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ABSTRACT

With the rapid development of animal phenomics and 
deep phenotyping, we can obtain thousands of traditional 
(but also molecular) phenotypes per individual. How-
ever, there is still a lack of exploration regarding how to 
handle this huge amount of data in the context of animal 
breeding, presenting a challenge that we are likely to en-
counter more and more in the future. This study aimed to 
(1) explore the use of the mega-scale linear mixed model 
(MegaLMM), a factor model-based approach that is able 
to simultaneously estimate (co)variance components and 
genetic parameters in the context of thousands of milk 
traits, hereafter called thousand-trait (TT) models; (2) 
compare the phenotype values and genomic breeding 
value (u) predictions for focal traits (i.e., traits that are 
targeted for prediction, compared with secondary traits 
that are helping to evaluate), from single-trait (ST) and 
TT models, respectively; (3) propose a new approximate 
method of GEBV (U) prediction with TT models and 
MegaLMM. We used a total of 3,421 milk mid-infrared 
(MIR) spectra wavepoints (called secondary traits) and 
3 focal traits (average fat percentage [AFP], average 
methane production [ACH4], and average SCS [ASCS]) 
collected on 3,302 first-parity Holstein cows. The 3,421 
milk MIR wavepoint traits were composed of 311 wave-
points in 11 classes (months in lactation). Genotyping 
information of 564,439 SNPs was available for all ani-
mals and was used to calculate the genomic relationship 
matrix. The MegaLMM was implemented in the frame-
work of the Bayesian sparse factor model and solved 
through Gibbs sampling (Markov chain Monte Carlo). 
The heritabilities of the studied 3,421 milk MIR wave-
points gradually increased and then decreased in units of 

311 wavepoints throughout the lactation. The genetic and 
phenotypic correlations between the first 311 wavepoints 
and the other 3,110 wavepoints were low. The accuracies 
of phenotype predictions from the ST model were lower 
than those from the TT model for AFP (0.51 vs. 0.93), 
ACH4 (0.30 vs. 0.86), and ASCS (0.14 vs. 0.33). The 
same trend was observed for the accuracies of u predic-
tions for AFP (0.59 vs. 0.86), ACH4 (0.47 vs. 0.78), and 
ASCS (0.39 vs. 0.59). The average correlation between 
U predicted from the TT model and the new approximate 
method was 0.90. The new approximate method used for 
estimating U in MegaLMM will enhance the suitability 
of MegaLMM for applications in animal breeding. This 
study conducted an initial investigation into the applica-
tion of thousands of traits in animal breeding and showed 
that the TT model is beneficial for the prediction of focal 
traits (phenotype and breeding values), especially for 
difficult-to-measure traits (e.g., ACH4).
Key words: phenomics, MegaLMM, methane, milk mid-
infrared

INTRODUCTION

With the rapid development of high-throughput phe-
notyping (HTP) technologies (e.g., remote sensing, cam-
eras, spectrometric analyses) fostering the novel field of 
phenomics, researchers encounter substantial volumes of 
phenotypic data (Silva et al., 2021). Moreover, efforts are 
currently being made to link the phenotypic expression 
of traits to a diverse range of molecular and biological 
mechanisms, often called molecular phenotypes based 
on the metabolome, the proteome, and the transcriptome 
(Suravajhala et al., 2016). Although these molecular 
phenotypes can be used to predict some traditional traits 
for animal or plant management, they have rarely been 
used directly for breeding. However, these molecular 
phenotypes may contain more information that has not 
been used by the predicted traits. For example, milk mid-
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infrared (MIR) spectra have traditionally been used to 
predict the content of fat, protein, lactose, and urea, and 
have been demonstrated to be useful for predicting novel 
traits (e.g., methane production). However, milk MIR 
spectra information is still only extracted on a trait-by-
trait phenotypic basis.

Breeding plays an important role in the production, re-
production, and disease resistance of animals and plants 
(Bernardo, 2020; Brito et al., 2021). For example, more 
than half of the increase in protein yield of US Holstein 
cows in the past 50 yr comes from genetic improvements 
(Cole et al., 2020). Molecular phenotypes may be more 
effective in helping breeders improve their associated 
traits (e.g., methane emissions). However, extracting 
relevant information from molecular phenotypes using 
the traditional approach is challenging. Therefore, the 
new challenge is how to incorporate a large number of 
molecular phenotypes into the breeding programs.

In animal breeding, selection index is used to com-
bine multiple traits into an overall index for measuring 
animal genetic value (Cole et al., 2021). However, most 
applications include only several or dozens of traits at 
the same time, as opposed to the thousands of traits that 
are currently available. The simultaneous genetic analy-
sis of thousands of traits is a major challenge, even with 
advances in computing.

Transformation algorithms to simplify solving multi-
trait (MT) models have been proposed many years ago 
(Jensen and Mao, 1988). Canonical transformation has 
traditionally been the most used approach to solve MT 
mixed model equations in animal breeding (Ducrocq and 
Chapuis, 1997). Runcie et al. (2021) recently introduced 
a novel mega-scale linear mixed model (MegaLMM) 
which has been tested in the context of plant breeding. 
The MegaLMM approach re-parameterizes the MT lin-
ear mixed model into a Bayesian sparse factor model 
(Runcie et al., 2021). Factor analysis and canonical 
transformation are both techniques used in multivariate 
analysis. Although they are related, they serve differ-
ent purposes and offer distinct advantages depending 
on the context of the analysis. Factor analysis helps in 
identifying underlying factors or latent variables that 
explain the patterns of correlations among potentially 
many observed traits. It also aims to reduce the dimen-
sionality of the data by uncovering the common sources 
of variation, something that canonical transformation, 
on the other hand, does not do natively. Factor analysis 
is also more suitable for modeling complex relation-
ships among traits by capturing shared variance among 
them. Based on these elements, the Bayesian sparse 
factor model (Runcie et al., 2021), as implemented 
in MegaLMM, is an interesting alternative to the use 
of canonical transformation because it seems to be an 

adequate solution for resolving the methodological 
challenges of canonical transformation. Qu et al. (2023) 
extended MegaLMM to mega-scale Bayesian regres-
sion methods, which were used in genome prediction 
and genome-wide association studies in plant breeding. 
To our knowledge, the MegaLMM method has not been 
evaluated in animal breeding.

Milk MIR spectra, which represent the absorbance 
of hundreds or thousands of individual wavepoints, are 
widely used to predict milk composition and phenotypes 
linked to animal health, efficiency, emissions, resilience, 
and even milk processability (Gengler et al., 2016; Grelet 
et al., 2021; Shadpour et al., 2022). The MIR spectra can 
be collected routinely during milk composition analyses, 
making them available at low cost. Beyond the traditional 
use of milk MIR spectra to predict phenotypes, research-
ers performed genetic analyses for milk MIR wavepoints 
with single-trait (ST) models, which cannot provide a 
direct view of the overall genetic structure (Rovere et 
al., 2019; Du et al., 2020; Tiplady et al., 2021). Several 
authors (e.g., Soyeurt et al., 2010; Bonfatti et al., 2017) 
conducted genetic analysis of principal components (PC) 
derived from phenotypic (co)variances based on principal 
component analysis of milk MIR spectra. However, they 
selected the number of PC based on the phenotypic vari-
ance explained by PC, which can result in some genetic 
information being lost (Chen et al., 2023b). Even if these 
studies used MT analysis to partially evaluate genetic 
correlations among milk MIR PC, the genetic (co)vari-
ances among original MIR spectra could only be partially 
evaluated. Rovere et al. (2019) suggested that studying 
the genetic correlations between milk MIR wavepoints at 
different time points and between milk MIR wavepoints 
and economic and environmental traits will be beneficial 
for integrating milk MIR spectra into genetic evaluations. 
The high correlation between milk MIR wavepoints re-
quires direct simultaneous genetic analysis to have a bet-
ter view of their genetic structures and help us to add milk 
MIR spectra to genetic evaluation.

With the sustainable and balanced development of 
animal production, an increasing number of traits (e.g., 
feed efficiency, methane emissions) are being included 
in animal breeding programs. The aims of this study 
were to (1) explore simultaneous estimates of (co)vari-
ance components and genetic parameters of thousands 
of milk MIR traits with the MegaLMM; (2) compare the 
phenotype value and genomic breeding value (u) predic-
tions for focal traits from ST and thousand-trait (TT) 
models, respectively; (3) propose a new approximate 
method for estimating genomic breeding values (U) us-
ing MegaLMM. This study will provide a preliminary 
demonstration and reference for the application of thou-
sands of traits in animal breeding.

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS
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MATERIALS AND METHODS

Data

Phenotypic Data. All milk samples were collected 
by Elevéo (Awé groupe, Ciney, Belgium) from January 
2012 to December 2017 during the official milk record-
ing in the Walloon Region of Belgium. These milk 
samples were chosen because they could be associated 
with the genotyped cow population. Milk samples were 
analyzed by MilkoScan FT6000 spectrometers (FOSS) 
and Fossomatic FC (FOSS, flow cytometry) to generate 
predicted fat percentage (FP), SCC, and MIR spectra 
(1,060 wavepoints). Methane emission (g/d) of each 
animal associated with a milk sample was predicted 
based on milk MIR spectra, milk yield, breed, and parity 
as described by Vanlierde et al. (2021). The coefficient 
of determination and root mean square error of 5-fold 
cross-validation for the methane equation were 0.68 and 
57 g/d methane, respectively (Vanlierde et al., 2021). 
The SCS was calculated by the following formula: SCS 
= log2 (SCC/100,000) + 3. The FP and SCC were limited 
from 1.5% to 9% and from 10,000 to 10,000,000 cells/
mL of milk, respectively, keeping the limits that are 
used in routine genetic evaluation systems of Holstein 
cows (Vanderick et al., 2022). For methane, editing was 
only based on the plausibility of values, and 21 records 
predicted to be less than 0 were set to missing values. 
The plausibility value is the individual predicted value 
within the range of the average value in the same lac-
tation month group ± 3 SD. Each herd had to have a 
minimum of 10 records for each DIM. We exclusively 
considered the first-parity records observed from 5 to 
365 DIM. Consequently, each animal should contribute 
to a total of 11 records for each analyzed trait, otherwise 
the animals had missing records.

The MIR spectra were selected because they can be 
obtained routinely and linked to multiple traits in dairy 
cows as described in the introduction. The selection of 
FP, methane, and SCS was guided by their varying link 
to MIR spectra. The estimation of FP is done routinely 
using milk MIR spectra with a very high coefficient of 
determination close to 1. As previously explained SCC 
is not obtained by milk MIR spectra. The link between 
SCC and spectral data is weaker even if a certain overlap 
of their reaction to mastitis was found, as cows suffering 
from mastitis show both more SCC and also changing 
milk composition (Bruckmaier et al., 2004) detectable 
milk MIR. Another reason for selecting methane is that it 
is expensive to directly measure it in dairy cows.

A total of 27,855 records (MIR, FP, methane, and 
SCS) were collected on 3,302 Holstein cows distrib-
uted in 74 herds used in this study. The MIR spectra 
(1,060 wavepoints) were first processed using the first 

derivative and then standardized by subtracting the cor-
responding mean and dividing by the corresponding SD 
(Delhez et al., 2020). The 311 milk MIR wavepoints 
from 3 distinct regions (933–1,589 cm−1, 1,704–1,809 
cm−1, and 2,553–2,981 cm−1) were retained. The spec-
tral regions were selected based on the experience of 
our extended research team (e.g., Grelet et al., 2021), 
and these regions are highly related to major elements 
of milk composition (e.g., fatty acid, protein; Soyeurt et 
al., 2006; Grewal et al., 2018).

Genotypic Data. Genotypic data of the 3,302 animals 
were extracted from the routine genetic evaluation sys-
tem of Holstein cows in the Walloon Region of Belgium. 
The animals were genotyped by the 50K chip (Illumina, 
San Diego, CA) and were imputed to high-density using 
FImpute V2.2 software (Sargolzaei et al., 2014) with a 
reference population of 4,352 high-density individuals 
(1,046 bulls and 3,288 cows). Quality control measures 
for SNPs were conducted following the criteria outlined 
in Chen et al. (2023a). Ultimately, 564,439 SNPs, dis-
tributed across 29 chromosomes, were retained from the 
initial 730,539 SNPs.

Preprocessing of Data

For each test-day record, we organized the 311 milk 
MIR wavepoints into a single row. To categorize DIM 
(5–365 d), we divided the wavepoints into 11 classes, 
each spanning 31 d, except for the final 2 classes, which 
encompassed 41 d each. Each animal had a maximum 
of 1 recording in each class, as the recording scheme 
consists of 4 to 6 wk intervals. In the case that 2 records 
qualified for a class, the one that was closer to the cen-
ter point of the class was used. As a result, each animal 
had 3,421 (311 × 11) milk MIR wavepoints, referred to 
as unique traits. It needs to be mentioned that from this 
point, each trait × DIM lactation class combination will 
also be called a secondary trait. For FP, methane, and 
SCS, we computed averages of each trait across the 11 
classes, condensing them into single traits known as fo-
cal traits: average fat percentage (AFP), average methane 
production (ACH4), and average SCS (ASCS). The raw 
numbers of records for all traits are given in Supplemen-
tal File S1 (see Notes).

Missing values of secondary (3,421) and focal (3) traits 
in the 11 classes were imputed by the best prediction 
method (VanRaden, 1997), which is a standard method 
used in DHI with the following formula:

 ŷi = μ + c ′V−1t, 

where ŷi is the imputed value of trait i, which falls into 
one of the defined 11 classes, μ is the average of trait i 
(including classes with missing values), c is the vector 

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS
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of (co)variances between missing and observed values, 
V is the observed (co)variance matrix between observed 
values, and t is the observed deviations of trait i in ob-
served classes. In this study, all data, after imputation, 
were treated as observed values.

(Co)variance Component Estimation

The ST model was used to estimate the variance com-
ponents for each trait; TT model was used to estimate 
the (co)variance components for thousands of traits. The 
base model was as follows:

 y = Xb + Zu + e, [1]

where y is the vector of traits (3,421 milk MIR wave-
points or 3,421 milk MIR wavepoints plus one of the fo-
cal traits or only one of the focal traits), b is the vector of 
fixed effects (age of calving group, herd-year of calving 
group, and year of calving group-month of calving). The 
age of calving was divided into 7 classes (<25, 25–26, 
27–28, 29–30, 31–32, 33–34, ≥35 mo), and the year of 

calving was divided into 2 classes (2011–2014, 2015–
2017). u and e are the random additive genetic and re-
sidual effects, respectively, and X and Z are the corre-
sponding incidence matrixes. For ST models, the distri-
butional assumptions of u and e were u N∼ 0 2, Gσg( ) and 
e N∼ 0 2, ,Iσe( )  where G is the genomic relationship ma-
trix of the first method described by VanRaden (2008), σg

2 
was the additive genetic variance, I was an identity ma-
trix, and σe

2 is the residual variance. Genomic BLUP was 
used for the ST models.

The variance components of ST models were esti-
mated by BLUPF90+ (ver. 2.48, Misztal et al., 2014) 
with average information REML (AI-REML) and with 
MegaLMM (ver. 0.9.4, Runcie et al., 2021) R package 
with Markov chain Monte Carlo (MCMC). The (co)
variance components of the TT models (3,421 milk MIR 
wavepoints or 3,421 milk MIR wavepoints plus one 
of the focal traits) were estimated by MegaLMM (ver. 
0.9.4, Runcie et al., 2021) in R package with MCMC. 
An MCMC chain of 50,000 was run with the first 10,000 
iterations discarded as burn-in, and each 1 sample of 50 

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS

Figure 1. Description of all studied traits in this study. (A) Description of 3,421 observed milk mid-infrared wavepoints across 11 mo, with each 
month featuring 311 consistent wave points. (B) Description of average fat percentage (AFP) within the first parity (11 mo). (C) Description of 
average methane production (ACH4) within the first parity. (D) Description of average SCS (ASCS) within the first parity (n = 3,302). The lower, 
middle, and upper edges of the box represent the first quartile, median, and third quartile values of the trait, respectively; the lower and upper ends 
of whiskers are the minimum and maximum values of the trait. 
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iterations was saved. The posterior mean of (co)variance 
of the TT model was calculated from 800 saved samples. 
The convergence of the MegaLMM method was assessed 
by visual inspection of trace plots (example figures in 
Supplemental File S2, see Notes).

The MegaLMM was implemented in the framework 
of the Bayesian sparse factor model and solved through 
MCMC (Runcie et al., 2021). In this study, the number of 
factors used in the MegaLMM was fixed at 500. Equation 
1 can be rewritten and transformed for a factor model as 
the following:

 Y = FΛ + YR, [2]

 with F = ZFUF + EF, 

 YR = XRBR + ZRUR + ER,  

where Y is a n × t matrix of observations for n animals 
and t traits (3,302 × 3,421 or 3,302 × 3,422), F is a n × 
k matrix of latent factor trait records (3,302 × 500), Λ 
is a k × t matrix of factor loadings (500 × 3,421 or 500 
× 3,422), YR is an n × t matrix of uncorrelated residual 
values (3,302 × 3,421 or 3,302 × 3,422). The UF and EF 
are matrixes of additive and residual effects for F; BR, 
UR, and ER are matrixes of fixed (same as in Equation 1), 

additive, and residual effects for YR, ZF, XR, ZR are the 
corresponding incidence matrixes.

Assuming that all correlations of traits in Y were ex-
plained by F, YR would be uncorrelated. The MegaLMM 
sampling at each iteration of MCMC can be obtained 
simultaneously in parallel across F and YR, which leads 
to the simultaneous analysis of thousands of traits. The 
horseshoe prior distribution was used for Λ, and the pri-
ors’ distribution for other parameters was the same as 
used in Runcie et al. (2021).

Phenotypic (co)variance components of the original 
thousands of traits were equal to Λ′ × (co)variance 
component of F × Λ plus the estimated variance com-
ponent of YR. Solutions for the original thousands of 
traits were obtained by back-solving the factor part and 
adding the residual.

Genetic Parameters Estimation

The h2 of each trait equals σg
2 divided by total variance 

σ σg e
2 2+( ). The approximated SE of h2 from the BLUPF90+ 

program was obtained according to the method of Meyer 
and Houle (2013). The SD of h2 from the MegaLMM 
program was obtained according to the saved MCMC 
samples. The h2 was calculated for every 100 saved 
samples, so each trait received 8 h2.

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS

Figure 2. Heritabilities of 311 milk mid-infrared wavepoints over 11 mo of lactation, estimated from the thousand-trait model. The red lines 
indicate the SD of the 800 saved MCMC samples.
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In the TT model, genetic and phenotypic correlations 
between each 2 traits were calculated by the following 
formulas:

 Genetic correlation =
×

σ

σ σ

g

g g

12

1
2

2
2

 

 Phenotypic correlation =
×

σ

σ σ

p

p p

12

1
2

2
2

, 

where σg12 and σp12 are the additive genetic and pheno-
typic covariances between traits 1 and 2, respectively; σgt

2  
and σpt

2  are the additive genetic and phenotypic variances 
of trait t, respectively; σp12 equals additive genetic plus 
residual covariances between traits 1 and 2; σpt

2  equals 
additive genetic plus residual variances of trait t.

Phenotype and Genomic Breeding Values Prediction

For phenotype prediction of focal traits by the Mega-
LMM method, the ST (one of 3 focal traits) and TT (one 
of the focal traits plus 3,421 milk MIR wavepoints) mod-
els were used. A total of 15 herds of the initial 74 herds 
were randomly selected, then the 3 focal traits of the ani-
mals (n = 721) in the selected 15 herds were set as miss-
ing values. The Gibbs samplers were used in MegaLMM 
to predict phenotypes, and more details can be found in 
Additional File 1 of Runcie et al. (2021). The Pearson 
correlations between the 3 observed and predicted focal 
traits of animals (n = 721) from ST and TT were calcu-
lated, respectively. The SD of Pearson correlations was 
calculated based on the saved MCMC samples.

For u prediction of focal traits, the ST models were 
used with the AI-REML and MegaLMM methods; TT 
models were used only with the MegaLMM. All analyses 
were done in the partial (with missing values, same as 
the phenotype prediction of focal traits in the previous 
paragraph) and whole datasets, respectively. Prediction 
accuracies of u were calculated by the following formula 
(Legarra and Reverter, 2018):

 Accuracy =
−( )
σ

σ

u

g

pw

p
f1 2

, 

where σupw  is the covariance between u of selected ani-
mals in the partial and whole datasets, f  is the average 
inbreeding coefficient of the selected animals (n = 721), 
and σgp

2  is the additive genetic variance in the partial da-
taset. The SD of accuracy from the MegaLMM method 
was calculated based on the saved MCMC samples.

Approximate Method for Large-Scale Genomic 
Breeding Value Estimation Using MegaLMM

Because U estimation in the animal breeding field is 
usually based on hundreds of thousands of individu-
als, an approximate method is needed to calculate U of 
the TT model in larger populations. Similar to current 
practice in animal breeding, the estimation of (co)vari-
ance components and a factor model of loadings can 
be separated from the estimation of U. The following 
approximate strategy was tested on the same small data 
et. The new approximate method uses the following 
procedure:

 1. Generate several small datasets that can represent 
the large dataset. Sampling can be based on vari-
ous dimensions such as groups, regions, or test 
years.

 2. Estimate the factor loading matrix Λ in each small 
dataset using Equation 2 and MegaLMM:

 Λ = estimate_factor_loading (Ys, F, YRs)  

(estimated individually on the generated small datasets; 
Ys and YRs are the phenotypic and residual values in the 
small datasets).

3. Compute the transformation matrix T for each 
small dataset:

 T = ( )−Λ ΛΛ' ' 1 

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS

Table 1. The heritability of average fat percentage (AFP), average methane production (ACH4), and average SCS 
(ASCS) within the first parity (11 mo) from single-trait and thousand-trait models in the whole dataset (n = 3,302)1

Model

AFP

 

ACH4

 

ASCS

MegaLMM AI-REML MegaLMM AI-REML MegaLMM AI-REML

Single-trait 0.66 (0.00) 0.75 ± 0.02 0.24 (0.00) 0.24 ± 0.03 0.09 (0.00) 0.09 ± 0.02
Thousand-trait 0.62 (0.01) NA 0.22 (0.02) NA 0.06 (0.00) NA
1Values in parentheses are the SD of the 800 saved MCMC samples. MegaLMM = mega-scale linear mixed 
method; AI-REML = average information REML; NA = not applicable. 
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(a generalized least-square inverse for Equation 2).
Compute the factor loading F̂( ) and residual ŶRb( ) to be 

used in the large dataset:

 F̂ Y Tb≈   

(Yb is the phenotypic values in the large dataset; T  is the 
mean of T from all small datasets)

 ˆ ˆY Y FRb b= − Λ. 

Estimate the approximated GEBV Û( ):

 ˆ ˆ
ˆUF F= ( )GBLUP_analysis with ST models 

 ˆ ˆ
ˆUY RbRb

Y= ( )GBLUP_analysis with ST models. 

Calculate the Û  of thousands of traits Ûb( ):

 ˆ ˆ
ˆU Uapp= FΛ 

 ˆ ˆ ˆ ,ˆU U Ub app= + YRb
 

 (after checking whether ˆ
ˆUYRb  contains useful informa-

tion; if not, it can be removed; Ûapp = approximate GEBV 
of all factors).

To initially verify our proposed approximation method, 
the above small data (ACH4 plus 3,421 milk MIR wave-
points) was used for testing. This data (ACH4 plus 3,421 
milk MIR wavepoints) was chosen because ACH4 is dif-
ficult to obtain in routine testing and MIR data has a 
moderate ability to predict ACH4. The Ûm  from the TT 
model of thousands of traits were used as the benchmark, 
and Pearson correlations between Û  of approximated 
methods and Ûm  were used as metrics. The approximate 
methods considered included 3 methods: the first used 
only the ˆ ;Uapp  the second used the Ûapp plus the ˆ ;ˆUYRb  and 
the third used the Ûs  from the ST models of all traits. The 
Ûm  from these results (MegaLMM method) and the 3 ap-
proximated methods were calculated by GBLUP with 
thousands of ST models (same effects; rrBLUP package, 
ver. 4.6.2). The difference in Pearson correlation between 
Ûm  and Û  among the 3 approximation methods was tested 

Chen et al.: ANALYSIS OF THOUSANDS OF BREEDING TRAITS

Figure 3. Genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal) among 3,421 milk mid-infrared wavepoints 
(collected over 11 mo, with each month featuring 311 consistent wavepoints) from the thousand-trait model.
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pairwise by the Wilcoxon test. All data preparation and 
processing were done using R (ver. 4.1.2, https: / / www .r 
-project .org/ ).

RESULTS

Descriptive Statistics and Heritability

Figure 1 shows the description of the studied traits 
after imputation. The mean of milk MIR wavepoints 
values varied greatly in early and late lactation and was 
close to 0 in mid-lactation. The SD of milk MIR wave-
points values were close to 1, except for the last month 
in milk (335–365 d). The means (SD) of AFP, ACH4, 
and ASCS were 3.95% (0.44), 335.27 g/d (26.05), and 
2.91 (1.16), respectively.

The h2 of the 3,421 milk MIR wavepoints estimated 
from the TT model were shown in Figure 2 and ranged 
from 0.034 (wavepoint 1,132) to 0.619 (wavepoint 
2,308). The h2 of the 311 milk MIR wavepoints gradually 
increased and then decreased throughout the lactation pe-
riod. Among the 311 milk MIR wavepoints, the h2 of cer-
tain wavepoints exhibited minor fluctuations throughout 
the first lactation, whereas for others, we found marked 
changes in h2. For example, the milk MIR wavepoints 
1,132 (lowest h2) and 2,308 (largest h2) corresponding to 
h2 of the wavepoints in the first unit (1–311) were 0.045 
(wavepoint 199) and 0.200 (wavepoint 131), respectively.

The h2 of the 3 studied focal traits are shown in Table 1. 
The h2 of AFP, ACH4, and ASCS were high (0.62–0.75), 
medium (0.22–0.24), and low (0.06–0.08), respectively. 
The h2 of ACH4 and ASCS estimated from the ST model 
through MegaLMM and AI-REML methods were simi-
lar; however, the h2 of AFP was different. The h2 of the 
3 studied focal traits estimated from the ST model was 
higher than that estimated from the TT model through the 
MegaLMM method.

Genetic and Phenotypic Correlations

The genetic (above the diagonal) and phenotypic 
(below the diagonal) correlations among the 3,421 milk 
MIR wavepoints are shown in Figure 3. The genetic cor-
relations of the 3,421 milk MIR wavepoints were higher 
than their phenotypic correlations. The genetic and 
phenotypic correlations of milk MIR wavepoints were 
higher within a month of lactation compared with other 
months of lactation. The genetic and phenotypic correla-
tions between the first 311 milk MIR wavepoints and the 
other 3,110 milk MIR wavepoints were low.

The absolute values of genetic correlations between 
the 3 focal traits and the 3,421 milk MIR wavepoints 
were higher than the phenotypic correlations (Figure 4). 
The genetic and phenotypic correlations between AFP 

and the first 311 milk MIR wavepoints were lower than 
correlations between AFP and the other 3,110 milk MIR 
wavepoints. A similar situation was observed for ACH4 
and milk MIR wavepoints; however, the pattern of ge-
netic correlations between the milk MIR wavepoints and 
AFP, and ACH4 differed. Genetic and phenotypic corre-
lations between ASCS and the 311 milk MIR wavepoints 
remained relatively consistent across the month of lacta-
tion, whereas phenotypic correlations approached 0.

Phenotype and Genomic Breeding Values Prediction

The correlations between MIR-based predicted AFP, 
ACH4, and ASCS and the predicted values obtained by 
the ST and TT models are shown in Table 2. As expected, 
correlations of the 3 focal traits increased in the TT 
model, ranging from around 82% to 185%. The accuracy 
of u prediction of AFP, ACH4, and ASCS from the TT 
model also increased, from around 47% to 65% (Table 
3). In addition, the accuracies of u prediction from the 
ST model through MegaLMM and AI-REML methods 
for AFP (0.59 vs. 0.57), ACH4 (0.47 vs. 0.47), and ASCS 
(0.39 vs. 0.40) were similar.

Approximate Method of Genomic Breeding Values 
Estimation Using MegaLMM

Figure 5A shows the approximate method for applying 
the TT model by MegaLMM to large populations. The 
average (SD) correlations between Ûm  and ˆ ,Uapp  between 
Ûm  and ˆ ,Ub  between Ûm  and Ûs  were 0.90 (0.03), 0.90 
(0.03), and 0.82 (0.09), respectively; the results of ACH4 
were 0.88, 0.88, and 0.73, respectively. The correlations 
of the first 2 approximate methods were similar and were 
both significantly larger than those obtained using the 
last method (ST model; Figure 5B). The average (SD) h2 
of traits in low (<0.89, bottom 25%) and high (>0.92, top 
25%) correlations between Ûm  and Ûapp were 0.19 (0.11) 
and 0.39 (0.11), respectively. The h2 of traits in the low-
correlation group was significantly lower than the h2 of 
traits in the high-correlation group (Figure 5C). In this 
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Table 2. Correlation of the average fat percentage (AFP), average 
methane production (ACH4), and average SCS (ASCS) within the first 
parity (11 mo) between predicted and observed values from single-
trait and thousand-trait models by mega-scale linear mixed method 
(MegaLMM)1

Model AFP ACH4 ASCS

Single-trait 0.51 (0.01) 0.30 (0.01) 0.14 (0.01)
Thousand-trait 0.93 (0.00) 0.86 (0.01) 0.33 (0.01)
Increased2 (%) 81.61 184.98 136.20
1Values in parentheses are the SD of the 800 saved MCMC samples.
2Increased percentage of correlation from the single-trait model to the 
thousand-trait model in each trait.

https://www.r-project.org/
https://www.r-project.org/
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test with a small dataset, the initial MegaLMM took 127 
h to estimate ˆ ,Um  whereas the approximate method took 
1 h and 25 min to estimate Ûapp and 10 h to estimate ˆ .Ub

DISCUSSION

With the advancement of phenomics, thousands of 
traits per animal are routinely measured. However, the 
simultaneous genetic analysis of thousands of traits 
poses a substantial challenge for animal breeding, par-
ticularly when routine analyses are necessary. We esti-
mated the (co)variance compositions among thousands 
of traits in routine recording, alongside the calculation 
of their genetic parameters. Our results show the ben-
efits of predicting focal traits (phenotype and u) using 
the TT model, especially for difficult-to-measure traits 
(e.g., ACH4 emissions). In addition, we proposed an ap-
proximated method to estimate U that is suitable for large 
datasets using MegaLMM.

Our results suggested that the same wavepoint should 
not be considered as an identical trait at different time 

points (Figure 1). The findings of Rovere et al. (2019) 
support our results even though they analyzed the same 
milk MIR wavepoint separately at different times using 
ST models. However, differences in the h2 patterns of 
milk MIR wavepoints were observed between our study 
and that of Rovere et al. (2019). This discrepancy may be 
attributed to the use of the TT model in the current study. 
Most prior studies have traditionally treated milk MIR 
wavepoints as the same trait across different time points 
(Zaalberg et al., 2019, 2020; Du et al., 2020; Tiplady et 
al., 2021). This practice can introduce bias into genetic 
analysis and potentially overlook the identification of 
relevant candidate genes.

The h2 of AFP, ACH4, and ASCS from this study align 
with those of other studies involving big datasets with 
Walloon region Holstein cows (Paiva et al., 2022; Kandel 
et al., 2017; Atashi et al., 2023), underscoring the reli-
ability of results obtained through MegaLMM. Paiva et 
al. (2022) identified a maximum h2 of 0.54 for daily fat 
percentage in Walloon region Holstein cows, a value that 
is in close agreement with our MegaLMM results.
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Figure 4. Genetic and phenotypic correlations between 3 focal traits and 3,421 milk mid-infrared (MIR) wavepoints (collected over 11 mo, with 
each month featuring 311 consistent wavepoints) from the thousand-trait model. (A) Genetic and phenotypic correlations between average fat per-
centage (AFP) within the first parity (11 mo) against MIR wavepoints. (B) Genetic and phenotypic correlations between average methane production 
(ACH4) and MIR wavepoints. (C) Genetic and phenotypic correlations between average SCS (ASCS) and MIR wavepoints.
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To our knowledge, this study presents the first explo-
ration of genetic and phenotypic correlations between 
milk MIR wavepoints at different time intervals. The 
results suggested that we need to partition the spectral 
analysis of the first 35 DIM and the subsequent lactation 
period (Figure 3). The pattern of correlations between 
milk MIR wavepoints and AFP and ACH4 supports this 
point (Figure 4). The patterns between genetic corre-
lations of milk MIR wavepoints and focal traits were 
stable after DIM 35, which is beneficial for using milk 
MIR wavepoints as proxies for difficult-to-record (and 
therefore often missing) traits in genetic selection. For 
example, Toledo-Alvarado et al. (2022) proposed em-
ploying individual milk MIR wavepoints as a proxy for 
residual feed intake. However, the accuracies of indirect 
selection for individual milk MIR wavepoints were too 
low (from 0.0 to 0.1). This is because the genetic corre-
lations between single individual milk MIR wavepoints 
and residual feed intake were low, ranging from around 
−0.25 to 0.22. At this level, one must remember that the 
combination of multiple milk MIR wavepoints gener-
ates relevant information with high genetic correlations 
(around ± 0.55) to ACH4; thus, it may be possible to 
conduct genetic selection for ACH4 with these milk 
MIR wavepoints as proxies. This approach can be ex-
tended to numerous other traits predicted by milk MIR. 
Directly using milk MIR wavepoints as traits for genetic 
selection can avoid developing calibration models for 
milk MIR predictive traits.

The improved phenotype and u prediction accu-
racy by the TT model for 3 focal traits are shown in 
Tables 2 and 3. Similar improvements in u prediction 
have been demonstrated in the field of plant breeding 
using the hundred-trait models (Runcie et al., 2021; 
Qu et al., 2023). Even though the observed values of 
AFP and ACH4 in this study were predicted by milk 
MIR and may not be a completely fair test of predic-
tion accuracy, ASCS observations remained entirely 
uncorrelated with milk MIR. Furthermore, the ACH4 
observations were predicted using multiple types of 
information (212 milk MIR wavepoints, milk yield, 
breed, and parity), which are not exactly the same in-
formation used in our study. Tiezzi et al. (2022) showed 
that milk MIR can be used as a covariate to improve the 
genome prediction of SCS in new environments. The 
results of the current study showed that incorporating 
milk MIR data as secondary traits to predict focal traits 
using MegaLMM enhanced the prediction accuracy of 
focal traits that are challenging to measure. In the next 
step, it is worth exploring the impact of incorporating 
milk MIR from different months into genetic analysis 
on the prediction accuracy of focal traits (e.g., ACH4 
emissions). In addition, the convergence of MegaLMM 
needs to be considered (e.g., number of iterations), 
because this method is based on solving the problem 
of plant breeding, whereas animal breeding has differ-
ent conditions (e.g., number of samples). For example, 
in this study, the analysis of ASCS together with milk 
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Figure 5. Overview of newly proposed approximation methods for big datasets and their illustration to small datasets. (A) Approximate method 
of GEBV Û( ) estimation in a big dataset with MegaLMM. (B) Correlations between Ûm of thousand-trait model and ˆ ˆU Uapp b of proposed approxi-
mated methods, Ûs  of single-trait models. (C) Distribution of heritability of bottom (n = 875) and top (n = 875) 25% correlations between Ûm and 
Ûapp (Λ and T estimated in a small dataset). The lower, middle, and upper edges of the box represent the first quartile, median, and third quartile 
values of the trait, respectively; the lower and upper ends of whiskers are the minimum and maximum values of the trait. The dots in panel B repre-
sent the correlation values of estimated genomic breeding values by different methods; the dots in panel C represent the heritability of traits. 
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MIR may not have completely converged, although the 
ability to predict ASCS has been improved.

Animal breeding requires the calculation of U for hun-
dreds of thousands of individuals. We gave an approxi-
mate method of calculating U of the TT model by Mega-
LMM in larger populations (Figure 5A). Our results only 
require doing a genetic estimation of ˆ,F  rather than F̂ plus 
ŶRb (Figure 5B), which greatly reduces the number of 
traits that need to be analyzed (here 500 vs. 3,922). The 
correlations between Ûm  and ˆ ,Uapp  and between ˆ ,Um  and 
Ûb were similar, whereas both correlations were signifi-
cantly larger than the correlations between Ûm  and Ûs  of 
the ST model (Figure 5B). The low correlations of some 
traits in the Ûapp method may be caused by the lower h2 
of these traits (Figure 5C). However, the number of traits 
for correlations lower than 0.80 was only 47. The ap-
proximate methods also greatly reduced the computation 
time for the initial MegaLMM. Finally, our proposed ap-
proximate method converted thousands of traits in a large 
population into multiple ST models for hundreds of 
traits, which can be quickly performed in parallel on a 
high-performance computer.

CONCLUSIONS

This study explored the application of the TT model 
analyzed by MegaLMM in animal breeding. The results 
of this study showed that the TT model is beneficial for 
exploring the phenotypes obtained by HTP technologies, 
such as the discovery of the pattern of milk MIR wave-
points over time and the report of the genetic correlation 
of milk MIR wavepoints at different time points. The 
results of this study also provide an example of the inte-
gration of molecular phenotypes obtained by HTP tech-
nologies into animal breeding. For example, wavepoint 
and focal trait analysis directly through the TT model can 
improve the phenotype and genomic breeding value pre-
diction accuracy of focal traits in new herds. The novel 
approximate method to predict the TT genomic breed-
ing values will enhance the applicability of MegaLMM 

in animal breeding. This study provides an example to 
explore the challenge of an increasingly large number of 
traits included in animal breeding program.
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Nonstandard abbreviations used: AI-REML = aver-
age information REML; ACH4 = average methane pro-
duction; AFP = average fat percentage; ASCS = average 
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Table 3. The genomic breeding values prediction accuracies1 of average fat percentage (AFP), average methane 
production (ACH4), and average SCS (ASCS0 within the first parity (11 mo) from single-trait and thousand-trait 
models2

Model

AFP

 

ACH4

 

ASCS

MegaLMM AI-REML MegaLMM AI-REML MegaLMM AI-REML

Single-trait 0.59 (0.00) 0.57 0.47 (0.01) 0.47 0.39 (0.01) 0.40
Thousand-trait 0.86 (0.01) NA 0.78 (0.03) NA 0.59 (0.05) NA
Increased3 (%) 47.14 NA 64.77 NA 49.98 NA
1Formula for prediction accuracy is from Legarra and Reverter (2018).
2Values in parentheses are the SD of the 800 saved MCMC samples. MegaLMM = mega-scale linear mixed 
method; AI-REML = average information REML; NA = not applicable.
3Increased percentage of prediction accuracy from the single-trait model to the thousand-trait model in each trait.

https://github.com/Yansen0515/MegaLMM_for_Animal
https://github.com/Yansen0515/MegaLMM_for_Animal
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SCS; FP = fat percentage; HTP = high-throughput pheno-
typing; MCMC = Markov chain Monte Carlo; MegaLMM 
= mega-scale linear mixed model; MIR = mid-infrared; 
MT = multitrait; NA = not applicable; PC = principal 
components; ST = single-trait; TT = thousand-trait; Û = 
GEBV of multiple traits from new approximated methods; 
U = GEBV of multiple traits; u = GEBV of a single trait.
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