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Abstract
Regular monitoring of body condition score (BCS) changes during lactation is a 
crucial management tool in dairy cattle; however, the current BCS measurements 
are often discontinuous and unevenly spaced in time. The aim of this study was 
to investigate the ability of random regression test- day models (RR- TDM) to pre-
dict BCS for the entire lactation in dairy cows even if the actual scoring is limited 
to one BCS record. The data consisted of test- day records of milk yield (MY), fat 
percentage (FP), protein percentage (PP) and BCS (based on a 9- point scale with 
unit increments; 1–9) collected from 2014 to 2022 in 128 herds in the Walloon 
Region of Belgium. In total, 20,698 test- day records on 2166 first- parity Holstein 
cows (2–12 with an average of 9.42 test- day records per cow) were available for 
MY, FP and PP; and 7985 records on the same animals (2–12 with an average 
of 3.68 records per cow) were available for BCS. To estimate the solutions, only 
one randomly selected BCS record per animal along with all her MY, FP and PP 
records were used, which were then used to predict BCS data (calibration set). 
The remaining BCS (1–11 with an average 2.86 BCS records per animal) were 
used to evaluate the goodness of the predictions (validation set). Multiple- trait 
RR- TDM was used to estimate (co)variance components through the average in-
formation restricted maximum likelihood (AI- REML) algorithm. Predicted BCS 
were grouped into nine classes as the original observed BCS used for comparison. 
Pearson correlation between the predicted and observed BCS, prediction error 
(PE), absolute prediction error (APE) and root mean squared prediction error 
(RMSE) were calculated. Mean (standard deviation; SD) BCS was 4.97 (1.01), 4.95 
(1.07) and 4.98 (1.00) BCS units in the full, calibration and validation datasets, 
respectively. Pearson correlation between the observed and predicted BCS was 
0.71, mean (SD) PE was 0.04 (0.52) BCS units, mean (SD) APE was 0.48 (0.53) BCS 
units and RMSE was 0.72 BCS units. These findings demonstrate the ability of RR- 
TDM to predict BCS for the entire lactation using a single BCS record along with 
available test- day records of milk yield and composition in Holstein dairy cows.
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1  |  INTRODUCTION

The body condition score (BCS) is a subjective metric 
routinely used worldwide to assess the body reserves of 
individual cows. Using formulated rations, appropriate 
feeding systems and good management allow cows to 
maintain at their ideal body condition throughout the 
lactation cycle. BCS reflects the body reserves in cows 
and is a good predictor of health and welfare and is rec-
ognized by animal scientists and producers as the most 
useful management tool in dairy cattle management 
(Dechow et al., 2004). The associations between BCS and 
milk production, postpartum anestrous, the risk of uter-
ine infection and the risk of metabolic disorders have 
been documented (Berry et al., 2007; Roche et al., 2013; 
Souissi & Bouraoui,  2019; Waltner et  al.,  1993), justi-
fying the interest in BCS as a trait for genetic evalua-
tions. Furthermore, monitoring individual cow body fat 
and maintaining adequate body condition is essential 
to maintain a productive animal that has appropriate 
nutrition and fertility, while also producing acceptable 
amounts of milk (Berry et al., 2003; Roche et al., 2007; 
Zink et al., 2011). Thus, BCS is considered as an import-
ant candidate to be incorporated into decision support 
systems in the near future to help producers in making 
decisions. It is important to emphasize that a BCS can 
provide a historical view of what has happened with the 
animal in recent weeks and tracking changes in BCS 
is probably of greater value than identifying absolute 
measures of body condition (Bewley & Schutz,  2008; 
Garnsworthy, 2006). BCS may also be a valid indicator 
of animal welfare and indirectly of environmental fac-
tors influencing welfare (e.g. feeding and heat stress); 
however, further research is needed to determine the ef-
fect of BCS and BCS change on animal welfare (Mee & 
Boyle,  2020). Therefore, having continuously available 
BCS measurements would be a major interest for dairy 
herd management. Body condition scoring is tradition-
ally assessed by either visual appraisal or by feeling the 
spinous processes of the loin and around the tail area; 
and despite being subjective, BCS is currently a favoured 
practical method of evaluating the proportion of body 
fat.

In most countries, cows are given a BCS based on 
a 5- point scoring system (1–5) with quarter points 
(Edmonson et  al.,  1989; Wildman et  al.,  1982); how-
ever, there are various BCS systems evolved across the 
world such as a 6- point scale (0–5) proposed in the 
United Kingdom (Mulvany, 1977), an 8- point scale (1–8) 
developed in Australia (Earle,  1976) and a 10- point 
scale (1–10) introduced in New Zealand (Macdonald & 
Roche,  2004). Dairy cows are given a BCS based on a 
9- point scale with unit increments (1–9) in the Walloon 

Region of Belgium (Bastin et  al.,  2007). Regardless of 
the scale used to measure BCS, low values always reflect 
emaciation and high values equate to obesity (Bastin 
et  al.,  2007; Roche et  al.,  2009; Wildman et  al.,  1982). 
Although the traditional body condition scoring is an 
easy- to- learn technique, this approach requires labour 
time and thus the BCS data recorded by producers are 
lacking for inclusion in genetic evaluations or into de-
cision support systems. The potential ability of various 
methods such as utilizing digital image and machine 
learning algorithms, as well as using live body weight, 
milk yield and composition and mid- infrared (MIR) 
spectrometry data for predicting BCS has been consid-
ered (De Vries et al., 2013; Frizzarin et al., 2023; Martins 
et  al.,  2020). However, these procedures need an ini-
tial capital cost as well as routine maintenance costs. 
Therefore, animal scientists are looking for a solution 
which can predict accurate BCS data routinely at little 
to no marginal cost.

Although test- day model (TDM) is an effective tool 
for genetic evaluation in dairy cattle, its application for 
herd management purposes has not been emphasized. 
TDM could allow the prediction of future yields or the 
extension of incomplete lactation records; however, 
it needs a simple reparameterization as described by 
Mayeres et al.  (2002). The contemporary group is used 
to remove biases from genetic evaluations; however, 
its definition in TDM is often problematic as it can be 
defined as either fixed or random. Considering contem-
porary groups as fixed removes bias caused by the asso-
ciation between effects corresponding to contemporary 
groups and sires. Considering contemporary groups as 
fixed removes bias caused by the association between 
effects corresponding to contemporary groups and sires 
and it has the advantage that expected breeding value 
is not a function of fixed effects (Van Vleck,  1987). 
However, the use of fixed effects may cause problems 
when dealing with small classes, as would be the case 
with small herds. On the other hand, considering 
contemporary groups as random could result in an 
increased effective number of daughters but at the ex-
pense of potential bias (Van Vleck,  1987). In test- day 
model (TDM), fixed herd- test- day (HTD) effect has been 
widely used since the early days of test- day modelling 
(Ptak & Schaeffer, 1993). This effect theoretically allows 
unbiased comparison of animals, but, for some cases, 
especially those with small herd size, the inclusion of 
the HTD effect as the contemporary group may not be 
an optimal choice (Swalve, 1995). Mayeres et al. (2002) 
proposed a straightforward modification by substituting 
the HTD fixed effect with three herd- test- related effects: 
a fixed herd- test- month period (HTMp) effect, a fixed 
herd- test- year (HTY) effect and a random herd- test- day 
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(HTDr) effect. The HTMp and HTY effects consider the 
herd level and its potential seasonal trend, while HTDr 
effect considers the effect of the herd at a specific test 
date, which is not assigned to HTM and HTY effects. By 
considering HTDr as random, the solutions for the HTDr 
effect are regressed towards zero for the HTD classes.

The aim of this study was to investigate the ability of 
random regression test- day models (RR- TDM) to predict 
BCS for the entire lactation in Holstein cows based on one 
randomly selected BCS record and their routinely record-
ing information.

2  |  MATERIALS AND METHODS

2.1 | Phenotypic data

The data used consisted of test- day records of milk yield 
(MY), fat percentage (FP), protein percentage (PP) and 
BCS collected from 2014 to 2022 on first- parity Holstein 
cows distributed in 128 herds in the Walloon Region of 
Belgium. Age at the first calving was calculated as the dif-
ference between calving date and birth date and restricted 
to the range of 540–1200 days. Daily MY, FP and PP were 
restricted to range from 3 to 70 kg, 1%–9% and 1%–7%, 
respectively. The dataset was edited to accommodate re-
cords between 5 and 365 days in milk (DIM). Cows were 
required to have records for MY, FP, PP and BCS for at 
least two test days. Herds with fewer than 10 cows were 
removed from the data set.

The final dataset comprised 20,696 test- day records 
on 2166 dairy cows (2–12 with an average of 9.56 test- day 
records per cow) for MY, FP and PP; and 7985 records 
(2–12 with an average of 3.68 records per cow) for BCS. 
The exact DIM of the milk traits and BCS records varied 
from cow to cow. All MY, FP and PP records available for 
the included animals were used for variance component 
estimations. However, only one BCS record per animal 
was randomly selected and used for the estimation of the 
variance components and the solutions, which were then 
used to predict the remaining data. The remaining BCS 
records (1–11 with an average of 2.68 records per animal) 
were used to evaluate the goodness of the predictions 
(Hereafter, we call them ‘ObsBCS’). Pedigree depth of the 
animals was traced back as far as available to include all 
ancestors of the animals. Full pedigree records included 
20,543 animals (4384 males).

2.2 | Variance component estimation

In this study, the (co)variance components were estimated 
based on a multiple- trait random regression test- day 

model (RR- TDM) using the second- order polynomials 
(Mayeres et al., 2002) and the remodelled HTD effect sug-
gested by Mayeres et al. (2002). The matrix notation of the 
model is:

where y is the vector of observations,  b = [μ, HTY, HTMp, 
AS, LS]t is the vector with fixed effects, where μ = the over-
all mean, HTY = herd- test- year- period (two classes were 
defined for test- year- period: test years of 2014–2016 and 
2017–2022); HTMp = herd- test- month- period (defined as 
the herd- test- season: winter from January to March, spring 
from April to June, summer from July to September and au-
tumn from October to December); AS = calving- age- calving- 
season (defined as age at calving class (three classes were 
created for age at calving) × season of calving × major lacta-
tion stage (three classes: DIM 5–50, 51–200 and 201–365)); 
LS = minor lactation stage to model the average lactation 
curve (DIM 5–15, 29 10- day classes for DIM 16–305 and 
two 30- day classes for DIM 306–365); t is the vector of the 
random herd- test- day effect (HTDr); h is the vector of com-
mon herd- calving- year- period (HY) environmental random 
regression coefficients (three classes were defined for HY: 
calving years of 2014, 2015–2017 and 2018–2022); p is the 
vector of permanent environmental random regression co-
efficients; a is the vector of genetic random regression coef-
ficients; e is the vector of residual effects; X, U W1, W2 and 
Z are the corresponding incidence matrices; and Q is the 
covariate matrix for second- order Legendre polynomials. 
Covariances across all these random and the residual effects 
and the four traits were represented symbolically as follows:

Where, expressing the covariances between the four 
traits, D is the 4 × 4 covariance matrix among herd- test- 
day effects, HY is the 12 × 12 covariance matrix among 
herd- calving- year- period regression coefficients, P is the 
12 × 12 covariance matrix among permanent environmen-
tal regression coefficients, G is the 12 × 12 covariance ma-
trix among additive genetic regression coefficients; A is 
the numerator relationship matrix based on the pedigree, 
⊗ represents the Kronecker product function, I are iden-
tity matrices representing the number of levels for each 
effect and the number of observation for the residuals, and 
R contains residual covariances between traits (4 × 4 (co)
variance matrix). Based on the initial test and to decrease 
model complexity, the residual variance for each trait 

y = Xb +Ut +Q
(
W1h +W2p + Za

)
+ e

Var

⎡
⎢⎢⎢⎢⎢⎢⎣

t

hy

p

a

e

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

D⊗I 0 0 0 0

0 HY⊗I 0 0 0

0 0 P⊗I 0 0

0 0 0 G⊗A 0

0 0 0 0 R

⎤⎥⎥⎥⎥⎥⎥⎦
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was assumed to be homogeneous throughout lactation. 
Variance components were estimated using the average 
information REML (AIREML) algorithm implemented in 
the blupf90 family programs (Misztal et al., 2018).

2.3 | Computation and validation of BCS 
predictions

The same multi- trait linear model was used to predict 
BCS test- day records as described by Mayeres et al. (2002). 
Estimates of all effects resulted directly from the solutions 
of the model used for estimation of variance components. 
This procedure theoretically allowed the prediction of 
BCS records for all possible DIM as all fixed effects were 
defined independently from a specific test- date. However, 
because only monthly milk recordings were available, 
BCS predictions were restricted to the specific herd- test 
dates aligned with milk yield and composition records. 
Vector of BCS estimates (ŷ∗BCS), hereafter called ‘prdBCS’, 
was generated using the following formula:

where all incidence matrices marked by the a ‘*’ related 
missing observations of BCS to relative solutions. Then, the 
predicted BCS values were rounded off to the nearest inte-
ger. Estimates of residuals 

(
ê
∗

BCS

)
 for BCS at these specific 

herd- test dates were also required and obtained by computa-
tions equivalent to multiple linear regression from residuals 
for MY, FP and PP at these test- dates:

where RBCS−MY,FP,PP represent the residual covariances be-
tween BCS and MY, FP and PP. The matrix RMY,FP,PP repre-
sent the covariances among MY, FP and PP.

Then, the prdBCS values were screened to keep those 
aligned with observed values that were not used in the 
variance component estimation (obsBCS). Pearson cor-
relation between the prdBCS and obsBCS, prediction error 
(PE: prdBCS – obsBCS), absolute prediction error (APE: 
|prdBCS – obsBCS|) and root mean squared error (RMSE) 
were calculated to evaluate the goodness of the predictions. 
The agreement between the prdBCS and obsBCS was an-
alysed with Cohen's kappa coefficient. Cohen's kappa co-
efficient can result in values between −1 and +1, where 0 
represents the amount of agreement that can be expected 
from random chance and 1 represents perfect agreement. 
While kappa values below 0 are possible, Cohen notes 
they are unlikely in practice (McHugh, 2012). The results 

of the kappa test can be interpreted according to the classi-
fication k < 0.00 = poor, 0.00–0.20 = slight, 0.21–0.40 = fair, 
0.41–0.60 = moderate, 0.61–0.80 = substantial and 0.81–
1.00 = almost perfect agreement (Landis & Koch, 1977).

3  |  RESULTS

The descriptive statistics for the studied traits are pre-
sented in Table 1. Daily milk yield averaged 23.0 kg (4.00% 
fat and 3.36% protein) and the mean BCS was 4.97 BCS 
units. Number of records according to DIM for milk traits 
(MY, FP and PP) and BCS are presented in Figure 1. The 
quantity of BCS records reduced from the start to the end 
of the lactation. The number of records ranged from 20 
to 85 (mean = 57.3) per DIM for milk yield traits, 2–44 
(mean = 22.1) for BCS records in the full dataset, 1–13 
(mean = 6.2 records) for BCS records used for estimation 
of solutions and 2–32 (mean = 16.1 records) for BCS re-
cords used for the validation of the prediction. Genetic pa-
rameters estimated for the examined traits are presented 
in Table 2. Average daily heritability for BCS was 0.11 and 
its average daily genetic correlations with MY, FP and PP 
were −0.25, −0.07 and 0.09, respectively.

Trend BCS throughout lactation showed the usual de-
crease in BCS after calving until a few weeks in lactation 
after which BCS increased again (Figure  2a). Trends ob-
served and predicted BCS throughout lactation followed 
similar patterns (Figure 2b). Figure 2c shows the mean PE 
according to DIM. Mean (SD) PE was 0.04 (0.52) and var-
ied from −1.58 to 0.83 BCS units depending on the DIM. 
Figure 2d shows the average APE according to DIM. Mean 
(SD) APE was 0.48 (0.53) BCS units. The APE for 3582 
(62%) and 4873 (84%) of BCS records was less than 0.50 
and 1.00 BCS units, respectively. The APE for only 100 BCS 

ŷ
∗

BCS = X∗b̂BCS +U∗t̂BCS +W1
∗ĥBCS +W2

∗p̂BCS + Z∗âBCS + ê
∗

BCS

�e
∗

BCS =
�
RBCS−MY, FP,PP ⊗ I∗

��
RMY, FP,PP⊗I∗

�−1
⎡
⎢⎢⎢⎣

�eMY

�eFP
�ePP

⎤⎥⎥⎥⎦
T A B L E  1  Descriptive statistics for milk yield, milk composition 
and body condition score (BCS) data used.

Records 
(animals) Mean (SD)

Mean 
(SD) days 
in milk 
(DIM)

MY (kg) 20,698 (2166) 23.00 (6.10) 170 (98.5)

FP (%) 20,698 (2166) 4.00 (0.65) 170 (98.5)

PP (%) 20,698 (2166) 3.36 (0.35) 170 (98.5)

BCSa 7985 (2166) 4.97 (1.01) 160 (95.0)

BCSb 2166 (2166) 4.95 (1.07) 155 (94.2)

BCSc 5819 (2166) 4.98 (0.99) 162 (95.2)

Abbreviations: FP, fat percentage; MY, milk yield; PP, protein percentage.
aBCS records in the full dataset.
bBCS records in the calibration dataset.
cBCS records in the validation dataset.
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records (less than 2% of all BCS records) was more than 
2.00 BCS units. The mean APE was highest for prdBCS of 
9 (three records; mean APE = 2.79 BCS units) followed by 
prdBCS of 8 (55 records; mean APE = 1.19 BCS units), and 
prdBCS of 2 (16 records; mean APE = 0.90 BCS units).

Distribution of prdBCS against their corresponding 
obsBCS is presented in Table 3. The results showed that 
the number of predicted BCS records of classes 5 and 6 is 
slightly more than those for observed BCS. The correlation 
between the obsBCS and prdBCS was 0.71 (95% CI = 0.69–
0.72). The RMSE of the procedure used in this study was 
0.72 BCS units. The kappa test revealed an agreement 
of κ = 0.67 (95% CI = 0.65–0.69) revealing a substantial 

agreement between the prdBCS and obsBCS. For 3582 
records (61.56% of 5819 BCS records), the prdBCS and 
obsBCS were identical, while for 1917 records (33% of 
5819 BCS records), the prdBCS were deviated from the 
obsBCS by ±1 BCS units.

4  |  DISCUSSION

Although there are digital- based procedures to be used 
in routine body condition scoring (Martins et al., 2020), 
these procedures need an initial capital cost as well as 
routine maintenance costs. Therefore, animal scientists 

F I G U R E  1  Number of records according to days in milk (DIM) for milk yield traits (a), body condition score (BCS) in the full dataset 
(b), BCS in the calibration dataset (c) and BCS in the validation dataset (d).

MY FP PP BCS

MY (kg) 0.16 (0.02) −0.44 (0.12) −0.45 (0.05) −0.25 (0.23)

FP (%) −0.38 (0.10) 0.22 (0.04) 0.61 (0.08) −0.07 (0.09)

PP (%) −0.46 (0.13) 0.56 (0.26) 0.25 (0.05) 0.09 (0.14)

BCSa −0.03 (0.30) 0.17 (0.09) 0.16 (0.07) 0.11 (0.03)

Abbreviations: FP, fat percentage; MY, milk yield; PP, protein percentage.
aBCS records in the calibration dataset.

T A B L E  2  Average (SD) daily genetic 
correlations (above the diagonal), daily 
heritabilities (diagonal) and permanent 
environmental correlations (below the 
diagonal) of milk yield, fat percentage, 
protein percentage and body conduction 
score (BCS).
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6 |   ATASHI et al.

and producers are looking for a solution which can pre-
dict accurate BCS data routinely at little to no marginal 
cost. Using mid- infrared (MIR) spectra of the milk has 
been suggested as a potential solution to predict BCS in 
dairy cows; however, accurate alignment of BCS data and 
MIR spectra is needed for calibration process in this pro-
cedure. De Vries et al. (2013) developed regression equa-
tions based on milk yield, milk composition (fat, protein 
and lactose) and body weight to predict BCS. Although 
recording live weight is not technologically arduous, it re-
quires labour time and thus the number of body weight 
records per animal is limited. Therefore, using body 
weight for predicting BCS could not be considered as a 
solution with a high penetrance rate among dairy cow 
producers. However, lactating dairy cows are milked 
daily; thus, using milk yield and composition to predict 
BCS could be rapidly adopted with a high penetrance 
rate at minimal marginal cost. In this study, the ability 
of RR- TDM to predict BCS for the entire lactation using a 
single BCS record along with available test- day records of 
milk yield and composition was investigated. The results 
showed that although RR- TDM tends to slightly overesti-
mate BCS, it has the potential to predict BCS of dairy cows 
throughout lactation with moderately high accuracy from 

very limited information. The prediction accuracy was 
lower for DIM 306–365 than those found for DIM 5–305 
which can be attributed, at least in part, to lower number 
of milk production and BCS records in the final 2 months 
of lactation. Therefore, using a bigger dataset or exclud-
ing data on DIM >305, may result in higher accuracy and 
higher correlation between observed and predicted BCS. 
In addition, higher APE was found for BCS class 8 and 
9, two most frequent BCS classes in the last 2 months of 
lactation, which can partly explain why lower accuracy 
was found for DIM 306–365 than the rest of lactation pe-
riod. Mayeres et al. (2004) reported that RR- TDM has the 
potential to predict milk yield and composition with high 
accuracy for most of the lactation period, but lower accu-
racy for DIM 306–365. The RMSE of the procedure used 
in this study was 0.72 BCS units (equal to 0.36 BCS units 
in the 5- point scoring system). De Vries et al. (2013) used 
milk yields, milk composition (fat, protein and lactose) 
and body weight to predict BCS (5- point scoring system) 
throughout lactation for Holstein cows and reported a 
RMSE of 0.31 BCS units. Even with the best model pos-
sible, many predictions will still differ from the observed 
values; the results of this study demonstrate that the RR- 
TDM can use records of current BCS and milk traits to 

F I G U R E  2  Observed body condition score (BCS) averaged by days in milk (DIM) in the full dataset (a); predicted and observed BCS 
averaged by DIM in the validation dataset (b); distribution of BCS prediction error averaged according to DIM in the validation dataset (c); 
distribution of absolute prediction error BCS averaged according to DIM in the validation dataset (d).
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predict BCS change throughout lactation with relatively 
high accuracy. This method could be easily incorporated 
into recording systems for predicting BCS for all DIM 
for which milk yield or composition data are available. 
Thus, compiled data on BCS could also be used in genetic 
evaluations either as a goal trait itself or as a predictor of 
another trait of importance (e.g. health and fertility). In 
addition, the procedure introduced by this study can use 
records of current BCS and milk traits to predict future 
BCS and could be considered an important tool for herd 
management.

5  |  CONCLUSIONS

This study showed that RR- TDM has the potential to pre-
dict BCS of dairy cows throughout lactation with mod-
erately high accuracy from very limited, but routinely 
available Dairy Herd Information (DHI). This method can 
predict BCS for all DIM for which milk yield or composi-
tion data are available. Several conclusions and implica-
tions can be drawn here. First milk yield, fat and protein 
percentages are only the minimum information available 
through DHI. We can hypothesize that using MIR spectra- 
based predictions can be a better proxy than fat and pro-
tein percentages and should improve BCS predictions. 
Not only level of BCS at a given DIM, but also changes 
of BCS as modelled have the potential to allow inference 
on status of the cows given their feeding, health or wel-
fare. Research is needed to validate if regular computation 
and monitoring of predicted BCS compared to observed 
(i.e. lower than expected BCS) can also help identify cows 
that are more vulnerable to welfare issues as their suscep-
tibility to heat stress. Moreover, research should show if 
predicted BCS, especially when predicted using external 
information (e.g. MIR), can also be used as an additional 
trait in current genetic evaluation systems for BCS, where 
direct observed BCS recording is limited to type appraisal 
systems and therefore mostly only done once in first lac-
tation. Finally, BCS is often used as a predictor of other 
traits of importance like fertility. Again, the potential use-
fulness of predicted BCS in this context will need addi-
tional research.
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