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Abstract 
 
Railway infrastructure is crucial for transporting goods and passengers, making its maintenance and reconstruction vital for safety and 
reliability. Traditional methods reliant on manual surveys are time-consuming and prone to inaccuracies. Although 3D point cloud 
data provides detailed representations of railway environments, its unstructured nature complicates processing and modeling. This 
paper presents a methodology that combines deep learning with parametric modeling to reconstruct railway environments from 3D 
point cloud data, focusing on key components such as rails, catenary wires and poles. The results are represented in a standardized 
CityJSON format, in compliance with the Transportation module of CityGML 3.0, and textured to create photo-realistic 3D railway 
models. The proposed approach uses the KPConv (Kernel Point Convolution) architecture for semantic segmentation to classify 
railway components. The model is trained on Rail3D dataset and achieved a mean Intersection-over-Union (mIoU) of 84%. Instance 
segmentation of catenary poles is performed using Label Connected Components (LCC) algorithm, followed by a second-level 
classification through template matching using Fast Global Registration (FGR) and Iterative Closest Point (ICP). Rail reconstruction 
combines Region Growing and H-DBSCAN algorithms for clustering, vectorization for linear geometry extraction, and extension to 
ensure continuity despite gaps or noise in the data. Catenary poles are reconstructed using parametric models, taking as input a scale 
factor and a rotation matrix calculated from the extracted height and azimuth. Wires are added accordingly to connect the reconstructed 
poles. The methodology was validated on Belgian railway data, producing accurate, interoperable and photo-realistic 3D models 
suitable for digital twin integration, infrastructure monitoring and urban simulations. 
 
 

1. Introduction 

 
Railway infrastructure plays a crucial role in modern 
transportation, facilitating the efficient movement of goods and 
passengers. It offers significant economic, environmental and 
logistical benefits. To ensure optimal performance, railway 
networks require consistent maintenance and periodic 
reconstruction. Traditionally, these tasks have relied usually on 
manual surveys and physical inspections. While effective to 
some degree, such approaches are labor-intensive, time-
consuming and prone to human error, often limiting the precision 
and comprehensiveness of data collection. 
 
The arrival of advanced sensing technologies, particularly Light 
Detection and Ranging (LiDAR), has revolutionized the way 
railway modeling and analysis are performed. LiDAR 
technology employs laser-based scanning to generate highly 
accurate spatial data, capturing details of railway infrastructure 
in the form of high-resolution 3D point clouds. These point 
clouds offer a detailed view of the railway environments, 
including tracks, overhead lines, catenary poles, bridges and 
nearby vegetation. As a result, LiDAR provides engineers and 
decision-makers with a powerful tool to monitor infrastructure 
conditions, plan upgrades and enhance safety protocols. 
 
Despite its potential, the unstructured and complex nature of 
point cloud data presents significant challenges for processing 
and modeling, particularly in railway environments characterized 
by a diverse array of components and structures. Unlike 
traditional data formats, point clouds consist of millions—or 
even billions—of discrete points that lack inherent connectivity 
or predefined organizational structures. This makes it difficult to 
extract meaningful information, identify features and integrate 

the data into existing railway management systems. Moreover, 
variations in environmental conditions, such as occlusions 
caused by vegetation or weather, can further complicate the 
interpretation of LiDAR data. Addressing these challenges 
requires the development of robust algorithms and workflows 
capable of efficiently processing and analysing large-scale point 
cloud datasets while maintaining accuracy and reliability. 
 
As the demand for smarter and more resilient railway systems 
grows, leveraging LiDAR technology to create photo-realistic 
3D railway environments presents an opportunity to enhance 
infrastructure management. By transforming how railways are 
modeled, monitored and maintained, LiDAR can help meet the 
challenges of modern transportation systems, providing accurate 
3D point clouds to generate railway digital twins. 
 
This study proposes an integrated methodology combining deep 
learning and parametric modeling to address the challenges of 
railway reconstruction using 3D LiDAR point clouds. Semantic 
segmentation with KPConv classifies key components, while 
advanced instance segmentation techniques, such as Label 
Connected Components and H-DBSCAN, refine the 
identification of individual objects. The final step involves 
parametric reconstruction of the segmented components and 
exporting the models in the CityJSON format, ensuring 
interoperability with urban digital twins. 
 
The structure of this paper is as follows: Section 2 reviews related 
work, Section 3 describes the methodology, Section 4 presents 
the experiments and results, Section 5 concludes the paper and 
outlines future work. 
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2. Related Work 

 
Point cloud data has been increasingly used for railway 
infrastructure analysis, encompassing various tasks such as 
segmentation, modeling and digital twin development. Soilán et 
al. (2021) introduced a methodology for delineating railway 
lanes and generating alignment models, demonstrating the 
potential of automated workflows. However, object-level 
modeling in complex railway environments, such as junctions or 
stations, remains a challenge. Preprocessing steps, including 
noise filtering, segmentation, and normalization, are fundamental 
for effective analysis. Díaz Benito (2012) emphasized the 
importance of preprocessing, showing that sectional division and 
outlier removal are critical for reconstructing accurate rail 
geometries from point clouds. Similarly, Neubert et al. (2008) 
used RANSAC to detect rail tracks, but their work focused on 
detection without addressing detailed reconstruction. 
 
Advances in deep learning have revolutionized semantic 
segmentation of 3D point clouds. Techniques such as Kernel 
Point Convolution (KPConv), introduced by Thomas et al. 
(2019), have shown remarkable success in classifying complex 
railway components like rails, poles, and catenary wires. Despite 
these advancements, segmentation methods are often limited to 
isolating individual components and lack integration into 
structured parametric models. Riveiro et al. (2018) demonstrated 
the feasibility of parametric modeling for linear objects, yet 
significant challenges persist when applying these methods to 
more intricate railway setups. 
 
Digital twins represent the next frontier in railway modeling, 
offering dynamic and interactive systems for monitoring and 
managing infrastructure. Dekker et al. (2023) highlighted the 
increasing interest in digital twin technologies for railway 
applications but noted the scarcity of standardized datasets, 
which limits reproducibility and comparability in research. 
Despite these challenges, studies like that of Díaz Benito (2012) 
have demonstrated the feasibility of achieving sub-centimeter 
accuracy in rail reconstruction, paving the way for robust digital 
twin applications. 
 
 

3. Methodology 

 
Our methodology combines deep learning with parametric 
modeling to reconstruct railway environments from 3D point 
cloud data. The goal is to model key railway components—rails, 
catenary wires and poles—and represent them in a standardized 
CityJSON format. 
 
The process involves several key steps: First, semantic 
segmentation is applied to the railway point cloud using a trained 
KPConv model (Thomas et al., 2019) on Rail3D dataset 
(Kharroubi et al., 2024) to classify points into categories such as 
ground, rails, poles, and wires. Next, instance segmentation of 
catenary poles is performed using the Label Connected 
Components (LCC) algorithm in CloudCompare 
(CloudCompare, 2024), which isolates individual poles. The 
segmented poles are further classified through template 
matching, and global registration is achieved with the Fast Global 
Registration (FGR) and Iterative Closest Point (ICP) algorithms. 
Rail points are clustered using the Region Growing algorithm 
(Rusu & Cousins, 2011) and H-DBSCAN (McInnes et al., 2017) 
to ensure complete segmentation. The rail segments are 
vectorized and connected, with buffering and centerline 
extraction ensuring accurate reconstruction, while missing 

sections are filled as necessary. Finally, a parametric 
reconstruction method is used to model the extracted 
components, including rails, catenary poles, and wires, which are 
then exported into CityJSON format for integration into a digital 
model. 
 
3.1 Data description 

The study focuses on creating accurate and photo-realistic 3D 
railway models using LiDAR data. For this purpose, we are using 
Rail3D dataset (Kharroubi et al., 2024) to train our semantic 
segmentation models. The Rail3D dataset is the first multi-
context point cloud dataset designed for railway scene 
understanding. It includes three separate datasets from Hungary, 
France and Belgium, that were collected using different LiDAR 
sensors, ensuring a range of point densities and varying 
acquisition conditions. This diversity is important for building 
models that are accurate and adaptable across different railway 
environments. 
 
The Belgian railway point clouds, provided by INFRABEL, were 
collected using LiDAR technology as part of their ongoing 
efforts to monitor the railway network. The Z+F 9012 LiDAR 
sensor was mounted on the front of a train (EM202 vehicle), 
capturing point cloud data while the train travels along the tracks. 
Point clouds are collected for every railway line in Belgium at 
least twice a year, which is valuable for 3D change detection 
studies planned for future research. Along with LiDAR, four 
cameras (two at the front and two at the back) record color 
images, but for this study, only the LiDAR point clouds with 
intensity, and no color, were used. The data is stored in LAS 
format, with coordinates in Belgian Lambert 72 (EPSG:31370). 
Three areas in Belgium were chosen for the dataset: Brussels, 
midway between Brussels and Ghent and south of Ghent. 
 
The dataset has a length of 2 kilometers and consists of 39 million 
points distributed over 9 classes as illustrated in Figure 1: ground, 
vegetation, rail, poles, wires, signalling, fence, installation and 
building. 
 
 

 
 
Figure 1. Point cloud from the INFRABEL dataset, displayed in 
intensity (left) and corresponding labels (right). (Kharroubi et 

al., 2024) 
 
3.2 Semantic segmentation 

The Rail3D dataset is used to train 3D semantic segmentation 
models. Kharroubi et al. (2024) evaluated the performance of 
different state-of-the-art architectures including KPConv (Kernel 
Point Convolution). KPConv, introduced by Thomas et al. 
(2019), is a convolutional neural network architecture 
specifically designed for point cloud processing. It operates by 
defining convolution kernels directly in the 3D space, making it 
highly effective for learning geometric features in unstructured 
data. This enables KPConv to achieve superior performance in 
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tasks such as segmentation and classification on irregular 3D 
datasets like Rail3D. 
 
Therefore, a KPConv model for semantic segmentation is trained 
on the Belgian point cloud of Rail3D dataset and used to classify 
our raw LiDAR point cloud data into the above identified classes 
as shown in Figure 2. 
 
 

 
 

Figure 2. The results of semantic segmentation of the 3D point 
cloud using KPConv. 

 
3.3 Instance clustering 

To perform instance clustering of catenary poles, we use an 
unsupervised machine learning algorithm called Label 
Connected Components (LCC), available within the 
CloudCompare software (CloudCompare, 2024). LCC works by 
identifying connected points within the dataset that belong to the 
same object. By doing this, it effectively isolates individual poles 
as separate instances. This approach allows us to segment the 
poles from the surrounding data without requiring prior labeling 
or manual intervention. The result is a clear separation of each 
pole as its own distinct object as illustrated in Figure 3. 
 
Points of separated rails were clustered using Region Growing 
algorithm (Rusu & Cousins, 2011). A second clustering level was 
added using H-DBSCAN (Hierarchical Density-Based Spatial 
Clustering of Applications with Noise) to ensure correct and 
complete segmentation of rails (McInnes et al., 2017).  
 
 

 
Figure 3. Label Connected Components results on catenary 

poles. 
 
3.4 Registration 

After instance clustering, a second classification via template 
matching is applied by matching the segmented pole point cloud 
with a pre-defined catenary pole template database (Figure 4). 
Global registration is conducted using the Fast Global 
Registration (FGR) algorithm for coarse alignment, followed by 
refinement with the Iterative Closest Point (ICP) algorithm.  

For each pole, we calculate the Root Mean Squared Error 
(RMSE) of the registration to decide the best fit. As shown in 
Figure 5, the corresponding pole template presents the lowest 
error, thus, the best match for the extracted instance. 
 

 
 

Figure 4. Pre-defined catenary pole template database: (a) 
Double pole (b) Single pole. 

 
 

 
 

Figure 5. FGR/ICP registration with double pole template. 
 
3.5 3D modeling 

As shown in Figure 6, for rail reconstruction, the process begins 
with a vectorization step, where the point cloud of each rail 
segment is converted into linear geometry. This step is followed 
by an extension operation to connect the linear segments into 
continuous lines. To ensure precise and complete connections 
between these lines, a buffering technique is applied. The rails 
are then extracted as the centerlines of the resulting polygons. 
Any missing sections are identified by counting the number of 
detected rails and recreating the gaps, accordingly, ensuring a 
complete rail structure. 
 
Once the rails are vectorized, a parametric reconstruction method 
is used to model the extracted lines The tracks are generated from 
the vectorized rails using buffering and extrusion operations to 
produce the rail geometry. Sleepers are added to the model with 
a specified separating distance to replicate the physical layout of 
the tracks. 
 
Catenary poles are extracted as points, each with a height 
parameter derived from the original point cloud data. This height 
is used as a scale factor in the parametric design of the poles. The 
orientation of each pole is determined by calculating the azimuth 
of a line perpendicular to the rails that intersects the pole's 
position. This calculated azimuth is used to attribute a rotation 
matrix to the parametric 3D models, ensuring their correct 
alignment with the track geometry. 
 
For single-pole configurations, poles are placed on one side of 
the track, while for double-pole setups, they are placed on both 
sides. A cantilever structure is added to each pole to act as a 
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support for the catenary wires. These wires are reconstructed 
based on the geometry of the poles, incorporating their height, 
cantilever positions, and the number of rails covered by the pole. 
 

 
 

 
 
Figure 6. Rails before and after linearization: Before (Top) and 

After (Bottom) 
 
Between each pair of catenary poles, two types of wires are 
reconstructed. Linear wires represent straight connections, while 
curved wires are modeled as arcs to account for the natural sag 
of catenary systems. This reconstruction process ensures that the 
geometry of the wires aligns with the parametric design of the 
poles and the underlying rail tracks. The combined model of rails, 
sleepers, poles, and wires forms a comprehensive representation 
of the rail system. 
 
 
3.6 Models’ integration 

The final step involves exporting the reconstructed models into 
the CityJSON (Ledoux et al., 2019) format, a JSON encoding for 
CityGML 3.0 (Kutzner et al., 2020). Both formats are Open 
Geospatial Consortium (OGC) standards, and they define a 
conceptual model and exchange format for the representation, 
storage and exchange of virtual 3D city models.  
 

 
 

Figure 7. Results of the CityJSON railway model. 
Our approach consists of modeling most of the railway objects 
are reconstructed following the “Transportation” module. The 
tracks are modeled as objects of the “Railway” class, with rails 
as “TrafficArea” and sleepers as “AuxiliaryTrafficArea”. 

Meanwhile, the catenary wires and poles are considered 
instances of the “CityFurniture” class and modeled accordingly.   
 
 

4. Experiments and Results 

 
Our methodology was tested on railway point cloud data between 
Andenne and Huy, Belgium, and showed promising results. The 
fine-tuned KPConv model achieved a mean Intersection-over-
Union (mIoU) of 84% in semantic segmentation, demonstrating 
its performance in classifying railway LiDAR data even when 
RGB values are missing. Table 1 shows the overall accuracy 
(OA), mIoU and IoU of the relevant classes. 
 

OA mIoU Ground Rail Poles Wires 
0.99 0.84 0.99 0.95 0.97 0.99 

 
Table 1. Quantitative experimental results of KPConv 

inference. 
 
The instance segmentation of catenary poles using LCC was 
successful, and the poles classification based on the pre-defined 
template database and FGR/ICP registration produced minimal 
matching errors. The RMSE of the registration varies between 10 
to 30 centimeters depending on the data completeness and the 
existence of occlusions or not. The rail vectorization step resulted 
in a continuous and accurate rail model which confirms that our 
approach connects line segments representing the rail even in 
cases where parts are missing or misaligned due to noise or gaps 
in the point cloud data. 
 
Key components of the railway environment were successfully 
reconstructed in 3D, leveraging semantic and instance 
segmentation to guide parametric modeling. Figure 8 shows the 
results of 3D reconstruction of a continuous track model, 
including rails and sleepers. As shown in Figure 9,  catenary 
poles were modeled using extracted height and orientation 
parameters, ensuring alignment with the track geometry, while 
cantilever structures were added to support the catenary system. 
Finally, wires were reconstructed as linear or curved elements to 
reflect their natural sag and connectivity between poles. The 
results are illustrated in Figure 10. Together, these elements form 
a comprehensive 3D representation of the railway infrastructure. 
 

 
 

Figure 8. 3D models of tracks showing rails and sleepers. 
 
Additionally, using 3D city model standards, CityGML3.0 and 
its CityJSON encodings, ensures that the models are compatible 
with urban modeling frameworks, which facilitates their 
integration into urban digital twins. Finally, to enhance realism, 
textures were applied to the 3D models, resulting in a photo-
realistic visualization of the railway environment, as shown in 
Figure 11. 
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Figure 9. 3D railway model with reconstructed poles. 
 
 

 
 
Figure 10. 3D railway model with all the reconstructed objects. 
 
 

 
 

Figure 11. 3D photo-realistic model of railways. 
 
 

5. Conclusions 

 
This study demonstrates an integrated methodology for 
reconstructing railway environments from 3D point cloud data 
using a combination of deep learning and parametric modeling 
techniques. Key railway components, including rails, catenary 
poles, and wires, were successfully segmented, classified, and 
reconstructed in 3D with high accuracy. Semantic segmentation 
using KPConv achieved a robust performance, while instance 
clustering and registration methods ensured precise classification 
and alignment of catenary poles. The vectorization and 
parametric modeling techniques effectively handled gaps and 

noise in the point cloud, resulting in a continuous and accurate 
rail representation. 
 
The final models were exported in the CityJSON format, in 
alignment with CityGML 3.0 “Transportation” module. This 
ensures compatibility with urban modeling frameworks and 
supports integration into digital twins. By incorporating 
CityJSON, the methodology benefits from simplified data 
handling, interoperability and broader adoption in web-based 
applications. 
 
The results illustrate the feasibility of creating detailed and 
interoperable railway models, which can be used in future 
applications, such as infrastructure monitoring, change detection, 
and urban simulations. This approach establishes a foundation 
for further research into scalable and automated modeling 
techniques, including more assets like signals and other 
infrastructures. 
 
 

Acknowledgements 
 
This study is a part of the Belgian R&D project called 
“TrackGen” supported by Logistics in Wallonia and SPW 
Recherche. We sincerely appreciate their financial support.  
 
We would like also to thank our partners in the project, Transurb, 
GIM Wallonie and Sirris for their support and feedback, and 
INFRABEL for the provided testing data. 
 
 

References 
 
CloudCompare, 2024: CloudCompare (version 2.14) [GPL 
software]. 
 
Dekker, B., Ton, B., Meijer, J., et al., 2023: Point cloud analysis 
of railway infrastructure: A systematic literature review. IEEE. 
 
Díaz Benito, D., 2012: Automatic 3D modeling of train rails in a 
LiDAR point cloud. Master's thesis, University of Twente. 
 
Kharroubi, A., Ballouch, Z., Hajji, R., Yarroudh, A., Billen, R., 
2024: Multi-context point cloud dataset and machine learning for 
railway semantic segmentation. Infrastructures, 9(4), 71. 
doi.org/10.3390/infrastructures9040071. 
 
Kutzner, T., Chaturvedi, K., Kolbe, T.H., 2020: CityGML 3.0: 
New functions open up new applications. PFG – Journal of 
Photogrammetry, Remote Sensing and Geoinformation Science, 
88(1), 43–61. doi.org/10.1007/s41064-020-00095-z. 
 
Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, 
A., Vitalis, S., 2019: CityJSON: A compact and easy-to-use 
encoding of the CityGML data model. Open Geospatial Data, 
Software and Standards, 4(1), 4. doi.org/10.1186/s40965-019-
0064-0. 
 
McInnes, L., Healy, J., Astels, S., 2017: hdbscan: Hierarchical 
density based clustering. The Journal of Open Source Software, 
2(11). doi.org/10.21105/joss.00205. 
 
Neubert, M., Beger, B., Gedrange, C., Hecht, R., 2008: Detecting 
railway tracks in LiDAR data using RANSAC and profile 
classification. International Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-477-2024 | © Author(s) 2024. CC BY 4.0 License.

 
481



 

Riveiro, B., Conde, B., Caamaño, J., 2018: Parametric modeling 
of railway infrastructure using geometric primitives and 3D laser 
scanning. Transportation Research Record, 2672(3), 109–118. 
 
Rusu, R.B., Cousins, S., 2011: 3D is here: Point Cloud Library 
(PCL). In Proceedings - IEEE International Conference on 
Robotics and Automation. doi.org/10.1109/ICRA.2011.5980567. 
 
Soilán, M., Nóvoa, A., Sánchez-Rodríguez, A., Justo, A., 
Riveiro, B., 2021: Fully automated methodology for the 
delineation of railway lanes and the generation of IFC alignment 
models using 3D point cloud data. Automation in Construction, 
126, 103684. doi.org/10.1016/j.autcon.2021.103684. 
 
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, 
F., Guibas, L., 2019: KPConv: Flexible and deformable 
convolution for point clouds. In Proceedings of the IEEE 
International Conference on Computer Vision, 6410–6419. 
doi.org/10.1109/ICCV.2019.0065. 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W8-2024 
8th International ISPRS Workshop LowCost 3D - Sensors, Algorithms, Applications, 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-477-2024 | © Author(s) 2024. CC BY 4.0 License.

 
482




