

# Long-term consequences of repetitive head impacts in adolescent athletes

Géraldine Martens, PT, PhD GIGA Consciousness - ULiège









#### Type of sport ↔ type of risk



| High risk         | Moderate risk  | Low risk          |  |
|-------------------|----------------|-------------------|--|
| American Football | Cheerleading   | Baseball          |  |
| Ice Hockey        | Volleyball     | Softball          |  |
| Soccer (F)        | Soccer (M)     | Gymnastic         |  |
| Rugby             | Cycling        | Trampoline        |  |
| Boxing            | Basketball (M) | Swimming          |  |
| Basketball (F)    | Alpine Skiing  | Equestrian sports |  |
| Lacrosse          | Handball (M)   | Golf              |  |
| Wrestling         | Skating        | Athletics         |  |
| Handball (F)      | Diving         | Badminton         |  |
| Judo              | Waterpolo      | Biathlon/duathlon |  |
| Combat sports     |                | Running           |  |
| Kick-boxing       |                | Cricket           |  |
| MMA               |                | CrossFit          |  |
| Ringette          |                | Dance             |  |
|                   |                |                   |  |



#### Sport-related concussion vs. head impact exposure ?



High risk sports = contacts/impacts ++

High risk of **concussive** (= diagnosed concussion) or **subconcussive** (= altered brain functioning without visible clinical signs) impacts

Affects short-term and long-term brain health (e.g., motor control and memory performance)

 $\rightarrow$  Monitoring head impact exposure (HIE)





#### **Sport-related concussion:** head impact exposure

Monitoring head impact exposure – accelerometry



Skin patch





Instrumented helmets

#### Instrumented mouthguards





#### Head impact exposure: acute effects



Example of altered brain functioning without clinically diagnosed concussion (= subconcussive impacts) :

head impact exposure (HIE) vs. brain excitability (intracortical inhibition M1)

CLINICAL ARTICLE

Short-term changes in the physiology of the primary motor cortex following head impact exposure during a Canadian football game

\*Sophie-Andrée Vinet, MSc,<sup>1,2</sup> Géraldine Martens, PhD,<sup>1,3</sup> Samuel Guay, BA,<sup>1,2</sup> Amélie Apinis-Deshaies, PhD,<sup>1</sup> Johan Merbah, PhD,<sup>1</sup> Bertrand R. Caré, PhD,<sup>1,4</sup> Laurie-Ann Corbin-Berrigan, PhD,<sup>5</sup> Eric Wagnac, PhD,<sup>1,6</sup> and Louis De Beaumont, PhD<sup>1,3</sup>

<sup>1</sup>Montréal Sacred Heart Hospital Research Center, Montréal, Québec, Canada; <sup>2</sup>Psychology Department, University of Montréal, Québec, Canada; <sup>3</sup>Surgery Department, University of Montréal, Québec, Canada; <sup>4</sup>BERGIA Solutions, Toulon, Var, France; <sup>5</sup>Department of Physical Activity Sciences, University of Quebec at Trois-Rivières, Québec, Canada; and <sup>6</sup>Department of Mechanical Engineering, Superior Technology School, Montréal, Québec, Canada

\* S.A.V. and G.M. contributed equally to this work.

#### https://doi.org/10.3171/2023.11.JNS231933

## Head impact exposure: acute effects – transcranial magnetic stimulation (TMS)



Example of altered brain functioning without clinically diagnosed concussion (= subconcussive impacts) :

head impact exposure (HIE) vs. brain excitability (intracortical inhibition M1)

Male athletes Varsity football McGill & UdeM 2021-2022 seasons Random assignment



#### Head impact exposure & TMS



Results: intracortical inhibition (TMS)



#### Head impact exposure & TMS



Results: intracortical inhibition (TMS)



#### National Football League (NFL) players survey

- About 40% of former players report significant difficulties with cognition & mental health
- > 1/3 of former NFL players report being 'extremely concerned' about cognition & CTE

### BUT

- Modifiable factors associated with such impairments (depression, pain, sleep apnoea)
- High quality case-control & cohort studies needed

Plessow et al., J Neurotrauma 2020; Walton et al., Sports Med 2022; Roberts et al., J Neurotrauma 2021



## British Journal of **Sports Medicine**

#### Systematic review

Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies

Grant L Iverson (D, <sup>1,2,3,4,5</sup> Rudolph J Castellani,<sup>6</sup> J David Cassidy,<sup>7</sup> Geoff M Schneider,<sup>8</sup> Kathryn J Schneider (D, <sup>9</sup> Ruben J Echemendia (D, <sup>10,11</sup> Julian E Bailes, <sup>12,13</sup> K Alix Hayden, <sup>14</sup> Inga K Koerte (D, <sup>15,16,17</sup> Geoffrey T Manley (D, <sup>18</sup> Michael McNamee, <sup>19,20</sup> Jon S Patricios (D, <sup>21</sup> Charles H Tator (D, <sup>22,23</sup> Robert C Cantu, <sup>24,25</sup> Jiri Dvorak (D) <sup>26</sup>



Brain health (cognitive impairment, mental health, neurological diseases...) in former athletes having sustained concussion and/or repetitive head impacts during youth sports?

- 1) What are the possible long-term effects of single and multiple sport-related concussions?
- 2) What are the possible long-term effects of exposure to contact sports and/or repetitive head impacts?

Identification

Total records identified (N =14,813) Medline (n = 3,385) Embase (n = 3,895) CCRCT (n = 86) APA PsycInfo (n = 1,265) CDSR (n = 1) CINAHL (n = 1,234) SportDiscus (n = 750) Scopus (n = 905) WofS (n = 3,292)



1 low-medium RoB 27 high RoB



Brain health (cognitive impairment, mental health, neurological diseases...) in former athletes having sustained concussion and/or repetitive head impacts during youth sports?

#### Results

Amateur athletes (10 studies, American football ++)  $\rightarrow$  no significant long-term effect following sports participation One exception: Decreased risk for depression (high school football)

Professional athletes (18 studies, American football, soccer)  $\rightarrow$  13 with greater risk for developing depression, physical dysfunctioning, neurodegenerative disease (e.g., ALS, AD, PD) or all-cause mortality





9 studies on former professional American football players







8 studies on former professional European soccer players

| Table 4 Summary of findings from studies of former elite and professional athletes from Europe and Australia |          |                                                                |                    |                                                                     |                                     |                                                                                                                                               |                                                  |   |              |
|--------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|--------------------|---------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---|--------------|
| Study                                                                                                        | Country  | N                                                              | Group              | Age                                                                 | Exposure                            | Topic/Outcome                                                                                                                                 | Significant<br>Findings/<br>risk                 |   |              |
| Taioli <sup>128</sup>                                                                                        | Italy    | <del>5389;</del><br>63 had died                                | Soccer             | At death: 36.3 (10.3)                                               | Sports participation                | No significant difference in risk<br>for suicide as manner of death<br>than general population. Greater                                       | No for suicide<br>Yes, greater for ALS           | - |              |
| Russell <i>et al</i> <sup>122</sup>                                                                          | Scotland | Soccer=7676                                                    | Scottish           | At first hospitalisation:                                           | Sports                              | risk for ALS.<br>Hospitalisation for psychiatric                                                                                              | Yes, lesser for                                  |   | ALS          |
|                                                                                                              |          | Controls=23 028                                                | Soccer             | Soccer: M=52.3,<br>SD=13.6; controls:<br>M=46.8, SD=14.7            | participation                       | <i>less</i> common in former soccer<br>players. No difference in suicide.                                                                     | substance abuse                                  |   |              |
| Belli <i>et al</i> <sup>129</sup>                                                                            | Italy    | 24 000; 350 had died                                           | Italian Soccer     | At death: M=50.8,<br>SD=15.2                                        | Sports<br>particip <del>ation</del> | ALS more common in former<br>soccer players; other disease of<br>the nervous system not more<br>common.                                       | Yes,<br>greater for ALS<br>No for other diseases |   |              |
| Pupillo <i>et al</i> <sup>130</sup>                                                                          | Italy    | 23 586; 34 cases of ALS                                        | Italian Soccer     | M=45.0, SD=12.6 at diagnosis                                        | Sports<br>participation             | ALS more common in former<br>Italian soccer players.                                                                                          | Yes/Greater                                      |   | Neuro-       |
| Chio et al <sup>132</sup>                                                                                    |          | 7325; 5 cases of ALS                                           | Italian Soccer     | Age of onset M=43.4<br>(SD=9.1; range 33–56)                        | Sports<br>participation             | ALS more common in former<br>Italian soccer players.                                                                                          | Yes/Greater                                      |   | degenerative |
| Chio <i>et al</i> <sup>133</sup>                                                                             | Italy    | 7325; 5 cases of ALS                                           | Italian Soccer     | Age of onset M=41.6<br>years (SD=7.5, range<br>33–56 years).        | Sports<br>participation             | ALS more common in former<br>Italian soccer players.                                                                                          | Yes/Greater                                      |   | mortality    |
| Russell <i>et al</i> <sup>120</sup>                                                                          |          | Soccer=7676;<br>controls=23 028                                | Scottish<br>Soccer | NR                                                                  | Sports<br>participation             | Neurodegenerative disease<br>mortality greater in former<br>soccer players, varied by position<br>played and increased with career<br>length. | Yes/Greater                                      |   |              |
| Mackay et al <sup>124</sup>                                                                                  | Scotland | Soccer=7676,<br>1180 deaths;<br>controls=23028, 3807<br>deaths | Scottish<br>Soccer | At death: soccer<br>M=67.9, SD=13.0;<br>controls M=64.7,<br>SD=14.0 | Sports<br>participation             | Neurodegenerative disease<br>mortality greater in former<br>soccer players (eg, AD, ALS and<br>PD).                                           | Yes/Greater                                      |   |              |

The two studies by Chio *et al* used the same cohort of players, <sup>132</sup> <sup>133</sup> and the three studies with former Scottish players used the same cohort. <sup>120</sup> <sup>122</sup> <sup>124</sup> Many of these studies are ecological analyses with positive associations being important hypothesis-generating findings; more meticulously designed cohort studies with better control for confounding factors are needed.

AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; M, mean; NR, not reported; PD, Parkinson's disease.





Results can seem unequivocal at first glance but

No control for confounding variables:

- Substance abuse (drugs, alcohol, smoking)
- Socioeconomic status
- Genetic factors
- Lifestyle
- Medical comorbidities
- → Most of the retrieved studies are hypothesis generating but do not allow causal conclusions



#### **Chronic traumatic encephalopathy (CTE)**



Chronic traumatic encephalopathy (CTE) = neuropathological entity (p-tau aggregates in neurons) → postmortem (not included in SR)

Highly prevalent (with high variability) if former professional American football athletes

No clinical phenotype determined

Consensus-based clinical criteria (2021) for traumatic encephalopathy syndrome (TES):

- History of substantial exposure to repetitive head impacts
- Cognitive impairment
- Behavioural dysregulation
- Progressive course

#### Criteria remain to be validated



Normal Brain

Advanced CTE

#### **Controversies arising from preliminary studies**

Cross-sectional studies, case series, narrative reviews...



Scientists Say Concussions Can Cause a Brain Disease. These Doctors Disagree.

The New York Times

#### THE CONVERSATION

Do repetitive head injuries really cause the degenerative brain disease CTE? New research questions the link

#### Analysis

A new consensus? Change in the air as concussion conference begins *Andy Bull* 

Much is at stake as the sixth International Consensus Conference on Concussion in Sport gets under way in Amsterdam

#### **Controversies arising from preliminary studies**

Cross-sectional studies, case series, narrative reviews...

- Hypotheses for future cohort and case-control studies
- No causation
- Drew lot of attention and visibility (including press)
- Mixed messages for the general public
- Urgent need for well-designed case-control and cohort studies



#### Analysis

A new consensus? Change in the air as concussion conference begins *Andy Bull* 

Much is at stake as the sixth International Consensus Conference on Concussion in Sport gets under way in Amsterdam The New York Times

Scientists Say Concussions Can Cause a Brain Disease. These Doctors Disagree.

### THE CONVERSATION

Do repetitive head injuries really cause the degenerative brain disease CTE? New research questions the link







Crude associations between history of professional contact and collision sports and some neurological disorders

These associations need to be confirmed in more rigorous study designs

Youth sports: let's be conservative & act on prevention + education

Adult amateur/leisure sports: you're *probably* fine





## Thank you for your attention!

geraldine.martens@uliege.be