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Abstract 
The African wild diploid cotton species, Gossypium longicalyx Hutch. & Lee. (2n = 2x = 26, F1F1) presents 
many valuable traits that can be introduced into Gossypium hirsutum to enhance its narrow genetic basis. To 
assess the possibility of using monosomic alien addition line (MAAL) of G. longicalyx in G. hirsutum in an 
interspecific breeding program, the progeny of ten MAALs was characterized. Chromosome counting allowed to 
identify the addition of single alien chromosome in 9 of the 10 lines studied. The analysis of the chromosome 
configurations at metaphase showed the presence of multivalent associations involving the supernumerary 
chromosome of G. longicalyx, indicating the occurrence of recombination between the G. longicalyx and G. 
hirsutum chromosomes. The use of microsatellite markers provided evidence of multiple introgressions of G. 
longicalyx DNA in the recipient species. It appeared from the SSR analysis that only four different 
supernumerary alien chromosomes were present in the studied MAALs. These results confirm the low genetic 
distance existing between the chromosomes of G. longicalyx and those of Ah sub-genome. They highlight the 
opportunities and constraints associated with the use of G. longicalyx in a breeding program of upland cotton. 
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1. Introduction 

Upland cotton belongs to the Malvaceae family and to genus Gossypium which consists of about 5 allotetraploid 
species (2n = 4x = 52) and more than 45 diploid species (2n = 2x = 26) (Fryxell et al., 1992; Percival et al., 1999; 
Ulloa et al., 2007). They are distributed in 9 genomic types AD, A, B, C, D, E, F, G, and K (Percival et al., 1999). 
Gossypium species are classified in gene pools depending on the fluency with which genes could be transferred 
from them to G. hirsutum. The primary gene pool contains all the Gossypium allotetraploids (2AD). Among 
these species, crosses are easy and the recombination frequencies are high. The secondary pool consists of A, D, 
B and F diploid genomes. A, B and F genomes are genetically close to A subgenome of AD cotton while D 
genome is directly related to D subgenome Once a fertile hybrid is produced, these genomes have a relatively 
high recombination frequency. The crosses with the tertiary gene pool including C, E, G, K genome Gossypium 
species are difficult with low recombination rate (Mergeai, 2006).  

The diversity of the G. hirsutum germplasm base is narrow because of its domestication (Brubaker et al., 1999) 
and intensive selection for yield, early maturity and cultivation adaptation (May, 1999). Species belonging to 
primary, secondary, and tertiary gene pools constitue interesting sources of diversity. The sole F-genome species, 
Gossypium longicalyx can provide many desirable traits, such as a finer, longer and stronger fiber, with a 
resistance to drought and immunity to the reniform nematode Rotylenchulus reniformis Lind. & Oliveira (Demol 
et al., 1978; Yik & Birchfield, 1984; Robinson et al., 2005). G. longicalyx is geographically close to a point of 
the A genome area of extension; they both present similar chromosome and genome sizes. Considering the high 
number of bivalents counted in AD × F allotriploid, recombination is expected to take part with the 



jas.ccsenet.org Journal of Agricultural Science Vol. 16, No. 9; 2024 

20 

chromosomes of the A subgenome more than with those of the D subgenome. The genomes of G. longicalyx and 
G. hirsutum may have a relatively high recombination frequency once a fertile hybrid is produced (Stewart, 
1995).  

Many attempts have been made to complete introgression of the economic traits of G. longicalyx into G. 
hirsutum (Phillips & Strickland, 1966; Demol, 1978; Koto, 1983; Frerich, 1995) through the exploitation of 
monosomic alien addition lines (MAALs) exploitations. 

MAALs carry one chromosome of the wild species in the genetic background of G. hirsutum. They provide 
valuable material for gene introgression and study (Peterka et al., 2004; Fang et al., 2004; Becerra Lopez-Lavalle 
et al., 2007; Fu et al., 2012). Introgressions have been pursued and achieved using MAALs in many crops such 
as wheat (Kong et al., 2008), rice (Jena et Khush, 1990; Multani et al., 2003), sugar beet (Gao et Jung, 2002) and 
cucumber (Chen et al., 2004). In the genus Gossypium, the development of MAALs has been reported from the 
following species In the genus Gossypium, the development of MAALs has been reported from the following 
species: G. stocksii (Schewdiman, 1978; Hau, 1981); G. anomalum (Hau, 1981), G. longicalyx (Koto, 1983), G. 
sturtianum (Rooney & Stelly, 1991), G. areysianum (Mergeai et al., 1993), G. sturtianum (Ahoton et al., 2003), 
G. somalense (Zhou et al., 2004), G. sturtianum (Sarr et al., 2011) and G. anomalum (Meng et al., 2020).. 

The objective of this work is i) to confirm the karyotype of the putative MAALs, and ii) to monitor the 
introgression of G. longicalyx chromosome fragments in the progenies of these stocks using SSR markers. 

2. Materials and Methods 
2.1 Plant Material 

The plant material consisted of the following genotypes: 

i) A variety of Congolese origin G. hirsutum L.: cultivar C2 (2n = 4x = 52, AhAhDhDh) (G107) and the accession 
G17 of G. longicalyx (2n = 2x = 26, FlFl) (G17) both present in the collections of Gembloux Agro Biotech’s 
greenhouses were used for the creation of the allohexaploid (Gossypium hirsutum L. × Gossypium longicalyx)2 
(G368) by Koto (1983) according to the aphyletic introgression method (Figure 1) (Mergeai, 2003). 
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Figure 1. Scheme of the aphyletic method 

 

ii) The selfed progeny of the allohexaploid (Gossypium hirsutum L. × Gossypium longicalyx)2 (G368).  

iii) The selfed progeny of the 10 MAALs (monosomic alien addition lines), numbered I to XII, obtained by Koto 
(1983) in the progeny of the bispecific hexaploid (G. hirsutum cv. C2 × G. longicalyx)2 (G368) that was created in 
Gembloux according to the aphyletic introgression scheme (Figure 1) (Mergeai, 2003). This plant material was 
provided by the gene bank of CIRAD (France).  

G numbers correspond to the classification of the accessions and hybrids in the Gembloux Agro-BioTech Cotton 
Gene Bank (Maréchal, 1983). 

The numbering of chromosomes was etablished from to the phenotypic correlation between the isolated types and 
those of G. anomalum and G.stocksii MAALs described by Poisson (1970), Schwendiman(1978) and Hau (1981). 

The progenies of MAALs (MAAL I to X) were pre-germinated in steam at 30 °C for 48 hours and then grown in 
pots in the Gembloux Agro-BioTech greenhouses where no effective control of the growing conditions was 
possible; light, temperature and relative humidity were mostly influenced by outside conditions and were very 
variable. The relative humidity was 25-45%, and the temperature in the greenhouse varied from 25 °C to 55 °C 
during the day and from 18 °C to 35 °C at night. 

2.2 DNA Extraction 

Total genomic DNA was extracted from the young leaves of the two parents, G. hirsutum and G. longicalyx; the 
allohexaploid; and the MAAL progeny as described in the protocol of Benbouza et al. (2006a). Total genomic 
DNA was extracted with chloroform isoamyl alcohol (24:1) and precipitated with isopropanol. Each extracted 
DNA pellet was suspended in 50 µl TE and incubated overnight at room temperature before being stored at 
-20 °C. 

 

G. hirsutum L. var C2    ×    G. longicalyx Hutch. & Lee. 
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2.3 SSR Genotyping 

The microsatellite (SSR) markers used in this study were developed at Brookhaven National Laboratory (prefix 
BNL) and at CIRAD (prefix CIR). The SSR markers were tested on the plant material in order to monitor the 
introgression of G. longicalyx chromosome fragments in G. hirsutum genetic background Total genomic DNA 
was extracted from young leaves of the plant material. PCR amplification was performed with PTC 100 and 200 
Thermal Cyclers following the protocol by N’guyen et al. (2004).  
After the addition of 10 μl of loading buffer (98% formamide, 10 mM EDTA, bromophenol blue, and xylene 
cyanol), the PCR products were denaturated at 92 °C for 2 min. Then, 5 μl of each sample was loaded onto a 6% 
polyacrylamide gel with 7.5 M urea and electrophoresed in 1X TBE buffer at 110-120 W. Amplified SSR 
products were revealed by a silver staining technique (Benbouza et al., 2006b). Each of the thirteen linkage 
groups was screened with a minimum of five SSRs, except for the chromosome C3-C17, C9-C23, C11-C18 and 
C13-21, for which 3 SSR were used. Eighty-five pairs of SSR primers reported by N’guyen et al. (2004) were 
tested on the plant material.  

2.4 Cytogenetic Identification 

2.4.1 Mitotic Observations 

Freshly emerged root tips were used to determine the chromosome number of plants according to the protocol of 
D’hont et al. (1995). Chromosomes were counted in mitotic cells at metaphase. Young roots were excised and 
treated in 0.04% hydroxyquinoline at room temperature for 4 hours in the dark. The roots were fixed at 
metaphase in ethanol/glacial acetic acid (3:1) for 48 hours. Then, the roots were stored in 70% ethanol at 4 °C. 
After being washed in distilled water, the roots were hydrolyzed in hydrochloric acid and washed in distilled 
water and citrate buffer. The root tips were subjected to enzymatic maceration in an enzyme (5% cellulose 
Onozuka R-10, 1% pectolyase Y-23 in citrate buffer) at 37 °C for 1 hour. The tissues were then squashed onto 
slides in fresh fixative (3:1 ethanol:acetic acid). Chromosome preparations were air dried and stained with 4’, 
6-diamidino-2-phenylindole (DAPI)/VECTASHIELD before visualization and chromosome counting with a 
fluorescent light microscope.  

2.4.2 Meiotic Observation 

Meiotic analysis was performed on the pollen mother cells. Flower buds were selected, fixed in fresh Carnoy’s II 
fluid (glacial acetic acid 1: chloroform 3: and ethanol 6) for 72 hours at 4 °C and then stored in 70% ethanol at 
4 °C until analysis. Stamens were lacerated, and anthers were stained with 1.5% acetocarmine solution on a 
microscope slide. Chromosome staining was enhanced by heating up the sample between slide and coverslip 
over a flame. Chromosome analyses were performed at metaphase I with a Nikon Eclipse E800 photomicroscope 
(Nikon, Tokyo, Japan) under oil immersion. 

3. Results 
3.1 Morphological Traits of the MAALs 

From seed setting and seedlings observed with the seed samples received from CIRAD are summarized in Table 
1. The average germination rate of the seeds was high (70%), and the survival rate of the germinated seed was 
52%. Most of the plants presented the morphological traits of G. hirsutum (i.e., putative 4x euploid plants with 
52 chromosomes), and the other plants (38.5 %) had a distinctive phenotype (i.e., putative 4x + 1 monosomic 
addition plants with 53 chromosomes and putative 4x euploid plants carrying introgressed fragments). We 
noticed that plants of same and different lines presented a heterogenous development, particularly, plants of 
MAAL Fl IX have a very slow growth rates (Figure 2). The morphological characters of the MAAL progeny, 
such as the leaf color, leaf shape, lobule number, shape and size of boll, and flowers, were observed (Table 2).  
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Table 1. MAALs seed germination and plant development1 

Putative MAALs F1I F1II F1III F1IV F1V F1VI F1VII F1VIII F1IX F1X 

No. seeds sown 14 35 32 22 29 10 19 30 25 13 

No. germinated seed (%) 10(71) 25(71) 26(81) 11(50) 23(79) 8(75) 11(58) 21(70) 14(56) 10(77) 

No. plants grown (%) 4(40) 19(76) 11(42.3) 7(63.7) 19(82.6) 4(50) 2(18.2) 8(38) 2(14.3) 7(70) 

No. (%) plants with G. hirsutum phenotype 1(25) 21(100) 9(64.28) 5(71.42) 7(33.33) 2(50) 7(70) 2(14.28) 4(80) 4(66.66)

No. (%) 53 chromosomes plants  
corresponding to the phenotype  
described by Koto 1983 

1(25) 0 4(28.57) 1(14.28) 14(61.9) 2(50) 2(20) 12(71.42) 1(20) 2(33.33)

No. (%) 53 chromosomes plants with  
another phenotype 

    1(4.76)      

No. (%) 52 chromosomes introgressed plants 2(50) 0 3(21.42) 1(14.28) 0 0 1(10) 2(14.28) 0 0 

No. of plants with a determined karyotype 4 21 16 7 21 4 10 16 5 6 

Note. 1 Number of plants followed by the frequency (%). 

 

Table 2. MAALs morphological traits 

Genotype Morphological features 

G. hirsutum var Allen Few vegetative branches, leaves with 3-5 lobes, white flower, rounded 4- to 5-celled boll. 
G. hirsutum var C2 A shrub with leaves with 3-5 lobes, round or ovoid 3- to 5-celled boll 
G. longicalyx Crawling shrub, slender stem, pollen color deep yellow, leaves deeply divided triangular lobes, ovoid boll 

elongated with acute tip, 3 locules, 2 to 3 seeds per locule 
Hexaploid Crawling shrub, dark green small leaves, small ovoid boll with 3 lobes 
MAAL F l I Small plant, well-branched, small and dark-green leaves with 3-5 lobes, globular boll 
MAAL F l II Glabrous plant, many small leaves with 3-5 acute lobes, rounded three- or four-celled boll 
MAAL F l III Slender stem, little branching, large leaves with 4-5 lobes, abundant anthers and pollen, few bolls produced, 

large amount of cottonseed per boll, ovoid capsule 
MAAL F l IV Globular plant, few fruiting branches, small leaves, capsule globular and pointed 
MAAL F l V Small plant, small leaves, slow growing, round boll 
MAAL F l VII Light green leaves with 3-5 lobes, few fruiting branches, few bolls produced 
MAAL F l VIII Small bushy plant, many vegetative branches, light green leaves with 3 lobes, small round boll with 3-4 locules
MAAL F l IX Slow-growing plant, large leaves with 5-7 lobes, low pollen production, short fruiting branches 
MAAL F l XI Dark green leaves with 3-5 lobes, many vegetative branches, few small bolls, large number of cottonseeds 
MAAL F l XII Slender stem, small leaves with 3 lobes, few fruiting branches, large number of small globular bolls 

 

3.2 Cytogenetic Analysis 

Classical cytogenetic analysis revealed plants with either 52, 53 or 54 chromosomes per cell (Figure 3). The 
chromosome number is shown in Table 3. The highest frequency of plants was found with chromosome number 
2n = 52. A large number of plants (41.3%) carried a supernumerary chromosome identify (2n = 53) (MAAL Fl II, 
MAAL Fl III, MAAL Fl IV, MAAL Fl VIII, MAAL Fl XI, MAAL Fl XII). The transmission rates varied widely 
among the MAALS, MAAL Fl III showed the highest frequency of plants with 53 chromosomes (71.43%), 
followed by MAAL Fl V and MAAL Fl VIII (66.66%). No MAAL was isolated for MAAL Fl II. Of the ten lines 
analyzed, an extra chromosome was found in the mitotic plates of plants belonging to 9 lines (Table 3). In total, 
the highest frequency of plant was found with chromosome number 2n = 52 (56%), followed by 2n = 53 (33%). 
Some plants exhibiting a particular phenotype such as a slender steam, large leaves, small bushy plant, small boll 
was found to carry 2n = 52 chromosomes (10%). 
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species in G. hirsutum. These works used classical cytogenetic analysis combined with morphological 
observations (Hau, 1981; Koto, 1983; Rooney & Stelly, 1991; Mergeai, 1992). Using news methods, such as 
molecular genetic markers and molecular cytogenetic techniques, Zhou et al. (2004) isolated two MAALs of G. 
somalense in G. hirsutum (Ahoton et al., 2003; Sarr et al., 2011; Chen et al., 2014).  

Respectively identified six, five and thirteen of the possible MAALs of G. australe chromosomes in G. hirsutum, 
Meng et al. (2020) reported the development of a complete set of 13 MAALs of G. anomalum in G. hirsutum. 

The difficulty in obtaining MAALs is in the triploid hybrid sterility and the production of first generation 
derivatives from pentaploids. Fertility is restored by colchicine treatment, and MAALs are obtained by repeated 
backcrossing of the hexaploid to G. hirsutum, followed by selection. In this study, Pre-zygotic barriers can 
explain the low seed set observed in some MAALs.  

A large proportion of the plants presenting a distinctive phenotype were found to be MAAL or euploid plants 
carrying introgressed fragments. The effect of single supernumerary chromosome on phenotype has been 
reported in cucumber (Chen et al., 2004), allium (Vu et al., 2012) and cotton (Hau, 1981; Koto, 1983; Mergeai, 
1992; Ahoton, 2002; Sarr et al., 2012; Chen et al., 2014).  

A low transmission of the alien chromosome was observed in all MAALs except for MAAL Fl IX, MAAL Fl V 
and MAAL Fl VII carrying SSR markers associated respectively to the C1-C15, C4-C22 and C6-C25 linkage 
groups. The average alien chromosome transmission in this study was 33% (Table 3). The average alien 
chromosome transmission in the self-progeny of 3 MAALS of G. sturtianum in G. hirsutum was 23% (Rooney 
& Stelly, 1991). Two MAALS of G. areysianum in G. hirsutum presented an alien chromosome transmission of 
52% (Mergeai, 1992).  

Working on alien addition lines from G. australe in G. hirsutum, Sarr et al. (2011) reported a chromosome 
transmission rate of 100% for Chromosome 10Ga to 34% for chromosome 12Ga. For Chen et al. (2014) the 
highest incidence for an alien chromosome was 91.32 % for chromosome10Ga and the lowest one was 1.37% for 
chromosome 5Ga.  
Cytological analysis on chromosomal configuration at meiosis revealed multivalent associations in MAALs 
PMC. Indeed, the allohexaploid (2n = 78, 2(AhDhF1)) presented tri-, quadri- and pentavalents, indicating that 
homoeologous recombination should happen between the F and AD chromosomes at the hexaploid and 
pentaploid stages at a high or low frequency (Koto, 1983). 
Phylogenetic analysis suggested that the F genome of G. longicalyx is close to the A genome (Cronn et al., 2002). 
The affinities existing between the F-genome and the Dh subgenome chromosomes were low (21.6 univalents 
per cell according to Endrizzi et al. (1985). Recombination leading to introgression should have occured with the 
A subgenome chromosomes.  
The amplification rate of G. hirsutum microsatellites in G. longicalyx (60%) provides evidence of the wide 
conservation of sequences between the A genome of G. hirsutum and the F-genome of G. longicalyx. This 
amplification rate between G. australe and G. hirsutum was 56% (Sarr et al., 2011) and 66.2% (Chen et al., 
2014). The allohexaploid and the MAALs were found to be missing a specific locus of G. longicalyx BNL2589 
(C11-C21). The elimination of some DNA fragments may have occurred during colchicine diploidization or 
backcrossing. This phenomenon has been reported previously in cotton (Jiang et al., 2000), wheat (Shaked et al., 
2001) and tobacco (Skalicka et al., 2005).  

We noticed that BNL4030 and CIR222 mapped in the linkage group C4-C10 were highly transmitted. These 
findings may indicate that these alleles are transmitted or recombined preferentially in the background of G. 
hirsutum. Chromosome preferential transmission or elimination was observed in various studies on Gossypium 
(Lopez-Lavalle & Brubaker, 2007; Ahoton et al., 2004; Benbouza et al., 2008; Sarr et al., 2012).  

Chromosome transmission frequency is known to differ among chromosomes. This variation can be caused by 
differences in chromosome size or structure or by the presence of genes causing segregation distortion (Diouf et 
al., 2014).  

We noticed that MAALs considered different on the basis of their phenotypes carried the same extra 
chromosome of G. longicalyx. This can be be explained by the simultaneous presence of introgressed fragments 
of other chromosomes of the wild species in the same G. hirsutum background (Table 5). Phenotypic variation 
can be explained by several mechanisms such as the lost, mutation or divergence of a gene, chromosomal 
breakages and rearrangements. Sequence elimination have been reported in wheat and Tragopogon 
allopolyploids (Shaked et al., 2001; Tate et al., 2006), in cotton (Sarr et al., 2012); chromosomal translocations 
and transposition was observed in Brassica allopolyploids (Song et al., 1995); and changes in gene expression 
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appear to be a major consequence of phenotypic variation in Arabidopsis and cotton (Lee et al., 2001; Wang et 
al., 2004). 

We identified four MAALs that will serve to achieve chromosome specific introgression. 
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