt-affected soils in the High Valley; however,
additional soil samples and explanatory features are needed to improve their
performances.
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1. Introduction

The determination of soil ESP from exchangeable cations is often time-consuming
and cost-expensive, in contrast to the measurement of soluble ions-based variables in
paste extract, which are often used to indirectly estimate sodicity. Regression models
can be fitted and validated to predict salinity/sodicity variables and classify soil
categories. Some investigations focused on simple regression models for predicting
soil ESP from SAR (Chi et al., 2011; Elbashier et al., 2016ab, Seilsepour et al., 2009;
Annex 4), SAR from EC (Seilsepour and Rashidi, 2008; Al-Busaidi and Cookson,
2003), ESR from SAR (Harron et al., 1983; Shirmohamm and Heydari, 2020), and
soil EC measured in paste extract from EC measured in soil: water ratios (Sonmez et
al., 2008; Kargas et al., 2020). Alternatively, some easily obtained features, such as
satellite bands, salinity/vegetation indices, geomorphometric features, and other
environmental covariates can be used to predict salt-term soil properties as well as to
improve the performance of field-measured data-based models including physical and
chemical soil-water properties.

Data mining can be described as the capacity to identify patterns from data to
establish relationships and models through data analysis, and machine learning (ML)
is a process of learning from a system’s experience for self-improving based on
resultant information. Moreover, supervised learning models the relationships and
dependencies between the target prediction output and the input data/features to
predict the output values for new data. Partial Least-Squares (PLS) - Discriminant
Analysis (DA) is a supervised version of principal component analysis (PCA) which
achieves dimensionality reduction with complete cognizance of the classes, arriving
at a linear transformation that converts the data to a lower dimensional space with as
small an error as possible (Ruiz-Perez et al., 2020); and the PLS regression combines
features from PCA and multiple regression, allowing the reduction of the
dimensionality while focusing on covariance. The Support Vector Machines (SVM)
seek to design a decision surface and separate the margin between the different levels,
finding this hyperplane using support vectors and margins; then, the SVM with linear
kernel function fits an optimal hyperplane between the classes, making linear and
separable small samples (Mohan et al., 2020), while support vector regression fits a
line as the hyperplane with the maximum number of points. Breiman and Cutler’s
Random Forests (RF) algorithm is a tree-based ensemble which generates trees built
on resampled subsets of data, with each tree depending on an ensemble of random
variables. The Random Forests algorithm combines the trees by unweighted voting
and chooses the most voted class over all the tree ensembles at training time if the
response is categorical or combines the resulting trees by unweighted averaging if the
response is continuous (Cutler et al., 2012; Breiman, 2001). Machine Learning
methods have been used to classify soils based on various features such as chemical,
physical, and biological soil properties, as well as on specific criteria. Within the
framework of ML algorithms, many methods have been progressively developed to
automate the soil classification process, such as Decision Trees, k-Nearest Networks,
Artificial Neural Networks, and SVM (Chandan, 2018); in that context, some
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investigations on various soil type classifications using ML methods were carried out
by Kovacevi¢ et al. (2010), Harlianto et al. (2017), Bhargavi and Jyothi, (2011), and
Raza Ansari (2018). The review on ML and soil sciences by Padarian et al. (2019)
concludes that the modelling of continuous and categorical soil properties is based on
their relationships with environmental covariates and is mainly focused on mapping.
Some key findings in the compilation by Motia and Reddy (2021) were that: the
implementation of soil classification uses more ML methods than soil regression; the
assessment of soil salinity still shows a low contribution from ML; SVM and RF
methods are widely used in ML predictions of soil variables and classifications; and
the RMSE and R? are the top metrics used for performance evaluation of ML
prediction models in soil analysis. Apart from simple/multivariate regression-based
models, most of the studies based on ML methods in predicting and mapping salinity
use variables from remote sensing such as spectral bands and derived indices and
combined with other environmental covariates such as those related to the elevation,
geology, hydrology, morphometry, and climate (Allbed and Kumar, 2013; Kaplan et
al., 2023; Wang et al., 2021; Wu et al., 2018; Zarei et al., 2021; Zurgani et al., 2018;
Li etal., 2023; Boudibi et al., 2021; Merembayev et al., 2022; Nabiollahi et al., 2021;
Vermeulen and Van Niekerk, 2017; Wang et al., 2020), and to predict ESP from SAR
compared to generalized regression neural networks (Gharaibeh et al., 2021).
Furthermore, field-measured data (physical and chemical soil-water properties),
which are used to a lesser extent, may improve the prediction performances for soil
salinity, even more if alternative salt-related variables are considered.

Prediction models may considerably vary in function to the soil properties and local
conditions, thus the need for affordable and site-specific models to facilitate the
characterization and management of salt-affected soils. In this sense, the objectives
of this study were to assess the performance of machine learning-based models in
predicting salinity, sodicity and salt-affected soil classes from soluble salt ions,
evaluate the accuracy of classical multivariate models to predict sodicity and salinity
variables from easily measured/obtained predictors and find out the most important
variables and best models which can be used to predict salt-affected soils in the
study area, thus aiding in the management of these soils. Moreover, the use of
machine learning algorithms for predicting salinity/sodicity from soluble ions is
somehow related to the alternative classification (addressed in Chapter 2) since
prioritizes the nature and ratios of the major soluble salt ions above the soil ESP,
EC and pH.

68



Chapter 3 | Prediction of soil salinity/sodicity from soluble salt ions, soil properties, and other features

2. Methodology

The soil samples were collected at a depth of ~25 cm from the High Valley of
Cochabamba - Bolivia. Lab measurements, determination and calculations of soil
properties were described in the methodology of Chapter 2 (section 2.2). Some
descriptive statistics of the dataset are shown in Appendix 3.1a.

Some multivariate models for predicting soil ESP, EC and salt-affected soil
categories as response variables from soluble salt ions (Na*, K*, Ca%", Mg?, CI,
S04*", HCO3", CO5?) as explanatory variables, were calibrated and validated through
three supervised ML algorithms, namely Partial Least-Squares (PLS) and Support
Vector Machines (SVM) with linear kernel function as discriminating methods, and
Random Forests (RF) as a tree-based method, for the respective regression (PLS-R,
SV-R, RF-R) and classification (PLS-DA, SVM, RF-C) methods. The multivariate
linear regressions to estimate soil ESP from soil chemical/physical properties (EC,
pH, SAR, ions and texture) and those generated from some easily obtained features
(remote sensing and elevation derived) were calibrated by using the mathematical
multiple regression equation (Eq. 3). Additionally, a simple model to predict soil ESP
from SAR was fitted through the linear regression mathematical formula (Eqg. 4).

Y=XB+¢€ (Equation 3)
where Y is a n-dimensional vector, X is a n x p matrix,  is a p-dimensional vector,
and € is the n-dimensional (uncorrelated) error term.

Y=b0+blx*x (Equation 4)

where Y is the dependent variable, b0 and bl are the linear regression beta
coefficients for the intercept and slope, respectively, and x is the independent variable.

For the multivariate linear regressions and machine learning-based models, outliers
were removed by applying a threshold value through the Mahalanobis distance from
the principal component analysis (PCA). The Factor Analysis was performed to
search for similar covariates regarding their mutual correlation and dimensionality
reduction. For testing purposes, an internal validation was applied to overcome the
possibility of hidden dependencies of the cross-validation (CV), by partitioning the
model’s dataset into calibration (75%) and validation (25%) datasets. When
necessary, data were scaled, and normalization was not needed. The flow process for
the ML regression/classification models is shown in Figure 3.1. The models were
trained with tenfold groups, and CV was repeated five times. The specific tuning of
training parameters and CV of the models is shown in Appendix 3.1b. Subsequently,
the prediction was applied to the testing datasets for each trained ML model, then the
metrics performances were determined and compared. For the multivariate linear
models, the independent variables were reduced by using the stepwise regression
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algorithm as a step-by-step iterative model construction through the Akaike
information criterion (AIC) as an estimator of the prediction error.

The satellite Landsat 8 image (ID: LC08.L.2SP.232072.20180910.20200830.02. T1,
Datum: WGS84, UTM zone: 20, year: 2018, resolution: 30 m) was used to extract six
bands, namely, B2 (Blue), B3 (Green), B4 (Red), B5 (NIR), B6 (SWIR1) and B7
(SWIR2), and to calculate some salinity indices (Table 3.1) and vegetation indices
(Appendix 3.2). Additionally, some geomorphometric factors (Appendix 3.3) namely
elevation, slope, topographic position index (TPI), terrain ruggedness index (TRI),
topographic wetness index (TWI) and flow direction were determined based on the
digital elevation model (DEM). Subsequently, all these features together with soil
properties (pH and soil texture), were used as predictor variables to fit the multivariate
models for estimating the soil ESP and EC.

The metrics used to assess the regression models’ performance were: the coefficient
of determination - R? (Eq. 5) which tells how well the predictor(s) can explain the
variation in the response variable, the root mean square error — RMSE (Eq. 6) as the
residuals’ standard deviation for the predictions, the mean absolute error — MAE (EQ.
7) as the average magnitude of the errors, and the residual standard error — RSE (Eqg.
8) as the standard deviation of the residual. For the ML classification models, the
metrics were the overall accuracy (Eq. 9) as the correct classification of the data
obtained by executing the model, and Cohen’s kappa statistics (Eq. 10) like the
strength of the agreement as the extent to which the data are correct representations
of the measured variables (McHugh, 2012). Additionally, the measures of sensitivity
and specificity as the proportions of true positives and true negatives correctly
predicted, respectively, were calculated for classification.

The relative importance of the variables was assessed through the RF measures,
namely per cent increase in mean square error (%incMSE) as the prediction error of
each variable if omitted from the analysis and the increase in node purity as how much
the model error increases when a particular variable is randomly permuted or shuffled,
for regression models; and Mean Decrease Accuracy as how much accuracy the model
losses by excluding each variable and Mean Decrease Gini as a measure of how each
variable contributes to the homogeneity of the nodes and leaves, for classification
models. To overcome the imbalance caused by the sodic category, the resampling
method ‘Synthetic Minority Over-Sampling Technique’ was applied through the
Smote function (Chawla et al., 2002). The stability of the models was assessed in
function to three different data partitions (per cent calibration datasets of 70, 75 and
80) as an indicator of the change in the level of performance. Finally, the models were
assessed with additional explanatory variables, namely, soil pH, EC,, total organic
carbon (TOC), and soil texture.
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Yi=1(0i — 0;)?

R?=1- — (Equation 5)
i=1(0 — 07)?
n 1/2
RMSE = [n-l Z (p; — oi)z] (Equation 6)
i=1
n
MAE =n~1 Z |(pi — 0)] (Equation 7)
i=1
1/2
RSE = [(n -2)” Z —0;) ] (Equation 8)

where n is the number of observations, pi is the predicted values, oi is the observed
data, and o is the mean for oi.

2 z” True classification (Equation 9)
ccurac
Y= Total cases quation

P,— P, .
Kappa = (Equation 10)
1-P,

where n is the number of classes, P, is the total agreement probability, and Pe is the
agreement probability due to chance.

Statistical analyses were performed by using the R software v.4.1.3 (R Core Team,
2013). The multivariate and ML regression and classification models were trained and
evaluated through the R package caret (Kuhn, 2022), randomForest (Liaw and
Wiener, 2002), MASS (Venables and Ripley, 2002), car (Fox and Weisberg, 2019),
among others for data preparation, analysis and visualization.
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Figure 3.1 Flow chart of the methodological path of the study.
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Table 3.1 Salinity indices derived from the satellite image bands, and their equations.

Index Abbreviation Equation* Referencet
Salinity Index 1 Sl1 VG xR 2,3,4,5,6
Salinity Index 2 SI2 VB xR 1,3,4,5
Salinity Index 3 SI3 vB+R 4
Salinity Index 4 Sl4 JG? + R? 1,2,3,4
Salinity Index 5 SI5 VG2 + R2 + NIR2 1,2,4,5,6
Salinity Index 6 SI6 R 10 1,2
Y NIR * !
B * R
Salinity Index 7 sI7 2 3,4,5
R = NIR
Salinity Index 8 sIg *G 4,5
Salinity Index 9 SI9 G;R 4
- B
Salinity Index 10 SI10 R 2,4,5
B —R
Salinity Index 11 SI11 — 2,4
B+R
R — NIR
Normalized Salinity Index NDSI —_— 1,2,6
R+ NIR
R — NIR
Salinity Ratio Index SAIO _— 2
G + NIR

* B = B2 (blue), G = B3 (green), R = B4 (red), NIR = B5.
T 1) Li Yanan 2021, 2) Wang F. et al. 2019, 3) Aksoy et al. 2022, 4) Wang J. et al. 2021, 5)
Bouaziz et al. 2018, 6) Moreira et al., 2015. These references are not necessarily the original
sources for the above-listed indices.
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3. Results and discussion

The correlation matrix of the explanatory variables (soluble ions, EC, SAR,
pH and texture) and response variables (ESP and EC) used to calibrate/validate
the machine learning-based and classical multivariate models, is shown in
Figure 3.2. A correlation matrix for the remote sensing-based and
geomorphometric variables as predictors is shown in Appendix 3.4.
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Figure 3.2 Correlation matrix for the predictors and response variables of the multivariate
regressions.

3.1. Machine learning regression models

Among the assessed ML regression models to predict soil ECe, the SV-R and RF-R
algorithms performed the best with relatively similar values of R? and RMSE, followed
by the ML-R and PLS-R models, which, in contrast, showed good cross-validation
performances (Table 3.2). The overall high proportions of soil EC. variance explained
by the soluble ions agree with the fact that the soluble major ions complex is a good
predictor for the soil EC. and vice versa, coinciding with the high correlations between
soil EC. and soluble ions as total dissolved salts (Simdn and Garcia, 1999; Chang et
al., 1983). As a partially related study, Wang, S. et al. (2019) found that RF regression
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performed comprehensively better than SV-R among other ML models in predicting
salinity from field-measured spectral and salinity data.

Regarding the validation performances, the RF-R model was superior for estimating
the soil ESP followed by the rest of the models with similar results; even so, they
obtained relatively good cross-validation performances (Table 3.2); these results are
partly related to the relationships between SAR, ESP and exchangeable sodium ratio
(ESR) (Appendix 3.1c) and have some correspondence to the results obtained by Chi
et al. (2011), Elbashier et al. (2016a,b), Seilsepour et al. (2009), and Annex 4, to
predict the soil ESP form SAR, and also concur with those to estimate the ESR from
SAR by Harron et al (1983) and Shirmohamm and Heydari (2020). Gharaibeh et al.
(2021) obtained a very accurate prediction of ESP from easy-to-obtain soil features
using generalized regression neural networks. Furthermore, the low performance of
the PLS-R model agrees with the fact that it is better in cases where the number of
explanatory variables is high or where multicollinearity is an issue.

Table 3.2 Regression models’ performances for estimating EC. and ESP from soluble
ions.

EC. ESP
Method RMSE MAE R? RMSE MAE R?

PLS-R  29(3.3) 2.1(20) 0.82(0.72)  19.0(13.6) 12.7(10.5) 0.41(0.63)

SV-R  1.9(35) 1.2(19) 0.92(0.74)  18.4(14.0) 11.0(9.6) 0.40 (0.65)
RF-R  21(3.7) 1.2(1.8) 091(0.66)  12.6(12.4) 10.0(9.2) 0.71(0.60)
ML-R  24(28 16() 088(0.81) 19.1(13.6) 13.0(-) 0.40(0.54)

Values in parentheses mean the cross-validation results. RMSE = root mean square error, MAE = mean
absolute error, R? = coefficient of determination, PLS = partial least squares, SV = support vector, RF =
random forests, ML = multivariate linear, R = regression.

According to the RF measures of percent increase in MSE and the increase in node
purity, Na* is the most important variable followed by Ca?* for predicting the soil ESP
and Na* followed by CI- and HCO;™ for estimating the soil EC. (Figure 3.3). Despite
the relatively low importance of K* in predicting soil ESP (Figure 3.3b), it might be
important to keep this cation for modelling because it influences soil dispersion, as
demonstrated through the exchangeable cation ratio (ECR) by Marchuk et al. (2014)
and the cation ratio of soil structural stability (CROSS) by Rengasamy and Marchuk
(2011) as alternative indicators for soil ESP and SAR, respectively.
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Figure 3.3 Variable importance as the per cent increase in mean square error (%IncMSE)
and the increase in node purity (IncNodePurity) from the RF algorithm for the soil EC. (a)

Despite the relatively strong relationships among chemical variables (Figure 3.2) it
should be considered that ML algorithms deal with multicollinearity through
regularizations and by focusing the prediction and accuracy instead of the influence
among variables. Correlations between the contents of cations in the soil sorption
complex and those in the soil-water solution are relatively low (Appendix 3.1c) in

and ESP (b).

contrast to the findings of Porgbska and Ostrowska (2016).
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3.2. Machine learning classification models

The distribution of samples according to the salt-affected soil classes was relatively
balanced, except for the sodic soil category (Figure 3.4a). According to the PCA,
around 98% of the variance was explained by seven out of eight components. The
components are not so good for discriminating the clusters (Figure 3.4Db);
consequently, for a complete separation of the soil categories, ML classification
algorithms were performed.
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Figure 3.4 Distribution of the observations (a), and PCA plot of observations (b) grouped
by salt-affected soil categories.

According to the internal validation, the RF-C model obtained the best performance
with the highest prediction accuracy indicating a good classification with a significant
strength of agreement beyond chance, followed by the SVM and PLS-DA models,
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both with a regular classification accuracy and moderate agreement, and according to
the cross-validation analysis, the RF-C and SVM algorithms performed better than
the PLS-DA model with relatively similar results (Table 3.3).

Table 3.3 Classification models’ performances for predicting salt-affected soil classes
from soluble ions.

Calibration-CV Validation
Method
Accuracy Kappa Accuracy Kappa
PLS-DA 0.55 0.37 0.67 0.52
SVM 0.63 0.49 0.70 0.58
RF-C 0.61 0.47 0.87 0.82

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement,
PLS-DA = partial least squares — discriminant analysis, SVM = support vector machines, RF-C = random
forests classification.

The overall Out of Bag (OOB) error of the RF bootstrapping was 37.9%, and the
error classes were 0.29, 0.38, 0.26, and 0.68 for normal, saline, saline-sodic, and sodic
soil, respectively (Figure 3.5). The misclassification of sodic soil was mainly due to
its imbalance as fewer counts in contrast to the other categories. The soil pH used to
classify the soil may influence the quality of the classification models because it is not
directly related to the soluble/exchangeable cations, as the soil EC. and ESP are.
Based on the predictions in the confusion matrixes (Appendix 3.5a), the measure of
sensitivity as the true positive rate was regular to good for predicting the normal,
saline, and saline-sodic classes but poor for the sodic class; in addition, the RF-C
model generated higher values of sensitivity than those of the SVM and PLS-DA
models (Appendix 3.5b).
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Figure 3.5 RF overall out-of-bag and class errors in function to the number of trees.
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Regarding the estimation of the variables’ relative importance using the RF Mean
Decrease Accuracy and Mean Decrease Gini calculations, the soluble Na* was the
most relevant variable for classifying salt-affected soils, followed by Ca?*, Mg?*, and
ClI- (Figure 3.6). These ranks coincide with the variable selection through RF
backward elimination and become important for eventually discarding the less
important variables if and when the performance of the model is improved. These
importance estimations have some correspondence to the SAR and the relevance of
neutral salts over alkali salts for these soils.

Na' 1

2+ |
Ca

M92+ i
cI

2,
so?
HCO; |

+

CO5

o
[4)]

10 15
Importance IEI

Na' T
Cl™
Caz+ i

2+
HCO; -
S0

co?™

K

o4

20 40
Importance IEI
Figure 3.6 Random forest's relative importance of the explanatory variables according to
the measures of MeanDecreaseAccuracy (a) and MeanDecreaseGini (b).
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Once the models were trained a second time by using the Smote function to
overcome the imbalance generated by the sodic category as a minority class, the
validation results showed a slight improvement for the SVM model, but a decrease in
accuracy and kappa values for the RF-C model (Table 3.4), compared to those without
resampling (Table 3.3).

Table 3.4 Classification models’ performances for predicting salt-affected soil classes
from soluble ions after applying the Smote function.

Calibration-CV Validation
Method
Accuracy Kappa Accuracy Kappa
PLS-DA 0.55 0.39 0.60 0.48
SVM 0.61 0.46 0.73 0.62
RF-C 0.60 0.45 0.77 0.68

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement,
PLS-DA = partial least squares — discriminant analysis, SVM = support vector machines, RF-C = random
forests classification.

Additional classification models were performed based on the Alternative
classification (Szabolcs, 1989; Chhabra, 2004) used in Chapter 2. The three
algorithms (RF-C, SVM and PLS-DA) showed relatively similar effectiveness for
predicting the three categories (normal, saline and alkali) generated by the Alternative
classification (Table 3.5), and were relatively more accurate than those obtained to
predict the soil classes from the USSL classification.

Table 3.5 Classification models’ performances for predicting salt-affected soil classes
from soluble ions after using the Alternative classification.

Calibration-CV Validation
Method
Accuracy Kappa Accuracy Kappa
PLS-DA 0.67 0.45 0.77 0.62
SVM 0.68 0.48 0.80 0.68
RF-C 0.72 0.57 0.80 0.68

CV = cross-validation, Accuracy = correct classification of the data, Kappa = strength of the agreement,
PLS-DA = partial least squares — discriminant analysis, SVM = support vector machines, RF-C = random
forests classification.

By adding the soil pH, ECe, TOC, clay, silt, and sand to the matrix of predictor
variables, only the validation performances of the PLS and SV regressions to predict
soil ESP showed a significant improvement (Table 3.6) compared to those in Table
3.2. These results are partly related to those of Keshavarzi et al. (2016) who applied
the Al-based models Multi-Layer Perceptron and Adaptive Neuro-Fuzzy Inference
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System for predicting ESP from EC., pH, and clay. Although the RF classification
model obtained a significant increase in performance (Table 3.6) compared to those
in Table 3.3, it should be noted the redundancy caused by the soil EC. and pH as
explanatory variables and — at the same time — as classifiers of the explained soil
categories; however, their further inclusion might be pertinent if more easily measured
features are used, such as EC and pH determined in soil-water suspensions.

Table 3.6 Models’ performances after adding features to the matrix of explanatory

variables.
Regression—ESP Classification
Method Method
RMSE MAE R? Accuracy Kappa
PLS-R 12.5(13.9) 10.5(10.7) 0.62 (0.61) PLS-DA 0.61 (0.56) 0.45 (0.39)
SV-R 12.1(14.6) 9.9(11.0) 0.63(0.61) SVM 0.61 (0.60) 0.47 (0.45)
RF-R 12.7 (12.7) 10.2(9.4) 0.62(0.64) RF-C 0.90 (0.78) 0.87 (0.69)

Values in parentheses indicate the cross-validation results.

The model stability showed that RF regression models for predicting soil EC. and
ESP obtained lower differences between performances of the three calibration data
amounts than those of SV-R and PLS-R, whereas, for the classification models, PLS-
DA followed by the SVM method was more stable than the RF-C model in predicting

soil categories (Table 3.7).

Table 3.7 Validation performances from the stability assessment of the ML models.

Percent of Calibration Dataset

Model / Metrics Method Difference*
70% 75% 80%
PLS-R 3.5/0.68 2.9/0.82 2.3/0.92 1.2/0.24
EC. - Regression
SV-R 3.4/0.71 2.0/0.92 1.9/0.95 1.5/0.24
(RMSE/R?)
RF-R 2.9/0.79 2.1/0.91 3.0/0.88 1.7/0.15
PLS-R 15.1/0.52 18.9/0.41  14.9/0.57 7.8/0.27
ESP - Regression
SV-R 15.5/0.54 18.4/0.40 15.5/0.58  5.8/0.32
(RMSE/R?)
RF-R 12.6/0.65 12.6/0.71  11.1/0.78  1.5/0.13
PLS-DA  0.65/0.51 0.67/0.52  0.71/0.57 0.06/0.06
Classification
SVM 0.70/0.58 0.70/0.58  0.79/0.69 0.09/0.11
(Accuracy/Kappa)
RF-C 0.78/0.70 0.87/0.82  0.79/0.71 0.17/0.23

* Difference = sum of absolute differences among the metric values of the three partitions.
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Considering that it is important to apply tailored reclamation technigques based on
proper classifications and predictive models for site-specific salt-affected soils
(Shaygan and Baumgartl, 2022), these models become important tools for the
monitoring and management of salt-affected soils in the study area, and as a source of
alternative covariates for further modelling. Additional observations might be
included in their datasets to improve the performance and stability of the
classification/regression models, and for overcoming class imbalances and reinforcing
the selection of variables. Additionally, the input of additional features such as remote
sensing/derived data and field-measured soil properties can also be useful for
improving the effectiveness of the models.

3.3. Multivariate regression models

The Pearson correlation values among the explanatory and response variables are
shown in the correlation matrix (Figure 3.2). The maximum-likelihood factor analysis
applied on the covariance matrix concerning their mutual correlation (Table 3.8),
shows the notorious association between the soil ESP as response variable and EC,
SAR and pH as predictors. In this case, soluble salt ions are somehow redundant with
EC and SAR and then were discarded from the regression analysis. The factor analysis
for the remote sensed-based and geomorphometric features is shown in Appendix 3.6.

Table 3.8 Factor analysis for the multivariate regressions to predict soil sodicity.

Analysis* (Loadings > 0.5) Variance
Factorl Factor2 Factor3

- Na_so ©.89
© S04 @.53
cCl 0.65
- HCO3 0.9
© CO3 @.75
 pHe ©.80 Factorl Factor2 Factor3
- ESP @.79 - SS loadings 5.83 1.64 1.55
- ECe 0.77 ' Proportion Var 0.39 0.11 0.10
© SARe ©.94 " Cumulative Vvar 9.39 0.50 0.60
 Sand -0.70 -0.70
© Silt 9.99
- Clay 2.99
© K_so
+ Ca_so
© Mg_so

* Factor analysis was performed through the R function Factanal (Varimax rotation). Var = variance

The multivariate regression models predicting soil ESP in function to soil EC +
pH + SAR (initial) and EC + SAR (final) obtained through stepwise selection, showed
relatively good performances, similar to that of the simple regression estimating ESP
from SAR, indicating that EC and pH did not significantly improve the prediction
effectiveness of SAR alone (Table 3.9). Although these predictors (pH, EC and SAR)
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are relatively easy to determine in contrast to the soil ESP and performed relatively
well, their use as predictors for the study area should be subject to further
improvement and validation. Complementary, a previous performance evaluation of
the simple univariate model to predict ESP from SAR is summarized in Annex 4.

Table 3.9 Performance evaluation of the multivariate regressions to predict ESP from soil
chemical properties.

Model Calibration Validation
RSE R? RMSE MAE R?
ESP = 0.58EC + 1.38 pH + 2.69 SAR — 7.46 12.3 0.62 120 9.2 0.72

(initial model - stepwise selection)

ESP = 0.59 EC + 2.87 SAR + 3.04 122 0.63 123 93 070

(final model - AIC = 483.7)

ESP = 3.32 SAR + 4.97 (simple regression) 12.5 0.62 133 106 0.64

ESP =1.11EC + 13.34 pH — 97.97 14.0 0.51 118 103 0.70

RSE = residual standard error, RMSE = root mean square error, MAE = mean absolute error, R? =
coefficient of determination, ESP = exchangeable sodium percentage, SAR = sodium adsorption ratio,
EC = electrical conductivity.

Despite the relatively low performance of multivariate regression models to predict
soil ESP and EC from easily obtained features (Table 3.10), these models can be
improved through supplementary sampling, geostatistical filtering, and additional
geo-environmental features. The relatively low accuracy of these models was mainly
due to the imbalanced dataset in terms of excess non-salt-affected soil samples which
negatively affect the strength of the expected relationships, for instance between low
elevation/slope and salinity/sodicity or salinity/vegetation indices.
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Table 3.10 Screening and evaluation of multivariate models to predict soil ESP and EC
from some easily obtained features.

Initial model * Final model** AICT RSE R?

ESP = green + red + NIR + SWIR1 + ESP = green + red +
SWIR2 + SI1 + SI2 + SI3 + SI5 + SI6 SWIR2 + NIR + + SI1 +
+ SI7 + SI8 + SI19 + SI10 + SI11 + SI3 +SI6 +SI7 +SI8 + 509.1 11.7 0.46
SI13 + NDSI + SAIOI + ELEV + TPI NDSI + SAIOI + ELEV +

+ TRI + FLD + SLOPE FLD

EC = green + red + NIR + SWIR1 + EC = green + red + NIR
SWIR2 + SI1 + SI2 + SI3 + SI5 + SI6 + SWIR1 + SWIR2 + SI1
+ SI7 + SI8 + SI9 + S110 + SI11 + +SI2+SI3+SI5+SI6 3902 6.4 0.45
S113 + NDSI + SAIOI + ELEV + TPI + SI8 + SI9 + SI10 +

+ TRI + FLD + SLOPE SI11 + ELEV

* Predictors: satellite bands, salinity indices (Table 3.1), vegetation indices (Appendix 3.2), and
geomorphometric factors (Appendix 3.3).

** Estimated coefficients and P(>|t|) for the final models (Appendix 3.7).

T Smallest Akaike information criterion values from the stepwise variable selection.
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4. Conclusions

The support vector (SV) and random forests (RF) regressions showed the best
performances for predicting the soil EC., whereas the RF model was superior for
estimating the soil ESP. The RF classification algorithm showed the best prediction
accuracy, followed by the support vector machines (SVM) and partial least squares
(PLS-DA) models. The most important explanatory variables for all the prediction
models were Na*, Ca?*, Mg?*, Cl-, and HCO;3". The sodic class was poorly predicted,
and the applied resampling method for overcoming its imbalance did not significantly
improve the classification performances. The stability analysis showed that the
amount of training data generated less impact on the RF regression models and the
SVM and PLS-DA classifications. Additional explanatory variables somehow
improved the PLS and SV regressions to predict ESP and the RF classification. It can
be concluded that the RF and SV regression algorithms can be suitable to estimate the
soil EC. and ESP, as well as the RF and SVM classification models to predict salt-
affected soil classes from soluble salt ions.

Multivariate regressions to predict soil ESP in function to SAR, EC and pH showed
a satisfactory performance, in turn relatively similar to that of the simple regression
to predict ESP from SAR. Multivariate models to predict soil ESP and EC from easily
obtained features showed a relatively low performance.

The assessed models might contribute to the monitoring, mapping, and management
of salt-affected soils in the High Valley; however, additional samples and geo-
environmental features can be considered for improving their performances.
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Abstract

Two soil column experiments were carried out to evaluate the effectiveness of
singly/combined organic and mineral amendments with leaching in remediating
saline-sodic soils from the High Valley of Cochabamba. First, mineral amendments
(gypsum and sulphur) at two doses (50 and 100%) and organic amendments (cattle
manure, chicken manure, biochar and peat) at two levels (1 and 2% of OM w/w) with
leaching besides no/amendment, were evaluated. The properties of the soil before
were exchangeable sodium percentage (ESP) of 66.6%, electrical
conductivity (EC,) of 20.5 dS m™, and pH of 8.55. Gypsum at a dose of 100%
of the requirement was the most effective, followed by gypsum at 50% in improving
the soil ESP and EC,; in contrast, sulphur was more efficient than gypsum in lowering
the soil pH. Cattle manure at a dose of 2% performed the best in decreasing the soil
ESP but, without reaching the threshold value of 15%, and any treatment was more
effective than only water in lowering EC. below 4 dS m™. Peat at a dose of 2% was
efficient in lowering pH to 7.76. Gypsum was more effective than sulphur in lowering
soil ESP because of its calcium content which facilitates the displacement of sodium
and improvement of soil-water properties; and sulphur was less efficient than gypsum,
probably due to the short time for incubation. Cattle manure was superior in reducing
soil ESP and EC. mainly due to its organic matter and divalent cations content which
can improve the soil structure and infiltration, whereas peat and biochar reduced the
infiltration rate. Subsequently, cattle manure and chicken manure combined with
gypsum at four levels (0, 50, 75, and 100%) were assessed through a second
experiment. The soil-before properties were ESP 52.8%, EC, 24.1 dS m™, and
pH 9.6. Combined treatments (manure + gypsum) at any dose were more effective
than those of sole gypsum at any level in reducing the initial soil ESP to below 5%,
in turn, gypsum at a dose of 100% performed the best; EC. was lowered to below 1.6
dS m by any combination and sole gypsum at any dose, except sole water; and any
combination of manure with gypsum lowered the pH to below 8.7. The addition of
cattle manure or chicken manure might enhance the effect of gypsum due to their
synergistic effect on Na* displacement by their Ca?* contribution and subsequent
improvement of soil structure through the organic matter, leading to an enhancement
of the leaching process. Soluble salts and Na* were considerably reduced by any
treatment at the first leaching. These studies suggest that either sole gypsum or
cattle/chicken manure — or even better — combined, can be used for ameliorating
saline-sodic soils. However, further investigation is needed considering intermediate
doses, different soil types, and validation through field experiments.
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1. Introduction

Salinity affects root/plant growth through the osmotic effect due to the excess
soluble salts. Sodicity causes many adverse effects, such as changes in exchangeable
and soluble ions ratios, increase of soil pH, destabilization of soil structure,
deterioration of soil hydraulic properties, increase in susceptibility to crusting, runoff,
soil erosion, and osmotic-specific ion effects on plants (Qadir and Schubert, 2002).
Leaching with non-saline water is used to remove excess soluble salts from saline
soils, and mineral/organic amendments are usually added with leaching to remediate
soils affected by sodicity.

The amelioration of saline-sodic and sodic soils normally needs an external source
of soluble Ca?" to replace the excess Na* from the cation exchange sites of the
rhizosphere, and this is most effective with non-saline irrigation water (Ahmad et al.,
2006); then, the replaced Na*, together with the excess soluble salts, if present, are
removed from the root zone through infiltrating water as a result of
excessive/regulated irrigation (Qadir et al., 2001a), leading to soil flocculation and
improvement of soil structure, pH and nutrient availability. Gypsum (CaSQ4.2H,0)
and sulphuric acid (H.SO.) are widely used because of their relatively low cost and
availability (Qadir et al., 2001a). Gypsum application counters reduced hydraulic
conductivity in Na*- dominated soils through Na*— Ca?* exchange, hydrolysis of Na*
through the ionic strength effect, and enhancing electrolytic concentration (Ahmad et
al., 2016). Due to the high pH of alkali soil, most likely because of Na,COs, the
addition of gypsum provides a source of Ca?* which precipitates as CaCO; and Ca
(HCO3), leading to a decrease in pH (Wong et al., 2009). The soil ESP is normally
used to determine the dose of gypsum necessary to displace excess adsorbed sodium.

The chemical reactions of added gypsum and sulphur in the sodic or saline-sodic
soil - based on Choudhary and Kharche (2015) - are as follows:

Gypsum:
CaSO, + 2Na [clay micelle] = Ca [clay-micelle] + Na,SO, (Leachable)
and/or CaSO, + Na,CO3 = CaCO; + Na,SO4 (leachable)

Sulphur:

Previous biological oxidation of elemental sulphur mainly by Thiobacillus

2S + 2H,0 + 30, = 2H,SO4 (sulphofication)

H,SO,4 + CaCO3; = CaSO4 + H,O + CO»,

or H,SO,4 + 2CaC0Os = CaS0O, + Ca (HCOg)z

Then, CaSO; reacts with the adsorbed Na* and/or Na>CO3 as above for gypsum.

The chemical amelioration strategy itself has become cost-intensive as an effect of
increases in amendment costs (Qadir et al., 2001a); moreover, using organic instead
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of inorganic materials can reduce input costs as a sustainable and efficient
management method to reclaim salt-affected soils (Chaganti et al., 2015). Therefore,
organic amendments can be considered either an alternative or a complement to
mineral amendments. Fertilization with organic matter can be expected to improve
salt-affected soils, regarding their chemical and physicochemical characteristics, by
decreasing the exchangeable Na* content and improving their physical properties by
increasing the aggregate stability (Lax et al., 1994). Furthermore, Mahmoodabadi et
al. (2013) suggested that the application of gypsum together with organic
amendments, depending on their chemical composition, might promote some
synergistic effects on soluble Na* and K* concentrations and have a positive impact
on the properties of calcareous saline-sodic soils. An illustration of the influence of
biochar — as a referent of organic amendments — on the physical/biological properties
of salt-affected soils is shown in Appendix 4.1.

Soil salinity and sodicity negatively affect the crop yields and consequently the
farmers’ income; therefore, readily available and low-cost amendments are needed for
reclaiming sodic/saline-sodic soils. Some local experiments under controlled
conditions were carried out using soils from the study area (Annexes 2, 3, 5 and 6)
and somehow showed that manures or gypsum alone was effective in improving soil
sodicity and salinity. Amendment-based techniques were prioritized above other
restoration methods because: (1) Mineral amendments are widely used because of
their direct effect on Na* displacement; (2) however, sometimes are cost-intensive,
therefore organic amendments can be an alternative either for replacing or enhancing
the effect of mineral amendments by improving the soil-water properties; and
although (3) shoot-succulent halophytes can accumulate significant Na* quantities
within their above-ground organs, these can be insignificant compared to the ability
of some plants to solubilize CaCOj;then release Ca?*ions ; (4) which is also
water/irrigation dependent and thus infeasible in arid and semi-arid regions; and then,
(5) despite mineral amendments are also water-dependent, their amelioration effect is
normally higher and accomplished in a shorter time than that of phytoremediation
(Qadir et al, 2007; Qadir et al., 2001b; Shahid, 2002).

Therefore, some soil-column experiments were carried out to evaluate the effect of
individual/combined mineral and organic amendments with leaching in remediating
soil salinity/sodicity and to identify the most effective organic or mineral
amendment(s) and/or their combination(s). In terms of hypothesis, the assessment
looks to accept or reject that at least one amended-based remediation technique,
involving either individual or combined mineral and/or organic amendment, shows
statistically significant improvement in soil salinity/sodicity compared to other
treatments under controlled conditions, expressed for testing purpose as the alternative
hypothesis: H,: X, # Xz # Xc # .. Xy , Where, and X is the mean of a given
treatment (4, B, C... N).
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2. Materials and methods

The soils were collected from a location in the High Valley (17°32'38.6” S,
65°51'41.9” W) at an elevation of 2750 m and a depth of ~25 cm. The experiment was
carried out at the Faculty of Agricultural and Livestock Sciences — UMSS (17°27'2.9”
S, 66° 7'59.7” W). It should be remarked that even though the target soils are saline-
sodic — based on the USSL classification —, both behave as sodic/alkali according to
the Alternative classification system (Chapter 2); moreover, considering that the soil
in columns is closer to the soil under natural/field condition than that in the pots, the
soil-column experiments are described next and the pot experiments’ results are
summarized in Annexes 5 and 6.

2.1. Singly mineral and organic amendments

The soil properties before remediation are shown in Table 4.1. The purity of gypsum
was 92% (18.5 % Ca?*) and the purity of sulphur was 97.5%. The gypsum requirement
as a dose of 100% to reduce the initial soil ESP to 15% was calculated through the
equation of Hoffman and Shannon (2007) and the sulphur requirement was
determined by using a conversion factor (5.38 times gypsum requirement) as
suggested by Richards et al. (1954). The organic amendments used to remediate the
soil were: cattle manure locally collected, tropical peat as tree fern fibre from the
tropical area, and biochar branded by Greenpoch SA (Belgium). Some properties of
the organic amendments are listed in Table 4.2.

Table 4.1 Chemical and physical properties of the soil before remediation.

Property Value Solubleion  Value (mmolc L )

ESP (%) 66.6 Na' 339.2
EC (dS m) 20.5 Mg 0.7

pH 8.55 K" 1.5

Clay (%) 18.2 HCO, 40.3
Silt (%) 52.1 co, 20.0
TOC (%) 0.3 cr 185.0
CEC (cmolc kg ) 5.0 so,” 711

TOC =total organic carbon, CEC = cation exchange capacity.
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Following the protocol of Ahmad et al. (2016), simulated soil columns (Figure 4.1a,
Appendix 4.2) were assembled using PVC tubes (15 cm diameter), each one filled
with 6.7 kg of 4 mm sieved soil in two layers, so the upper layer was mixed according
to each treatment. The dose of the amendments was calculated on a dry weight soil
basis (w/w) to reach one and two per cent of organic matter content. Distilled water
was used for the leaching process to simulate the rainwater and was calculated as a
pore volume (PV) using the formula provided by Kahlon et al. (2013) and Ahmad et
al. (2016). After an initial soil saturation of 3/4 PV, two to four lixiviations (each of
one PV=2L) were applied. The soil ESP was calculated using the formula (Eq. 2 —
Chapter 2). The design was completely randomized, and the treatments were the
combinations between mineral amendment (gypsum and sulphur) and dose (50 and
100%) as well as between organic amendment (cattle manure, biochar and peat) and
dose (1 and 2%) besides no amendment or only-leaching. The LSM-Tukey adjustment
test was used to determine the significant differences between treatments at p < 0.05.

Table 4.2 Some properties of the organic amendments (cattle manure, biochar, and peat).

Property I\/IC:r:Hﬁe Biochar* ngsg(fl
Na* (cmol. kg~ 1) 0.1 0.0 0.0
ca2* (cmol. kg~1) 4.7 05 15
Mg2* (cmol. kg™ 1) 7.7 0.4 3.1
EC1i (dS m™1) 3.7 0.3 0.7
pH1:1 8.5 9.7 3.6
TOC (%) 23.7 33.0 22.5

* Additional biochar properties are listed in Appendix 4.1.
T Swelling capacity of 1.85 w/w (g water/g dry peat)

2.2. Combined amendments

The properties of the soil before remediation are listed in Table 4.3, and those of the
organic amendments are shown in Table 4.4. The protocol to simulate soil columns
by Ahmad et al. (2016) was adapted by using PVC tubes (height 100 cm and diameter
10 cm) with five cm of gravel, glass fibre and plastic mesh were placed at their
bottoms (Figure 4.1b, Appendix 4.2). The gypsum requirement at a level of 100% (8
g gypsum kg soil) needed to reduce the initial soil ESP to 15%, was calculated
through the equation used by Lebron et al. (2002). The saline-alkali soil, gypsum and
manures were homogenized and sieved at 4, 2 and 6 mm, respectively. Manures were
applied at 2% of organic matter on a dry weight basis (w/w). Each of the columns was
filled with 3.6 kg of soil to a height of 35 cm based on bulk density, then the treated
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soil was placed in the upper layer (height of 20 cm). The properties of the leaching
water were EC of 0.2 dS m™%, pH of 8.1, and Na*, Ca?* and Mg?* concentrations of
0.9, 0.6 and 0.5 meq L2, respectively. The pore volume (PV) of 1060 ml water was
determined through the formula given by Kahlon et al. (2013). An initial 3/4 PV was
added to saturate the soil, then four cycles (each of one PV) were applied until a
relatively constant EC was reached in the leachates (Appendix 4.4b), and then the
reclaimed soil was collected.

Table 4.3 Chemical and physical properties of the saline—alkali soil before remediation.

Property Value Property Value
Bulk density (g cm™) 1.3 EC: (dSm™) 24.1
Clay (%) 17.8 pH 9.6
Silt (%) 53.9 Na* (mmol. L) 332.1*
Sand (%) 28.3 Ca** (mmol; L™) 0.5
Saturation (%) 29.2 Mg?* (mmol; L ™) 0.6
CEC (cmolc kg™) 11.2* K* (mmol; L) 15
Na* (cmolc kg™) 6.9* HCO3;™ (mmol. L) 59.0
Ca** (cmolc kg™) 49* CO3* (mmol; L™) 46.0
Mg?* (cmol. kg™) 11* CI~ (mmol; L) 104.0
K* (cmol; kg™) 0.1* S04* (mmol; L) 52.5
ESP (%) 52.8 CaCOs (g kg?) 3.57

Values in mmolc L' and cmolc kg™! are from soluble ions and exchangeable cations, respectively.
* Remeasured values (difference between CEC and the sum of exchangeable cations represent an
inherent error)

The soil pH was determined in a 1:5 soil-water suspension through a derived 1SO
10390. The soil EC. and soluble ions were measured in the paste extract by using the
standard procedures of Richards et al. (1954). Exchangeable cations were obtained
through a derived ISO 22171 at a pH of 7 and AAS. The soil ESP was determined by
applying the formula (Eg. 2 - Chapter 2), the estimated percentage of displaced Na*
was calculated through Equation (11) and the SAR using the formula (Eqg. 1 - Chapter
2).

+ -
Na+displaced =100 — (#) 100 (Equation 11)

Na+AM+Na+SB

Where Nadisplaced IS Na* (%), SA is soil after, AM is amendment, and SB is soil before.
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Table 4.4 Some properties of the organic amendments and gypsum.

Property Cattle Manure Chicken Manure Gypsum*
Na+ (cmolc kg—1) 20.7 12.7 0.2
Ca2+ (cmolc kg—1) 10.7 6.6 424.7
Mg2+ (cmolc kg—1) 4.5 34 0.8
EC (dS m—1) 11.4 52 2.6
pH 9.53 9.56 7.87
TOC (%) 331 34.2 0.08

Cations (Lakanen—Ervio, AA + EDTA, pH 4.65), pH (0.001 M CaClz) and EC (1:5 suspension).
* Purity of gypsum: 91.7%

The experimental design was completely randomized with four replicates. The
treatments comprised the combinations of amendments (cattle manure, chicken
manure and no manure) and gypsum levels (GY levels (50, 75 and 100%), besides the
only leaching treatment. The effects on soil ESP, EC., pH and displaced Na* as
response variables were evaluated by using the Scott—Knott clustering algorithm (p =
0-05). Statistical analysis was performed using the R software v.4.1.3 (R Core Team,
2013). Additionally, a field experiment (Annex 7) assessing the same amendments
was carried out at the same location where the target soil was collected for this study.
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Figure 4.1 Soil column experiment to assess singly (a) and combined (b) organic and
mineral amendments.
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3. Results and discussion

3.1. Mineral amendments

Significant differences were found for the combined effect together mineral
amendment (gypsum and sulphur) with dose (50% and 100%) and organic amendment
(cattle manure, peat and biochar) along with dose (1% and 2% of OM w/w),
significant differences were found. The treatment of gypsum at a dose of 100%
performed the best in decreasing the initial soil ESP (66.6%) by 65.5% followed by
50% gypsum (by 55.2%), 100% sulphur, 50% sulphur and only water (Figure 4.2a).
The treatments of gypsum at doses of 50 and 100% were more effective in reducing
soil EC, from 20.5 to 0.9 and 1.6 dS m™, respectively (Figure 4.2b). The soil pH
showed a reduction from 8.55 to 7.5 and 7.8 for the treatments of sulphur at doses of
50 and 100%, respectively, followed by gypsum and only water (Figure 4.2c).

The effectiveness of gypsum in lowering the soil exchangeable sodium may confirm
the influence of Ca?* on displacing Na* and improving the soil infiltration, in addition
to the effect on leaching soluble salts through lixiviation. Sulphur was less efficient
than gypsum probably due to insufficient incubation time and low soil organic matter
content, but more effective for improving soil pH, maybe due to its acidic
counteracting effect. The results about the effectiveness of gypsum were congruent
with those obtained by Qadir et al. (1996), Tavares et al. (2012), and Ahmed et al.
(2016); in contrast Manzano Banda et al. (2014) who found that leaching with water
reduced soil salinity and sodicity to adequate levels for conventional crops, with and
without the application of cattle manure, gypsum and sulfuric acid.

The sodium concentration in the leachates was higher at the first lixiviation (900—
1200 mmol. L?) for all treatments compared to those from the second to fourth cycle,
and similar behaviour for the EC in a range of 45-58 dS m™ at the first cycle
(Appendix 4.3). The evolution of Na* concentration and soluble salts in the leachates
was congruent with the ESP and Ec. values in the ameliorated soil. The soil salinity
and sodicity were considerably reduced at the first lixiviation by over 90%, indicating
that one leaching might be sufficient, at least under controlled conditions.
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3.2. Organic amendments

The results after remediation showed that soil ESP, EC. and pH differed
significantly (p < 0.05) for the combined effect of organic amendment along with
dose. Cattle manure at a dose of 2% performed the best in reducing the initial soil ESP
(66.6) by 39%, followed by cattle manure at a dose of 1% (by 31.5%), and in turn by
the rest of the treatments with a similar effect (Figure 4.3a). The treatments of cattle
manure at doses of 1% and 2% were as effective as biochar and peat at a dose of 2%
for lowering the initial EC. (20.5 dS m™?) by over 16 dS m™?, while 1% biochar and
1% peat showed a lower effectiveness but higher than that of the only water (Figure
4.3b). The treatment of peat at a dose of 2% decreased the initial soil pH (8.6) to 7.76,
followed by cattle manure at doses of 1% and 2 %, and 1% peat in equal magnitude,
in contrast to biochar which maintained the pH around its initial value (Figure 4.3c).
It should be noted that the percolation time of peat and biochar was approximately
double that of cattle manure.

The superiority of cattle manure in decreasing the soil ESP and EC. can be partly
attributed to its TOC, Ca?" and Mg?* contents, which contribute to the improvement
of soil structure and infiltration, thus the displacing of adsorbed Na* from the soil. The
lower effectiveness of peat in reducing soil ESP was likely due to its swelling capacity
(1.85 w/w of water/dry peat) which together with soil dispersion boosts the slowdown
of the leaching process; in this sense, Shaygan et al. (2017) suggested that the
swelling effect of bentonite along with water decreased the hydraulic conductivity,
thus increased the sealing of the pore system and percolation in the reclaimed soil.
Biochar also showed a limited effect on sodicity, probably due to its insufficient
ability to influence soil structure, in concordance to Chaganti and Crohn (2015) who
indicated that the mode of action of biochar is physiochemical while composts provide
a comprehensive reclamation when biological and physiochemical factors act
together. Water by itself was less effective in decreasing adsorbed Na* but lowered
soil ECe to 4.2 dS m™, coinciding with Mahmoodabadi et al. (2013) who found that
EC. decreased significantly even for the unamended soil possibly caused by solute
leaching; moreover, Manzano Banda et al. (2014) stated that flushing water reduced
salinity with and without the application of manure. In contrast to biochar, the peat
significantly reduced soil pH, mainly due to its very low pH, causing an acidic
counteracting effect, as Chaganti et al. (2015) found that composts significantly
improved soil CEC and pH, but the biochar did not. Furthermore, Saifullah et al.
(2018) affirmed that although many studies reported significant decreases in SAR and
ESP of sodic and saline-sodic soils as well as improvement in plant growth due to the
sorption of Na* salts by biochar, not necessarily represent a removal of Na* out of the
soil.
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Overall, these results suggest that cattle manure, biochar and peat enhanced the
effect of leaching in remediating soil salinity and sodicity through the positive impact
of their organic matter content on soil structure, infiltration, and Na* displacement,
agreeing with Chaganti et al. (2015) who found that organic amendments significantly
lowered the soil ECe, ESP and SAR compared to the non-amended soils, and also
improved soil structure, aggregate stability and saturated hydraulic conductivity, even
more in compost treated soils; Lax et al. (1994), who reported that the physical
properties of the salinized soil, such as structural stability, infiltration rate, water-
holding capacity and washing capacity, were considerably improved by added organic
matter from the solid waste application; and Abdel-Fattah (2012), who concluded that
water hyacinth and rice straw compost singly or combined facilitated a pronounced
decrease in soil EC, pH, SAR, and ESP compared to the control (Abdel-Fattah, 2012).
Despite organic amendments were effective in reclaiming salinity, the soil ESP and
pH threshold values from the USSL classification were not reached. Furthermore,
subsequent assessments of potential amendments for remediation should consider an
environmental evaluation besides cost analysis.

3.3. Combined amendments

Soil ESP, pH, EC. and displaced Na* in the reclaimed soil, as, differed significantly
(p < 0-05) among the combinations. It should be mentioned that the treatment without
amendments (only leaching) was not considered for the comparisons of means in
Figure 4.4, but for those in Appendix 4.4a, since it received two cycles of leaching in
54 days due to its longer percolation time, and because of the marked differences
between the output groupings of means with and without this treatment.

The soil ESP, EC. and pH values of the only leaching treatment, decreased by 54%,
79% and 8%, respectively, over its soil-before value; moreover, the threshold values
of ECe (4 dS m™) and ESP (15%) from the USSL classification were reached with
any treatment, except without amendment, however, that of soil pH (8.5) was only
reached with chicken manure at any dose of gypsum (Figure 4.4, Appendix 4.4a).
Cattle manure and chicken manure combined with any level of gypsum were more
effective than sole gypsum treatments in lowering the initial soil ESP below 5%, and
cattle manure and chicken manure at a dose of 100% gypsum were the most effective
(Figure 4.4a). The soil-before EC. was decreased by over 90% with any combination,
even those at any dose of gypsum, and chicken manure at a dose of 100% gypsum
was the most effective (Figure 4.4b). The treatments with combined chicken manure
and gypsum were more effective than the rest of the combinations for reducing soil
pH (Figure 4.4c). The displaced Na* values were relatively congruent with those of
the ESP from reclaimed soil (Figure 4.5); however, it is only an alternative
representation of Na* removal and balance, which did not confirm the treatments’
effectiveness.
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the Scott—Knott test (p = 0.05). GY = gypsum.
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Figure 4.5 Combined effect of manures and gypsum levels on sodium displacement.
Means sharing a letter are not significantly different according to the Scott—Knott test (p =
0.05).

These results agree with those from other studies on the effectiveness of organic
amendments combined with gypsum, such as that of Chaganti et al. (2015) who
reported that combined applications of gypsum and composts were more effective
than individual applications in improving soil properties such as sodium leaching,
hydraulic conductivity, ESP, and SAR; as well, Prapagar et al. (2012) found that
gypsum application combined with partially burnt paddy husk and cow dung reduced
the soil EC, SAR and pH more effectively, compared to applying gypsum alone;
moreover, Abdel-Fattah (2012) observed that gypsum combined with water hyacinth
compost or rice straw compost enhanced the soil amelioration process and caused a
higher decrease in salinity and sodicity than gypsum alone, and in turn, than the
control. In contrast, some investigations differed from these results, such as that by
Hernandez Araujo (2012) who found no differences among organic amendments
(compost, vermicompost and Lemna spp) at 1.5 or 3% w/w, nor combined with
gypsum; and that by Manzano Banda et al. (2014) who reported that flushing water
reduced the salinity and sodicity of two saline-sodic soils to satisfactory levels with
and without the application of any amendment (cattle manure, gypsum and sulphuric
acid).

The effectiveness of cattle manure or chicken manure combined with any level of
gypsum in reducing the soil ESP and soluble salts in the saline-alkali soil (Figure
4.4a,b) can be explained by the positive impact of organic matter from manures and
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Ca?* from gypsum on the soil structure, leading to an enhancement in soil aggregation,
porosity, infiltration, and subsequent leaching efficiency; furthermore, although the
addition of gypsum by itself improved those characteristics, the superiority of the
treatments from combined amendments independent of gypsum doses, suggests that
the indirect effect of organic amendments on soil physical properties, then facilitating
the removal of Na* and salts was significant. In this regard, Ahmad et al. (2016)
mentioned some factors that influence the leaching of salts and Na* from soil, such as
the difference between the soluble and exchangeable Na* contents of soil, the quantity
of gypsum added, soil texture, CEC, and the percolation time; coinciding partially
with Shaygan et al. (2017) who stated that the dynamics of hydraulic conductivity
depend on the magnitude of cation exchange and the subsequent changes in the pore
system. Likewise, Chaganti and Crohn (2015) indicated that the chemical
characteristics of composts are as important as those of biological factors in their
potential for reclamation; therefore, to achieve a comprehensive physical and
chemical amelioration of a saline-sodic soil, both factors must act synergistically.

The lower effectiveness of the treatments with sole gypsum compared to that with
combined gypsum and manures for reducing soil salinity/sodicity (Figure 4.4) was
probably due to the boosting effect from that combination besides the initial high
exchangeable Na* of the soil and the Na*: Ca?* + Mg?* ratio of manures, leading to
lower availability of Ca?* and soil dispersion. However, the effect of sole gypsum was
likely sufficient in promoting soil aggregation and subsequent leaching of soluble salts
and Na* from the soil, possibly boosted by the increased solubility of gypsum (~2—-3
fold) in the presence of NaCl, meaning that relatively more Ca?* could infiltrate the
soluble form, agreeing with Gupta and Gupta (2019), who stated that the solubility of
gypsum in alkali soils is considerably higher than in normal soils and is also increased
if it is applied in conjunction with manures; and coincides with Sim et al. (2018), who
found that NaCl largely increases the solubility of gypsum. In addition, Ahmad et al.
(2016) found that the increased addition of gypsum can improve the retention of Ca?*
+ Mg?" and enhance leaching even for loamy sand and sandy loam soils. The order of
effectiveness in lowering ESP for only gypsum treatments was: GY 10 > GY75 = GYso
> only water (Figure 4.4a), which coincides partially with that of Qadir et al. (1996),
who also included phytoremediation by L. fusca (LF): GY100 > LF > GY5 > control.

The significant reduction in soil pH by combined treatments (Figure 4.4c), despite
the previous high pH of the manures and soil can be due to the displacing of sodium
salts, agreeing with Wong et al. (2009) who affirmed that the high initial pH of soil,
most likely as a result of NaCOs, can be reduced through the addition and dissolution
of gypsum as a source of Ca?* which precipitates as CaCO; and Ca(HCO3)., resulting
in a direct decrease in soil pH and later proton generation for further reductions. In
addition, Chaganti et al. (2015) and Wong et al. (2009) concluded that adding
composts likely increases the partial pressure of CO, due to increased microbial
activity during incubation and/or leaching, which can lead to the formation of
inorganic and organic acids for further soil pH reductions. However, for the treatments
with only gypsum, the soil pH after remediation showed minimal variation compared
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to the initial pH (Figure 4.4c) likely because of the initial high ESP and soluble Na*
leading to soil dispersion, which probably counteracted the Ca?* contribution from
gypsum. Because the three gypsum levels combined with manures showed relatively
low mean differences with some significant differences among them for lowering the
soil ESP and pH, manures with gypsum at doses of 50% and 75% can be considered
as cost-efficient alternatives for further validations.

The percolation time (two cycles in 54 days) for the non-amendment treatment was
considerably longer than that of the rest of the treatments (four cycles in a range of
10-35 days) as shown in Figure 4.6. This behaviour can be due to soil dispersion
caused by the high exchangeable Na* in the soil before remediation, which can also
explain the higher effectiveness in decreasing soil ESP and EC. of sole gypsum at any
level compared to that of the non-amendment treatment. Moreover, Shaygan et al.
(2017) suggested that an increased percolation time and a greater rate of cation
exchange were associated with a greater leaching efficiency.

Soluble salts expressed as EC (Appendix 4.4b) and SAR (Appendix 4.5) in the
leachates decreased considerably for all treatments in the first leaching cycle;
therefore, up to two leaching might be sufficient to reclaim this type of soil, at least
under controlled conditions. This behaviour can be related to the increased leaching
rate triggered by amendments and subsequent soil flocculation, which counteracted
the soil dispersion caused by the high sodicity of the soil before remediation. These
results agree with Abdel-Fattah (2012) who mentioned that the first cycle of leaching
can readily leach salts and mobile ions, whether the soils are amended or not. This
also concurs with Ahmad et al. (2016) and Hassan et al. (2011), who reported a higher
removal of Na* in the first leaching cycle than that in the following leachates,
coinciding with higher hydraulic conductivity; moreover, they also concluded that the
maximum salts and Na* could come from the dissolved part, while the forthcoming
fraction could come partially from the reactions taking place through the Na*— Ca?*
exchange and influenced by the high initial EC. of soils that keeps them flocculated
to pass the solution (Ahmad et al., 2006).

It is important to highlight the fact that the original soil condition was altered before
the column experiments for its homogenization as a controlled factor, and there was
no measurement of soil-water properties as hydraulic conductivity or water retention,
leading to a limitation in terms of interpretation and extrapolation of the findings to
field conditions.
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Figure 4.6 Percolation time in cumulate days in function to the applied leaching cycles
(1%, 2n, 3 and 4™). PV = pore volume

Further research could assess different soil textures, other gypsum levels, and lower
rates of manures. Moreover, other studies could evaluate a two-step process of
washing with gypsum followed by organic amendment similar to that of Sastre-Conde
etal. (2015), the influence of mulch with gypsum as investigated by Zhao et al. (2020),
and the inclusion of phytoremediation techniques as studied by Qadir et al. (1996).

The results from the field experiment showed that all treatments, except the control,
were equally effective in decreasing the initial soil ESP; however, none of the
treatments were effective in reducing the soil EC (Annex 7). These outcomes may be
attributed to the water deficit caused by delayed rainfall in the early drought period
and excessive evaporation during the remediation process. Therefore, further
validation is needed, with the field experiment setup placed either at the beginning or
middle of the rainy season.
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4. Conclusions

Individual gypsum at a dose of 100% of the calculated requirement was the most
effective in improving the soil ESP and EC., followed by gypsum at 50%; this can be
attributed mainly to the calcium from gypsum which displaces the sodium and
improves soil-water properties. Treatments with sulphur were less efficient than those
with gypsum for improving soil sodicity, probably due to the short incubation time
besides the low soil organic matter content.

Cattle manure at a dose of 2% organic matter was the best for decreasing soil ESP
to 27.6%, and any treatment was more effective than that without amendment in
lowering EC. below 4 dS m™. Peat at a dose of 2% generated the highest reduction of
soil pH (to 7.76). The superiority of cattle manure in reducing soil ESP and EC. was
mainly due to the improvement of the soil structure through its organic matter and
divalent cations contribution, whereas peat and biochar were less effective probably
due to their influence on soil clogging and slowdown of leaching.

The combined treatments of cattle manure or chicken manure with any level of
gypsum were more effective than those of sole gypsum at any dose in reducing the
initial soil ESP to below 5%, and any manure with 100% gypsum was most efficient.
The soil before EC. and ESP levels decreased to below 1.6 dS m™ and 14%,
respectively, with any combination of amendments or sole gypsum at any level, except
only water. Any combination of manure with gypsum lowered the pH to below 8.7.
The effectiveness of combining organic amendments with gypsum can be explained
by their synergistic effect on Na* displacement resulting in the subsequent
improvement of soil porosity, flocculation, and infiltration, leading to an enhancement
in the leaching process. Manures with 50% and 75% gypsum levels could be an
alternative to the 100% gypsum dose. Soluble salts and sodium were considerably
lowered in all treatments during the first leaching cycle.

Individual gypsum or cattle manure with leaching can be used to remediate sodic
and saline-sodic soils; furthermore, the addition of cattle manure or chicken manure
might enhance the effectiveness of gypsum with leaching for that amelioration;
however, further validations through field experiments including different soil types
and doses are needed.
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1. General discussion

As a contribution to the management and rehabilitation of salt-affected soils in the
High Valley of Cochabamba - Bolivia, this study addressed various problems related
to soil salinity and sodicity through the objectives formulated from research questions
(section 4 - Chapter 1). Some aspects that have been left outside the scope of the study
were: the identification and level of influence of drivers of salinization, the description
of salinization processes, dynamics as spatiotemporal analysis, mapping, and other
restoration strategies such as flushing, phytoremediation and biosaline agriculture, all
of which were excluded due to the availability of resources, time and scientific
pertinence, but can be considered in subsequent research. Following this, a general
discussion of the findings (Chapters 2, 3 and 4) from this study:

1.1. Characterization and classification of salt-affected soils

The characterization of eight soil profiles comprises the determination of chemical,
physical, and morphological properties (sections 3.2 - 3.4, Chapter 2) as well as
taxonomic classification (section 3.5, Chapter 2). High levels of sodicity and soil
reaction were found along the horizons in the profiles’ depth of Santa Ana (SP 1),
Aramasi (SP 4), and San Benito (SP 3), besides a high soil salinity in their top
horizons, which in turn were classified as Sodic Solonchak (Hypersalic, Siltic), Salic
Solonetz (Hypernatric, Siltic, Protocalcic), and Salic Solonetz (Natric, Siltic),
respectively.

The comparative analysis between the output categories and salinity/sodicity
distributions from two salt-affected soil classification systems somehow demonstrates
the potential impact of such differences on soil management and restoration, since the
saline-sodic soil class from the USSL classification normally behaves as saline or
sodic, nonetheless, such confusion can be overcome by the Alternative classification
(Chhabra, 2004) which prioritizes the nature and ratios of soluble salt ions above the
soil ESP, EC. and pH. Saline-sodic and saline soils (USSL method) and saline soils
(Alternative method) were dominant in the sampling (section 4.1 - Chapter 2). It
should be remarked that any classification system has implicit limitations for the
identification of soil categories because its specific indicators of salinity/sodicity and
threshold values (Rengasamy, 2016; Chhabra, 2004) are site-specific and normally
based on the degree of affection to the soil condition and/or crop growth, thus subject
to variability in terms of soil types and crop characteristics, hence the importance of
generating or adapting a tailored classification system for a given region.

As for the previous spatial predictions of salinity and sodicity in the High Valley by
Weber (2018) and Araujo (2009), the spatial interpolation of soil ESP and EC was
unsatisfactory due to the insufficient spatial correlation mainly caused by the limited
number of observations about the surface of the study area and the imbalance caused
by the excess non-salt-affected observations (section 4.2 — Chapter 2). Regarding the
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soil texture, most of the samples were classified as loam, silty-loam, clay-loam, and
silty-clay-loam, according to the USDA system; additionally, it is important to
highlight the low soil organic matter as total organic carbon (mean of 0.7% * SD of
0.5%) for the whole sampling (section 4.3 — Chapter 2), considering the influence of
organic matter on soil water properties and on the mobilization of Ca?* from dissolved
calcite, which in sum can potentially reduce the soil salinity and sodicity (Chaganti et
al., 2015; Choudhary and Kharche, 2015).

The low representativeness of the soil information database led to its limited
usefulness for the characterization, classification, and spatial prediction of salt-
affected soils; in this regard, the survey was carried out according to methodological
parameters (Weber, 2018) in terms of sampling size and sampling method, which was
systematic-random for achieving a significant coverage of the area; however, the salt-
affected soil samples were insufficient; therefore, complementary sampling and
stratification can increase the representativeness of the soil database. Despite such
limitations, the soil information represented a baseline for this study as well as an
approximation for the current status of salt-affected soils in the High Valley.

1.2. Prediction of salinity and sodicity

The objective of generating predictive models lies in the need to reduce costs and
time, rather than in forecasting values of interest; for instance, the determination of
the ESP in soils is both time-consuming and costly (Keshavarzi et al., 2016). Like soil
classification systems, predictive models are subject to local and specific
characteristics; thus the accuracy of a given model is normally higher for the site in
which it was developed because of the specific soil textures and other local factors. If
models to predict soil salinity are developed in one specific area, they cannot be
applied to another region because of differences in soil properties such as organic
matter content and/or salt type (Das et al., 2023; Kahaer and Tashpolat, 2019).
Therefore, models for predicting soil sodicity/salinity variables must be site-specific
and subject to continuous improvement for local use. It is also important to note the
link between the use of all the major soluble salt ions as explanatory variables in
Chapter 3 and the Alternative classification (Chapter 2) which prioritizes the nature
and proportion of these ions above/beside the conventional indicators (soil ESP, EC
and pH) to properly classify salt-affected soils, thus we foresee their inclusion not
only in conventional but also in complex predictive models.

The machine learning (ML) algorithms of support vector (SV) and random forests
(RF) regressions performed the best in predicting the soil ECe, as well as RF for
estimating the soil ESP (section 3.1 — Chapter 3). The RF classification followed by
SVM was superior in predicting salt-affected soil categories (section 3.2 — Chapter 3).
As a result of the variable importance analysis through the RF algorithm, the most
relevant explanatory variables were Na*, Ca?*, Mg?*, Cl-, and HCOj3"; however, this
ranking relies on the heterogeneity of the samples and the sensitivity of the model.
Additional explanatory variables (soil texture, pH and TOC) only improved the SV
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and PLS regression to predict ESP and the RF classification, which means that
supplementary predictors, not only field-measured soil properties (Keshavarzi et al.,
2016) but other easily obtained features — mentioned and cited in Chapter 3 — can
significantly increase the accuracy of ML models.

According to the performance evaluation of multivariate regressions to predict soil
ESP as a function of other chemical properties (EC, pH and SAR), the model to
estimate soil ESP from EC and SAR, and that from pH, EC and SAR were acceptable
and similar to that from only SAR, which in turn, agrees with Annex 4; moreover, the
multivariate models to predict soil ESP and EC from easily obtained
geomorphometric and remote sensing-based features showed a relatively low
performance (section 3.3 — Chapter 3), mainly due to the insufficient observations and
the distortion caused by excess non-salt-affected samples in the features that normally
correlate well with salt-affected soil, such as salinity indices and some
geomorphometric indices; in this sense, additional samples and features along with
refinement and stratification, could improve the models’ performances, also
considering the methodology from some studies cited in Chapter 3. As a remark, the
soil EC was considered as a response variable even though it is an easily measured
property, because of its applicability in spatial predictions.

Based on these results, the RF and SVM algorithms might be appropriate to predict
soil ECe, ESP, and salt-affected soil categories from soluble salt ions, as well as the
models to estimate the soil ESP from either SAR, EC + SAR or EC + SAR + pH,
might contribute to the monitoring and management of salt-affected soils in the High
Valley; however, additional samples and geo-environmental covariates, along with
alternative modelling techniques and refinement can enhance their accuracy. In terms
of limitations, although some ML models obtained good prediction effectiveness,
overall models’ performances need to be improved before using them to estimate
sodicity/salinity variables in the study area.

1.3. Remediation of salt-affected soils

The previous soil-column experiment showed that gypsum outperformed sulphur in
lowering soil ESP, either gypsum or sulphur or water alone was effective in decreasing
soil ECe; and also, that cattle manure or chicken manure was more effective than
biochar and peat in improving soil sodicity, and any amendment except water alone
was effective in improving soil salinity (sections 3.1, 3.2 — Chapter 4). The superiority
of gypsum was mainly due to its Ca®* content which displaces the exchangeable Na*
and improves the soil-water properties, and the low effectiveness of sulphur was
probably due to the insufficient time of incubation and organic matter needed for Ca?*
formation, while manures performed the best mainly due to their organic matter and
divalent cations contribution, which improve the soil structure and infiltration,
whereas the peat and biochar were less effective probably due to their influence in
clogging soil pores. The second soil-column experiment aimed to evaluate the
combined effect of manures and gypsum showed that cattle manure or chicken manure
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along with gypsum at any dose was more effective than gypsum alone at any level in
reducing the initial soil ESP to below 5%, any combination of amendments or gypsum
alone at any dose was efficient in lowering the soil EC. to below 1.6 dS m™, and any
combination of manure with gypsum lowered the pH to below 8.7 (section 3.3 —
Chapter 4). The higher effectiveness of manures combined with gypsum in reclaiming
soil sodicity/salinity can be explained by their synergistic effect on Na* displacement
and improvement of soil structure, leading to an enhancement of the leaching process.
Even though gypsum or manure alone can effectively improve soil salinity/sodicity,
the addition of manure might enhance and hasten the effect of gypsum with leaching
in ameliorating saline-sodic soils, agreeing with Chaganti et al. (2015), Prapagar et al.
(2012) and Abdel-Fattah (2012), who confirm the superiority of the combined
amendments over gypsum alone; however, additional experiments mainly under field
conditions are needed to validate these results as well as to enrich the insights into
amendment-based amelioration, before promoting results among the farmers.

Some reasons that amendment-based remediation techniques were prioritized above
other restoration methods were: (1) Mineral/chemical amendments are widely used
because of their direct effect on the displacement of adsorbed Na* through their Ca?*
contribution; (2) however, they are sometimes cost-intensive (Qadir et al., 2007),
therefore organic amendments can be an alternative either for replacing or enhancing
the effect of mineral amendments (Prapagar et al., 2012), through their indirect
amelioration effect in improving the soil-water properties (Qadir et al., 2001); also
although, (3) shoot-succulent halophytes can accumulate significant Na* quantities
within their above-ground organs, and despite these can be insignificant compared to
the ability of some plants to solubilize CaCOs then release Ca?* ions to substitute
Na* in calcareous sodic or saline-sodic soils through their root respiration and
H* release (Qadir et al., 2007; Qadir et al., 2001b), (4) which is also water/irrigation
dependent and thus infeasible in arid and semi-arid regions (Shahid, 2002); and then,
(5) although mineral amendments being also water dependent, their amelioration
effect is normally higher and accomplished in a shorter time than that of
phytoremediation and even organic amendments; consequently (6) the study mainly
addressed the combination between mineral and organic amendments for remediating
salt-affected soils. Furthermore, the reason that experiments under controlled
conditions were carried out instead of under field conditions was to obtain specific
results and variability by controlling factors and to evaluate more treatments in a
shorter time, which is unfeasible under field conditions.

In terms of limitations, despite these experiments under controlled conditions
showing that organic and/or mineral amendment additions along with leaching were
effective in remediating saline-sodic soils, the findings are still not suitable for
diffusion among the farmers and decision-makers, as more assessments — mainly
under field conditions — are needed. Moreover, it should be emphasized that the soil
columns did not effectively mimic the natural condition of soils from the field, since
the soil cores were altered and homogenized before the column experiments;
therefore, these evaluations also aimed the balance between the benefit of testing in
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non-disturbed as a mimicry of the natural soil, and the need of altering and
homogenizing the soil to control as much as possible the experimental factors.
Paradoxically, the physical condition of the non-disturbed soil was relatively similar
to that of the altered soil probably due to its highly sodic thus dispersed condition.

The soil hydraulic conductivity was not effectively measured, which is
indispensable to discuss the behaviour of the lixiviation process and its implication in
the leaching of salts and the amelioration effect in the soil; even so, the percolation
time was measured (section 3.3 — Chapter 4), which is normally strongly and
negatively correlated with hydraulic conductivity and infiltration. Further experiments
should not only include the assessment of soil-water properties but also that of
different soil textures as investigated by Ahmad et al. (2016); Hassan et al. (2011) and
Kahlon et al. (2013).

Despite the biochar, peat and sulphur not being as effective as gypsum and manures,
it is important to note the environmental aspects such as the origin and ecosystem
services for these and other similar amendments, which must be addressed in further
investigations and subsequent agricultural extension; as for the temperate peat bogs,
Barkham (1993) highlighted the need for proper management of peat resource in a
sustainable way, not only from the economic perspective but also from the ecosystem
services, thus human well-being. In the context of the study, there are no specific
regulations addressing the origin, processing and use of temperate/tropical peat and
biochar for soil restoration purposes.

Finally, about the socio-economic aspect, these results might boost the rehabilitation
of salt-affected soils in the High Valley and contribute to the enhancement of the
soil/crop productivity, thus the farmer’s income. Eventually, farmers can also access
alternative sources of income by cultivating value crops under biosaline agriculture.
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2. Future perspectives

To improve the representativeness, significance and usefulness of the baseline soil
information, also considering the large surface of the study area, complementary
sampling should be added to the soil database and additional soil profiles should be
assessed, using the same protocols for sampling and measurements as those used in
this study. Moreover, a subsoil sampling can be considered because of the behaviour
of soluble salts in function to soil-water dynamics within the soil depth. Alternative
sampling strategies such as stratified, covariate space coverage sampling (Brus, 2022)
and conditioned latin hypercube (Minasny and McBratney, 2006) can also improve
the significance of the soil information database. Considering the heterogeneity of
soils within the High Valley and compared to other regions, it is important to define
a site-specific classification system based on the adaptation and validation of at least
the USSL (Richards et al., 1954) and the Alternative (Chhabra, 2004) criteria, along
with their threshold values. Furthermore, the assessment of the sources of salts,
irrigation water resources, mineralogy of clays, spatiotemporal analysis, and
environmental/social aspects, among other factors affecting the salinization processes,
is essential for achieving comprehensive soil management.

As for the baseline soil information, additional observations might enhance the
accuracy of prediction models, following the above recommendations about using
similar protocols and alternative sampling methods. The use of easily obtained
features as model covariates, such as those from remote sensing, geomorphometry,
and physiography, among other geo-environmental characteristics and lab/field-
measured properties, can significantly improve the performance of models in
predicting soil salinity and sodicity, thus improving the classification and spatial
prediction of salt-affected soils. Aiming to reduce the costs for the measurement of
salinity/sodicity variables, it is also recommended to generate regression models to
predict soil EC, pH and soluble ions measured in paste extract in function to similar
variables but easily measured in different soil:water suspensions. It should be
remarked that although the numerous models already obtained by various authors, it
is critical to develop site-specifically tailored models, considering the heterogeneity
of soil types and soluble/adsorbed ions complexes in the soil. Finally, alternative novel
methods as machine learning and deep learning algorithms can be trained and
validated to evaluate and compare their performances.

Regarding the amendment-based remediation, evaluations under field conditions are
needed to accomplish results closer to real conditions than those under controlled
conditions, then can be recommended to the farmers; in this context, it is important to
validate the best-performed treatments from this study through on-field experiments
such as that carried out by Quispe Zenteno et al. (2020) (Annex 7). However,
additional experiments under controlled conditions are essential for assessing multiple
factors such as various amendments, soil types and multiple doses (25%, 50%, 75%,
100% and 125%). It is also recommended to assess soil-column instead of pot
experiments, because of its height, soil volume and subsoil layer, which mimic the
natural conditions of soil in a better way than that of the pots.
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It could be important to research alternative remediation strategies such as
phytoremediation, leaching/irrigation techniques, and physical/mechanical methods,
among others, taking into account the limitations such as inputs’ costs, low availability
of non-saline water, low farmers’ income, heterogeneity of soils, water-soil dynamics
and semiarid condition in the High Valley. Regarding the phytoremediation strategy,
Mamani Flores et al. (2020) assessed the phytodesalination capacity of four
halophytes and found that the native halophytes Suaeda fruticosa Moq and Sesuvium
portulacastrum were more effective than the alien halophytes Atriplex hortensis and
Kochia scoparia in removing Na* from soil (Annex 8). Other remediation techniques
such as phytoremediation and organic matter addition can significantly improve soil
health and thus the environmental conditions. Moreover, the origin of minerals and
organic materials must be subjected to environmental evaluations before considering
their use as potential amendments for salt-affected soil amelioration, either for
research or promotion among the farmers.

In sum, considering the semiarid conditions in the High Valley, the use of mineral
and/or organic amendments and phytoremediation based on calcite dissolution can be
unfeasible mainly due to their water dependence, in contrast to the phytoremediation
based on harvesting Na* from soil but inviable in terms of desalination capacity
compared to the previously mentioned strategies (Qadir et al., 2007; Alemayehu and
Haile, 2022); therefore, the biosaline agriculture (Negacz et al., 2021) as an adaptation
strategy may be viable through the adaptive and subsequent agronomical evaluations
of crops with low to high tolerance to salinity and sodicity, such as value halophytes
(e.g. quinoa), forages, cover crops and vegetables among others.

Considering that soil salinity and sodicity are the main types of land degradation in
the High Valley of Cochabamba, these findings are only the starting point to push
forward policies, technical efforts and research. In this context, additional factors
which drive salinization processes should be considered in further assessment, such
as deforestation, residual waters, use of fertilizers, etc. Overall, these results represent
the foundations as baseline information and tools to be considered by all the
stakeholders for boosting the sustainable management of salt-affected soils in the
High Valley. From the perspective of research, these results become a baseline for
further improvement and validation. Relevant stakeholders are the University (FCAyP
— UMSS) and the National Institute of Agricultural, Livestock and Forestry Research
(INIAF — Bolivia). Within the agricultural sector, although the farmers are normally
organized in associations, it is more feasible to coordinate with the municipalities for
conducting activities on agricultural extension and research.
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3. General conclusion

As the study aimed to contribute to sustainable management and effective
rehabilitation of salt-affected soils in the High Valley of Cochabamba, the following
general conclusions address the research questions and objectives.:

The baseline soil information and database, as a foundation for managing and
monitoring salt-affected soils in the High Valley of Cochabamba, require
improvement through additional sampling and assessment to enhance
representativeness. Furthermore, the classification system should be tailored to the
study area to enable precise identification and management of these soils.

The random forest and support vector machine algorithms, along with certain
conventional multivariate models, may be suitable for estimating soil ESP, EC, and
classifying salt-affected soils from soluble ions, other soil properties, and easily
obtained features in the study area. Although these models meet the need for site-
specific prediction tools, they require enhancement for greater accuracy through larger
datasets and additional predictors.

Gypsum as a mineral amendment and cattle or chicken manure as an organic
amendment were most effective in improving soil salinity and sodicity, particularly
when combined. However, further assessment is needed under both controlled and
field conditions, incorporating locally available amendments and considering socio-
economic and environmental factors. Additionally, other amelioration strategies, such
as phytoremediation and biosaline agriculture, may be evaluated given the semi-arid
conditions of the valley.

The study results and some implications are summarized by objective in Table 5.1.
In summary, this study highlights the following key points:

Sustainable management and rehabilitation of salt-affected soils in the High
Valley of Cochabamba rely on accurate classification, precise estimation, and
effective amelioration of saline/sodic soils; consequently, this study contributes to
these goals by providing: (1) comprehensive baseline soil information, (2) a
foundation for tailored prediction and classification tools, and (3) insights into
amendment-based remediation techniques—all of which require further refinement.
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Figure A1.3 Geopedologic map - High Valley, Cochabamba, Bolivia (Metternicht, 1996)
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GEOPEDOLOGIC LEGEND
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Table A2.3 Summary of the field form used for soil description (adapted from FAO, 2006)

Soil-formation factors

Weather (present/trainer)

Soil climate (temperature/mould)
Major Landform

Position (undulating, flat)

Slope (form, gradient)

Land use / Vegetation / Crops
Human influence

Soil-surface characteristics

Rocks outcrops

Coarse surface fragments (cover, size)

Erosion (category, degree)

Surface sealing (width, depth, distance)
Surface cracks (width, depth, distance)
Salt (cover, thickness)

SOIL DESCRIPTION - HORIZONS

Horizon boundary
Depth HB (cm)
Distinctness (cm)
Topography

Primary constituents

Texture of the fine earth fraction

Rock fragments: Abundance / Size /
Shape

Soil colour (matrix)
Munsell colour Chart

Mottling
Mottles: Colour (Munsell) / Abundance /
Size /Contrast / Boundary

Carbonates, gypsum, salts Field soil pH
Carbonates, Gypsum: Content / Form pH value
Salt content (EC,25 °C)

Redox Odour
Reducing conditions (Munsell colour) Soil odour
Organic matter content Bulk density

Organic matter estimation (Munsell)

Bulk density (g/cm3)

Organization of constituents
Structure: Grade / Type / Size
Soil-water status

Consistence: Dry / Moist / Stickiness /
Plasticity

Voids (porosity)

Porosity

Voids: Type, Abundance (dm?) and

Size (<> 2mm) / Very coarse (20-50mm)

Concentrations

Coatings: Abundance / Nature / Form
Compaction: Degree / Nature /
Structure / Continuity

Concentrations

Mineral concentrations: Kind / Size /
Shape / Nature / Hardness / Colour /
Abundance

Biological activity

Roots size (diameter <2mm, >2mm)
Roots abundance

Biological features: Kind / Abundance

Human-made materials
Artefacts - kinds
Transported material
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Table A2.4a Soil chemical properties: salinity/sodicity parameters (ESP, EC and pH) and
exchangeable cations for each horizon of the non-salt-affected soil profiles.

Exchangeable cations

(mmolc kg?) Soil salinity variables

Soil profile Horizon EC ESP* Class

+ + 2+ 2+
Na K Ca Mg pH ds*m-? % USDA**

AP 0.00 0.01 0.30 0.02 7.46 1.24 1.2 Normal
AB 000 001 028 002 733 192 05  Normal
Cl 000 001 035 002 750 0.79 0.2 Normal
C2 000 000 026 002 750 0.72 0.2  Normal
C3 000 000 025 002 749 0.75 0.4  Normal
Ap 000 0.01 0.7 002 750 1.04 0.9  Normal
SP7 Bt 0.01 0.02 0.12 0.05 7.67 0.78 2.7 Normal
Cuchumuela| Bc 001 000 027 007 770 1.38 2.8 Normal
Ck 001 004 032 006 774 1.83 2.3 Normal
SP8 000 000 004 001 7.03 0.25 1.6 Normal
Punata C 000 000 002 001 692 0.36 54  Normal

SP 6
Tarata

>

Table A2.4b Soil chemical properties: soluble ions and sodium adsorption ratio for each
horizon of the non-salt-affected soil profiles.

Soluble lons (cmolc L) SAR
Na* K* Ca* Mg* CI' SO0 COs* HCOs

Soil profile Horizon

AP 003 001 003 003 002 0.02 0.00 0.04 2.1
AB 011 001 0.09 005 005 0.07 0.00 0.06 4.4
C1 004 001 002 001 000 0.02 0.00 0.02 34
c2 003 000 001 001 001 o0.01 0.0 0.03 4.3
C3 006 0.00 001 001 000 0.3 0.00 0.03 7.6

SP 6
Tarata

Ap 001 001 011 003 005 008 000 003 05

SP7 Bt 004 000 002 002 005 003 000 002 30
Cuchumuela) Bc 005 001 001 003 003 002 000 002 39
Ck 004 001 003 003 003 006 000 001 22

SP 8 A 004 001 002 001 003 0.3 0.00 0.02 3.2
Punata C 007 001 0.02 002 005 0.03 0.00 0.04 5.4
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Table A2.4c Soil chemical properties: available nutrients, organic carbon and CEC for
each horizon of the non-salt-affected soil profiles.

- —————————
Soil profile  Horizon CEC T(%C N;trlentgloavallgtzllty @ I\IjI% )
AP 16.2 0.99 0.14 0.44  10.02 0.32
P 6 AB 150  0.78 004 032 1342 0.37
Tarata C1 140  0.09 003 018 2295 0.46
C2 11.2 0.05 008 014 12091 0.34
C3 125  0.02 002 015 12.20 0.36
Ap 12.5 1.13 001 027 160 0.22
SP7 Bt 30,0  0.30 000 052 249 0.59
Cuchumuela Bc 40.0 0.13 016 1.21  6.37 0.85
Ck 278 012 004 130 41.76 0.00
SPs8 A 9.00 093 001 009 089 0.17
Punata C 400  0.28 001 003 041 0.08

Table A2.4d Soil physical properties for each horizon of the non-salt-affected soil profiles.

Soil fractions - texture
Depth Clay Silt Sand Textural

Soil profile  Horizon  Colour

cm % % % class

AP 10YR 6/4 0-20 246 422 333 Lo

P 6 AB 10YR 5/4 20 - 36 251 415 334 Lo
Tarata c1l 10YR 5/6 36-93 10.8 651 241 SiLo
C2 10YR6/6  93-110 197 548 255 SiLo

C3 10YR6/8 110- 150+ 195 495 31.0 Lo

Ap 7.5YR 4/4 0-18 267 328 405 Lo

SP7 Bt 25YR252 18-70 635 163 201 cl

Cuchumuela Bc 7.5 YR 3/4 70-94 492 360 149 cl
Ck 10YR5/6 94-130+ 59 659 283 SiLo
SP8 A 2.5Y 6/6 0-20 183 504 313 SiLo
Punata C 2.5Y 6/2 20 - 30 104 169 727 SaLo
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Figure A2.5a Distribution of soluble cations in the salt-affected soil profiles.
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Table A2.7 Some descriptive statistics of top-soil properties used for classification.

Item Mean SD Cv Min Max Median Count
ESP 18.9 22.7 1.2 0.1 89.9 9.2 135.0
SAR 60.3 164.3 2.7 0.0 929.4 4.6 135.0
EC. 8.8 13.6 1.6 0.3 78.9 4.2 135.0
pHe 8.1 0.8 0.1 6.8 10.7 8.0 135.0
Ca?* 4.0 5.6 1.4 0.1 38.2 2.1 135.0
Mg?* 1.9 2.3 1.2 0.1 9.6 1.0 135.0
Na* 54.3 130.5 2.4 0.0 869.7 6.2 135.0
K* 0.6 0.6 1.1 0.0 3.9 0.4 135.0
ClI- 29.3 66.6 2.3 0.0 377.0 5.0 135.0
S04~ 18.9 39.5 2.1 1.2 231.3 3.8 135.0
HCOs~ 5.9 8.1 1.4 0.0 60.0 3.0 135.0
CO;™ 12.7 48.6 3.8 0.0 400.0 0.0 135.0
Clay 24.0 10.6 0.4 5.9 654 21.8 135.0
Silt 46.5 10.7 0.2 16.3 74.9 46.7 135.0
Sand 29.5 13.9 0.5 1.6 72.7 28.9 135.0
TOC 0.7 0.5 0.7 0.0 3.0 0.7 135.0

SD = standard deviation; CV = coefficient of variation.

C032-
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S042—-
Cl-
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Na+
Mg2+
Ca2+

0 10 20 30 40 50 60

Figure A2.7 Average content of soluble ions for all the soil samples in cmolc L
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Figure A2.8a Maucha’s diagram of average ionic concentrations for salt-affected soil
classes (USSL classification)
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Figure A2.8b Maucha’s diagram of average ionic concentrations for salt-affected soil
classes (Alternative classification)
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Table A2.9 Salinity/sodicity parameters and salt-term classification of soil samples

ID ESP EC pHe ECR CROSS USSL Alternative*

1 14 39 75 5.2 0.6 Normal Normal
2 0.1 3.7 1.7 1.3 1.7 Normal Normal
3 151 35 7.8 404 1.8 Sodic Normal
4 239 48 83 26.0 2.7 Saline-sodic Alkali
5 4.8 46 7.8 7.8 0.8 Saline Saline
6 3.7 37 79 55 2.3 Normal Normal
7 2.1 36 76 34 2.1 Normal Normal
8 302 38 77 713 2.0 Sodic Normal
9 163 39 77 566 2.3 Sodic Normal
10 191 39 73 527 1.7 Sodic Normal
11 244 112 75 498 6.1 Saline-sodic Saline
12 470 238 76 638 4.5 Saline-sodic Saline
13 3.2 39 72 5.5 3.9 Normal Normal
14 38 43 79 6.5 1.4 Saline Saline
15 716 36 75 719 34 Sodic Normal
16 151 43 7.3 16.8 3.9 Saline-sodic Alkali
17 178 46 71 203 4.1 Saline-sodic Saline
18 899 789 106 93.0 38.7 Saline-sodic Alkali
19 100 49 90 113 2.2 Saline Saline
20 221 34 81 752 1.7 Sodic Normal
21 49 49 74 8.1 0.9 Saline Saline
22 193 35 78 583 1.3 Sodic Normal
23 0.1 6.3 7.8 7.1 0.3 Saline Saline
24 3.0 36 74 4.0 15 Normal Normal
25 182 94 75 366 3.1 Saline-sodic Alkali
26 48 53 77 124 1.9 Saline Saline
27 0.4 3.7 17 2.1 1.4 Normal Normal
28 0.2 35 76 1.9 0.6 Normal Normal
29 13 36 77 3.6 0.9 Normal Normal
30 116 45 7.8 133 1.4 Saline Saline
31 166 40 80 177 2.2 Saline-sodic Alkali
32 276 84 79 422 5.9 Saline-sodic Alkali
33 111 48 79 124 2.6 Saline Saline
34 03 36 79 1.8 1.6 Normal Normal
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ID ESP EC pHe ECR CROSS USSL Alternative*
35 703 279 107 782 25.0 Saline-sodic Alkali
36 0.4 42 81 2.1 0.9 Saline Saline
37 238 56 81 256 3.0 Saline-sodic Alkali
38 459 564 99 681 25.2 Saline-sodic Alkali
39 21 43 8.0 3.7 2.2 Saline Saline
40 11 37 70 3.6 0.7 Normal Normal
41 2.8 35 7.0 4.5 2.7 Normal Normal
42 150 37 6.8 462 2.5 Sodic Normal
43 05 41 76 2.6 0.7 Saline Saline
44 172 41 7.0 1838 2.0 Saline-sodic Saline
45 489 147 7.2 555 2.6 Saline-sodic Saline
46 283 39 77 779 1.2 Sodic Normal
47 152 51 82 176 3.2 Saline-sodic Alkali
48 26 41 78 8.4 0.7 Saline Saline
49 105 51 79 113 2.7 Saline Alkali
50 09 36 84 3.7 1.1 Normal Normal
51 21 38 81 4.8 0.4 Normal Normal
52 06 55 8.0 1.3 1.2 Saline Saline
53 11 40 83 2.1 0.9 Saline Saline
54 0.2 37 15 15 1.4 Normal Normal
55 0.8 50 7.3 4.6 1.4 Saline Saline
56 174 38 80 406 1.4 Sodic Normal
57 1.2 41 81 3.1 1.0 Saline Saline
58 262 37 85 820 3.0 Sodic Alkali
59 9.2 6.7 8.0 15.4 2.0 Saline Saline
60 0.1 36 80 1.8 2.2 Normal Normal
61 145 156 83 320 2.8 Saline Saline
62 231 52 78 545 8.3 Saline-sodic Alkali
63 276 58 86 301 6.6 Saline-sodic Saline
64 26 45 8.1 5.6 1.4 Saline Saline
65 46 40 83 8.8 2.5 Saline Saline
66 2.0 35 84 3.5 0.7 Normal Normal
67 15 45 7.7 6.4 1.5 Saline Saline
68 7.1 87 15 7.8 0.6 Saline Saline
69 703 789 7.8 800 6.3 Saline-sodic Saline
70 250 38 81 766 2.4 Sodic Normal
71 215 76 8.2 22.8 4.6 Saline-sodic Saline
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ID ESP EC pHe ECR CROSS USSL Alternative*
72 0.4 53 81 2.5 1.1 Saline Saline
73 156 36 81 165 6.8 Sodic Normal
74 187 36 84 535 2.5 Sodic Alkali
720 45 8.0 4.5 0.8 Saline Saline
76 0.2 39 84 2.3 0.7 Normal Normal
77 14 43 83 103 2.8 Saline Saline
78 504 316 93 645 20.6 Saline-sodic Saline
79 1.2 3.8 82 3.7 0.5 Normal Normal
80 258 35 78 628 1.1 Sodic Normal
81 143 212 79 37.1 1.0 Saline Saline
82 0.1 3.7 82 1.6 0.9 Normal Normal
83 33 78 79 112 2.1 Saline Saline
84 47 42 83 101 2.0 Saline Saline
85 4.2 47 8.3 5.8 1.6 Saline Saline
86 21 38 82 4.8 2.6 Normal Normal
87 358 6.7 80 368 5.0 Saline-sodic Alkali
88 04 42 1.8 2.2 1.1 Saline Saline
89 33 41 8.0 55 2.4 Saline Saline
90 1.2 53 8.3 6.6 0.8 Saline Saline
91 3.9 46 8.1 5.1 1.6 Saline Alkali
92 33 47 7.9 5.5 0.4 Saline Saline
93 25 39 81 3.9 2.2 Normal Normal
94 113 50 83 177 2.4 Saline Alkali
95 03 36 82 1.6 2.1 Normal Normal
9% 1.4 38 80 6.5 1.5 Normal Normal
97 33 58 8.0 6.2 1.1 Saline Saline
98 372 40 85 874 55 Sodic Alkali
99 208 6.2 7.8 223 1.1 Saline-sodic Saline
100 0.3 43 82 4.3 0.7 Saline Saline
101 01 3.7 80 1.6 1.0 Normal Normal
102 5.1 16 73 124 1.8 Normal Normal
103 151 12 75 16.7 2.5 Sodic Normal
104 504 11 80 512 4.1 Sodic Normal
105 162 20 76 161 9.3 Sodic Normal
106 77.0 334 100 781 125 Saline-sodic Alkali
107 722 58 100 747 15.1 Saline-sodic Alkali
108 59.8 315 95 634 6.0 Saline-sodic Alkali
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ID ESP EC pHe ECR CROSS USSL Alternative*
109 712 539 101 841 45.0 Saline-sodic Alkali
110 748 669 9.7 872 29.3 Saline-sodic Alkali
111 282 30 79 302 7.8 Sodic Normal
112 488 3.0 94 522 111 Sodic Alkali

113 550 59 98 640 18.0 Saline-sodic Saline
114 585 155 100 7538 22,5 Saline-sodic Alkali

115 1.0 1.7 75 6.0 0.5 Normal Normal
116 23 07 7.7 7.6 1.3 Normal Normal
117 27 07 7.7 7.9 1.7 Normal Normal
118 2.8 05 7.7 2.8 2.2 Normal Normal
119 16 03 70 3.9 1.8 Normal Normal
120 54 06 6.9 5.4 2.5 Normal Normal
121 508 31 96 551 185 Sodic Alkali

122 469 82 99 530 22.7 Saline-sodic Alkali
123 536 76 9.8 622 9.6 Saline-sodic Saline
124 569 113 98 66.3 10.2 Saline-sodic Saline
125 470 254 7.7 738 5.6 Saline-sodic Saline
126 63.8 140 9.9 76.5 19.5 Saline-sodic Alkali
127 643 230 100 74.4 21.6 Saline-sodic Alkali
128 579 199 101 7538 24.2 Saline-sodic Alkali

129 442 297 98 719 26.1 Saline-sodic Alkali
130 588 401 96 765 28.2 Saline-sodic Alkali

131 05 1.7 73 2.3 0.6 Normal Normal
132 04 04 75 1.3 2.0 Normal Normal
133 0.2 04 75 1.0 2.8 Normal Normal
134 1.2 1.1 75 3.3 1.3 Normal Normal
135 0.2 05 75 0.9 1.8 Normal Normal

Sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), exchangeable cation
ratio (ECR), cations ratio of soil structural stability (CROSS). USSL= US salinity lab,

* Alternative = criterion by Chhabra (2004) and Szabolcs (1989), takes into account the soluble
salt ions besides soil ESP, EC and pH.
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Figure A2.10a Referential classification pathway of the USSL classifications based on the

decision tree algorithm.
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Figure A2.10b Referential classification pathway of the Alternative classifications based

on the decision tree algorithm.
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Figure A2.11 Variogram and model fitting for soil ESP (a), EC (b) and fitted covariance

models on a variogram (c).
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Figure A2.12 Maps showing the spatial distribution for soil ESP (a) and EC (b), by using
the inverse distance weighted interpolation method (Weber, 2018).
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Figure A2.13 Spatial prediction for soil ESP (a) and EC (b), interpolated through ordinary
kriging. Background image: terrain from Stadia-Map (2023)
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Table A3.1a Descriptive statistics of explanatory (soluble salt ions) and response variables

Item Mean SD Cv Min Max Median Count
Ca?* 3.7 4.5 1.2 0.1 26.2 2.2 125
Mg?* 1.7 1.9 1.1 0.09 9.4 1.0 125
Na* 27.4 54.9 2.0 0.02 326.1 5.6 125
K* 0.5 0.5 1.0 0.02 2.2 0.4 125
ClI- 17.4 353 2.0 0 205.0 5 125
S04~ 14.2 29.6 2.1 1.2 153.4 3.7 125
HCO;5~ 5.4 6.6 1.2 0.5 34.0 3.0 125
CO;™ 6.3 22.2 35 0.0 134.0 0.0 125
ESP 16.3 20.4 1.2 0.1 77.0 49 125
EC. 6.1 6.5 1.1 0.3 334 4.1 125

SD = standard deviation; CV = coefficient of variation.

Table A3.1b Setting of parameters for model training and cross-validation analysis.

Model Algorithms Parameters/Values
PLS-R Number of components: 1 (ECe), 3 (ESP)
EC. and ESP .
. SV-R CF grid: 0.01, 0.1, 0.25, 0.5, 1
Regression
RF-R NT of 3000, MTRY of 5 (EC.), 2 (ESP)
) PLS-DA Number of components: 2
Multiple .
. ) SVM-C CF grid: 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
classification
RF-C NT of 3000, NS of 10, MTRY of 2

R =regression; C = classification; NT = number of trees; NS = minimum node size; MTRY = number of
randomly selected predictors; CF = capacity factor for SVM.

Table A3.1c Correlation matrix among sums of soluble and exchangeable cations, sodicity

parameters, and ECe,

Su@—Sol Sum.—Sol- SumTExc- SAR ESR ESP EC.
Cations Anions Cations

Sum-Sol Cations 1

Sum-Sol-Anions 0.78 1

Sum-Exc-Cations 0.32 0.42 1

SAR 0.90 0.75 0.33 1

ESR 0.57 0.77 0.45 0.61 1

ESP 0.66 0.75 0.50 0.66 0.93 1

EC. 0.81 0.84 0.30 0.73 0.64 0.64 1

Sum-Sol = Sum of soluble; Sum-Exc = Sum of exchangeable; SAR = sodium adsorption ratio; ESR =
exchangeable sodium ratio (ESP/100-ESP).
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Table A3.2 Vegetation indices derived from the satellite image bands, and their equations.

Index Abbreviation Equation* Referencet
Normalized Vegetation NDVI NIR —R
Index NIR + R 1,34
Normalized Difference NDII NIR — SWIR1 ,
Infrared Index NIR + SWIR1
Extended NDVI ENDVI NIR + SWIR2 — R 13
NIR + SWIR2 + R ’

Simple Ratio Vegetation SRVI NIR -
Index R ’
Canopy Response CRSI (NIR % R) — (G * B) a4
Salinity Index (NIR *R) + (G = B) '
Enhanced Vegetation EVI NIR — R

25x 1,3, 4
Index (NIR + 6R — 7.5B + 1)
Generalized Vegetation GDVI NIR? — R?
Index NIR? + R? 1,34

i B+ G
Combined Spectral COSRI « NDVI 5
Response Index R + NIR
Soil Regulation SAVI (NIR-R)(1+ L) L34
Vegetation Index (NIR+R+1L) e
Clay Index CLEX SWIR1 )
SWIR?2

Brightness index Bl R2 + NIR2 5

* B = B2 (blue), G = B3 (green), R = B4 (red), NIR = B5, SWIRL = B6, SWIR2 = BY.

T 1) Li Yanan 2021, 2) Wang F. et al. 2019, 3) Aksoy et al. 2022, 4) Wang J. et al. 2021, 5) Moreira
et al., 2015. These references are not necessarily the original sources for the above-listed indices.
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Figure A3.3 Geomorphometric (elevation derived) features - High Valley of Cochabamba
(based on DEM)
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Table A3.5a Confusion matrixes of the predictions for the three ML classification

algorithms.
PLS-DA SVM-C RF-C
Class
NO SA SS SO NO SA SS SO NO SA SS SoO
Normal 9 2 1 5 9 2 1 4 9 0 0 1
Saline 1 6 1 0 1 6 0 0 1 8 0 1
Saline—sodic 0 0 5 0 0 0 5 0 0 0 7 1
Sodic 0 0 0 0 0 0 1 1 0 0 0 2

NO = normal; SA = saline; SS = saline-sodic; SO = sodic.

Table A3.5b Sensitivity and specificity for the three classification models.

Sensitivity Specificity
Class PLS-DA SVM-C RF-C  PLS-DA SVM-C RF-C
Normal 0.90 0.90 0.90 0.60 0.65 0.95
Saline 0.75 0.75 1.00 0.91 0.95 0.90
Saline—sodic 0.71 0.71 1.00 1.00 1.00 0.96
Sodic 0.00 0.20 0.40 1.00 0.96 1.00
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Table A3.6 Factor analysis for the response and explanatory variables as geomorphometric
features of multivariate regressions. Obtained through the R-base function Factanal.

##
e
e
##
e
##
##
e
##
L
e
##
L
##
##
s
##
L
s
##
L
##
##
s
##
##
s
##
##
##
##
s

Factorl Factor2 Factor3 Factord4 Factor5
.38
.42
.60
.41
.40
.41

Loadings:
green .91
red 0.87
NIR @.76
SI1 @.89
SI2 .87
SI3 @.87
SIS @.97
SI7 @.81
SI8 @.82
SI9 .88
SIle -0.77
SI11 -e.77
SI13 @.97
SI6

NDSI

SAIOI

SWIR1 @.46
SWIR2 @.49
ELEV -0.31
TPI

TRI

FLD

SLOPE -6.40
ESP .49
EC @.36
SS loadings

Proportion Var
Cumulative Var

Factorl Factor2 Factor3 Factord Factor5
16.87
©.43
0.43

.41
.41
.43
.42
.43

.95
.98
.98

.32

-0.47

-0.46

0.80

.80

-0.47

4.95 2.88 0.82 0.50
0.20 0.88 8.e3 .02
9.63 0.72 0.75 .77
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Table A3.7a Coefficients and P(>|t|) values for the multivariate models to predict soil ESP
from geomorphometric features as predictors.

Estimate Std. Error t value Pr(>|t])
(Intercept) -22412 10909 -2.055 0.04292
green 86008 43509 1.977 0.05123
red 94922 47034 2.018 0.04666
NIR 13184 5091 2.589 0.01127
SWIR2 -142.9 63.96 -2.234 0.02804
s -32640 16668 -1.958 0.05341
SI3 1717 343.1 -5.005 2.886e-06
Sl6 895.3 541 1.655 0.1015
SI7 764.6 148.3 5.155 1.572e-06
Si8 -3338 1424 -2.344 0.02136
NDSI 15934 6085 2.618 0.01042
SAIOI -16413 6612 -2.482 0.01497
ELEV -0.2316 0.04804 -4.821 6.016e-0§
FLD 0.07537 0.04541 1.66 0.1005

Table A3.7b Coefficients and P(>|t|) values for the multivariate models to predict soil EC
from geomorphometric features as predictors.

Estimate Std. Error t value Pr(>|t])

(Intercept) -9548 4532 -2.107 0.03809
green 39621 20801 1.905 0.06019
red 33095 16575 1.997 0.04906
NIR 7281 4003 1.819 0.07248
SWIR1 183.2 69.51 2.636 0.009968
SWIR2 -185.7 70.08 -2.649 0.009611
s -19084 8908 -2.142 0.03503
si2 4241 1807 2.347 0.02123
SI3 -731.8 361.7 -2.023 0.04619
SI5 -2162 1117 -1.935 0.05629

Sl 341.2 256.5 1.33 0.187
SI8 -587.9 379.9 -1.647 0.1255
SI9 3479 1463 2.377 0.0197
SI10 -2066 T47.2 -2.765 0.006976
S 2300 844 2,725 0.007803
ELEV -0.0766 0.026 -2.946 0.004155
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Figure A4.1 Possible mechanisms for the effects of biochar on physical/biological
properties of salt-affected soils (Saifullah et al., 2017)

Table A4.1 Referential biochar properties from lab-test report (Eurofin — 2017, Germany)

|Parameter ‘Lab |Accr. lMethod i LoQ | Unit ‘ ar | db }
Biochar properties

Bulk density FR  |JEO2 |[DIN 51705 kg/m?* 411 -
specific surface (BET) SuIB/o DIN 66137/DIN ISO 9277 m?/g 339,8813 -
true density SV DIN 66137/DIN ISO 9277 glem?® 1,5665 -
water holding capacity (WHC)|sBegio DIN ISO 14238, A % (wiw) 155 -
Moisture FR  |JEO2 |DIN51718 0,1 % (W/w) 52,2 -
Ash content (550°C) FR  |JEO2 |DIN 51719 mod. 0,1 % (wiw) 1,9 3.9
Ash content (815°C) FR  |JEO2 |DIN51719 0,1 % (wiw) 15 3.2
Volatile Compounds FR  |JE02 |DIN51720 0.2 % (wiw) 33 6.9
gross calorific value (Ho,V) |FR  [JEO2 [DIN 51900 200 kJ/kg 16400 34300
net calorific value (Hup) FR  |JEO2 |DIN 51900 200 kJ/kg 14900 33900
Hydrogen FR  |JEO2 |DIN 51732 0,1 % (wiw) 0,9 1,8
Carbon FR JE02 |DIN 51732 0,2 % (wiw) 43,9 91,9
Total nitrogen FR  |JEOZ |DIN51732 0,05 % (wiw) 0,28 0,58
Oxygen FR  |JEO2 [DIN 51733, berechnet % (wlw) 1.2 25
Total inorganic carbon (TIC) |[FR  |JE02 |DIN51726 0,1 % (wiw) 0,1 0,2
carbonate-CO2 FR JE02 |DIN 51726 04 % (wiw) <04 0,8
carbon (organic) FR  |JE02 % (wiw) 43,8 91,7
H/C ratio (molar) FR  |JE0Z |berechnet 0,23 0,23
H/Corg ratio (molar) FR  |JEOZ |berechnet 0,23 0,23
O/C ratio (molar) FR  |JE02 |berechnet 0,021 0,020
Sulphur (S), total FR  |JE02 |DIN 517243 0,03 % (w/w) <0,03 0,03
pH in CaClI2 FR  [JEO2 [DINISO 10390 82 -
Conductivity FR BGK Ill. C2 5 pS/em 299 -
salt content FR BGK Ill.C2 0,005 g/kg 1,58 3,30
salt content FR BGK Ill. C2 0,005 g/l 0,649 1,36
thermogravimetry TGA 950°C see annex -
by N-Atm. FR TGA 701 D4C
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Figure A4.2 Illustration showing the structure and setup of a soil column.
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Table A4.4a Effect of manures combined with gypsum levels on soil properties, compared
to the control.

Treatment ESP ECe_ pH Leached
(%) dSm™) Na* (%)

CH-GY 100 1.23a(98.2) 0.82 a (96.6) 8.45a (12.0) 97.25a
CH-GY7s 2.40 a (96.5) 1.00 a (95.9) 8.45 2 (12.0) 94.16 b
CH-GYso 2.95 a (95.6) 1.14 a (95.3) 8.44a(12.1) 93.45h
CA-GY10 1.14 2 (98.3) 0.92 a (96.2) 8.58 b (10.6) 97.71a
CA-GY7s 3.05a(95.5) 0.98 a (95.9) 8.69 ¢ (9.5) 93.21b
CA-GYso 2.69 a (96.0) 1.23 b (94.9) 8.58 b (10.6) 94.80 b
NM-GY 100 6.31 b (90.7) 0.90 a (96.3) 9.15e (4.7) 86.85¢
NM-GY75 12.74 ¢ (81.2) 1.35Db (94.4) 9.53f(0.7) 72.91d
NM-GYso 13.81 ¢ (79.6) 1.57 b (93.5) 9.46 f (1.5) 73.83d
Control 31.34 d (53.6) 5.00 ¢ (79.3) 8.83d (8.0) 40.78 e

CH = chicken manure, CA = cattle manure, NM = no manure, GY = gypsum. Means sharing a letter are
not significantly different according to the Scott-Knott test (p = 0.05). Values in parenthesis indicate the
decrease (%) over the respective value of soil before reclamation.

Table A4.4b Evolution of EC (dS m™) in the leachates at each leaching cycle.

Cycle of Leaching

Treatment 1 2 3 4
Control * 83.0(2.4) 31.6 (2.2) - -
NM-GY50 71.5(3.3) 5.3 (1.7) 4.3 (0.7) 2.4 (0.5)
NM-GY75 67.5 (5.8) 5.4 (0.8) 4.6 (0.4) 2.6 (0.4)
NM-GY100 69.3 (4.5) 6.2 (2.2) 4.6 (1.0) 2.8 (0.8)
CA-GY50 78.4 (3.8) 5.7 (0.2) 3.6 (0.5) 1.5(0.7)
CA-GY75 78.2 (6.6) 5.1(0.2) 3.9(0.2) 2.3(0.2)
CA-GY100 77.0 (6.9) 6.3 (0.1) 3.5(0.3) 2.2(0.2)
CH-GY50 75.4 (1.3) 6.7 (0.5) 4.3(0.4) 2.2(0.4)
CH-GY75 81.9 (2.6) 6.0 (0.3) 3.5(0.4) 2.6 (0.4)
CH-GY100 725 (1.1) 8.5 (0.7) 3.4(0.2) 2.3(0.3)

Values in parenthesis indicate the standard deviation. * Two cycles of leaching were applied to the control
due to the length of its percolation time (Figure 8.3).
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Figure A4.5 Evolution of sodium adsorption ratio (SAR) in the leachates at each leaching

cycle. GY = gypsum, CA = cattle manure, CH = chicken manure.
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Abstract: Salt-affected soils are related to salinity (high content of soluble salts) and /or sodicity
(excess of sodium), which are major leading causes of agricultural land degradation. This study
aimed to evaluate the performances of three machine learning (ML) algorithms in predicting the soil
exchangeable sodium percentage (ESP), electrical conductivity (ECe), and salt-affected soil classes,
from soluble salt ions. The assessed ML models were Partial Least-Squares (PLS), Support Vector
Machines (SVM), and Random Forests (RF). Soil samples were collected from the High Valley of
Cochabamba (Bolivia). The explanatory variables were the major soluble ions (Na*, K*, Ca?, Mgz‘,
HCO;~; Cl—; COgZ’, SO.|2 ). The variables to be explained comprised soil ECe and ESP, and a
categorical variable classified through the US Salinity Lab criteria. According to the model validation,
the SVM and RF regressions performed the best for estimating the soil EC,, as well as the RF model
for the soil ESP. The RF algorithm was superior for predicting the salt-affected soil categories. Soluble
Na* was the most relevant variable for all the predictions, followed by Ca?t, Mgz*, Cl~,and HCO3 ™.
The RF and SVM models can be used to predict soil ECe and ESP, as well as the salt-affected soil
classes, from soluble ions. Additional explanatory features and soil samples might improve the ML
models’ performance. The obtained models may contribute to the monitoring and management of
salt-affected soils in the study area.

Keywords: machine learning; electrical conductivity; exchangeable sodium percentage; salt-affected
soil classification

1. Introduction

Salt-affected soils are mainly related to arid and semiarid regions and basically com-
prise saline and/or sodic soils. Saline soils have a significant amount of soluble salts which
consist of major ions like sodium (Na*), potassium (K*), calcium (Ca®*), magnesium (Mg2*),
bicarbonate (HCO3 ), chloride (Cl~), carbonate (CO3%~), and sulfate (504> ). Sodic soils
have an excess of exchangeable Na* in the cation exchange complex, as well as in the soil
solution. Soluble salts and Na* normally originate either from natural processes such as
weathering (primary salinity /sodicity) or are induced by human activities such as the
inappropriate management of land and water resources (secondary salinity /sodicity). Soil
salinity negatively affects root growth and crop yield through the osmotic effect caused by
the high concentration of soluble salts, and soil sodicity causes adverse effects, such as an
increase in soil pH, loss of soil physical structure (clay dispersion, swelling, and plugging of
soil pores), and the deterioration of soil-water relations (decrease in infiltration, hydraulic
conductivity, retention and drainage), leading to soil erosion, crusting, compaction, runoff,
waterlogging, nutrient imbalances, and specific ion effects on plants [1-7].

Salinity levels can be expressed as total soluble salts (TSS) or as soil electrical con-
ductivity (EC) of saturated extract or soil-water suspensions. Sodicity levels are usually
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determined as the exchangeable sodium percentage (ESP) through the amount of exchange-
able Na* as a proportion of either the cation exchange capacity (CEC) or the sum of
exchangeable cations [4,8], as well as by the sodium adsorption ratio (SAR) calculated from
the soluble Na* relative to the soluble Ca?* + Mg?* concentrations in a soil solution using
the formula proposed by Richards et al. [9]. The widely used salt-affected soil classification
from the US Salinity Lab (USSL)—based on the threshold values of a soil EC. of 4dSm™!,
ESP of 15%, and pH of 8.5—generates four classes, namely, normal, saline, saline-sodic,
and sodic soil. The Australian classification is analogous to the USSL criteria with the
exception that it considers a soil ESP threshold value of 6% and takes into account the
pH levels [10]. Furthermore, neutral and alkali salts determine the distinction between
sodicity and alkalinity, so alkali soils normally have an excess of exchangeable Na* and
carbonates besides a pH above 8 [11]. Concerning that fact, Chhabra et al. [12] proposed an
alternative classification including the ion ratios of (2CO3>~ + HCO;)/(Cl™ + 250,27)
and Na*/(Cl~ +2504%") expressed in mol m 3, besides soil ECe and ESP, for facilitating
the specific management and reclamation of salt-affected soils.

Data mining can be described as the capacity of identifying patterns from data to
establish relationships and models through data analysis, and machine learning (ML) is
a process of learning from a system’s experience for self-improving based on resultant
information. Moreover, supervised learning models the relationships and dependencies
between the target prediction output and the input data/features to predict the output
values for new data. Partial Least-Squares (PLS)—Discriminant Analysis (DA) is a ‘su-
pervised’ version of principal component analysis (PCA) which achieves dimensionality
reduction with complete cognizance of the classes, arriving at a linear transformation that
converts the data to a lower dimensional space with as small an error as possible [13]. In
addition, PLS regression combines features from PCA and multiple regression, allowing
the reduction of the dimensionality while focusing on covariance. Support Vector Machines
(SVM) seek to design a decision surface and separate the margin between the different
levels, finding this hyperplane using support vectors and margins. Then, the SVM with
linear kernel function fits an optimal hyperplane between the classes, making linear and
separable small samples [14], while support vector regression fits a line as the hyperplane
with the maximum number of points. Breiman and Cutler’s Random Forests (RF) algorithm
is a tree-based ensemble which generates trees built on resampled subsets of data, with
each tree depending on an ensemble of random variables. RF classification combines the
trees by unweighted voting and chooses the most voted class over all the tree ensembles at
training time if the response is categorical, or combines the resulting trees by unweighted
averaging if the response is continuous [15,16].

ML methods have been used to classify soils based on various features such as chemi-
cal, physical, and biological variables, as well as on specific criteria. Within the framework
of ML algorithms, many methods have been progressively developed to automate the
soil classification process, such as Decision Trees, k-Nearest Networks, Artificial Neural
Networks, and SVM [17]; in that context, some investigations on various soil type classifi-
cations using ML methods were carried out [18-21]. The review on ML and soil sciences
by Padarian et al. [22] shows that the modelling of continuous and categorical soil proper-
ties is based on their relationships with environmental covariates and is mainly focused
on mapping. Some key findings in the compilation by Motia and Reddy [23] were that:
the implementation of soil classification uses more ML methods than soil regression; the
assessment of soil salinity still shows a low contribution from ML; SVM and RF techniques
are widely used in ML predictions of soil parameters and classifications; and the RMSE
and R? are the top metrics used for the performance evaluation of ML prediction models in
soil analysis.

Apart from simple/multivariate regression-based models, most of the studies based on
ML methods in predicting and mapping salinity use variables from remote sensing (spectral
bands and derived indices) [24-29], and combined with other environmental covariates
(elevation, geology, hydrology, morphometry, and climate) [30-34]. Field-measured data
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(physical and chemical soil-water properties), which are used to a lesser extent, may
improve the prediction performances for soil salinity, even more if alternative salt-term
parameters are considered. Moreover, the determination of the content of exchangeable
cations—and thus the soil ESP—is usually less cost-effective and more time-consuming
than that of soluble ion concentrations, which are often used for estimating salinity/sodicity
indirectly. Therefore, this study aimed to evaluate and compare the prediction performances
of three ML regression and classification algorithms (PLS, SVM, and RF) for estimating the
soil EC, and ESP, and classifying salt-affected soils from soluble salt ions. Then, the results
may contribute alternative covariates for modelling as well as to the characterization and
management of salt-affected soils in the study area.

2. Materials and Methods
2.1. Study Area and Data

The observations (135 soil samples) were collected at a depth of ~25 cm from the
agricultural lands of the High Valley of Cochabamba-Bolivia (Figure 1), under the frame-
work of the survey by Weber [35]. The area is located between the latitude boundaries of
—17°29'47.7" to —17°39'48.6"” and longitude of —66°5'16.8" to —65°4513.0", at an eleva-
tion of ~2750 m. The climate of the valley is semiarid with a mean annual temperature and
rainfall of 15-16 °C and 450-550 mm, respectively. Regarding the geomorphic character-
ization of this area [36] (Metternicht and Zinck, 2010), most of the salt-affected soils are
in the landscape of a valley with a relief type consisting of lagunary depressions, aluvio-
lagunary /lagunary facies, a landform consisting of lagunary flats, and soil associations
consisting of Ustalfic Haplargids/Ustochreptic Camborthids and Typic Salorthids /Natric
Camborthids. The soil textural classes consisting of loam, silty loam, and silty clay loam
were predominant among the samples.

€7 ST T 3 N

J
’

.- . - . .
. . 1%4
et o 5
. . i o 2
5o o
oy ° A % N

3~ %3
7 1% L N 4
,'1/‘ WIS f e Y
/ ,,{f’ //{5,, A,
o4 a2 s ,7;“\ »

Figure 1. Soil sampling points and their salt-affected classes (USSL criteria) in the High Valley of
Cochabamba, Bolivia.

2.2. Variables

As the explanatory variables, concentrations of soluble cations (Na*, K*, Ca?t, Mgz+)
and anions (HCO; ~, Cl~, CO52~, SO42") were determined from a paste extract, following
the standard procedures of Richards et al. [9] at the Soil-Water Lab, Faculty of Agricultural
and Livestock Sciences, Universidad Mayor de San Simon (Bolivia).

The continuous variables to be predicted were the soil EC. and the soil ESP calculated
using the formula (Equation (1)) [4,8] with the exchangeable cation values obtained through
aderived ISO 22171 at a pH of 7 and atomic adsorption spectroscopy at the Station Provin-
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"»,;, =
Soil samples
data |

Exchangeable
cations
EC,, pH

ciale d'analyses agricoles Lab (Belgium), taking into account the assessment by So et al. [37]
for overcoming their overestimation as total extractable cations. The categorical variable
to be explained comprises four categories classified using the USSL criteria [9], namely:
normal (ESP < 15%, ECe <4dSm ™!, pH < 8.5), saline (ESP < 15%, ECe >4 dSm ™!, pH < 8.5),
saline-sodic (ESP > 15%, ECe >4dSm !, pH <> 8.5), and sodic (ESP > 15%, ECe <4dSm !,
pH > 8.5). For practical purposes, the alkali soil was classified as sodic.

Na*
ESP — LA 100 a
Ca®* + Mg** + Na* + K+

where cations are expressed as a concentration in cmol. kg~ !.

2.3. Data Preparation and Model Implementation

The flow process of the modelling is described in Figure 2. Extreme values in the
dataset were checked by applying a threshold value using the Mahalanobis distance from
the PCA, and then 10 observations were discarded. In overcoming the possibility of
hidden dependencies of the cross-validation (CV) and for testing purposes, the models
were evaluated through an internal validation by partitioning the dataset into two sets,
calibration (75%) and validation (25%), for both regression and classification models. The
data were scaled into each calibration process. A subsequent performance evaluation
showed that a min-max normalization was not needed.

Model

Variables Pre-proccesing Spliting implementation Validation Evaluation

ESP ) m— g Regression models.
EC T'::;':g |_Cross-validation | PeLgSR SVR, RFR

X ==

" Internal | R? ‘

{Solub’e cations Textog ———@_’ RMSE

| Soluble anions -

| Intemal " Accuracy |

Y Uy | validation Kappa |

N al data g 7

Saline

Saline.sodic | L data Traiing Training | Classification models
\__ Sodic data Cross-validation | PLS-DA, SVMC, RFC

Figure 2. Flow chart of the methodological path of this study.

Three supervised ML algorithms were used: Partial Least-Squares (PLS) and Support
Vector Machines (SVM) with linear kernel function as discriminating methods, and Random
Forests (RF) as a tree-based method, for the respective regression (PLS-R, SV-R, RF-R) and
classification (PLS-DA, SVM-C, RF-C) algorithms. A multivariate linear regression (ML-R)
model was added for comparison purposes. The models were trained with tenfold groups,
and CV was repeated five times. The specific tuning of the parameters for the training and
CV of regression and classification models is shown in Table A1.

2.4. Model Performance Evaluation

The prediction was performed for the three regression/classification methods by
using the obtained models from the training process on the testing datasets; then, the
performances were compared. The metrics to evaluate the effectiveness of the regression
techniques were the determination coefficient R? (Equation (2)) and the root mean square
error RMSE (Equation (3)) as the standard deviation of the error. For classification models,
the metrics were the overall accuracy (Equation (4)) as the correct classification of the
data obtained by executing the model, and Cohen’s kappa statistics (Equation (5)) like the
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strength of the agreement as the extent to which the data are correct representations of
the variables measured [38]. Additionally, the measures of sensitivity and specificity, as
the proportions of true positives and true negatives correctly predicted, respectively, were
calculated for classification.

R2=1- M 2)
w1 (0—a)
- 21172
RMSE = [n-‘):,.:,(p, —0) } 1)

where 1 is the number of observations, p; is the predicted values, o; is the observed data,

and o is the mean for o;.

True classification

U
oLy = Zi:l Total cases @
P,— P,
Kappa = 37— ©)

where 1 is the number of classes, P, is the total agreement probability, and P, is the
agreement probability due to chance.

2.5. Other Assessments

The relative importance of the variables was assessed through the RF measures of
Mean Decrease Accuracy/Gini for classification and the percent increase in MSE and
increase in node purity for regressions. For overcoming the imbalance caused by the sodic
category, a resampling technique was applied. The stability of the models was assessed
in function to three different data partitions as an indicator of the change in the level of
performance; then, the dataset was split for obtaining a validation dataset proportion over
(30%) and below (20%) the referential of 25%. Finally, the models were assessed with
additional explanatory variables, namely, soil pH and ECe determined from the same
solution in which the soluble ions were measured, total organic carbon (TOC), and soil
texture (clay, silt, and sand).

2.6. Software

Statistical analysis and ML modelling/evaluation were performed by using the R
software (v.4.1.3) [39] and RStudio (v.1.31093) [40]. The regression and classification models
(PLS, SVM, RF) were trained and evaluated through the package caret (classification and
regression training) [41], and complementary packages for data preparation, analysis and
visualization such as randomForest [42] and FactomineR, among others, were used.

3. Results and Discussion
3.1. Statistical Overview

Some descriptive statistics of the dataset are shown in Table A2. The distribution
of samples according to the salt-affected soil classes was relatively balanced, except for
the sodic soil category (Figure 3a). Among the explanatory variables, soluble Ca?* with
Mg?* (r of 0.87) and Na* with the anions were relatively highly correlated, as well as
the soil ECe and ESP with Na* and soluble anions (Figure Al). Despite these relatively
high relationships, it should be considered that ML algorithms deal with multicollinearity
through regularizations and by focusing the prediction and accuracy instead of the influence
among variables; moreover, all soluble salt ions are part of the dominant composition and
balance in the soil solution of each site-specific sample. Correlations between the contents
of cations in the soil sorption complex and those in the soil-water solution are relatively
low (Table A3) in contrast to the findings of Porebska and Ostrowska [43]. According to
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Count
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the PCA, around 98% of the variance was explained by seven out of eight components.
The components are not so good for discriminating the clusters (Figure 3b); consequently,
for a complete separation of the soil categories, the PLS-DA, SVM, and RF classification
algorithms were performed.

-
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Figure 3. Distribution of the observations according to the salt-affected categories (a). PCA plot of
observations grouped by soil categories (b).

3.2. Evaluation of the Regression Models

Among the assessed ML regression models for predicting soil EC, the SV-R and RF-R
algorithms performed the best with relatively similar values of R? and RMSE, followed by
ML-R and PLS-R models, which, in contrast, showed good cross-validation performances
(Table 1). The overall high proportions of soil ECe variance explained by the soluble
ions agree with the fact that the soluble major ions complex is normally a good predictor
for the soil EC and vice versa, and also coincide with the high correlations between soil
ECe and soluble ions as total dissolved salts [44,45]. Furthermore, the low performance
of the PLS-R model agrees with the fact that it is better in cases where the number of
explanatory variables is high or where multicollinearity is an issue. As a partially related
study, Wang et al. [46] found that RF regression performed comprehensively better than
SVM among other ML models in predicting salinity from field-measured spectral and
salinity parameter data.

Table 1. Prediction performances of the regression models for estimating soil ECe and ESP.

ECe ESP
filetios RMSE R RMSE R
PLSR 29(33) 0.82 (0.72) 19.0(13.6) 041 (0.63)
SV-R 19 (35) 0.92 (0.74) 184 (14.0) 0.40 (0.65)
RE-R 21(3.7) 0.91 (0.66) 126 (12.4) 0.71(0.60)
ML-R 24(28) 0.88 (0.81) 191 (13.6) 0.40 (054)

RMSE stands for root mean square error. Values in parentheses mean the CV performances.

For estimating the soil ESP, the RE-R obtained the best prediction performance (R
of 0.71 and RMSE of 12.6), followed by the rest of the models with similar results; even
s0, they obtained relatively good cross-validation performances (Table 1). The relatively
high performance of the RF-R model for predicting soil ESP is partly related to the rela-
tionships between SAR and ESP or exchangeable sodium ratio (ESR) (Table A3), and has
some correspondence to the results obtained to predict ESP from SAR by using simple
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regression [47-50], and there is also correspondence with those to estimate the ESR from
SAR [51,52].

Through the variable importance analysis by using the RF-R algorithm, two measures
were obtained: percent increase in mean square error (MSE) as the prediction error of
each variable if omitted from the analysis, and the increase in node purity as how much
the model error increases when a particular variable is randomly permuted or shuffled.
According to these metrics, Na* is the most important variable for predicting both soil ESP
and EC, besides CI~ and HCO;~ which are indispensable for estimating soil EC,, as well
as Ca®* for ESP (Figure 4a,b). In addition, despite the relatively low importance of K in
predicting soil ESP (Figure 4b), it might be important to keep this cation for modelling
because it influences soil dispersion, as demonstrated through the exchangeable cation
ratio (ECR) [53] and the cation ratio of soil structural stability (CROSS) [54] as alternative
indicators for soil ESP and SAR, respectively.

SO‘
. Na* ]
Na
- T I
e Mg" —
C r
HCO3 L]
K —
COY e
o L ]
ca* ———e
ot ————T
0 5 10 15 0 10 20 30 40
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IncNodePurty @ 500 @ 1000 IncNodePurity ©5000 @10,000 @ 15000 @ 20,000
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Figure 4. Variable importance as the percent increase in mean square error (%IncMSE) and the
increase in node purity (IncNodePurity) from the RF model for the soil ECe (a) and ESP (b).

3.3. Evaluation of the Classification Models

According to the internal validation, the RF-C model obtained the best performance
with the highest prediction accuracy (87%) indicating a good classification with a significant
strength of agreement beyond chance (kappa of 82%), followed by the SVM-C and PLS-DA
models, both with a regular classification and moderate agreement. Additionally, according
to the CV analysis, the RF-C and SVM-C algorithms performed better than the PLS-DA
model with relatively similar results (Table 2).

Table 2. Accuracy and kappa values of the model training and model testing.

Calibration/CV * Validation
Method
Accuracy Kappa Accuracy Kappa
PLS-DA 0.55 0.37 0.67 0.52
SVM-C 0.63 0.49 0.70 0.58
RF-C 061 0.47 0.87 0.82

*CV stands for cross-validation.

The overall Out of Bag (OOB) error of the RF bootstrapping was 37.9%, and the
error classes were 0.29, 0.38, 0.26, and 0.68 for normal, saline, saline-sodic, and sodic soil,
respectively. The misclassifications of sodic soil were mainly due to its imbalance in contrast
to the other categories. The soil pH used to classify the soil may decrease the quality of the
classification models because it is not directly related to the soluble/exchangeable cations,
as the soil EC. and ESP are. Based on the predictions in the confusion matrixes (Table A4),
the measures of sensitivity and specificity were calculated. Overall, the sensitivity as the
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true positive rate was regular to good for predicting the normal, saline, and saline-sodic
classes but poor for the sodic class; in addition, the RF-C model generated higher values of
sensitivity than those of the SVM-C and PLS-DA (Table A5).

According to the estimation of the variables’ relative importance using the Mean
Decrease Accuracy and Mean Decrease Gini calculations, the soluble Na* was the most
relevant parameter for classifying the salt-affected soils, followed by Ca?t, Mgz*, and CI™
(Figure 5a,b). These rankings coincide with the variable selection through RF backward
elimination and become important for eventually discarding the less important variables if
and when the performance of the model is improved. The importance estimations have
some correspondence with the ratio of soluble Na* to the base cations expressed by the
SAR and also with the relevance of neutral salts over alkali salts for these soils.

o D
o
so:‘ [ [elox
co} K
K col l
0 20 40 0 5 10 15
Importance Importance
(a) (b)

Figure 5. RF relative importance estimation of the explanatory variables according to the measures of
MeanDecreaseAccuracy (a) and MeanDecreaseGini (b).

3.4. Resampling

For overcoming the imbalance generated by the minority class (sodic), the mod-
els were trained a second time by applying the resampling method ‘Synthetic Minority
Over-Sampling Technique’ through the Smote function [55]; then, the results from the per-
formance validation showed a slight improvement for the SVM-C model, but a significant
decrease for the RF-C model in accuracy and kappa values (Table 3), compared to those
without resampling (Table 2).

Table 3. Accuracy and kappa values of the model training and testing with the Smote function.

Calibration/CV * Validation
Method
Accuracy Kappa Accuracy Kappa
PLS-DA 055 0.39 0.60 048
SVM-C 0.61 0.46 0.73 0.62
RFC 0.60 0.45 0.77 0.68

*CV stands for cross-validation.

3.5. Stability Analysis

The stability was evaluated by performing a new validation of the regression and
classification models based on three different partitions (percent calibration datasets of
70, 75, and 80). The RF regression models for predicting soil ECe and ESP obtained lower
differences between performances of the three calibration data amounts than those of SV-R
and PLS-R, whereas, for the classification, the PLS-DA followed by the SVM-C technique
were more stable than the RF-C model in predicting soil categories (Table 4).

182



Annexes

Soil Syst. 2023,7,47 9o0f14
Table 4. Stability assessment for the performance validations of the models.
Model and Percent of Calibration Dataset =
Metrics Méthod 0% 75% 80% Difference®

ECe PLS-R 3.5/0.68 29/0.82 23/092 1.2/0.24

Regression SV-R 34/071 2.0/0.92 19/095 1.5/0.24

RMSE/R? RF-R 29/0.79 2.1/091 3.0/0.88 1.7/0.15

ESP PLS-R 15.1/0.52 18.9/041 14.9/0.57 7.8/0.27

Regression SV-R 15.5/0.54 18.4/0.40 15.5/0.58 5.8/0.32

RMSE/R? RF-R 12.6/0.65 12.6/0.71 11.1/0.78 1.5/0.13

Classification PLS-DA 0.65/0.51 0.67/0.52 0.71/0.57 0.06/0.06

Accutacy/Kappa SVM-C 0.70/0.58 0.70/058 0.79/0.69 0.09/0.11

Y/RapPa grc 0.78/0.70 087/0.82 0.79/071 017/023

*Difference = sum of absolute differences among the metric values of the three partitions.

3.6. Additional Variables

By adding the soil pH, ECe, TOC, clay, silt, and sand to the matrix of predictor
variables, only the performances of PLS and SVM regressions to predict soil ESP showed
a significant improvement (Table 5) compared to those in Table 1. These results partly
contrast with those of Keshavarzi et al. [56] who obtained R2/MSE values of 0.84/5.36 and
0.90/5.09 for the Al-based models Multi-Layer Perceptron and Adaptive Neuro-Fuzzy
Inference System, respectively, for predicting ESP from ECe, pH, and clay. Although the RF
classification model obtained a slight increase in effectiveness (Table 5), should be noted
the redundancy caused by the soil EC. and pH as explanatory variables and as classifiers
of the explained categories at the same time; however, their further inclusion might be
pertinent if more easily obtained parameters are used, such as EC and pH measured in
soil-water suspensions.

Table 5. Obtained model performances by adding features to the matrix of explanatory variables.

Regression—EC, Regression—ESP Classification
Method
RMSE R? RMSE R? Accuracy Kappa
PLS 7.6 0.89 125 0.62 0.61 0.45
SVM 44 0.96 12.1 0.63 0.61 0.47
RF 12.1 0.55 127 0.62 0.90 0.87

3.7. Some Remarks

Overall, RF and SVM regression models performed the best for predicting soil ECe
from soluble ions, as well as the RF model for estimating the soil ESP from soluble cations;
and the RF followed by the SVM classification algorithm outperformed the PLS-DA in
predicting salt-affected soil classes from soluble salt ions. Considering that it is important
to apply tailored reclamation techniques based on modelling and predictive tools calibrated
and validated for site-specific salt-affected soils [57], the obtained models become important
tools for the monitoring and management of salt-affected soils for the study area, and also
as source of alternative covariates for further modelling.

As tentative limitations, all the models still need an optimization of their prediction
effectiveness; therefore, additional observations might be included in the dataset for im-
proving the performance and stability of the classification /regression models, as well as for
overcoming class imbalances and reinforcing the selection of variables. Additionally, the
input of additional features such as remote sensing data and field-measured soil properties
can also be useful for improving the modelling and predictions. Further classification mod-
elling could consider alternative classification systems such as that of Chhabra et al. [12]
which generates only three soil classes (normal, saline, and alkali).
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4. Conclusions

The performances of ML classification and regression algorithms (PLS, SVM, and RF)
in predicting soil ECe, ESP, and salt-affected soil classes were evaluated and compared.
Among the assessed ML regressions, SVM and RF obtained the best performances for
predicting the soil ECe, whereas the RF model was superior for estimating the soil ESP. The
RF classification algorithm showed the best prediction accuracy (87%) with a kappa value
of 82%, followed by SVM and PLS-DA. Soluble Na* was the most important explanatory
variable for all the prediction models, followed by Ca®*, Mg?*, Cl~, and HCO3~ which
were important for classification, as well as for regression. The sodic class was poorly
predicted, and the applied resampling for overcoming its imbalance did not significantly
improve the classification performances. The stability analysis showed that the amount
of training data generated less impact on the RF regression models, whereas the SVM
and PLS-DA were more stable than RF for classification. Additional explanatory variables
somewhat improved the PLS and SVM regressions to predict ESP and the RF classification
effectiveness. It can be concluded that the RF or SVM and the RF regression can be suitable
to estimate the soil EC, and ESP, respectively. In addition, the RF and SVM classification
models can be appropriate in predicting salt-affected soil classes from soluble salt ions.
Additional samples and explanatory features can be included in the dataset for improving
the prediction performances. The assessed models might contribute significantly to the
monitoring, mapping, and management of salt-affected soils in the study area.
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Appendix A

Table Al. The setting of parameters for model training and cross-validation analysis.

Model Algorithms Parameters/Values
PLS-R Number of components: 1 (ECe), 3 (ESP)
EC, and ESP Regression ~ SV-R CF grid: 0.01, 0.1,0.25,0.5,1
RE-R NT of 3000, MTRY of 5 (EC,), 2 (ESP)
PLS-DA Number of components: 2
Multiple classification ~ SVM-C CF grid: 0.05,0.1,0.25,0.5,0.75,1, 1.25, 1.5, 1.75, 2
RF-C NT of 3000, NS of 10, MTRY of 2

R = regression; C = classification; NT = number of trees; NS = minimum node size; MTRY = number of randomly
selected predictors; CF = capacity factor for SVM.
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Table A2. Descriptive statistics of explanatory variables (soluble salt ions), ESP and ECe.

Item Mean SD cv Min Max Median Count
Ca?* 37 45 12 0.1 262 22 125
Mg?* 17 1.9 1.1 0.09 9.4 1.0 125
Na* 274 549 2.0 0.02 326.1 56 125
K¥ 05 0.5 1.0 0.02 22 04 125
Cl- 174 353 2.0 0 205.0 5 125
5042 142 296 21 12 153.4 3.7 125
HCO3~ 54 6.6 12 05 340 3.0 125
COz2~ 63 22 35 0.0 134.0 0.0 125
ESP 16.3 204 12 0.1 770 49 125
ECe 6.1 6.5 11 03 334 4.1 125

SD = standard deviation; CV = coefficient of variation.
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Figure Al. Correlation matrix among the explanatory variables, ESP and ECe.

Table A3. Correlation matrix among sums of soluble and exchangeable cations, sodicity parameters,

and ECe.

Sum-Sol Cations Sol-A S Exc-Cations SAR ESR ESP ECe
Sum-Sol Cations 1
Sum-Sol-Anions 0.78 1
Sum-Exc-Cations 032 0.42 1
SAR 090 0.75 0.33 1
ESR 057 0.77 0.45 0.61 1
ESP 0.66 0.75 0.50 0.66 0.93 1
ECe 0.81 0.84 0.30 0.73 0.64 0.64 1

Sum-Sol = Sum of soluble; St
sodium ratio (ESP/100-ESP).

E

ble; SAR = sodium

=Sum of

185

ratio; ESR = exchangeable
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Table A4. Confusion matrixes of the predictions for the three ML classification algorithms.

PLS-DA SVM-C RE-C
e NO SA  ss SO NO  sA ss SO NO  SA ss  so
Normal 9 2 1 5 9 2 1 4 9 0 0 1
Saline 1 6 1 0 1 6 0 0 1 8 0 ik
Saline-sodic 0 0 5 0 0 0 5 0 0 0 7 1
Sodic 0 0 0 0 0 0 1 1 0 0 0 2
NO = normal; SA = saline; SS = saline-sodic; SO = sodic.
Table AS5. Sensitivity and specificity for the three classification models.
Sensitivity Specificity
Claes PLS-DA SVM-C RE-C PLS-DA SVM-C RF-C
Normal 0.90 0.90 0.90 0.60 0.65 0.95
Saline 0.75 0.75 1.00 091 0.95 0.90
Saline-sodic 0.71 0.71 1.00 1.00 1.00 0.96
Sodic 0.00 0.20 0.40 1.00 0.96 1.00
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Abstract: Saline-alkali soils have high sodicity, high pH, and high levels of soluble salts, as well as
carbonates. This study aimed to evaluate the effect of cattle manure and chicken manure combined
with gypsum at three levels on reclaiming a saline-alkali soil, through a soil column experiment. Com-
bined treatments were more effective than those of sole gypsum in reducing the initial exchangeable
sodium percentage (ESP) below 5%. Electrical conductivity (EC,) was lowered below 1.6 dS m-! by
all treatments, except the control. The higher effectiveness of manures combined with gypsum can be
explained by their synergistic effect on Na* displacement and subsequent soil structure improvement,
leading to an enhancement in the leaching process, and then the salinity/sodicity reduction. Soluble
salts and Na* were considerably reduced in all treatments at the first leaching. Soil ESP and ECe
threshold values from the US Salinity Lab classification were reached by any treatment, except the
control. The addition of cattle manure or chicken manure might enhance the reclamation effect of
gypsum with leaching for some saline-alkali soils.

Keywords: saline-alkali soil; saline-sodic soil; cattle manure; chicken manure; gypsum; land use

1. Introduction

Saline-alkali soils are characterized by a significant amount of soluble salts, and
sodium (Na*) in the soil solution and cation exchange complex, as well as a high pH
due to the soluble carbonates. Sometimes, the presence of sodium carbonates passes
unnoticed when obtained from paste extract, due to a portion of the dissolved carbonates
that reacts with Ca?* and precipitates as CaCOs; moreover, the high solubility of Na* salts
and the electroneutrality of aqueous solutions mean that the remaining Na* charge is either
balanced by sulfate ions or included into the exchange sites, which also permit the use
of efflorescence crusts (pH > 8.4, Na/Cl ratio > 1) as indicators of sodium carbonates. [1].
Sodicity causes many adverse effects, such as changes in exchangeable and soil solution
ions and soil pH, the destabilization of soil structure, the deterioration of soil hydraulic
properties, increased susceptibility to crusting, runoff, soil erosion, and osmotic/specific
ion effects on plants [2]. Soil salinity can be measured by the electrical conductivity (EC) of
soil solution, and sodicity by the exchangeable sodium percentage (ESP); moreover, the
sodium adsorption ratio (SAR) is used to characterize the presence of Na* in irrigation
water and soil solution. According to the criteria of the US Salinity Lab (USSL) [3], saline-
alkali soils developed in situ have an ESP > 15%, pH > 8.5 and EC, >4 dS m~ . In addition,
Chhabra [4] has proposed that if the ratios—expressed in mol m~3— of either (2CO32~ +
HCO;)/(Cl™ + 25042’) and/orNa*/(Cl~ + 28042’) > 1, soils should be treated as natric
and reclaimed with chemical amendments.

The amelioration of saline-sodic and sodic soils normally needs a source of soluble
Ca®* to replace the excess Na* from the cation exchange sites, and this is most effective
with non-saline irrigation water [5]; then, the replaced Na*, together with the excess soluble
salts, if present, are removed from the root zone through infiltrating water as a result of
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excessive/regulated irrigation [6]. Gypsum (CaSO4-2H,0) application counters reduced
hydraulic conductivity in Na*-dominated soils through Na*~Ca?* exchange, the hydrolysis
of Na* through the ionic strength effect, and enhancing electrolytic concentration [7]. Due
to the high pH of alkali soil, most likely as a result of Na,COj3, the addition of gypsum
provides a source of Ca®* which precipitates as CaCO; and Ca(HCOz),, leading to a
decrease in pH [8]. However, the chemical amelioration strategy itself has become cost-
intensive as an effect of increases in amendment costs [6].

Organic amendments such as manure can be considered as an alternative, as well as
a complement to chemical amendments. The addition of organic amendments in sodic
soils binds fine particles together into large water-stable aggregates, increasing porosity,
and thus improving the soil physical properties [9]. Fertilization with organic matter can
be expected to improve salt-affected soils, regarding their chemical and physicochemical
characteristics, by decreasing the exchangeable Na* content, and improve their physical
properties by increasing the aggregate stability [10]. Additionally, remediating saline-sodic
soils with organic amendments is a cheaper and more sustainable alternative to inorganic
materials [11]. Moreover, Mahmoodabadi et al. [12] suggested that the application of
gypsum together with organic amendments, depending on their chemical composition,
might promote some synergistic effects on soluble Na* and K* concentrations and have
a positive impact on properties of calcareous saline-sodic soils. Furthermore, based on a
revision, Diacono and Montemurro [13] concluded that most of the well-known effects of
organic materials on the chemical, biological, and physical properties of salt-affected soils
are relevant in terms of effectiveness.

Saline-sodic/alkali soils are abundant in the agricultural lands of the High Valley
(Bolivia) [14], negatively affecting crop production. In addition to the fact that manures
as organic amendments are locally and economically accessible, a previous screening of
experiments under controlled conditions with similar soils from that area, carried out by
Castellon and Andrade [15], Andrade Foronda [16], and Andrade et al. [17], showed that
manures were more effective than biochar and peat, and that gypsum was more efficient
than sulphur in decreasing soil sodicity and salinity. Thus, the objective of this study was
to evaluate the combined effects of cattle manure, chicken manure and no-manure, with
gypsum at three levels (50, 75 and 100% of requirement) and leaching, on reclaiming a
saline-alkali soil.

2. Materials and Methods

The target soil (Table 1) was collected at a depth of ~25 cm from the High Valley of
Cochabamba, Bolivia (17°32/38.6” S, 65°51'41.9” W, elevation of 2750 m). The experiment
was carried out at the Faculty of Agricultural and Livestock Sciences, ‘Universidad Mayor
de San Simén’ (17°27'2.9” S, 66° 7'59.7” W). Cattle manure (CA), chicken manure (CH) and
gypsum (GY) were collected locally and analyzed for some properties (Table 2) related to
the salt-term evaluation.

Following and adapting the protocol of Ahmad et al. [7], PVC tubes (height of 100 cm
and @ of 10 cm) as simulated soil columns were prepared, and 5 cm of gravel, glass fiber
and plastic mesh were placed at their bottoms. The gypsum requirement (GR) at the 100%
level (8 g GY kg ! soil) needed to reduce the initial soil ESP to 15%, was calculated through
the equation used by Lebron et al. [18]. The saline-alkali soil, GY and manures were
homogenized and sieved at 4, 2 and 6 mm, respectively. Manures were applied at 2% of
organic matter on a dry weight basis (w/w). Each of the columns was filled with 3.6 kg of
affected soil to a height of 35 cm based on bulk density, placing the treated soil in the upper
layer (height of 20 cm).
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Table 1. Chemical and physical properties of the saline-alkali soil before reclamation.

Property Value Property Value
Bulk density (g cm~?) 13 ECe (dSm™') 241
Clay (%) 17.8 pH 9.6

Silt (%) 53.9 Na* (mmol. L-1) 3321*
Sand (%) 283 Ca?* (mmol. L~1) 0.5
TOC (%) 03 Mg2* (mmol. L~1) 0.6
Saturation (%) 29.2 K* (mmolc L™1) 15
CEC (cmolc kg 1) 112 HCO3 ™~ (mmol. L) 59.0
Na* (cmolc kg~ 1) 69* CO3%" (mmol. L) 46.0
Ca2* (emolc kg™ 1) 49* Cl~ (mmol. L™ 1) 104.0
Mg?+ (cmolc kg 1) 11* 5042~ (mmol. L) 525
K* (cmolc kg 1) 01* CaCO; (gkg™ 1) 357

ESP (%) 52.8

CEC = cation exchange capacity, exchangeable cations (derived—ISO 22171 at pH of 7 and AAS); EC,. = electrical
conductivity (paste extract); pH (water 1:5); ESP = exchangeable sodium percentage; soluble ions (paste extract
and standard procedures of the USSL); TOC = total organic carbon; CaCO;s (acid neutmluahun) 2 Remea:.u:ed
values: excess soluble Na* can be due to its ion at the soil collection site. error:

between CEC and the sum of exchangeable cations.

The parameters of leaching water were: EC of 0.2dS m ™!, pH of 8.1, and Na*, Ca?*
and Mg?* concentrations of 0.9, 0.6 and 0.5 meq L, respectively. The volume (1060 ml) of
water was determined through the pore volume (PV) formula given by Kahlon et al. [19].
An initial 3/4 PV was added to saturate the soil, then four cycles (each of one PV) were
applied until a relatively constant EC was reached in the leachates (Table A2), and then the
reclaimed soil samples were collected to be analyzed.

Table 2. Some pertinent properties of organic amendments and gypsum.

Property Cattle Manure Chicken Manure Gypsum *
Na* (mmol kg 1) 207.5 127.7 2.1
Ca?* (mmol kg~1) 107.0 65.9 42472
Mg2* (mmol kg~1) 452 335 7.8
EC (dSm-1) 114 52 2.6
pH 953 956 7.87
TOC (%) 33.1 342 0.08
Cations (Lakanen—Ervio, AA + EDTA, pH 4.65), pH (0.001 M CaCl,) and EC (1:5 suspension). * Purity of
gypsum: 91.7%.

Soil pH was determined in a 1:5 soil-water suspension (derived—ISO 10390). ECe
and soluble ions were measured from the paste extract through the standard procedures of
Richards et al. [3]. Exchangeable cations were obtained at a pH of 7 (derived—ISO 22171)
with atomic adsorption spectroscopy. The ESP was determined using the Formula (1) by
Sumner et al. [20]. The estimated percentage of displaced Na*™ was calculated through

Equation (2). S
a
Bl (cn2+ + Mg?* + Nat + K+t )100 ®

where cations are expressed as a concentration in cmolc kg’l

Na* 100 (~——Na"sa___ \4p9 @
displaced = Na't am + Natgg

where Nagispiaced is Na* (%), SA is soil after, AM is amendment, and SB is soil before.

The experimental design was completely randomized with four replicates. The treat-
ments comprised 9 combinations of CA, CH, and no manure (NM) with GY levels (GYsg,
GY75 and GY100), and control (only leaching). The effects on soil ESP, EC,, pH and displaced
Na“, as response variables, were evaluated using the Scott-Knott clustering algorithm
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(p = 0.05). Statistical analysis was performed using R software (v.4.1.3) and RStudio
(v.1.31093).

3. Results and Discussion

The soil ESP, pH and EC, in reclaimed soil, as well as displaced Na*, differed sig-
nificantly (p < 0.05) among the interactions, and between these and control. It should be
mentioned that there was an absolute control (only leaching) which has not been taken into
account for the comparisons of means in Figure 1, but is shown in those of Table A1 for
reference purposes; since it received two cycles of leaching in 54 days, and because of the
difference between groupings of means with and without the control. The soil ESP, ECe
and pH values of the control, decreased by 54, 79 and 8%, respectively, over the respective
initial values; moreover, the threshold values of EC. (4 dS m‘1) and ESP (15%) from the
USSL classification were reached with any treatment, except for the control, however, that
of soil pH (8.5) was only reached with CH at any dose of GY (Table A1).
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Figure 1. Soil ESP (a), EC, (b), pH (c) and displaced Na* (d) for the interactions between manures/no
manure and gypsum levels. Means sharing a letter are not significantly different, according to the
Scott-Knott test (p = 0.05). The bars indicate the standard error.

Cattle manure (CA) and chicken manure (CH) combined with any level of gypsum
(GY) were more effective than those of sole GY in lowering the ESP below 5%; moreover,
CA-GYi00 and CH-GY 00 were the most efficient (Figure 1a). The soil before EC. was
decreased by over 90% with any combination, even with those of only GY atany dose, and
CH-GYp was the most effective (Figure 1b). Combinations with CH were more effective
than the rest of the treatments for reducing soil pH (Figure 1c). Because of the relatively low
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Na* contribution from amendments, the displaced Na* values were highly congruent with
those of the ESP from reclaimed soil, showing Na* removals of over 93% by any combined
treatment of manure and gypsum (Figure 1d).

These results are similar to those from other studies related to the effectiveness of
organic amendments combined with gypsum: Chaganti et al. [11] reported that combined
applications of gypsum and organic amendments (composts) were more effective than
individual applications in improving soil properties such as sodium leaching, hydraulic
conductivity, ESP, and SAR. As well, Prapagar et al. [21] found that gypsum application
combined with partially burnt paddy husk and cow dung reduced the EC, SAR and
pH more effectively, compared to applying gypsum alone. Moreover, Abdel-Fattah [22]
observed that gypsum combined with water hyacinth compost or rice straw compost
enhanced the reclamation process and caused a higher decrease in salinity and sodicity than
gypsum alone, and in turn, than the control. However, some investigations differed from
these results; as Hernandez Araujo [23] found no differences among organic amendments
(compost, vermicompost and Lemna spp.) at 1.5 or 3% w/w, nor combined with gypsum.
Moreover, Manzano Banda et al. [24] reported that flushing water reduced the salinity and
sodicity of two saline-sodic soils to satisfactory levels with and without the application of
any amendment (cattle manure, gypsum and sulfuric acid).

The effectiveness of combined CA or CH with any level of GY at reducing the soil ESP
and soluble salts from the saline-alkali soil (Figure 1a,b) can be explained by the positive
impact of organic matter from manures and Ca?* from GY on soil structure, leading to an
enhancement in soil aggregation, porosity, infiltration, and subsequent leaching efficiency;
furthermore, although the addition of GY by itself improved those characteristics, the
superiority of combined treatments, independent of GY doses, suggests that the indirect
effect of organic amendments on soil physical properties for removing Na* and salts
from the soil was significant. In this regard, Ahmad et al. [7] mention some factors that
influence the leaching of salts and Na*, such as the difference between the soluble and
exchangeable Na* contents of soil, the quantity of gypsum added, soil texture, CEC, and
the percolation time; coinciding partially with Shaygan et al. [25], who stated that the
dynamics of hydraulic conductivity depend on the magnitude of cation exchange and the
subsequent changes in the pore system. Likewise, Chaganti and Crohn [26] indicated that
the chemical characteristics of composts are as important as those of biological factors in
their potential for reclamation; therefore, to achieve a comprehensive physical and chemical
amelioration of a saline-sodic soil, both factors must act synergistically.

The lower efficiency of treatments with sole GY compared with those combined with
the manures in reducing salinity /sodicity (Figure 1) was probably due to the initial high
exchangeable Na* of soil, leading to lower availability of Ca’* and to soil dispersion.
However, the effect of sole GY was likely sufficient in promoting soil aggregation and sub-
sequent leaching of soluble salts and Na™ from the soil, possibly boosted by the increased
solubility of GY (~2-3 fold) in the presence of NaCl, meaning that relatively more Ca?*
could infiltrate the soluble form. This is in agreement with Gupta and Gupta [27], who
stated that the solubility of gypsum in alkali soils is considerably higher than in normal
soils, and is also increased if it is applied in conjunction with manures; and also coincides
with Sim et al. [28], who found that NaCl largely increases the solubility of gypsum. In
addition, Ahmad et al. [7] found that the increased addition of gypsum can improve the
retention of Ca>* + Mg?* and enhance leaching even for loamy sand and sandy loam soils.
The order of effectiveness in lowering ESP for only gypsum treatments was: GY10 > GY75 =
GYsp > control (Figure 1a, Table A1); results coincide partially with those of Qadir et al. [29],
who also included phytoremediation by L. fusca (LF): GY;00 > LF > GY5 > control. Because
the three GY levels from the combinations with manures showed relatively low significant
differences between them for lowering the soil ESP and pH—the same as between GY5)
and GY75 from the gypsum-only treatments (Figure 1a,c)—manures with GY5p and GY75
could be considered as cost-efficient alternatives for further validations.
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The significant reduction in soil pH by combined treatments (Figure 1c), despite the
previous high pH of manures and soil, could have been partially caused by the displacing
of sodium salts, agreeing with Wong et al. [8], who affirmed that the high initial pH of soil,
most likely as a result of Na,CO3, can be reduced through the addition and dissolution of
gypsum as a source of Ca>* which precipitates as CaCO3 and Ca(HCOj),, resulting in a
direct decrease in soil pH and later proton generation for further reductions. In addition,
Chaganti et al. [11] and Wong et al. [8] concluded that adding composts likely increases
the partial pressure of CO, due to increased microbial activity during incubation and /or
leaching, which can lead to the formation of inorganic and organic acids for further soil
pH reductions. However, for the treatments with only GY, the soil pH after reclamation
showed minimal variation compared to the initial pH (Figure 1¢), likely because of the
initial high ESP and soluble Na*, leading to soil dispersion, which probably counteracted
the Ca?* contribution from GY.

The percolation time for the control (two cycles in 54 days) was considerably longer
than that of the rest of the treatments (four cycles in a range of 10-35 days), as shown in
Figure 2. This behavior can be due to soil dispersion caused by the high exchangeable
Na* in the soil before reclamation, which can also explain the higher effectiveness of sole
gypsum at all levels compared to the control (only affected soil with leaching) in decreasing
soil ESP and EC, (Table A1). Moreover, Shaygan et al. [25] suggested that an increased
percolation time and a greater rate of cation exchange were associated with greater leaching
efficiency.

60

[ control [l 6y100cA [l 6vso [ ovso-ch [ll Gyrsca
I orioo [l cvio-cr [l evsoca [l ov7s GY75-CH

142 1+2+3 1+2+3+4

Cycle of leaching (PV)

Figure 2. Percolation time in accumulated days according to the applied cycles of leaching as pore
volumes. Cycles of leaching: 1 = first, 2 = second, 3 = third, and 4 = fourth.

Soluble salts expressed as EC (Table A2) and SAR (Figure Al) in the leachates were
considerably high for all treatments in the first leaching cycle; therefore, up to two cycles of
leaching could be sufficient to reclaim this type of soil, at least under controlled conditions.
This behavior can be related to the increased leaching rate triggered by amendments and
soil flocculation, which counteracted the soil dispersion caused by the high sodicity of
soil before reclamation; this agrees with Abdel-Fattah [22], who mentions that the first
cycle of leaching can readily leach salts and mobile ions, whether the soils are amended or
not. This also concurs with Ahmad et al. [7] and Hassan et al. [30], who reported a higher
removal of Na* in the first leaching cycle than that in the following leachates, coinciding
with higher hydraulic conductivity. They also concluded that the maximum salts and Na*
could come from the dissolved part, while the forthcoming fraction could come partially
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from the reactions taking place through the Na*~Ca?* exchange and from the high initial
ECe of soils that keeps them flocculated to pass the solution [5].

Following the conceptualization of this study, further research could assess different
soil textures, other GY levels below 75%, and lower rates of manures. Moreover, other
studies could evaluate: a two-step process of washing with GY followed by organic
amendment, similar to that of Sastre Conde et al. [31]; the influence of mulch with GY, as
investigated by Zhao et al. [32]; or the inclusion of phytoremediation techniques, as studied
by Qadir et al. [29].

4. Conclusions

Combined treatments (cattle or chicken manure with gypsum at any level) were more
effective than those of sole gypsum in reducing the initial soil ESP below 5%, and both
manures with GY;( were the most efficient. The soil before ECe and ESP levels decreased
below 1.6 dS m ! and 14%, respectively, with any (combined and sole gypsum) treatment,
except the control. Any combination of manure and gypsum lowered the pH below 8.7. The
effectiveness of combining organic amendments with gypsum can be explained by their
synergistic effect on Na* displacement and soil flocculation, resulting in the subsequent
improvement in soil porosity and infiltration, leading to an enhancement in the leaching
process. The relative effectiveness of sole gypsum treatments was likely due to the Ca®*
contribution from gypsum and the influence of NaCl on its solubility. Manures with GY5
and GY75 could be cost-efficient alternatives for remediation in further validations. The
control was less efficient in facilitating the percolation and lowering soil salinity/sodicity.
Soluble salts and sodium were considerably lowered in all treatments at the first cycle of
leaching. The ESP and EC, threshold values from the USSL classification were reached with
all treatments except the control, and the pH threshold was only reached by chicken manure
with gypsum. Overall, the study suggests that the addition of cattle manure or chicken
manure might enhance the effectiveness of gypsum with leaching for the reclamation of
some saline-alkali soils.
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Appendix A

Table Al. Effect of manures combined with gypsum levels on soil properties, compared to control.

ESP EC. Leached
Treatment %) @sm1 pH Na* (%)
CH-GYo9 123a(982) 0.82 a (96.6) 8.45a (12.0) 9725a
CH-GY5 240a (9.5) 1.00 a (95.9) 8.45a (12.0) 94.16b
CH-GYs) 295a (95.6) 114 a (95.3) 844a(12.1) 93.45b
CA-GY100 1.14a (983) 092 2 (96.2) 858b (10.6) 97.71a
CA-GY7s 3054 (955) 098 a (95.9) 869 ¢ (9.5) 9321 b
CA-GYsy 269 (96.0) 1.23b (94.9) 858 b (10.6) 94.80 b
NM-GYio0 6.31b (90.7) 0.90 a (9.3) 9.15¢ (4.7) 86.85 ¢
NM-GYss 1274 ¢ (812) 135 (94.4) 953£(0.7) 7291d

NM-GYz 13.81 ¢ (79.6) 157b (93.5) 946 £(15) 7383 d
Control 31.34d (53.6) 5.00 ¢ (79.3) 8.83d (8.0) 40.78 ¢

CH = chicken manure, CA = cattle manure, NM = no manure, GY = gypsum. Means sharing a letter are not
significantly different according to the Scott-Knott test (p = 0.05). Values in parenthesis indicate the decrease (%)
over the respective value of soil before reclamation.

Appendix B
Appendix B.1. Electrical Conductivity

Table A2. Evolution of soluble salts as EC (dS m~!) in the leachates at each cycle of leaching (pore

volume).
Cycle of Leaching
Treatment 1 2 3 4
Control * 83.0 (2.4) 31.6(22) - -
NM-GY50 715(3.3) 5.3(1.7) 4.3(0.7) 2.4(05)
NM-GY75 67.5(5.8) 5.4(0.8) 4.6(0.4) 2.6(04)
NM-GY100 69.3 (4.5) 6.2(22) 4.6 (1.0) 2.8(0.8)
CA-GY50 784 (3.8) 5.7(0.2) 3.6 (0.5) 1.5(0.7)
CA-GY75 78.2(6.6) 5.1(0.2) 39(0.2) 2.3(0.2)
CA-GY100 77.0 (6.9) 6.3(0.1) 35(0.3) 22(02)
CH-GY50 754 (1.3) 6.7 (0.5) 43(0.4) 22(04)
CH-GY75 81.9(2.6) 6.0 (0.3) 35(0.4) 26(04)
CH-GY100 725(1.1) 8.5(0.7) 34(02) 2.3(0.3)

Values in parenthesis indicate the standard deviation. * Two cycles of leaching were applied to the control due to
the length of its percolation time (Figure 2).

Appendix B.2. Sodium Adsorption Ratio
The SAR was determined using the Formula (A1) by Richards et al. [3].

sAR= —_N&__ (A1)

where cations are expressed as concentration in mmol¢ | T
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Figure Al. Evolution of sodium adsorption ratio (SAR) in the leachates at each cycle of leaching.
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Abstract: Excessive amounts of Na* and soluble salts are characteristics of saline-sodic soils. Loss
of soil structure and osmotic stress in plants are negative effects of salinity-sodicity. This study
evaluated the effect of cattle manure, biochar and tropical peatat 1 and 2% (w/w) with leaching, on
the exchangeable sodium percentage (ESP), electrical conductivity (ECe) and pH of a saline-sodic
soil from the High Valley of Cochabamba (Bolivia). The soil was placed in simulated soil columns
and two lixiviations were applied. The initial values of soil were as follows: ESP of 66.6%, ECe
of 205dSm~!, and pH of 8.55. Results after leaching differed significantly (p = 0.05) among the
interactions. Cattle manure at 2% was the most effective in reducing soil ESP to 27.6%, followed by
the rest of the treatments. The three amendments at any level were efficient in lowering EC. below
4dSm~!. Peat at 2% decreased the soil pH to 7.76. The superiority of cattle manure can be explained
by the improvement of soil aggregation and leaching efficiency, through its OM and Ca?t + Mgz*'
contribution. Overall, cattle manure was superior in reclaiming the soil salinity-sodicity, and only
the ECe threshold value from the US Salinity Lab classification was reached by any amendment,
indicating that cattle manure, biochar or tropical peat with leaching, can be used to reclaim some
saline-sodic soils.

Keywords: saline-sodic soil; soil remediation; manure; biochar; peat

1. Introduction

As a category of salt-affected soils, saline-sodic soils are characterized by an excessive
amount of soluble salts, and sodium (Na*) in the soil solution and cation exchange complex.
Loss of soil structure and osmotic stress in plants are some of the negative effects of salinity-
sodicity. Soil salinity can be measured through electrical conductivity (EC), and sodicity by
the exchangeable sodium percentage (ESP) or the sodium adsorption ratio (SAR). Saline-
sodic soils can be classified using the threshold values from the US Salinity Lab (USSL)
classification [1], as follows: ESP > 15%, EC. >4 dS m~! and pH < 8.5. Saline-sodic soils can
be reclaimed by leaching with non-saline water and adding chemical/ organic amendments.

The addition of organic amendments in sodic soils binds the small soil particles to-
gether into large water-stable aggregates, increases porosity and thus improves the soil
physical properties [2]. Using organic amendments instead of inorganic amendments
can reduce input cost savings as a sustainable and efficient management method to re-
claim salt-affected soils [3], besides the beneficial impacts on nutritional and biological
soil properties.

A soil-column experiment was carried out to evaluate the reclamation effect of cattle
manure, biochar and tropical peat at two rates with leaching, on the ESP, EC and pH of a
saline-sodic soil.
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2. Materials and Methods

The soil (Table 1) was collected from the High Valley of Cochabamba (Bolivia) at a
depth of 25 cm. It should be noted that the soil pH is slightly higher than the threshold
value of the USSL classification. The organic amendments (Table 2) used to reclaim the
soil were: cattle manure (CM) collected locally, tropical peat (PE) as tree fern fiber from the
tropical area, and biochar (BI) branded by Greenpoch SA (Belgium).

Table 1. Chemical and physical parameters of the saline-sodic soil, before reclamation.

Property Value Property Value Property Value
TOC (%) 03 ECe (dSm™1) 20.5 K* (mmol. L) 15
Clay (%) 18.2 ESP (%) 66.6 HCO;~ (mmol. L) 403
Silt (%) 521  Na* (mmolc L™1) 339.2 CO32 (mmolc L) 20.0
CEC (cmolkg™!) 50  Ca?* (mmol. L~1) 05 Cl~ (mmol. L-1) 185.0
pH 855 Mg? (mmol. L) 0.7 5042~ (mmol. L1) 711

TOC: total organic carbon, CEC: cation exchange capacity, EC,: electrical conductivity (paste extract).

Table 2. Some chemical properties and TOC of the organic amendments.

Property Cattle Manure Biochar Tropical Peat
Na* (mmol kg~1) 14 0.1 0.0
Ca?* (mmol kg~ 1) 46.7 5.1 155
Mg?* (mmol kg~1) 77.4 40 309
EC (dSm™1) 37 0.3 0.7
pH 85 9.7 3.6
TOC (% 237 33.0 225

Following the protocol of [4], simulated soil columns were assembled with PVC tubes
(9 of 15 cm), and each was filled with 6.7 kg of soil sieved at4 mm, and then the upper
layer was mixed with the respective amendment. The dose of amendments was calculated
on a dry weight basis to reach 1 and 2% of organic matter (OM). To simulate the water
from the rain, distilled water was used for the leaching process. The volume of water
was calculated as a pore volume (PV) using the formula provided by Kahlon et al. [5] and
Ahmad et al. [4]. After an initial soil saturation with 3/4 PV, two lixiviations were applied,
each with one PV for two to four weeks. Response parameters were soil ESF, ECe, and pH.
The ESP was calculated using Equation 3 in Qadir et al. [6]. The design was completely
randomized and the treatments were: CM-1%, CM-2%, BI-1%, BI-2%, PE-1%, PE-2% and
control (only leaching). The results were evaluated using LSM-Tukey adjustment.

3. Results and Discussion

The results after leaching showed that soil ESP, ECe and pH, differed significantly
(p < 0.05) among the interactions. CM-2% was the best treatment for reducing the initial
soil ESP by 39%, followed by CM-1% (by 31.5%), and lastly the rest of the treatments with
a similar effect (Figure 1a). CM-1% and CM-2% were as effective as BI-2% and PE-2% for
lowering EC, by over 16 dS m! concerning the initial soil, while BI-1% and PE-1% showed
a lower efficiency but higher than that of the control (Figure 1b). PE-2% decreased the
initial pH to 7.76, followed by CM-1%, CM-2% and PE-1% in equal magnitude; in contrast,
Bl maintained a pH around the initial value (Figure 1c). Although organic amendments
were effective in reclaiming this saline-sodic soil, the ESP and pH threshold values from
the USSL classification were not reached. It should be pointed out that the percolation time
of PE and BI was double that of CM.
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Figure 1. Soil ESP (a), ECe (b) and pH (c), for the interactions between organic amendments and
doses. Means sharing a letter are not significantly different according to pairwise comparisons of
LSM with Tukey adjustment (p < 0.05). The bars indicate the standard error.

The superiority of CM in decreasing ESP and ECe can be partly attributed to its
initial amounts of TOC, Ca®* and Mg?*, contributing to the improvement of soil structure
and infiltration, thus displacing Na* from the soil. The lower effectiveness of PE in
reducing ESP was likely due to its swelling capacity which interacted with soil dispersion
leading to a slowdown of the leaching process. In this regard, [7] reported that reclaimed
soil with bentonite showed a lower decrease in salinity and sodicity levels and a higher
percolation time due to the swelling capacity. The Bl also showed a weak effect on sodicity
potentially due to its insufficient ability to influence soil structure, and since, as [8] indicated,
the mode of action of BI is physiochemical while composts provide a comprehensive
reclamation when biological and physiochemical factors act together. In contrast to B, the
PE significantly reduced the soil pH due to its very low pH, causing an acidic counteracting
effect, as [3] found that composts significantly improved soil CEC and pH values but the
BI did not.

Water by itself was less effective in decreasing Na®, but lowered ECe to 4.2 dS m},
coinciding with [9], which found that EC decreased significantly even for the unamended
soil possibly caused by solute leaching; moreover, [10] stated that flushing water reduced
salinity with and without the application of manure.

Overall, the results suggest that CM, Bl and PE enhanced the reclamation effect of
leaching in remediating soil salinity and /or sodicity, through the positive impact of their
OM on soil structure and infiltration, thus improving Na* displacement, agreeing with
the following findings: organic amendments significantly lowered the level of soil ECe,
ESP and SAR compared to the control soils, improved soil structure, aggregate stability
and saturated hydraulic conductivity, even more in compost treated soils [3]. The physical
properties of the salinized soil, such as structural stability, infiltration rate, water-holding
capacity and washing capacity were considerably improved by OM from the solid waste
application [11]. Water hyacinth and rice straw compost singly or combined showed a
pronounced decrease in EC, pH, SAR, and ESP compared with control [12].
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4. Conclusions

Cattle manure at 2% was the best treatment for decreasing soil ESP to 27.6%, and any
treatment was more effective than control in lowering ECe below 4 dS m™"'. Peat at 2%
showed a higher reduction in the soil pH (to 7.76). The superiority of cattle manure in
reducing ESP and ECe may be due to the improvement of the soil structure and infiltration
through its OM and divalent cations contribution, whereas peat and biochar were less
effective possibly due to the swelling capacity and insufficient rate, respectively, which
in addition to the soil dispersion led to a slowdown of leaching. Overall, cattle manure
with leaching was more efficient in ameliorating soil salinity-sodicity, and any amendment
was effective in lowering salts. However, the ESP and pH threshold values from the USSL
classification were not reached. This study suggests that some saline-sodic soils can be
reclaimed by adding cattle manure, biochar or tropical peat, with leaching.
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ANNEX 4

Summary of the article: Estimation of exchangeable sodium percentage from
sodium adsorption ratio for salt-affected soils from the high valley of
Cochabamba.

Andrade Foronda, D.; Rodriguez G., E.; Colinet, G. (2020). Estimacion del
Porcentaje de Sodio Intercambiable en Funcién de la Relacion de Adsorcion de
Sodio para Suelos Afectados por Sales. Rev. Agric. 62, 31-36.

This study aimed to generate and evaluate simple regression models to estimate soil
exchangeable percentage (ESP) from sodium adsorption ratio (SAR) and SAR from
electrical conductivity (EC) based on a soil sampling from the High Valley of
Cochabamba.

Materials and methods

The soil samples were collected at a depth of ~25 cm from the High Valley of
Cochabamba - Bolivia. Some soil properties of the soil observations are listed in Table
A4.1. Lab measurements, determination and calculations of continuous variables were
done following the standard procedures of Richards et al. (1954).

Table A4.1 Descriptive statistics of some soil properties for calibration (a) and validation
(b) dataset.

Property Cfellibration Yalidation

Mean Min Max  SD Mean  Min Max SD
EC. (dS.m™) 2.22 0.17 2060 331 2.88 034 3150 7.19
pH 7.93 6.84 897 0.39 7.72 6.92 9.82 0.69
Sand (%) 3081 460 5746 13.02 28.99 8.75 7271 1453
Silt (%) 46.31 23.00 73.46 9.74 4407 16.33 65.86 13.56
Clay (%) 2288 748 6540 9.69 2694 588 6354 1548
OM (%) 1.78 050 6.00 1.06 0.85 0.05 2.48 0.80
SAR 7.22 0.01 58.40 10.90 1794 050 75.90 22.88
ESP (%) 8.60 0.00 60.97 11.50 1322 020 61.70 19.99

SD means standard deviation.

The linear models to predict ESP from SAR and SAR from EC were generated
through the following linear regression mathematical formula:
Y=00+b1lxx
Where Y is the dependent variable, b0 and bl are the linear regression beta
coefficients for the intercept and slope, respectively, and x is the independent variable.
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The metrics used to assess the performance of simple regression models were the
coefficient of determination - R? (Eq. 5), the root mean square error — RMSE (Eq. 6)
and the residual standard error — RSE (Eq. 8) Additionally, a paired sample T-test was
used to assess the differences between the predicted and measured values. Statistical
analysis was performed by using the R software v.3.1.9 (R Core Team, 2013).

Results and discussion

The correlation coefficient between soil exchangeable percentage (ESP) and sodium
adsorption ratio (SAR) was high (0.92) and between SAR and electrical conductivity
(EC) was moderately high (0.65). The linear regression to predict soil ESP from SAR
(ESP = 0.9725 * SAR + 1.5765) showed a better association (R? of 0.85, RSE of 4.5)
between the variable to be predicted and the predictor, than that (R? of 0.41, RSE of
8.4) to predict SAR from EC (SAR = 2.129 * EC + 2.499), as shown in Figure A4.1.

ESP (%)
40
1

ESP=0.9725 SARe + 1.577
(R2=0.85, RSE=4.5)

SARe

50
!

. SAR=2.129 ECe + 2.499
(R2=0.41, RSE= 8.4)

SAR
20 30 40

10

Figure A4.1 Fitted linear regression models to predict ESP from SAR (a) and SAR from
EC (b).
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The paired sample T-test (Table A4.2) for the obtained model (ESP = 0.9725 =
SAR + 1.5765) showed that the predicted ESP values are not different from those of
the measured ESP from the testing dataset. This result is consistent with the findings
of Seilsepour et al. (2009); Elbashier et al. (2016a); Zare et al. (2014); and Chi et al.
(2011), and the estimated ESP through the widely used USSL model (ESP =
0.01475 = RAS — 0.0126) was not significantly different from the measured values,
thus more efficient than the obtained model. According to the approach of Bland and
Altman (1999), the differences between the estimated and measured soil ESP values
have a normal distribution since 95% of the predicted values fall between 5.81% +
1.96 SD of the measured values. Besides the addition of salt-affected soil samples to
the dataset, logarithmic or square-root regressions can be fitted to probably
outperform the linear model as evaluated by Chi et al. (2011). The T-test also shows
that the difference between the predicted SAR from EC values (SAR = 2.129 * EC +
2.499) and measured SAR values in the validation dataset was significantly different
in contrast to that obtained by the model (SAR = 0.464 = EC + 7.077) of Seilsepour
and Rashidi (2008) which was assessed in a similar soil texture to that of this study
(Table A4.2).

Table A4.2 Paired sample T-test between the predicted and measured values for the
generated and reference models to predict ESP from SAR and SAR from EC..

0,
Model Average SD of the P 95% CI of the

difference*  difference* value difference
ESP = 0.9725 « SAR + 1.5765* 5.81 12.40 0.063 -0.35, 11.98
ESP from SAR (USSL)? 291 11.18 0.285 -2.65, 8.47
SAR = 2129 *EC + 24991 9.30 16.78 0.03 -17.64, -0.95
SAR = 0.464 x EC + 7.077 (SR)® -0.11 1.26 0.747 -0.80, 0.59

(1) Generated models, (2) ESP/(100 — ESP) = 0.01475*SAR — 0.0126 (Richards et al., 1954),
(3) Seilsepour and Rashidi (2008)
* Expressed in percentage for soil ESP and dS m™ for EC.

Conclusion

The simple regression to predict soil ESP from SAR ESP = 0.9725 * SAR +
1.5765 was more efficient than that estimating SAR from EC; however, the model
from the USSL still outperformed such obtained model in forecasting the ESP. Further
validation is needed with additional samples to increase the accuracy of the model,
then can be used for predicting ESP in the High Valley.
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ANNEX 5

Summary of the article:
Gypsum and sulphur to reclaim saline-sodic soil: pot experiment.
Andrade Foronda, D.; De Froidmont, C.; Colinet, G. (2020). Yeso Agricola y Azufre

para la Remediacion de un Suelo Salino-Sédico del Valle Alto de Cochabamba. Rev.
Agric. 62, 65-72.

This experiment aimed to assess the effect of gypsum and sulphur at two doses in
reclaiming sodicity and salinity of a saline-sodic soil from the High Valley of
Cochabamba, and to identify the most effective amendment(s) and dose(s), and to
identify the most effective amendment(s) and dose(s).

Materials and methods

The soil was collected in the High Valley of Cochabamba (17° 32'38.6" S,
65°51'41.9" W) at a depth of 20 - 25 cm. The experiment was carried out in a
greenhouse at the Faculty of Agricultural Sciences (UMSS - Bolivia). The soil
properties were bulk density of 1.4 g cm=, cation exchange capacity of 5.1 cmol. kg
! electrical conductivity (EC) of 22.7 dS m™, exchangeable soil percentage (ESP) of
69.7% pH of 9.6, 19.3% clay, 54.9% silt and 25.8% sand. The irrigation water had an
EC of 2.3dSm?, pH of 8.1 and Na* concentration of 25 mg L. The purity of gypsum
(GY) was 91.7% (18.5% Ca?"), and the purity of sulphur (SU) was 97.5%. The
gypsum requirement (GR) to lower the ESP to at least 15% was calculated through
the equation used by Hoffman and Shannon (2007) and Lebron et al. (2002), and the
sulphur requirement was determined as the GR multiplied by a factor of 5.38
(Richards et al., 1954). The soil was dried, homogenized and 4mm sieved, and then
mixed with GY or SU at a dose of 50% or 100% of the calculated GR and requirement.
Each pot of 2.5 L volume was adapted to collect the leachate (Figure A2.1) and then
filled with two kilograms of soil/mix over a layer of two cm gravel. The volume of
leaching water was calculated through the pore volume. (PV) formula proposed by
Kahlon et al. (2013) and Ahmad et al. (2016). An initial water volume of 490 ml (3/4
PV) was added to saturate the soil, and then five lixiviations — each of 660 ml as one
PV — were applied until a relatively constant EC was reached in the leachates. After
reclamation, soil samples were collected from each pot and then analysed. The pH
was determined through the 1N KCI method and the EC was measured in the soil:
water (1:5) suspension and converted to EC of paste extract (EC.) using a conversion
factor (Sonmez et al., 2008). Exchangeable cations were measured through the Metson
method at pH 7 and atomic adsorption spectroscopy (AAS). Soil ESP and SAR were
calculated by using the formulas proposed by Hazelton & Murphy (2007) and
Richards et al. (1954), respectively. The experimental design was completely
randomized with five replications. The treatments were: GY-50%, GY-100%, SU-
50%, SU-100%, and no amendment. Mean comparisons among treatments were
performed by using the LSD-Tukey adjustment (p < 0.05).
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Ab5.1 Figure Adapted pot for leachate collection.

Results and discussion

There were no significant differences in the combination between the amendment
and dose levels. Gypsum was more effective than sulphur and only water in reducing
the initial soil ESP (69.7%) by over 30% (Figure A5.2a). The initial soil EC. (22.7 dS
m™) decreased by over 50% either with gypsum or sulphur or without amendment
(Figure A5.2b). Gypsum and sulphur reduced soil pH by equal magnitude (Figure
A5.2¢).

Gypsum was superior in improving soil salinity/sodicity, agreeing with the results
obtained by Qadir et al. (1996), Ahmad et al. (2016) and Tavares et al. (2012);
however, Manzano Banda et al. (2014) found that only leaching was as effective as
either gypsum, sulphur or manure in ameliorating saline-sodic soil. The lower
effectiveness of sulphur was likely due to the insufficient incubation time and low soil
organic matter content since sulphur needs to be oxidized by microbiological activity
and oxygen to form sulphuric acid, which in turn dissolves the calcite in the soil
generating the Ca?* needed to remove the exchangeable Na*; in this regard, Hanson et
al. (2006) stated that the effect of sulphur is slower in comparison to the direct
application of sulphuric acid, therefore, it is presumed that a longer incubation time
was needed for the sulphur treatments. Moreover, the reduction in soil ESP by gypsum
was proportional to that of pH in concordance with the conclusions of Gupta et al.
(1981) and Abrol et al. (1980). The efficiency of any treatment to lower EC can be
explained by the effect of sole water on the leaching of soluble salts including Na*
which precipitates forming Na.SO, as mentioned by Legros (2007) and Abdel-Fattah
(2012). Because the interaction between the type of amendment and dose was not
significant, it was likely that a dose of 50% of either gypsum or sulphur was sufficient
to improve the soil sodicity. Further evaluations are needed, including intermediate
doses — besides 50 and 100% — of 25%, 75% and 125% as well as different soil types.
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Figure A5.2 Effect of gypsum and sulphur addition on soil ESP (a), ECe (b), and pH (c).
The soil ESP and pH differences represent the subtractions between before and after
remediation. Means sharing a letter are not significantly different. Tukey test (p< 0.05).
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The cumulative Na* in the leachates (Figure A5.3) of gypsum treatments showed
higher values than those of sulphur, in concordance to the soil ESP values after
reclamation. In terms of salinity, leaching alone was as effective as gypsum or sulphur
in lowering soil EC, agreeing with Manzano Banda et al. (2014) and Hernandez
Araujo (2012), who found that reduction in soil salinity and sodicity was largely due
to the only-water additions in contrast to the amendment application. Moreover, the
findings of Zambrana Yafiez et al. (2020) - summarized in Annex 9 - show the effect
of gypsum addition under non-leaching conditions. Overall, gypsum was more
effective than sulphur in reclaiming the soil sodicity however, none of the
amendments reached the soil ESP threshold value of 15% (USSL classification)
probably due to the high initial ESP and clogging of soil pores and the insufficient
incubation time and soil conditions for Sulphur.
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Figure A5.3 Cumulative sodium (mg) in the leachates
Conclusions

Gypsum and sulphur with leaching somehow improved the saline-sodic condition
of the soil, however, without reaching the soil EC, pH and ESP threshold values of
the USSL classification. Gypsum was more effective than sulphur in reducing soil
ESP, mainly due to its readily available calcium content which facilitates the
displacement of sodium and subsequent improvement of soil structure, in contrast to
the sulphur which needed additional time for incubation and later calcium formation.
The decrease in EC. with water alone was considerable (over 50%) to the same extent
as the treatments with amendments. The dose of 50%, either for gypsum or sulphur,
showed a similar effect as that of 100% in improving soil sodicity. Up to three
lixiviations were sufficient for improving soil salinity and sodicity. Gypsum with
leaching might be an alternative to remediate sodic and saline-sodic soils, however,
further evaluations are needed considering intermediate doses such as 25% and 75%
as well as different soil types, and a longer incubation period for sulphur addition.
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ANNEX 6

Summary of the article:
Organic amendments to reclaim a saline-sodic soil: pot experiment.

Castellon, D. ; Andrade Foronda, D. (2020). Enmiendas Orgéanicas para la
Remediacion de Suelos Salino-Sodicos del Valle Alto de Cochabamba. Rev. Agric.62,
57-64. (Coauthor)

This pot experiment aimed to evaluate the effect of four organic amendments (cattle
manure and chicken manure, biochar and peat) at two doses (1 and 2% of organic
matter w/w) in ameliorating a saline-sodic soil from the High Valley of Cochabamba,
and to identify the most effective amendment(s) and dose(s).

Materials and methods

The experiment was carried out in a greenhouse at the Centre for Vegetable Seeds
Production - ‘Instituto Nacional de Investigacion Agropecuaria’ (17°26'25.72" S,
66°20'44.0" W). The soil was collected from the High Valley of Cochabamba
(17°32'38.6" S, 65°51'41. 9" W) at a depth of ~25 cm and its properties were: silt-
loam texture, bulk density of 1.4 g cm=, organic matter content of 1.2%, electrical
conductivity (ECe) of 16.2 dS m™, exchangeable sodium percentage (ESP) of 68.1%
and pH of 9.66. The exchangeable Ca?*, Mg?*, K* and Na* contents were 80.2, 6.2,
5.6 and 196.0 mg100g™, respectively. The organic amendments — whose properties
are shown in Table A6.1 — used for this study, were Biochar, tropical peat, cattle
manure and chicken manure.

Table A6.1 Chemical properties of organic amendments.

Cattle Chicken

Parameter Peat Biochar
manure  manure
EC (dS.m) 0.72 1.03 3.75 5..48
Organic matter (%) 22 13 47 34
pH 3.6 9.74 8.5 8.0
Ca 2 (%) 0.62 1.25 1.87 14.37
Mg #* (%) 0.75 0.75 1.88 3.38
K* (%) 0.0 0.0 1.25 0.4
Na * (%) 0.0 0.0 0.01 0.69
N (%) 13 4.6 12 17.66
P (%) 0.0 0.09 0.67 2.61

EC = electrical conductivity
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The soil was homogenized, dried and 2 mm sieved, and organic amendments were
dried, and 4 mm sieved, and then added to the soil (1300 g) at doses of 12 g and 24 ¢
calculated as 1% and 2% of organic matter content on a dry soil basis, respectively. A
leachate collector was connected to the bottom of each pot of ~1L volume. The soil
along with amendment was placed over a one cm layer of gravel. The properties of
leaching water were pH of 7.12, EC of 0.23 dS m™1, Ca?* of 0.75 meq L%, Mg?* of 0.75
meq Lt and Na* of 1.24 meq L™%; and its volume was calculated using the pore volume
(PV) formula proposed by Ahmad et al. (2016). To saturate the soil, % PV was added
and then five PV (each of 390 ml) were applied to each pot until a relatively constant
EC in the leachates was reached. The leachates were collected after each lixiviation
and soil samples were collected after the fifth addition of water. Soil EC was measured
in a 1:5 (soil: water) suspension and was converted to EC of paste extract through a
factor (Sonmez et al., 2008). Exchangeable cations were determined through a
modified Metson method at a pH of 7. Soluble Ca? and Mg?* were determined
through titration and Na* was measured by using the Laqua Twin® Na-11 device. The
soil ESP was calculated according to the formula proposed by Hazelton and Murphy
(2007) and the SAR by applying the formula of Richards et al. (1954). The
experimental design was completely randomized with two factors (amendment and
dose). Tukey's (p < 0.05) was used for mean comparisons among treatments.

Results and discussion

The effect of amendment x dosage on soil ESP was significant (p < 0.05), but not
for soil EC. and pH. Any amendment at any dose decreased the soil ESP by over 28%
concerning the initial value (68.1%) followed by peat at a dose of 1% (Figure A6.1a);
these results agree with those of Chaganti and Crohn (2015) and Chaganti (2014) who
evaluated the effectiveness of composts and biochar in improving sodicity; however,
it is important to remark the statement of Saifullah et al. (2018) who affirmed that
removal of Na* out of the soil can be insufficient despite many studies reported
significant improvements in soil salinity/sodicity as well in plant growth because is
mostly due to the sorption of Na* salts by biochar. The soil ECe was reduced by over
60% through any amendment (Figure A6.1b). Soil pH was slightly reduced by any
amendment except biochar which increased the pH (Figure A6.1c) probably due to its
initial pH (9.74) coinciding with Garcia (2013). The effectiveness of organic
amendments in reducing soil ESP and ECe, also agrees with the results of Sastre-
Conde et al. (2015), Guo et al. (2019), and David and Dimitrios (2002). The low
effectiveness of peat was probably due to its high swelling capacity (1.85 ¢
water/gpeat) which can lead to the clogging of the pores system.

Conclusions

Manures, biochar and peat were effective in reducing soil ESP and EC., however
without reaching the threshold values of the USSL classification, which can be
explained by the insufficient Ca** for displacing exchangeable Na* and then
improving the soil structure, and due to the specific characteristics of the organic
amendments. Further investigation is needed to validate the effectiveness of locally
available amendments in different types of soil and various doses.
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Figure A6.1 Effect of organic amendments on soil ESP (a), ECe (b); and pH (c). The ESP
and pH differences represent the subtractions between before and after remediation. Means
sharing a letter are not significantly different and the bars indicate the standard error. Tukey

test (p< 0.05).
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ANNEX 7

Summary of the article: Application of gypsum and organic amendments for
reclaiming a saline-sodic soil

Quispe Zenteno I.; Gutiérrez Rodriguez E.; Andrade Foronda D. (2020). Aplicacién de
yeso agricola y enmiendas organicas para la remediacion de suelos salino-sddicos. Rev.
Agric.62, 57-64. (Coauthor)

The objective of the study was to evaluate the effect of adding gypsum, cattle
manure and chicken manure on the sodium exchangeable percentage (ESP), electrical
conductivity (EC) and pH of a saline-sodic soil. The study was carried out at the
location (17°32'38.6" S, 65°51'41. 9" W) of Santa Ana - High Valley of Cochabamba,
through an experimental plot. The treatments were: Control, cattle manure, chicken
manure, cattle manure and gypsum, chicken manure and gypsum, and sole gypsum.
The dose for manures was 26 t/ha as 1% of organic matter (w/w), and 16 t/ha for
gypsum as the requirement to reach the ESP threshold value of 15%. The soil before
properties were a soil ESP of 80.2%, EC of 13.1 dS m™ and pH of 8.53. All treatments
except the control were equally effective in lowering the soil ESP, any amendment
was not effective in decreasing the soil EC, and gypsum alone and chicken manure +
gypsum were more effective in reducing the soil pH (Table A7.1), but without
reaching the USSL threshold values. Further validation is needed in the early stage of
the rainy period.

Table A7.1 Average values of soil ESP, EC and pH in the reclaimed soil, for the
treatments with manures and gypsum, besides the control (Based on Quispe Zenteno et al.,

2020)

Treatment pH EC (dS m%) ESP (%)
Control 8.49a 14.38a 89.11a
Cattle manure 8.10 ab 17.20 a 30.80b
Chicken manure 7.73 ab 26.48 a 33.90b
Bovine manure + gypsum 7.86 ab 29.88a 38.31b
Chicken manure + gypsum 7.58b 16.77 a 26.66 b
Gypsum 7.28b 9.92a 22.48D

Means sharing a letter are not significantly different, according to the test Tukey (P < 0.05).

Moreover, in the year of the field experiment (2019) the average costs of the
amendments were approximately: gypsum (~2,300 USD ha'), bovine manure (~2,990
USD ha?) and chicken manure (~3,180 USD ha'), these costs are affordable
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considering some average incomes per hectare from agricultural and livestock
production in the area; however to have a proper economical evaluation and
comparison, further assessment should consider farmers’ income alternatives,
including grains, vegetables, and forage crops, cultivated on the reclaimed soil.
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Figure A7.1 Effect of manures or/and gypsum on soil ESP and %DM after remediation,
where means sharing a letter are not significantly different (Tukey test, p< 0.05), besides
costs (a). Setup and addition of amendments in the experimental plots (b) by Quispe Zenteno
et al. (2020).
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ANNEX 8

Summary of the article: Evaluation of phytodesalination capacity of four
halophytes for a saline-sodic soil

Mamani Flores J.; Arzabe Maure O.; Andrade Foronda D. (2020). Evaluacion de la
capacidad de fitodesalinizacion de cuatro hal6fitas en un suelo salino-sodico. Rev. Agric.62,
57-64. (Coauthor)

Phytoremediation can be considered a low-cost alternative to chemical
amelioration. Halophytes are plant species with a significant removal capacity of salts
and Na* from salt-affected soils. The study aimed to evaluate the potential of four
halophytes to desalinize saline-sodic soil. The target soil (ECe of 47.0 dS m™ and 3.4
g Na* kg? soil) was collected from the High Valley of Cochabamba-Bolivia. The
assessed halophytes were: Suaeda fruticosa Mog, Sesuvium portulacastrum, Atriplex
hortensis and Kochia scoparia (Figure A8.1). The pot experiment was carried out
under non-leaching conditions for 70 days and using 37-day-old seedlings.
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Figure A8.1 Assessed halophytes for phytodesalination capacity (Mamani Flores et al.,
2020).
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Table A8.1 Soil EC. and Na* values after phytoremediation (p<0.05). Based on Mamani
Flores et al. (2020).

Halophyte ECe (dS m?) Na* (g kg™ soil)
S. fruticosa Moq 355a 3.18a
S. portulacastrum 36.1b 3.23b
A. hortensis 36.8¢ 3.24b
K. scoparia 37.6d 3.00c

The results showed that S. fruticosa Mog. and S. portulacastrum were relatively
better than the alien halophytes in decreasing the soil EC. and Na* content compared
to the soil before. S. fruticosa and S. portulacastrum outperformed the alien halophytes
in biomass production, sodium content in plant shoots and Phytodesalination capacity
(Table A8.1 and Figure A8.2). Native halophytes were more effective than the alien
species in soil desalination as well as in productivity, therefore, might be suitable for
further field assessments in the study area.
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Figure A8.2 Phytodesalination capacity (t Na* Ha*) of halophytes based on their
productivity as dry matter, and their sodium content in the aerial part (Adapted from Mamani
Flores et al., 2020).
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ANNEX 9

Summary of the article: Influence of three organic amendments and gypsum on
physicochemical parameters of a saline-sodic soil from the High Valley

Zambrana Yafiez N.; Arzabe Maure O.; Andrade Foronda D.; Troncoso Joffre A. (2020).
Influencia de tres enmiendas organicas y yeso agricola sobre los pardmetros fisicoquimicos de
un suelo salino sédico del Valle Alto de Cochabamba. Rev. Agric.62, 57-64. (Coauthor)

The farmers from the high Valley of Cochabamba suffer production losses due to
the negative effects of salt-affected soils on plant growth and soil quality. The
objective of this study was to evaluate the effect of adding organic amendments,
namely, cattle manure, litter topsoil (Schinus molle L.) and activated charcoal
compared to gypsum on soil pH, electrical conductivity (EC), exchangeable sodium
percentage (ESP), and sodium adsorption ratio (SAR) and CO; emissions, under
controlled and non-leaching conditions. The amendments were added to a saline-sodic
soil and incubated for three months, then, the soil after remediation was analyzed. It
was found that the application of organic amendments and gypsum showed a
significant effect in decreasing the soil pH, but not the soil EC, and an increase in
exchangeable /soluble sodium.

Table A9.1 Soil pH, electrical conductivity and exchangeable sodium percentage of the
soil before and after reclamation (Based on Zambrana Yafiez. et al, 2020)

Soil before Soil after
Treatment pH EC (dSm™) ESP pH EC(Sm?) ESP
Charcoal 7 38.5 46 7.1(a) 35.36(a) 57 (a)
Cattle manure 8.19 46.21 66 7.89* 42.43(a) 64
Plant litter 8.06 39.15 54 7.6 (d) 46.39 (a) 66
Gypsum 7.94  40.28 45 7.33(a) 40.95(a) 57 (a)

Dunnett's clustering test (confidence of 95%). Means not labelled with the letter (a) are
significantly different (*) from the control (gypsum) mean.
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ANNEX 10

Figure A10.1 Pot experiment (by Castellon, D., 2018) to evaluate the effect of organic
amendments in reclaiming a saline-sodic soil.

Figure A10.2 Preparation and setup of soil columns (a) and extraction of soil column
sample after reclamation (b).
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Figure A 10.3 Field plot to test adaptation of salt-tolerant forage crop in the High Valley.

b ) ST

Figure A 10.4 Collection of native halophytes for the research by Mamani, J. (2019) in a
saline-sodic soil patch (High Valley)
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