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Abstract

Camera calibration and localization, sometimes simply
named camera calibration, enables many applications in
the context of soccer broadcasting, for instance regarding
the interpretation and analysis of the game, or the inser-
tion of augmented reality graphics for storytelling or ref-
ereeing purposes. To contribute to such applications, the
research community has typically focused on single-view
calibration methods, leveraging the near-omnipresence of
soccer field markings in wide-angle broadcast views, but
leaving all temporal aspects, if considered at all, to general-
purpose tracking or filtering techniques. Only a few con-
tributions have been made to leverage any domain-specific
knowledge for this tracking task, and, as a result, there lacks
a truly performant and off-the-shelf camera tracking system
tailored for soccer broadcasting, specifically for elevated
tripod-mounted cameras around the stadium. In this work,
we present such a system capable of addressing the task of
soccer broadcast camera tracking efficiently, robustly, and
accurately, outperforming by far the most precise methods
of the state-of-the-art. By combining the available open-
source soccer field detectors with carefully designed cam-
era and tripod models, our tracking system, BroadTrack,
halves the mean reprojection error rate and gains more than
15% in terms of Jaccard index for camera calibration on the
SoccerNet dataset. Furthermore, as the SoccerNet dataset
videos are relatively short (30 seconds), we also present
qualitative results on a 20-minute broadcast clip to show-
case the robustness and the soundness of our system.

1. Introduction

Sports content has the advantage of displaying sports
fields, which have strictly regulated shapes and dimensions.
This particularity makes sports camera calibration and lo-
calization possible in the wild, without the need for any
other prior knowledge but the ability to correctly detect
these field markings. This advantage is well-exploited,
as all camera calibration techniques detect field markings,
and single-frame camera calibration methods flourish, with
ever-increasing accuracy. However, two facts that tend to

be overlooked are (1) sports field markings can be really
sparse in some areas, and (2) wide-angle broadcast cam-
eras have typically 25× zoom lenses, which can sometimes
lead to quite narrow views. Thus, while the open-source
datasets keep the task conveniently framed, there is an un-
met need to address the case where few or even none of the
field markings are visible for real-world applications. By
carefully modeling broadcast cameras, we first include lens
distortion effects —something that is systematically over-
looked in sports field registration techniques that estimate
homographies—, and which we show has a great impact on
the accuracy of the results. Then, by including constraints
on the camera movements that a tripod actually allows, we
demonstrate that with more than accurate reprojections in
the image, our models recover consistent position and rota-
tion values, leading to effectively smooth tracking. Besides
its novel state-of-the-art performance, our tracking system
is robust and includes a reinitialization strategy that is thor-
oughly validated on the SoccerNet-calibration dataset. Fi-
nally, our system is usable in practice, as it works from the
first frame and performs at a speed of 16 frames per sec-
ond (fps) for HD (1920×1080 pixel resolution) images on
a server equipped with two RTX 4090 GPUs, without any
optimization; by experience, we know that a proper opti-
mization of our code will make it real-time.

To validate our technique, we use the SoccerNet
datasets [11, 19, 28]. The SoccerNet initiative has allowed
new tracks of research for many problems related to soc-
cer video understanding, including camera calibration and
localization, by providing task definitions, corresponding
public datasets, and metrics. Among others, the SoccertNet-
calibration dataset (denoted as sn-calibration hereafter) is
the first open-source dataset that does not use homogra-
phies as annotations, but rather the soccer field markings
and goal posts. Besides the calibration task, which is about
single-frame camera calibration, the novel game state re-
construction task [54] aims to continuously estimate the
bird’s-eye view of the soccer field with the players posi-
tion. The dataset of the game state reconstruction task, de-
noted by sn-gamestate in the following, consists of soccer
videos. Its annotations follow the same conventions defined
for sn-calibration. Solving the game state task requires pre-
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cise camera calibration and localization, consistently over
time, which is a property also required for most applications
regarding player performances and game analysis.

Contributions. By leveraging specific knowledge about
broadcast cameras, we produce an efficient and accurate
tracking system for soccer. We summarize our contributions
as follows: (i) We propose a tracking system, named Broad-
Track for the calibration of moving cameras that is both ef-
ficient and state-of-the-art, (ii) We define a camera model
that is tailored for broadcast applications, and (iii) We re-
lease the source code of our tracking system at https:
//github.com/evs-broadcast/BroadTrack.

2. Related work
Common approaches to solving camera calibration

and localization problems include structure from motion
(SfM) [50] and simultaneous localization and mapping
(SLAM) [47], both relying on the camera parallax to de-
rive properties of the 3D world in which the camera moves.
A typical pipeline could be described as follows: features
are detected in the video frames, matched together across
time, and finally triangulated. The resulting 2D-3D cor-
respondences are fed in a PnP solver to derive the cam-
era parameters. Compared to the usual problems that both
SfM and SLAM solve, broadcast applications require cus-
tom approaches. Indeed, real-world applications often re-
quire a metric reconstruction of the scene, but for sports ap-
plications, the world reference system should not be placed
regarding a camera; rather, the cameras should all be ex-
pressed relatively to the sports field.

Detectors. Unlike common camera localization or cali-
bration schemes, sports camera calibration algorithms do
not usually rely on 2D matching of features between frames,
but rather on the detection of sports field elements that pro-
vide direct metric correspondences, which is an advantage
for tracking, in effect reducing the risk of drifting. Most
methods detect field markings in the image, either by bi-
nary segmentation or Hough line transforms [1,21,25], and
sometimes even deriving vanishing points associated to hor-
izontal and vertical lines [34, 35]. Lately, thanks to the per-
formance of deep neural networks, higher levels of seman-
tic interpretation were attained with sports markings being
used as zone delimiters [51, 55], dividing the sports field
into segmentation zones, or with some methods identifying
specific markings as unique classes. Finally, some methods
derive directly sports field lines intersections because most
of the methods relying on solvers for camera parameters
solely use point correspondences.

Virtual augmentation of correspondences. A global
problem for all single-frame camera calibration and local-

ization methods is the sparse nature of sports field mark-
ings, which are rarely uniformly distributed, leading to a
lack of visual support in the image as there are few visi-
ble markings. Several methods alleviate this by detecting
virtual correspondences on the field, or by deriving addi-
tional geometric cues from existing elements. For exam-
ple, some works extend line segments to get new intersec-
tions [17,23,31,57], derive tangents to circles or circle key-
points [2, 17, 23, 31], detect grass mowing patterns [16], or
even learn to detect grids of keypoints on the sports field
surface [10, 14, 45, 46, 48]. These methods leveraging grid-
like keypoints on sports fields have the drawback of first
relying on homographies to derive the grid projection in the
image, which, as shown in previous works [44], are not the
best fit to model the projective transformation.

Dictionary methods. Other works leverage directly prior
knowledge about the broadcast camera, such that the num-
ber of correspondences in the image does not matter. These
methods construct a dictionary of plausible broadcast cam-
era views, and then retrieve camera parameters based on
the similarity between the dictionary view and the camera
view [8, 18, 51, 52, 55, 59]. These methods tend to be slow
due to the search time in the dictionary, or if the dictio-
nary is sparsely populated, relies on the ability of a Spa-
tial Transformer Network to regress the parameters of the
homography that maps the dictionary view to the current
view [51, 55].

Homography regression. Inspired by PoseNet [40] and
learned homography estimation [20], previous works di-
rectly regress homographies [24,39,53]. While the work of
DeTone et al. [20] estimates the homography between a pair
of images, its transposition to sports field registration re-
quires the regressed homography to capture the transforma-
tion between a broadcast image and the synthetic bird’s-eye
view of the sports field. The huge perspective difference be-
tween a bird’s-eye view of the sports field and one broadcast
image probably explains why these methods rarely work in
a single forward pass, limiting their use in actual broadcast
scenarios.

Tracking. Due to the limited number of datasets with
broadcast videos, few methods took interest in the tem-
poral consistency of the camera calibration and localiza-
tion. Among these methods, we define two main categories:
(a) the ones based on homographies between successive
frames, and (b) the ones using traditional tracking filters.
These categories are further detailed hereafter.

(a) Homography between successive frames: A common
strategy to perform tracking is to extract features to ob-
tain point correspondences, or even line ones [33], and ro-
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bustly estimate a homography between pairs of frames with
RANSAC [30, 45]. The underlying assumption made when
computing homographies between successive frames is that
the camera is purely in rotation, an assumption that other
works refute for soccer [7]. Note that a homography can be
computed between frames if the correspondences are taken
only on the sports field plane [14, 33]. In the case of rather
small sports fields, like tennis, Farin et al. [25] assume that
the camera velocity is constant, and thus assume that the ho-
mography between the future image pair will be equivalent
to the homography mapping the present image pair.

(b) Common temporal filters: A range of methods also
apply common tracking algorithms such as the Kalman Fil-
ter, starting with Claasen and de Villiers [14], who use a
Kalman filter to track point correspondences on the sports
field, which are later used to track the homography using an
extended Kalman filter. Beetz et al. [3] use an iterative ex-
tended Kalman filter to track their camera parameters, while
Citraro et al. [13] use a particle filter to model the motion
of the camera. Lu et al. [41] propose a SLAM algorithm
tailored for a PTZ broadcast camera by building a map of
3D rays rather than 3D points, but consider the camera focal
point fixed and neglect lens distortion.

Besides NBJW [31] which is the SOTA on the sn-
calibration dataset, the methods that inspire us in terms of
broadcast modeling are the ones that do model radial distor-
tion [1, 3, 6, 56] and the tripod of the camera [7, 9, 41].

Available data. For completeness, we addressed both
camera calibration and sports field registration techniques.
However, in terms of datasets, given the recent concerns
about the ability of homographies to properly model broad-
cast cameras [44,56], we do not use any of the datasets that
provide homographies as pseudo ground truth [10, 14, 35].
In this work, by combining high-level semantic analysis
of the sports field marking detection and broadcast camera
knowledge, we derive a new tracking system that achieves
SOTA results on the sn-gamestate dataset.

3. Method
First, we define our models for the camera and for the

tripod (Section 3.1), then we outline our tracking system
(Section 3.2), which comes with a reinitialization algorithm
(Section 3.3).

3.1. Broadcast camera model

To model our camera, we start from the pinhole model
with the calibration matrix K, defined as follows [32]

K =

f 0 px
0 f py
0 0 1

 . (1)

As stated in the standards of telecommunications for
HD [37] and UHD content [38], broadcast pixels are
squares, such that the focal length is the same for both axes,
and the skew parameter can be ignored. We further assume
that the principal point is located at the image center, so that
the set of intrinsic parameters reduces to one parameter, f.

The camera pose is modeled by its focal point position
C = (Cx, Cy, Cz) and a rotation matrix R parameterized
by the pan ϕ, tilt θ, and roll γ angles, defined accordingly
in the Euler angles convention: R = Rz(γ)Rx(θ)Rz(ϕ). In
the absence of lens aberrations, the projection matrix of our
camera would be formulated by the following equation [32]:
P = KR

[
I −C

]
. However, it is not uncommon for

broadcast cameras to display some radial distortion, a de-
formation effect that occurs due to the curved nature of
the camera lens. While it may be modeled in the pixel
space [6, 56], we follow the standard way and apply this
deformation in normalized coordinates [32, 60].

Given a point in the normalized image plane x = (x, y),
the distortion function L(r) = 1 + k1r

2 transforms x ac-
cording to its distance to the origin of the image plane
r = ∥x∥2 which finally gives the image point expressed
in pixel coordinates:

x = f L(r)x+ p . (2)

We use the model proposed by Brown-Conrady [5], and
discard all higher orders of radial distortion and tangen-
tial distortion as we experimentally find them superflu-
ous. The set of unknown parameters for our camera is
κ : {f, k1, ϕ, θ, γ, Cx, Cy, Cz}, and we define the function
πκ : X → x that projects a 3D point to its respective image
point. In the next section, we further analyze the specifici-
ties of broadcast cameras, and extend our model to consider
the tripod on which a broadcast camera is installed, and the
constraints that it creates on the camera parameters.

3.1.1 Pan-tilt head and tripod

Compared to the usual cameras used in the computer vi-
sion literature for robotics or augmented reality with mo-
bile phone captures, broadcast cameras are another kind of
beast. A typical broadcast camera for soccer has a lens that
can zoom up to 25 times, which consists of an arrangement
of optics that can weigh up to a few kilograms [26]. When
we use the pinhole model to represent the arrangement of
optics inside those lenses, we approximate it with a single
optic. While Chen et al. [7] assume that the camera focal
point is at a fixed location inside the camera lens, we argue
that this virtual projection center may not be located inside
the camera and that it should evolve along the optical axis
as the camera zooms. Therefore, our only assumption about
the position of the focal point regarding the physical cam-
era is that the focal point is located on the optical axis of
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Figure 1. Usual pan-tilt head for 25× lens broadcast camera.
(taken from [49], others pan-tilt heads can be found online [58]).

the camera. We choose to rather constrain the optical axis
position regarding the tripod.

A camera comes in several parts: the tripod, the pan-
tilt head, and the camera itself. The challenging part for
our extrinsic parameters model is the pan-tilt head. This is
the part that is mounted on the tripod on which the cam-
era is rigged. The pan-tilt head allows the camera to ro-
tate smoothly while allowing the camera operators to make
quick sweeps if they lose track of the action. By construc-
tion, it allows the camera to rotate along two axes, i.e. to pan
and tilt the camera. To better visualize the rotation axes, a
common professional pan-tilt head is depicted in Figure 1.

According to this blueprint, we make the assumption that
the pan and tilt rotation axes intersect in a point T , which
remains fixed during the whole game. Our model states that
there is a point O in the camera which belongs to the optical
axis of the camera, and which remains at a fixed distance δ
of the rotation center T as the camera moves. Let ri be the
ith column of the orientation matrix of the camera RT, the
vector −r2 is the upvector of the camera, while the vector
r3 defines its optical axis direction. If we further assume
that the camera is centered on the pan-tilt head, this point O
is then determined by the upvector −r2 and its distance to
the tripod rotation center O = T − δr2. As the focal point
of the camera changes with the zoom level of the camera,
the position of the focal point is finally given by C = T −
δr2+λr3. The parameters {T , δ} are fixed over time, while
λ varies with the camera view. A visualization of the model
is shown in Figure 2.

3.2. Complete description of our tracking system

Our system comprises different steps, described here-
after: the detection of the field markings (Section 3.2.1),
which is augmented using optical flow (Section 3.2.2), a pa-
rameter update procedure (Section 3.2.3), and an evaluation
of the tracking confidence (Section 3.2.4).

Figure 2. Tripod model. The center of rotation T remains fixed as
the camera rotates, and the point O which belongs to the optical
axis of the camera remains at a fixed δ distance of T .

3.2.1 Sports field detection

Let S be the set of semantic classes constituent of soccer
field markings, such as “left goal line”, “center circle”, etc.
Each one can be viewed as a simple geometric element. The
laws of the game [36] further specify their position and di-
mensions, such that we can define the soccer field template
F : S → E, which maps each semantic class c ∈ S to
its corresponding 3D geometric element e ∈ E. For con-
venience, the projection of the soccer field markings in the
camera view κ will be denoted by πκ(F).

To obtain 2D-3D correspondences, we only need to de-
tect and identify soccer field elements in the videos. We
leverage existing open-source sports field detectors such as
the keypoint detector of Gutiérrez-Pérez and Agudo [31]
that detects the intersection points of the soccer field mark-
ings. While our reinitialization algorithm uses the detected
points, the tracking leverages the denser information re-
trieved from semantic segmentation of field markings. We
rely on the semantic field markings detector of Theiner and
Ewerth [56]. Semantic segmentation of field markings pro-
vides blobs of pixels towards 3D line or circle equation cor-
respondences. As segmentation blobs provide a robust, but
maybe too rich source of information, we synthesize it with
the mean shift algorithm [15] to fit a set of points that ap-
proximate the segmented blob, thus generating a set of im-
age points x1

c , ...x
n
c per visible soccer field marking class c

of S .

3.2.2 Optical flow

As broadcast cameras can zoom in on areas of the soc-
cer field that are sparse in terms of markings, optical flow
correspondences are necessary to prevent drifting. Further-
more, these correspondences can be sampled uniformly in
the image, which helps to distribute the visual support in
the whole image, unlike field markings which can be con-
densed into small areas. We use the pyramidal version of
Lucas-Kanade’s algorithm [4] to retrieve No point matches
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{
xi
t−1 ↔ xi

t

}No

i=0
between the previous image It−1 and the

current one It.

3.2.3 Update through non-linear optimization

Starting from the previous camera estimate κt−1, we update
the camera parameters κt : {f, k1, ϕ, θ, γ, Cx, Cy, Cz} by
minimizing the sum of three error functions.

First, given soccer field markings correspondences, if we
denote by S∗ the subset of S that is detected in the cur-
rent frame It, and by

{
xi
c

}Nc

i=0
the set of points extracted

by mean shift from the segmentation maps for the soccer
field marking class c, we minimize the reprojection error be-
tween each extracted point and the closest point p belonging
to the projected soccer field element πκ(F(c)) :

LF =
∑
c∈S∗

Nc∑
i=0

ρ

(
min

p∈πκ(F(c))

∥∥p − xi
c

∥∥
2

)
, (3)

where ρ(.) is the Cauchy loss, used to filter outliers.
Secondly, given optical flow correspondences, we can

filter out the point correspondences landing outside the
polygon obtained by the projection of the soccer field side
lines. To minimize the noise coming from the players
motion, the players are detected with RTMDet [42], and
the correspondences are discarded around their bounding
boxes. A point correspondence xi

t−1 in frame It−1 can
be mapped to a ray by inverting the projection function:
Lit−1 = π−1

κt−1
(xi

t−1) . As we only keep correspondences
on the surface of the sports field, its intersection with the
plane Z = 0 allows us to retrieve a 3D point Xi

t−1 =

Lit−1

(
0 0 1 0

)T
. As a result, for all detected opti-

cal flow correspondences, we minimize the Cauchy loss of
the reprojection error:

LOF =

No∑
i=0

ρ
(∥∥πκ(X

i
t−1)− xi

t

∥∥
2

)
. (4)

The third term of our objective function is a constraint
that ensures that the camera rotation and focal point position
satisfy our tripod model. We derive the position of the point
O∗ as the closest point to T belonging to the camera optical
axis:

O∗ = C +
⟨(T −C), r3⟩ r3

∥r3∥22
, (5)

where ⟨. , .⟩ denotes the dot product. Since the distance be-
tween this point and the tripod rotation center should be δ
meters, we define the following loss term:

LT = δ − ∥O∗ − T ∥2 . (6)

The previous losses are scaled and summed into a final
objective function L = LF + LOF + ωLT , with ω being
a scalar hyperparameter, to optimize the camera parameters
κ using the Levenberg-Marquardt algorithm.

3.2.4 Online confidence evaluation

Given the semantic segmentation of the soccer field mark-
ings S, we produce a binary map B of all the soccer field
markings in the image: B(x, y) = 1, S(x, y) = c,∀c ∈ S.
Considering the projection of the soccer field template F in
the image πκ (F), our confidence score is the Jaccard index
between the two generated masks:

s =
|B ∩ πκ (F)|
|B ∪ πκ (F)|

. (7)

This score is used to detect when a reinitialization of
the tracker is needed, and when the optical flow correspon-
dences are to be discarded to prevent them from damaging
the optimization, as it relies on the previous camera param-
eters κt−1.

3.3. Reinitialization algorithm

For initialization, or when the confidence score becomes
low, we propose a reinitialization algorithm. With the capa-
bilities of deep neural networks today, soccer field markings
detection is not a very difficult task. Usually, the tracking
starts drifting when the sports field markings become very
sparse in the image, which is why we include a reinitializa-
tion algorithm that only needs two point correspondences.

Given two point correspondences between the image and
the top-view sports field model, our reinitialization algo-
rithm estimates the focal length, the pan, and the tilt of the
camera. The focal point is set to the tripod rotation center,
and the roll value is set to zero.

Then, given the image points xi = (xi, yi) and their
corresponding world points Xi = (Xi, Yi, Zi), we derive
the camera parameters {f, ϕ, θ}. The focal length f is esti-
mated with the equations originally derived by Gedikli [27],
and summarized in Appendix 6.1 of [9]. The pan and tilt
angles, respectively ϕ and θ, are estimated by an iterative
algorithm assuming that ϕ only affects the projection along
the x-axis, and that θ only affects the projection along the
y-axis. We initialize ϕ and θ by steering the optical axis to-
wards the barycenter of the detected world points Xi. Then
we estimate updates depending on the correspondences:

dϕ =
∑
i

1

2
tan−1(xi − πκ (Xi)x , f) , (8)

dθ =
∑
i

1

2
tan−1(yi − πκ (Xi)y , f) , (9)

with πκ (.)x denoting the x coordinate of the point pro-
jection. The pan and tilt are thus iteratively refined as
ϕk+1 = ϕk + dϕk and θk+1 = θk + dθk, with k being
less or equal to 5.

If there are more than two correspondences in the im-
age, we use RANSAC to filter out potential outliers. As a
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last step, the optimization described in Section 3.2.3 is per-
formed without the LOF error function.

4. Results
To validate our tracking system, we conducted several

experiments. In Section 4.1, we first report the performance
of BroadTrack on sn-gamestate according to the metrics
proposed with the sn-calibration dataset. Then, in Sec-
tion 4.2, we validate our reinitialization algorithm on the
2023 version of the sn-calibration challenge. To further val-
idate the effects of optical flow, tripod constraint, and lens
distortion, we provide an ablation study in Section 4.3. Fi-
nally, since the metrics are meant for single-frame camera
calibration and only evaluate the quality of the reprojection
in the images, in Section 4.4, we qualitatively illustrate the
suitability of the camera parameters derived by BroadTrack.

4.1. Tracking system on SoccerNet-gamestate

We evaluate our system on the sn-gamestate dataset,
which consists of sequences of 30 seconds, where each
frame is annotated with point correspondences along the
soccer field markings and goal posts. The test set contains
49 sequences of 750 images each, extracted from 3 games
of the Swiss Football League.

For our experiments, we use the JaC metric [44] (previ-
ously denoted by AC in the sn-calibration challenges [12,
29]), which expresses the percentage of soccer field ele-
ments that are correctly reprojected in the image, the cor-
rectness being tuned by a tolerance parameter τ in pixels.
We report this metric for both 5 and 10 pixels, which are
quite challenging threshold values for the HD frames of the
dataset. For comparison, note that the SoccerNet camera
calibration challenge evaluates this metric for 5 pixels, but
for 960 × 540-sized images, a quarter of this dataset res-
olution. We also give the mean reprojection error and the
completeness rate, the latter indicating the proportion of the
dataset for which the technique produced camera parame-
ters.

To estimate the tripod rotation center T , we run our
tracking system without the tripod constraint, and then op-
timize the tripod position and distance to the optical axis
δ given the estimated camera parameters. From the key-
points detected by the neural network of Gutiérrez-Pérez
and Agudo [31], we only keep the ones that are actual
marks, line intersections, or line and circle (arc) intersec-
tions, i.e. we discard all keypoints that are derived from
other geometric cues. The reinitialization algorithm is used
to get the parameters of the first frame, and during the track-
ing, the reinitialization is performed when the score confi-
dence score s falls under 0.5, which leads to frequent reini-
tialization.

During our evaluation, out of the 49 sequences of 750
frames in the test set, the reinitialization had to be used 33

JaC5(↑) JaC10(↑) MRE(↓) CR(↑)
TVCalib [56] 19.88 50.42 12.4 99.93
NBJW [31] 37.14 68.24 10.28 93.67

PTZ-SLAM [41] 25.87 45.28 27.64 26.67*
Ours (fixed C) 50.97 74.93 5.39 100

BroadTrack 56.88 79.79 5.02 100

Table 1. Comparison metrics on the sn-gamestate dataset. MRE
stands for Mean Reprojection Error and is measured in pixels; CR
stands for completeness rate in percent. All results are reported for
HD, 1920 × 1080 frames. For the PTZ-SLAM method, the code
provided by the authors crashes after processing about 200 frames;
hence the low completeness rate (see *).

times, and the loss of tracking lasted for 15 frames on av-
erage. From the result reported in Table 1, BroadTrack out-
performs all available open-source methods. We also exper-
imentally confirm that the modeling of a broadcast camera
as a PTZ camera with a fixed focal point deters the per-
formance of the tracking. This emphasizes the specificity
of broadcast cameras, which are not well modeled by PTZ
cameras, even if they are rigged on a tripod.

4.2. Reinitialization on SoccerNet-calibration

We evaluate our reinitialization algorithm on the sn-
calibration dataset. The test set comprises 3,141 images
from a wide range of cameras used during soccer broad-
cast, including wide-angle cameras, and fish-eye cameras.
The JaC evaluation of our method is computed only for
views that obtain a confidence score s < 0.2, which low-
ers our completeness rate. We also expect this score con-
dition to filter out views for which our tracking system
is not especially designed, e.g. views from fish-eye cam-
eras. The default focal point localizations are defined for
common wide-angle cameras, that is for main, 16 me-
ters, and high behind the goal (HBG) cameras respec-
tively as Cmain = (0, 55,−12), C16m = (±36, 55,−12),
CHBG = (−65, 0,−15), all expressed in meters in the sn-
calibration world reference system [43].

From the results reported in Table 2, we establish that
our algorithm can reach state-of-the-art performance on a
smaller part of the dataset. Since the camera diversity of the
dataset is higher than the one we design our system for, the
high performance of the reinitialization part comforts our
strategy of frequent reinitialization.

4.3. Ablation study

We conduct our ablation study on the sn-gamestate test
set. To run our algorithm without any prior knowledge
of the tripod rotation center, we choose a default posi-
tion as input to our initialization algorithm. We arbitrar-
ily set the camera focal point to a default main location in
C = (0, 55,−12) meters. As shown in Table 3, the biggest
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JaC5(↑) JaC10(↑) CR(↑)
TVCalib [56] 52.9 73.4 66.5
NBJW [31] 73.7 86.7 77.5

Ours 75.25 86.8 69.8

Table 2. Two-point reinitialization algorithm evaluation on the sn-
calibration dataset of 2023. JaC metrics are reported in percent at 5
and 10 pixels for 960×540 frames. Our reinitialization algorithm
equals or achieves the SOTA performance of the NBJW method on
a slightly smaller subset of the dataset. To enable fairer compari-
son with TVCalib, we filter out their calibrations with JaC5 = 0,
because, by design, their method never signals failure.

OF T k1 JaC5(↑) JaC10(↑) MRE(↓) MedRE(↓)
✘ ✘ ✘ 42.09 74.09 5.74 3.13
✘ ✘ " 54.1 78.35 5.04 2.47
" ✘ " 55.96 79.07 4.85 2.43
✘ " " 54.9 78.99 4.95 2.44
" " " 56.88 79.79 5.02 2.37

Table 3. Ablation study on sn-gamestate. JaC metrics are reported
in percent at 5 and 10 pixels for HD frames. Mean (MRE) and
Median (MedRE) Reprojection Errors are reported in pixels. OF
stands for optical flow, T is for our tripod constraint, and finally k1
represents the inclusion of radial distortion in our model.

improvement in performance comes from the inclusion of
radial distortion in the camera model, which legitimates our
concerns about the previous datasets based on homogra-
phies and confirms our choice of not using their annotations
as it would lead to an unfair evaluation. It is also worth
noticing that the optimization procedure starting from the
previous camera estimate does not lead to much of a perfor-
mance boost when compared with the NBJW method. This
demonstrates that their strategy of deriving virtual keypoints
pays off, even if it is at the expense of physical modeling of
the camera parameters, as discussed in Section 4.4. Both
optical flow and tripod constraints demonstrate a smaller
contribution to the performance of our algorithm according
to the reported metrics of Table 3. We argue and show in the
next section that their contribution is only partially reflected
by the single-view metrics used until now. In the next sec-
tion, we show their benefits through qualitative evaluation
and comparisons.

4.4. Physical soundness

As explained in Section 3.1.1, professional pan-tilt heads
are made to ensure the smooth motion of the camera. This
means that we expect pan and tilt values to be particularly
smooth over time. We also expect our tripod constraint to
make the camera focal points more localized, even if, per
se, there is no restriction in terms of distance to the tripod.
These intuitions are confirmed by our visualization of Fig-

ure 3. We notice that, while the focal lengths estimated by
BroadTrack are smoother or display lower variations than
the other methods, it still shows some high-frequency vari-
ations. We explain that because of a vertigo effect, as the
scene is far away, some uncertainty in terms of position
can be compensated by a focal length adjustment, and con-
versely, without displaying perspective distortions.

4.5. Long-term tracking

To further demonstrate the performance of BroadTrack,
we show results on 20 minutes (60,000 frames) of the main
camera footage taken from a game of the German Bun-
desliga. As the stadium is much bigger than the ones of Soc-
cerNet, we set the default focal point position Cdefault =
(0, 90,−18), and we use a commercial tool for keypoints
and markings detections [22]. To derive the tripod position,
we run our system without the tripod constraint on the first
5,000 frames, and perform the optimization procedure as
described in Section 4.1 to derive T and δ. This sequence
is not annotated; hence, only the overlay of the soccer field
projection provides a qualitative assessment. As displayed
in Figure 4, the projection of the soccer field overlays al-
most perfectly on top of the actual field markings. Broad-
Track maintains the same quality of overlay for the com-
plete video; this illustrative video is given in the supple-
mentary material. Moreover, the reinitialization step is only
performed 60 times, and lasts for 4 frames on average. We
explain this improvement by the quality of the commercial
keypoints and markings detection.

5. Conclusions

In this paper, we have presented BroadTrack, a new
tracking system specially designed for wide-angle broad-
cast cameras. Through diverse qualitative and quantitative
evaluation, we show that our system is both accurate and ro-
bust, outperforming available solutions in both aspects. Our
results also corroborate the suitability of our broadcast cam-
era lens and tripod models, motivating further exploration
and refinement. Future works entail the dynamic incorpo-
ration of the tripod constraint, even if BroadTrack obtains
convincing results with a roughly appropriate focal point.
Another exciting piece of research lies in the vertigo ef-
fect noticed with the high-frequency variation of the focal
length, as we believe modeling this effect might lead to even
better focal point position.
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(a) Focal length value variations. (b) Pan value variations. (c) Focal length with or without optical flow.

(d) Focal point position in the XY plane. (e) Focal point position in the XY plane. (f) Benefit of including the tripod constraint on the
focal point position in the XY plane.

Figure 3. Camera parameters visualizations, best viewed on screen. The first row displays pan and focal length values along test sequences
of the sn-gamestate dataset. Figure 3a and 3b show the jitter of the parameters extracted by NBJW compared to BroadTrack. Figure 3c
shows that the optical flow helps to smooth focal length values. The second row displays the focal point C position in the XY plane.
Figure 3d and 3e show that the focal point estimated by NBJW can travel up to 20 meters along a single sequence, while our focal point
remains in a close neighborhood of the estimated tripod position. Finally, Figure 3f shows the benefit of including the tripod constraint on
the camera position, which remains closer to the estimated center of rotation T .

Figure 4. Qualitative evaluation of the 20 minutes sequence from the Bundesliga. One out of 10,000 images is displayed. Soccer field
markings are reprojected in red using the estimated camera parameters κ.
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Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre
Miralles, Olivier Barnich, Christophe De Vleeschouwer,
Alexandre Alahi, Bernard Ghanem, Marc Van Droogen-
broeck, Abdullah Kamal, Adrien Maglo, Albert Clapés,
Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott,
Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser,
Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik
Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari
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[31] Marc Gutiérrez-Pérez and Antonio Agudo. No bells, just
whistles: Sports field registration by leveraging geometric
properties. In IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. Work. (CVPRW), pages 3325–3334, Seattle, WA, USA,
Jun. 2024. 2, 3, 4, 6, 7

[32] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
Cambridge, UK, second edition, 2004. 3

[33] Jean-Bernard Hayet, Justus Piater, and Jacques Verly. In-
cremental rectification of sports fields in video streams with

application to soccer. In Adv. Concepts Intell. Vis. Syst.
(ACIVS), pages 1–8, Brussels, Belg., Aug.-Sept. 2004. 2,
3

[34] Jean-Bernard Hayet, Justus Piater, and Jacques Verly. Fast
2D model-to-image registration using vanishing points for
sports video analysis. In IEEE Int. Conf. Image Process.
(ICIP), pages 1–4, Genova, Italy, Sept. 2005. 2

[35] Namdar Homayounfar, Sanja Fidler, and Raquel Urtasun.
Sports field localization via deep structured models. In IEEE
Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), pages
4012–4020, Honolulu, HI, USA, Jul. 2017. 2, 3

[36] IFAB. Laws of the game. Technical report, The International
Football Association Board, Zurich, Switzerland, 2022. 4

[37] ITU. Parameter values for the HDTV standards for produc-
tion and international programme exchange, 2015. Recom-
mendation ITU-R BT.709-6. 3

[38] ITU. Parameter values for ultra-high definition television
systems for production and international programme ex-
change, 2015. Recommendation ITU-R BT.2020-2. 3

[39] Wei Jiang, Juan Camilo Gamboa Higuera, Baptiste Angles,
Weiwei Sun, Mehrsan Javan, and Kwang Moo Yi. Opti-
mizing through learned errors for accurate sports field reg-
istration. In IEEE Winter Conf. Appl. Comput. Vis. (WACV),
pages 201–210, Snowmass, CO, USA, Mar. 2020. 2

[40] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
PoseNet: A convolutional network for real-time 6-DOF cam-
era relocalization. In IEEE Int. Conf. Comput. Vis. (ICCV),
pages 2938–2946, Santiago, Chile, Dec. 2015. 2

[41] Jikai Lu, Jianhui Chen, and James J. Little. Pan-tilt-zoom
SLAM for sports videos. In Br. Mach. Vis. Conf. (BMVC),
pages 1–14, Cardiff, Wales, Sept. 2019. 3, 6

[42] Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou,
Yudong Wang, Yanyi Liu, Shilong Zhang, and Kai Chen.
RTMDet: An empirical study of designing real-time object
detectors. arXiv, abs/2212.07784, 2022. 5

[43] Floriane Magera. SoccerNet camera calibration challenge.
https://github.com/SoccerNet/sn-calibration, Jun. 2022. 6

[44] Floriane Magera, Thomas Hoyoux, Olivier Barnich, and
Marc Van Droogenbroeck. A universal protocol to bench-
mark camera calibration for sports. In IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Work. (CVPRW), pages
3335–3346, Seattle, WA, USA, Jun. 2024. 2, 3, 6

[45] Adrien Maglo, Astrid Orcesi, Julien Denize, and
Quoc Cuong Pham. Individual locating of soccer players
from a single moving view. Sensors, 23(18):1–28, Sept.
2023. 2, 3

[46] Adrien Maglo, Astrid Orcesi, and Quoc Cuong Pham. Kali-
Calib: A framework for basketball court registration. arXiv,
abs/2209.07795, 2022. 2

[47] Raul Mur-Artal, Jose M. M. Montiel, and Juan D. Tardos.
ORB-SLAM: A versatile and accurate monocular SLAM
system. IEEE Trans. Robot., 31(5):1147–1163, Oct. 2015.
2

[48] Xiaohan Nie, Shixing Chen, and Raffay Hamid. A robust
and efficient framework for sports-field registration. In IEEE
Winter Conf. Appl. Comput. Vis. (WACV), pages 1935–1943,
Waikoloa, HI, USA, Jan. 2021. 2

10



[49] Sachtler. Video 25 Plus and Video 25 Plus FB: Manual.
Product description, 2023. 4

[50] Johannes L. Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), pages 4104–4113, Las Vegas, NV, USA,
Jun. 2016. 2

[51] Long Sha, Jennifier Hobbs, Panna Felsen, Winyu Wei,
Patrick Lucey, and Sujoy Ganguly. End-to-end camera cal-
ibration for broadcast videos. In IEEE Int. Conf. Comput.
Vis. Pattern Recognit. (CVPR), pages 13627–13636, Seattle,
WA, USA, Jun. 2020. 2

[52] Rahul Anand Sharma, Bharath Bhat, Vineet Gandhi, and
C. V. Jawahar. Automated top view registration of broad-
cast football videos. In IEEE Winter Conf. Appl. Comput.
Vis. (WACV), pages 305–313, Lake Tahoe, NV, USA, Mar.
2018. 2

[53] Feng Shi, Paul Marchwica, Juan Camilo Gamboa Higuera,
Mike Jamieson, Mehrsan Javan, and Parthipan Siva. Self-
supervised shape alignment for sports field registration. In
IEEE Winter Conf. Appl. Comput. Vis. (WACV), pages 3768–
3777, Waikoloa, HI, USA, Jan. 2022. 2

[54] Vladimir Somers, Victor Joos, Anthony Cioppa, Silvio Gi-
ancola, Seyed Abolfazl Ghasemzadeh, Floriane Magera,
Baptiste Standaert, Amir M. Mansourian, Xin Zhou,
Shohreh Kasaei, Bernard Ghanem, Alexandre Alahi, Marc
Van Droogenbroeck, and Christophe De Vleeschouwer. Soc-
cerNet game state reconstruction: End-to-end athlete track-
ing and identification on a minimap. In IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Work. (CVPRW), pages
3293–3305, Seattle, WA, USA, Jun. 2024. 1

[55] Shuhei Tarashima. Sports field recognition using deep multi-
task learning. Journal of Information Processing, 29(0):328–
335, 2021. 2

[56] Jonas Theiner and Ralph Ewerth. TVCalib: Camera cali-
bration for sports field registration in soccer. In IEEE/CVF
Winter Conf. Appl. Comput. Vis. (WACV), pages 1166–1175,
Waikoloa, HI, USA, Jan. 2023. 3, 4, 6, 7

[57] Hiroki Tsurusaki, Keisuke Nonaka, Ryosuke Watanabe, To-
moaki Konno, and Sei Naito. Sports camera calibration us-
ing flexible intersection selection and refinement. ITE Trans.
Media Technol. Appl., 9(1):95–104, 2021. 2

[58] Vinten. Vision 250 pan & tilt head. Specifications, 2023. 4
[59] Neng Zhang and Ebroul Izquierdo. A high accuracy cam-

era calibration method for sport videos. In IEEE Int. Conf.
Vis. Commun. Image Process. (VCIP), pages 1–5, Munich,
Germany, Dec. 2021. 2

[60] Zhengyou Zhang. A flexible new technique for cam-
era calibration. IEEE Trans. Pattern Anal. Mach. Intell.,
22(11):1330–1334, 2000. 3

11


	. Introduction
	. Related work
	. Method
	. Broadcast camera model
	Pan-tilt head and tripod

	. Complete description of our tracking system
	Sports field detection
	Optical flow
	Update through non-linear optimization
	Online confidence evaluation

	. Reinitialization algorithm

	. Results
	. Tracking system on SoccerNet-gamestate 
	. Reinitialization on SoccerNet-calibration 
	. Ablation study
	. Physical soundness 
	. Long-term tracking

	. Conclusions

