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Abstract: Previous studies have shown that milk citrate predicted by milk mid-infrared spectra (MIR) is strongly affected by a few 
genomic regions. This study aimed to explore the effect of the weighted single-step GBLUP on the accuracy of genomic prediction (GP) 
for MIR-predicted milk citrate in early lactation Holstein cows. A total of 134,517 test-day predicted milk citrate collected within the first 
50 d in milk on 52,198 Holstein cows from the first 5 parities were used. There were 122,218 animals in the pedigree, of them 4,479 had 
genotypic data for 566,170 SNPs. Two data sets (partial and whole data sets) were used to verify whether the accuracy of GP is improved 
using the following different methods. The (genomic) estimated breeding values (EBV or GEBV) in the partial and whole data sets were 
estimated by pedigree-based BLUP (ABLUP), single-step GBLUP (ssGBLUP, pedigree-genomic combined using no weight for SNP), 
weighted ssGBLUP (WssGBLUP, pedigree-genomic combined using weighted SNP), respectively. The difference between the 2 data 
sets is that the phenotypic data from 2017 to 2019 in the partial data set were set as missing values. 181 youngest cows with genomic were 
selected as the validation population. A linear regression method was used to compare EBV (GEBV) predicted for partial and whole data 
sets. The accuracies of GP for ABLUP and ssGBLUP were 0.42 and 0.70, respectively. The accuracies of GP for WssGBLUP in the 5 
iterations with different CT (constant) values (determines departure from normality for SNP effects) ranged from 0.70 to 0.86. This study 
showed that weighted SNP is beneficial in improving prediction accuracy for predicted milk citrate.

Genomic prediction (GP) is widely used in animal breeding.
The methods used for GP in genomic evaluation are currently 

divided into two main classes: Bayesian (Meuwissen et al., 2001) 
and best linear unbiased prediction [BLUP, including SNP-BLUP, 
genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP)] 
methods. BLUP can perform the calculations more efficiently and 
is widely used in genomic evaluation in various countries, espe-
cially ssGBLUP (Legarra et al., 2009; Bermann et al., 2022). How-
ever, the advantage of Bayesian algorithms is that these methods 
consider the different variance of each SNP effect. The ssGBLUP 
assumes that all SNP effects have the same variance, which is in-
consistent with some real-life examples of traits affected by major 
genes (e.g., double-muscled in cattle, Grobet et al., 1997). There-
fore, Wang et al (2012) proposed the weighted ssGBLUP (Wss-
GBLUP) approach, which assigns different weights to SNPs to 
construct a new relationship matrix. Lourenco et al. (2017) showed 
that WssGBLUP is more effective when the number of genotyped 
individuals is small, and few QTL affect traits. Local breeds or 
novel traits (e.g., methane production) often have genomic data 
for only a few animals. Therefore, WssGBLUP may enhance the 
accuracy of GP for the local breeds or novel traits.

Negative energy balance (NEB) is a condition encountered by 
almost all high-producing dairy cows during early lactation. NEB 
is detrimental to the reproduction, metabolism, and infectious dis-
eases of dairy cows (Walsh et al., 2011; Zachut et al., 2020), which 
may cause economic losses to farmers and reduce the welfare of 

dairy cows. However, direct measurement of NEB is challenging, 
prompting researchers to use blood or milk biomarkers to assess 
the energy status of dairy cows (Zachut et al., 2020). Blood non-
esterified fatty acids has been demonstrated as biomarkers for 
detecting NEB (Zachut et al., 2020), but testing it is very expen-
sive. Milk citrate is proposed as a novel biomarker of NEB and 
can be applied on a large scale through milk mid-infrared (MIR) 
spectra (Grelet et al., 2016, 2024). Our recent study showed that a 
few genomic regions have large effects on MIR-predicted citrate 
(Chen et al., 2024), consistent with other studies in different breeds 
(Sanchez et al., 2021).

This study aimed to investigate whether WssGBLUP improves 
the accuracy of GP for MIR-predicted citrate of Holstein cows in 
early lactation.

The data and model used for this study came from our recent 
work (Chen et al., 2024). Briefly, 134,517 MIR-predicted citrates 
(hereafter called citrate) from the first five parities of 52,198 Hol-
stein cows in 774 farms in the Walloon Region of Belgium were 
used. Citrate prediction model was based on the standardized milk 
MIR spectra extracted from the official milk record database of 
the Walloon Region of Belgium. The coefficient of determination 
and root mean square error of validation for the citrate equation 
were 0.86 and 0.07 mmol/L, respectively (Grelet et al., 2016). The 
used citrate data was limited to the early lactation (first 50 days in 
milk, DIM), a period in which most high-yielding Holstein cows 
are in NEB (Churakov et al., 2021). The used pedigree includes 
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122,218 animals, of which 4,479 (3,215 cows and 1,264 bulls) had 
data for 566,170 SNPs. Citrate in the first 5 parities was consid-
ered as one trait based on our latest research (Chen et al., 2024). 
Hence, a univariate repeatability model was employed to estimate 
both the variance components and (genomic) estimated breeding 
values (EBV or GEBV) for citrate. The model incorporated fixed 
effects: herd-year-season of calving, standardized DIM and its 
quadratic term, and standardized calving age with constant, linear, 
and quadratic regression (nested within parities); random effects 
included permanent environmental effects, additive animal genetic 
effects, and residual effects. To calculate the relationship matrix, 
either a single (H) or pedigree-based (A) relationship matrix was 
employed. The H matrix combined the A and genomic (G)-based 
relationship matrices, and then H was inversed by the method 
proposed by Aguilar et al. (2010). A is the numerator relationship 
matrix for all animals included in the pedigree; G is the genomic 
relationship matrix of genotyped animals obtained using the first 
formula described by VanRaden (2008):
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where Z is a matrix of gene content adjusted for allele frequencies 
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equal to the identity matrix, the combined relationship matrix (A 
and G) is the normal H matrix (ssGBLUP); if the diagonal of the D 
matrix is not equal to 1 (SNP weight), the combined relationship 
matrix (A and G) is weighted H matrix (WssGBLUP). The SNP 
weight was calculated based on the procedure proposed by Wang et 
al. (2012), however, the nonlinear A weights method (VanRaden, 
2008) was used in this study. The algorithm proceeds as follows:

	 1.	 t = 1, D(t) = I, G t( )
*  = ZD Zt( ) 'λ.

	 2.	 compute GEBV by WssGBLUP (the first iteration is ssG-
BLUP).
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	 6.	 Calculate G t+( )1
*  = ZD Zt+( )1 ' .λ

	 7.	 t = t +1
	 8.	 Loop to 2 or exit if t >5.

where CT is a constant value that determines the departure from 
normal distribution. If CT equates to 1, it is the normal distribution; 
1.050, 1.125 (default value), 1.500, and 2.000 were tested in this 
study. Previous studies have shown that citrate is strongly affected 
by a few genomic regions (Sanchez et al., 2021; Chen et al., 2024), 
therefore, the CT was set larger than 1. Five iterations were used in 

the study, which was used to optimize SNP weights and maximize 
accuracy gains (Cesarani et al., 2021).

Variance components and EBV (or GEBV) were estimated 
by using the BLUPF90+ (version 2.42) program (Misztal et al., 
2014). Variance components were estimated through the Average 
Information Restricted Maximum Likelihood Estimation method 
(AI-REML). The EBV (or GEBV) was calculated through ABLUP 
(or ssGBLUP and WssGBLUP). The SNP effect and weight were 
calculated using POSTGSF90 software (version 1.73) (Misztal et 
al., 2014).

A linear regression-based (LR) method developed by Legarra 
and Reverter (2018) was used to assess the prediction accuracy of 
the EBV (or GEBV) in young animals. The basic step of the LR 
method involves calculating the evaluation metrics by regressing 
the breeding value of the partial data set according to the breeding 
value of the whole data set. The pedigree and genome information 
of the whole and partial data sets were the same, but the phenotypic 
data were different. The phenotypes of the whole data set were 
from 2012 to 2019, while the phenotypes of the partial data set 
were from 2012 to 2016 (2017 to 2019 were set as missing values, 
n = 38,906). Both variance components and breeding values need 
to be estimated again in the partial data set. The 181 youngest cows 
(born after 2015) with genotypic were selected for the validation 
population. Four following metrics were used to measure predic-
tion validation results.

	 1.	 Prediction accuracy acc�( ) of the validation population is 
expected to be 1 if the evaluation is perfect, as defined be-
low

	 acc
cov
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u

� =
( )
−( )
ˆ ˆ,

,
u u

1 2σ

		  where ûp and ûw are vectors of EBV (or GEBV) of the 
validation population in the partial and whole data sets, 
respectively; f  is the average inbreeding coefficient of the 
validation population; σu

2 is the additive genetic variance.
	 2.	 Population bias (µwp) is expected to be 0 under an unbiased 

evaluation, as defined below

	 µwp p w= −ˆ ˆ ,u u

		  where ûp  and ûw  are average (G)EBV of the validation 
population in the partial and whole data sets, respectively.

	 3.	 Dispersion (bw,p) is expected to be 1 when there is no ob-
served dispersion, as defined below
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		  where all parameters are the same as described above.
	 4.	 Slope (bp,w) is expected to be 1 when the average reliability 

of the validation population is consistent between partial 
and whole datasets, as defined below
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		  where all parameters are the same as described above. The 
bp,w is utilized for assessing the relative stability in the 
average reliability of the validation population between 
estimates derived from partial and whole data sets. The 
data preparation and figure plot were performed using R 
(version 4.1.2, https:​/​/​www​.r​-project​.org/​).

The average and standard deviation of citrate were 9.04 and 1.65 
mmol/L, respectively. Table 1 shows the validated results from 
ABLUP and ssGBLUP for citrate. The acc�  and bp,w obtained from 
ssGBLUP increased by 65.19% and 85.28%, respectively, com-
pared with those derived from ABLUP. The µwp and bw,p from ssG-
BLUP were similar to the results from ABLUP. Similar findings 
were also reported by Cesarani et al. (2021). This confirms that 
genomic information is very beneficial for the genetic evaluation 
of citrate.

Figure 1 shows the validated results from WssGBLUP in the 
first 5 iterations. The acc�, bw,p and bp,w of WssGBLUP (iterations 
2–5) were better than those from ssGBLUP (first iterations), how-
ever, the µwp of WssGEBLUP was worse. The outcomes of WssG-
BLUP were evidently influenced by the CT value. The acc�  in-
creased with increasing CT values, consistent with the finding that 
citrate was affected by a few genomic regions (Sanchez et al., 
2021; Chen et al., 2024). The absolute µwp increased with increas-
ing CT values. This may be due to the gradual increase in the mean 
GEBV of the absolute values across the validation population. The 
bw,p worsens as CT increases; however, the bw,p reached its best 
value (0.99 or 1.01) in the second (or third) iteration when CT was 
equal to 1.500 (or 1.250). The bp,w also increased with increasing 
CT values. The bp,w reached its best value (0.82) in the second it-
eration when CT was equal to 2.000. Based on the above results, 
the 4 metrics of WssGBLUP can be relatively good in the second 
iteration. Teissier et al. (2018) also reported that the maximum 
prediction accuracy was obtained at the second iteration. In the 
second iteration, 2 metrics (acc�  and bp,w) reached its best value 
when CT was equal to 2.000, however, another 2 metrics (µwp and 
bw,p) performed worst. Therefore, the CT of 1.500 was chosen as 
the best value in this study. Previous studies have also reported that 
WssGBLUP is more beneficial for GP compared with ssGBLUP 
(Teissier et al., 2018, 2019; Mehrban et al., 2021). However, if no 
significant genomic regions were associated with the studied trait, 
WssGBLUP may have similar results to ssGBLUP (Teissier et al., 
2019; Cesarani et al., 2021).

There are aspects of this research that can be improved in the 
future. The number of the validation population is small (n = 
181). Therefore, more genotyped individuals are needed to be ac-
cumulated to further verify the results of this study. On the other 
hand, we demonstrate that WssGBLUP is beneficial for the GP of 
small reference populations (local breeds). The WssGBLUP used 
in this study is limited to single-trait analysis and cannot perform 
multi-trait analysis. Meuwissen et al. (2024) recently proposed an 
algorithm called GWABLUP: integrating GWAS results into GP. 
GWABLUP is capable of conducting multi-trait analysis, however, 
it is currently being extended to single-step analysis. Assigning 
weight to SNPs can be a quick way to improve GP in the presence 
of genes with large effects. SNP weight estimation can be derived 
from a variety of information, currently mainly from SNP effects, 
and multi-omics information may contribute to this.

This study confirms that genomic information is beneficial for 
the genetic evaluation of citrate. The results of this study demon-
strate that weighted SNP contributes to enhanced accuracy of GP 
for predicted milk citrate.
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Figure 1. Validated predicted milk citrate by linear regression (LR) for weighted single-step genomic BLUP (WssGBLUP, pedigree combine genomic using SNP-
weighted) in the 5 iterations with different CT values (n = 181 youngest cows). The weight of the SNP in the first iteration of all analyses was 1 (equated to ss-
GBLUP), so all results were the same. CT values determine departure from normality for SNP effects (When CT equals 1, the SNP effect is normally distributed).
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