
The Razor’s Edge:
IPv6 Extension Headers Survivability

Justin Iurman1[0000−0001−9561−1856], Benoit Donnet1[0000−0002−0651−3398]

Université de Liège, Montefiore Institute, Belgium
{justin.iurman, benoit.donnet}@uliege.be

Abstract. While IPv6 was standardized in the 90’s, only the last decade
has seen a growth in its global adoption. In addition to dealing with IPv4
addresses exhaustion, IPv6 comes with a mechanism, called IPv6 Exten-
sion Header (IPv6 EH), allowing the protocol to be more flexible and
extensible. In this paper, we investigate how IPv6 EHs are processed in
the network. In particular, we focus on the survivability of IPv6 EHs, i.e.,
the fact that an IPv6 EH traverses the Internet and arrives unmodified at
the destination. We first design experiments in a controlled environment,
testing different IPv6 EHs and sizes on different routers from various
vendors. Then, we confront our observations with several measurement
campaigns between vantage points hosted by different Cloud Providers
(CPs) around the world, and we compare them to the responses received
from a survey of operators. Our results show that the survivability of
IPv6 EHs is quite limited (around 50%) and is a consequence of op-
erators’ policies, with some Autonomous Systems being responsible for
most of the IPv6 EHs drops. Measurement tool and data collected are
provided to the research community.

1 Introduction

During the last decade, IPv6 has been more and more adopted [23]. If IPv6
allows for dealing with IPv4 address exhaustion [26], it also comes with a mech-
anism, called IPv6 Extension Header (IPv6 EH) [6,13], that leads to more flex-
ibility and innovation. Examples of such innovations based on IPv6 EHs are
Segment Routing with IPv6 as forwarding plane [17, 18] and In-Situ Opera-
tions, Administration, and Maintenance (Ioam) [5] for in-band telemetry. The
purpose of IPv6 EHs is to extend IPv6 without any modification to the core
protocol. IPv6 EHs form a chain, using the IPv6 Next Header field, and are
placed between the IPv6 header and the upper-layer protocol header. While new
IPv6 EHs might be defined in the future, the current list mainly includes the
Hop-by-Hop Options Header, the Destination Options Header, the Routing
Header, the Fragment Header, the Encapsulating Security Payload, and the
Authentication Header [6,13]. Up to now, few efforts have been made in assess-
ing how operators process IPv6 EHs, e.g. [6, 14, 21, 24, 35, 47]], focusing mainly
on a subset of IPv6 EHs or relying on limited measurements campaign.

In this paper, we provide a comprehensive view of how IPv6 EHs are pro-
cessed in the network. In particular, we are interested in IPv6 EHs survivability,



i.e., the capacity of IPv6 EHs to traverse the Internet and arrive unmodified at
the destination. This is important as we expect a complete survivability for some
IPv6 EHs, such as the Destination Options Header or Fragment Header, but
not necessarily for some others that are more designed for limited domain use
cases (e.g., the Hop-by-Hop Options Header or Routing Header). Also, a too
low level of survivability may damage the IPv6 extensibility and, consequently,
innovation, leading to an ossification of IPv6. More precisely, this paper makes
the following contributions:

– We develop an eBPF [45] program called eBPF IPv6 Extension Headers
Injection (FishNet) to easily inject IPv6 EHs, whatever the type and size,
in network traffic.

– We build a controlled environment to perform measurements with FishNet
spanning all specified IPv6 EHs, with different parameters such as the IPv6
EH type and size, and so for routers from various vendors. We show that
all IPv6 EHs have a perfect survivability rate with default configuration on
routers, which tends to suggest that potential drops of packets with IPv6
EHs is mainly caused by operators’ policies.

– Next, in order to determine whether our lab observations are applied in
the real world, we deploy FishNet in different Cloud Providers (CPs) scat-
tered around the world and perform measurements in full mesh. Our results
show that, on the contrary to controlled environment experiments, IPv6 EHs
survivability is quite limited (around 50% on average). We also show that
IPv6 EHs drop is caused by some ASes, generally quite close to the packet
source. We also compare those observations with the results from a survey
of operators.

– Measurement software (i.e., FishNet) and collected data are provided to
the research community.

The remainder of this paper is organized as follows: Sec. 2 provides the re-
quired background for this paper; Sec. 3 describes FishNet, the tool we im-
plemented to inject IPv6 EHs in network traffic; Sec. 4 investigates IPv6 EHs
survivability in a controlled environment; Sec. 5 introduces our Internet mea-
surement methodology; Sec. 6 discusses our Internet measurement results; Sec. 7
positions this paper with respect to the state of the art; finally, Sec. 8 concludes
this paper by summarizing its main achievements.

2 Background

The purpose of IPv6 EHs is to extend IPv6 without any modification to the
core protocol. The IPv6 Next Header field specifies which upper-layer protocol
comes after the IPv6 header. All IPv6 EHs share a common field in their respec-
tive headers, namely a Next Header field, whose name and purpose are identical
to the one in the IPv6 header. This design allows for a chaining mechanism. Fig. 1
illustrates how it works with three examples: the first one represents a TCP seg-
ment, the second one represents a Routing Header followed by a TCP segment,



Fig. 1. Example of chain of pointers formed by the Next Header field in IPv6.

and the third one represents a Routing Header followed by an Authentication
Header followed by a TCP segment.

The Internet Assigned Number Authority (Iana) currently defines the follow-
ing IPv6 EHs [29]: the Hop-by-Hop Options Header, the Destination Options
Header, the RoutingHeader, the FragmentHeader, the Encapsulating Security
Payload, the AuthenticationHeader, the MobilityHeader, the Host Identity
Protocol Header, and the Shim6 Protocol Header. The Hop-by-Hop Options
Header is used to carry optional information, also called Options, that may be
examined and processed by every node along a packet’s delivery path, while the
Destination Options Header is used to carry optional information to be ex-
amined only by the packet’s destination. An example of Hop-by-Hop Options
Header or Destination Options Header usage is In-Situ Operations, Admin-
istration, and Maintenance (Ioam) [5]. With Ioam, telemetry data is carried
within packets rather than being sent through packets specifically dedicated to
that. The Ioam traffic is thus embedded in data traffic, but not part of the
packet payload. The Routing Header is used by an IPv6 source to list one or
more intermediate nodes to go through on the way to a packet’s destination (i.e.,
to steer a packet), and has several types defined: Source route (type 0) and Nim-
rod (type 1) [7] which are both deprecated, Mobility support (type 2) [32], RPL
(type 3) [25], and Segment Routing (type 4) [17]. The Fragment Header is used
by an IPv6 source to send a packet larger than it would fit in the path MTU to its
destination. It works like IPv4 fragmentation except that only the packet source
can fragment the packet. The Authentication Header (sender authentication,
data integrity) [33] and Encapsulating Security Payload (sender authenti-
cation, data integrity, confidentiality) [34] are both part of the IPsec protocol
suite. The Mobility Header is used to allow devices to move from one network
to another while maintaining a permanent IPv6 address. The Host Identity
Protocol Header is used to separate the end-point identifier and locator roles
of IPv6 addresses [39]. The Shim6 Protocol Header is used to determine valid
locator pairs that could be used when an outage is detected [41].



Fig. 2. Overview of how Tc works with eBPF [46].

3 FishNet

This section describes and evaluates eBPF IPv6 ExtensionHeaders Injection
(FishNet), our tool for easily injecting IPv6 EHs in network traffic. The reason
for using eBPF is twofold: (i) a fast implementation compared to the modifica-
tion of existing probing solutions; and (ii) it injects IPv6 EHs in “real” traffic,
not only the one from probing tools, which is really interesting as it allows for
some corner cases to be tested, e.g., one may inject IPv6 EHs after the TCP 3-way
handshake to check whether stateful filters influence the IPv6 EHs processing.

3.1 Overview

In order to inject one or multiple IPv6 EHs in outgoing traffic using eBPF,
FishNet must be attached to an interface. More specifically, one needs to add a
clsact qdisc [37] to an interface, which is like a scheduler holding only classi-
fiers and that works both on ingress and egress. Then, FishNet must be attached
to an egress filter on that interface, with a specific section to be run. Both com-
mands use Tc [44], a traffic control tool as part of the iproute2 [30] solution.
Finally, the user program is used to configure the IPv6 EHs injection. Fig. 2
provides a high-level picture of how it works. What was previously described is
represented on the right side of the dashed blue line.

Overall, FishNet is completely agnostic of whether one or more IPv6 EHs
are injected, or their order. The only thing that it knows is that it has to inject a
buffer of bytes. Therefore, the overhead only depends on the number of bytes to
inject (see Sec. 3.2 for performance evaluation). Indeed, the buffer construction
is delegated to the user program which is responsible for configuring what will
be injected (one or more IPv6 EHs, their order, etc). Very briefly, IPv6 EHs can
be injected with constraints on respective sizes, and in any order. If the chosen
order does not respect RFC8200 [13], an error is returned as a security, although
the user could force such a behavior with a special flag.



3.2 Evaluation

To evaluate FishNet, we rely on TRex [8], an open source, low cost, stateful
and stateless traffic generator fueled by DPDK. It has multiple advantages, such
as the ability to generate Layer3–7 traffic and multiple streams, as well as the
ability to easily craft your own packets with the underlying Scapy [43] layer.
TRex can scale up to 200Gbps with only one server.

The testbed is straightforward: one machine for TRex, and another one for
the Device Under Test (DUT). Both are equipped with an Intel XL710 2×40GB
QSFP+ NIC, each connected port to port in order to close the loop (i.e., TRex
client and server run on the same machine). This kind of topology provides an
easy way to isolate a specific function on the DUT and evaluate it, i.e., the egress
injection of IPv6 EHs with FishNet. The DUT has an Intel Xeon cpu e5-2630
v3 at 2.40GHz, with 8 Cores, 16 Threads, and has a 16GB RAM. It runs a
kernel version 6.9.0 − rc6+ (net-next) and FishNet was compiled with clang
version 14.0.6. Equivalent iproute2 version has been compiled with libbpf
1.4.0. During measurements, the DUT is configured to maximize its performance
(e.g., CPU in performance mode, network settings). It is also configured to only
use one queue for all traffic received, therefore only one core being responsible
for that queue. Doing so allows us to see the impact on a single core, which is
better to compare performance on a common basis. The MTU is set to 2, 148 so
that the maximum size injected (i.e., 2, 048 bytes) would not make packet sizes
to exceed it. Overall, each experiment (i.e., measurement) lasts 30 seconds and
is run 20 times. We determine 95% confidence intervals for the mean based on
the Student t distribution (they are too tight to be visible in the subsequent
plots).

As explained in Sec. 3.1, i.e., FishNet is completely agnostic of the content
of the buffer, only the number of bytes to be injected may have an impact on
performance, whatever the combination of IPv6 EHs. Since most of these IPv6
EHs are limited to a maximum of 2, 048 bytes (except for the Encapsulating
Security Payload), we evaluate the impact of an injection from 0 to 2, 048
bytes, although, less likely, a combination of IPv6 EHs could result in a much
bigger buffer.

Fig. 3a shows the impact of different injection sizes on throughput. The
forwarding baseline is, in our case, approximately 1, 195, 000 packets per second
(pps) on a single core (roughly 14.34Gbps with 1, 500-byte packets). One can
directly observe a loss of 19% (i.e., approximately 225, 000 pps) when injecting
the minimum size of 8 bytes, which then remains stable up to 128 bytes. The fact
that such a loss occurs immediately will be discussed below based on Fig. 3b.
When injecting 256 bytes or more, the loss rate bumps to 58%. This huge drop is
due to a lack of space in the sk_buff headroom, where the headers of a packet are
located, which involves implicit reallocation by the kernel to make the headroom
larger. Depending on the architecture and the NIC driver, the headroom space
may vary. In our case, i.e., ×86_64 architecture and i40e driver, the headroom
has an initial size of 256 bytes. If we remove 14 bytes for the Ethernet header
(in our case), plus 2 bytes to align the IPv6 header, plus 40 bytes for the IPv6



8 16 32 64 128 256 512 1024 2048
Egress Injection (bytes)

0

2

4

6

8

10

12

14

p
p

s
re

ce
iv

e
d

(×
10

5
)

baseline

FishNet

(a) IPv6 EHs injection with FishNet and its
impact on throughput.

fwd baseline qdisc clsact eBPF min
Mechanism

0

2

4

6

8

10

12

14

p
p

s
re

ce
iv

e
d

(×
10

5
)

(b) Impact on throughput between adding
a clsact qdisc [37] and running a minimal
version of a Tc/eBPF program on egress.

Fig. 3. FishNet performance evaluation.

header, we are left with 200 bytes available in the headroom. This means that
as soon as we inject 201 bytes or more, the drop will happen, which is indeed
between 128 and 256 in Fig. 3a.

Fig. 3b shows the impact on throughput when only a clsact qdisc is added
and it is compared to when a minimal1 eBPF kernel program is running. One can
see that only adding the qdisc gives a 3% loss already, while running a minimal
eBPF kernel program gives an additional 7% loss, which makes it a total of
10% loss. Despite being out of scope of this paper, it would be interesting to
investigate if improvements can be made on that part. In fine, the real loss rate
of FishNet is 9%, in addition to the initial and unavoidable 10% loss.

Another interesting observation is that some network drivers (tested with
e1000e and vmxnet3 ) have issues with TX checksum offloading when there is an
IPv6 EH or more in a packet, with or without FishNet. Indeed, the checksum
calculated in Layer-4 is incorrect, even if adding one or more IPv6 EHs should
have no impact since it does not modify the pseudo-header (except when there
is a Routing Header, where the destination in the pseudo-header is the last seg-
ment). As a result, packets may disappear along the path, which could wrongly
suggest a Layer-2 problem and is therefore hard to debug. Despite being out of
scope of this paper, it should also be investigated to help NIC vendors address
this issue. Note that we have also started fixing some bugs related to checksums
with IPv6 EHs in the Linux kernel.

Finally, it is worth mentioning this section evaluates the worst case, i.e., line
rate traffic on a single core. Overall, it is highly unlikely we would need FishNet
to inject IPv6 EHs at line rate on a single core. For example, in Sec. 4 to Sec. 6,
FishNet is used to carefully inject IPv6 EHs in traceroute traffic such that we
avoid losing packets or hitting rate limits. However, independently of FishNet
and its usage, people may want to inject IPv6 EHs in line-rate traffic. The initial
cost shown in Fig. 3b could prevent them from following that path.

1 Minimal means the section handler directly returns TC_ACT_OK.



Table 1. List of tested routers in our controlled environment.

Vendor Model Version
R1

Cisco ASR1001-X (ASIC based) IOS XE 03.16.05.S
R2 IOS XE 17.06.04
R3 ASR9904 (NPU based) IOS XR 7.9.21
R4 Huawei AR617VW-LTE4EA V300R019C10
R5 Juniper vMX Junos OS 20.2R1.10
R6 Linux – Kernel 6.11
R7 Nokia 7750 SR-7 20.10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Proportion

Juniper

Cisco

Other(s)

Arista

Nokia

Huawei

Dell

H
a
rd

w
a
re

v
e
n

d
o
r

Fig. 4. Distribution of hardware vendors in our survey of operators.

4 IPv6 EHs Processing in a Controlled Environment

This section investigates the capacity of IPv6 EHs to traverse a single router
and arrive unmodified at the destination, in a controlled environment. We first
describe our infrastructure (Sec. 4.1) and, next, discuss our results (Sec. 4.2).

4.1 Infrastructure Setup

Our controlled environment is made of two devices, i.e., the sender and the
receiver, and a physical router (i.e., the DUT, a real hardware) in between them.
We evaluate seven different routers (DUTs) separately, each of them running a
default configuration. Those routers are listed in Table 1 and were deliberately
chosen based on the responses received from our survey of operators.2 Fig. 4
shows the various hardware deployed by operators, according to our survey. Both
Juniper and Cisco routers seem to share the biggest part of the market [1,2,38],
followed by Linux or FreeBSD (with BIRD or FRRouting running on top –
“Other(s)” category in Fig. 4), followed by Arista, Nokia, Huawei, and Dell.
Note that Mikrotik and Ubiquity also appeared in the “Other(s)” category in
Fig. 4. Unfortunately, we were unable to get routers from all vendors. But we

2 The survey was sent on both RIPE and NANOG mailing-lists on September 4th

2024. At the time of writing this paper, we received 50 responses.



still managed to get routers from those that are highly represented. As for the
Juniper router, its results may not be entirely accurate, since we had to test
a virtual image of the MX series with Containerlab [10] instead of physical
hardware. Overall, routers from different vendors are expected to share the same
kind of behavior with a default configuration, which therefore gives a trend and
a big picture of what should be observed in the wild. Therefore, we assume our
infrastructure being as representative as possible.

The sender relies on FishNet (see Sec. 3) to inject IPv6 EHs in its egress
traffic. The sender generates TCP and UDP traffic with Netcat [40], and ICMPv6
traffic with ping6 [36]. Traffic is collected on the sender and the receiver with
tcpdump.

Table 2 shows all experiments (IPv6 EH types and sizes) performed on the
routers. All existing IPv6 EHs are tested, except the Routing Header type 1
(Nimrod) as we were not able to find its Routing Header format in the RFCs,
probably because it is too old and deprecated. Routing Header type 55 is in-
cluded for testing a routing header with an undefined type and see how the
routers behave. Each IPv6 EH with a specific size is tested three times: with
TCP, UDP, and ICMPv6. The MTU is increased to 8, 192 on both links to support
large IPv6 EH sizes (e.g., 2, 048 bytes or more).

4.2 Results

This section presents results based on experiments performed in our con-
trolled environment. What is observed here might not necessarily reflect the
reality in the Internet, although representative enough to provide a trend. That
is why we will perform measurements in the wild in Sec. 5 and Sec. 6. Table 2
shows successful experiments (with a X) for each router. With a default config-
uration running on the routers, every single IPv6 EH is successfully forwarded,
whatever its size or the Layer-4 in packets. Some combinations of two or three
IPv6 EHs were also tested and were successful for all routers as well (e.g., a
Hop-by-Hop Options Header followed by a Destination Options Header, up
to 2 × 2, 048 bytes in total), despite not being in Table 2 for readability reasons.
Such results tend to suggest that there is no hardware limit by default on those
routers. For example, Ouellette [42] reports a router running a default configura-
tion with hardware limit (i.e., with a limited parsing buffer size for the headers),
which seems to drop a packet as soon as the total size of IPv6 EHs reaches
something between 160 and 192 bytes. This kind of limit exists in old routers,
where the parsing buffer size is quite small (usually 256 bytes max, sometimes
even smaller, e.g., 64 or 128 bytes, for older routers [9]). Also, an interesting ob-
servation that is worth mentioning is about a specific test where a Hop-by-Hop
Options Header is not in first position (e.g., a Destination Options Header fol-
lowed by a Hop-by-Hop Options Header). Some routers would drop the packet,
while some would not. It is due to the fact that RFC8200 [13] (Sec. 4.1) does
not use normative language to enforce those requirements. As a consequence,
dropping the packet or not in such a situation are both valid. However, the best
approach here is probably to not drop the packet, i.e., be liberal on what is



Table 2. IPv6 EHs survivability in the controlled lab, for each tested router. Each
IPv6 EH is tested with different sizes when it makes sense. All tests are performed
three times: one with UDP, one with TCP, and one with ICMPv6. Each Xcorresponds to
a successful test, i.e., when it successfully goes through the router.

IPv6 EHs Routers
R1 R2 R3 R4 R5 R6 R7

Hop-by-Hop Options Header
X X X X X X X

(8, 16, 32, 64, 128, 256, 512, 1024, 2048)

Destination Options Header
X X X X X X X

(8, 16, 32, 64, 128, 256, 512, 1024, 2048)

Fragment Header atomic
X X X X X X X

(Fixed size: 8)
Fragment Header non-atomic

X X X X X X X
(Fixed size: 8)

Routing Header Type 0
X X X X X X X

(24, 72, 136, 264, 520, 1032, 2040)
Routing Header Type 2

X X X X X X X
(Fixed size: 24)
Routing Header Type 3

X X X X X X X
(24, 72, 136, 264, 520, 1032, 2040)
Routing Header Type 4

X X X X X X X
(24, 72, 136, 264, 520, 1032, 2040)
Routing Header Unknown Type 55

X X X X X X X
(24, 72, 136, 264, 520, 1032, 2040)

Authentication Header
X X X X X X X

(16, 32, 64, 128, 256, 512, 1024)
Encapsulating Security Payload

X X X X X X X
(16, 32, 64, 128, 256, 512, 1024, 2048)

Mobility Header Type 0, no option
X X X X X X X

(Fixed size: 8)

Host Identity Protocol Header Type 1
X X X X X X X

(Fixed size: 48)

Shim6 Protocol Header
X X X X X X X

(Fixed size: 8)

received and conservative on what is sent out. This, for interoperability reasons
and to avoid any protocol ossification. After all, operators tend to dislike when
a router drops packets that do not break normative rules.

Routers usually need to parse past the IPv6 header because of lookups. In-
deed, they also need Layer-4 for, e.g., ports. When there is one or more IPv6
EHs after the IPv6 header, the upper-layer protocol header is pushed further in
the packet, and old routers may not have a parsing buffer large enough for the
headers. As a result, such routers would drop the packet. As a comparison, we
run the same experiments in Table 2 again but, this time, a simple filter on TCP



Table 3. IPv6 EH types and sizes tested during a measurement campaign. Each ×
corresponds to an experiment, for a total of 38 experiments.

IPv6 EH IPv6 EH Size (Bytes)
Name Type ∅ 8 16 24 32 40 48 56 64 128 256 512 680 1,024 1368
Destination Options Header × × × × × × × × × × ×
Hop-by-Hop Options Header × × ×

Fragment Header atomic ×
non-atomic ×

Routing Header

2 ×
0 × × ×
3 × × ×
4 × × ×
55 × × ×

Authentication Header × × ×
Encapsulating Security Payload × × ×
Mobility Header 0 ×
Host Identity Protocol Header 1 ×
Shim6 Protocol Header ×

(destination port 22) is added to routers configuration. This is to make sure a
lookup is performed by routers. The results are exactly the same as with default
configuration on routers. This tends to suggest that routers with default config-
uration are not responsible for dropping a packet with IPv6 EHs, except for old
routers that may have hardware limitation. Should we observe drops in the wild,
the main reason would therefore likely be policies applied by operators. The TX
checksum offloading issue described at the end of Sec. 3.2 may also affect IPv6
EHs survivability, since this feature is often enabled by default.

The question of whether routers apply different treatment to packets when
there is an IPv6 EH must be answered. In our case, some routers punt a packet
to the slow path every time a Hop-by-Hop Options Header is present. For other
IPv6 EHs, a packet stays on the fast path (when it applies). This observation can
be useful, especially for the Hop-by-Hop Options Header. Indeed, since such a
packet goes through the slow path, a router under heavy load (quite frequent for
some routers in the Internet) may drop it. In that case, IPv6 EHs are not really
the direct cause but the consequence is the same, i.e., the packet is dropped.

5 Internet Measurement Methodology and Data
Collection

In this paper, we want to provide a comprehensive view on how IPv6 EHs
are processed in the network. To double-check observations made in a controlled
environment (see Sec. 4), we conduct multiple experiments, each one being a five-
step process run by a vantage point (VP) towards others VPs in our measurement
infrastructure:

Step1: 20 pings towards the destination VP;
Step2: 1 vanilla Paris traceroute [4] towards the destination VP;
Step3: 5 Paris traceroutes with a given IPv6 EH towards the destination VP.

An IPv6 EH is injected in Paris traceroute using FishNet (see Sec. 3);



Table 4. Measurement infrastructure running our experiments. 23 Cloud Providers
(CPs) are considered for full mesh experiments, leading to 506 pairs combinations, for
a total of 403, 788 traces per experiment (798 traces × 506 VPs pairs). The “Label”
column is used to easily identify each VM in this paper.

Cloud Provider ASN VM Location Label
Google Cloud 396982 Belgium BEL
Huawei Cloud 136907 Ireland (Dublin) DUB
AlphaVPS 203380 Bulgaria (Sofia) SOF
Vultr 20473 South Korea (Seoul) SEO
Linode 63949 USA (Dallas) DAL
Alibaba Cloud 37963 China (Beijing) BEI
MPVS.net 202448 Cyprus CYP
Contabo 141995 Japan (Tokyo) TOK
BlackHOST 174 Austria (Vienna) VIE
Veesp 43317 Russia (Saint Petersburg) RUS
Hostiko 203394 Ukraine (Kyiv) UKR
HostZealot 57814 Georgia (Tbilisi) TBI
DigitalOcean 14061 Australia (Sydney) SYD
OVHCloud 16276 Singapore SGP
Misaka Network 35487 Nigeria (Lagos) NIG
Microsoft Azure 8075 India (Pune) IND
EdgeUno 7195 Guatemala (Guatemala City) GUA
Atlantic.NET 6364 USA (New York City) NYC
ZappieHost 61138 Chile (Valdivia) CHI
Heficed 61317 Brazil (Sao Paulo) BRA
Amazon AWS 16509 South Africa (Cape Town) AFR

Mythic Beast 44684 UK (Cambridge) CAM
60011 USA (Fremont, CA) FMT

Step4: 1 vanilla Paris traceroute towards the destination VP;
Step5: 20 pings towards the destination VP.

Step3 is the core of an experiment and aims at testing the survivability of a
given IPv6 EH through five consecutive Paris traceroutes between two VPs. To
limit the risk of a path from being changed between consecutive traces (e.g., load
balancing), all Paris traceroute identifiers are kept identical between traces of
all experiments. Pings and classic Paris traceroutes before and after Step3 are
there for reachability reasons, i.e., to check whether the experiment destination
is reachable, and for comparison, i.e., to detect whether the path or the RTT
changes compared to traffic with IPv6 EHs. Any experiment is thus made of
seven Paris traceroutes and 40 pings. We run each experiment around a par-
ticular upper-layer protocol, i.e., TCP, UDP, and ICMPv6 (leading thus to 21 Paris
traceroutes per IPv6 EH). The objective here is to see whether the upper-layer
protocol has an impact on IPv6 EHs processing. Finally, data is collected at each
VP through tcpdump.



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Proportion

Tier 1

Transit

Stub

CPs

IXP

Other

A
S

T
y
p

e

Traversed

Survey

Fig. 5. Category of ASes traversed by our measurements (total is 64) and survey re-
spondents. Important note: there is no intersection between the list of traversed ASes
and the list of ASes that responded to the survey.

To obtain a comprehensive view of IPv6 EHs survivability, we conduct several
measurement campaigns. We define a measurement campaign as a set of exper-
iments, run in full mesh between VPs, considering all possible IPv6 EHs and
possibly varying the IPv6 EH size and type when it makes sense. Table 3 lists all
considered IPv6 EHs, with their varying parameters. Note that the size ∅ means
that the corresponding IPv6 EH has a fixed and predefined size. Combining all
parameters (i.e., those with ×) leads to 38 different experiments. This means
that, for a pair of VPs in one direction, a measurement campaign corresponds
to 798 Paris traceroutes (21 traces multiplied by 38 experiments). Table 3 also
has all IPv6 EHs tested in Table 2, with some strategic choices on sizes. One
reason is simply to reduce the measurements execution time (e.g., min, mid and
max values for a Routing Header instead of all sizes, fewer sizes tested for a
Hop-by-Hop Options Header since it has been reported a low survivability for
small ones – see Sec. 7 –, etc), while another reason is to not exceed the MTU
(e.g., sizes of 1, 500 bytes and more).

To run our measurement campaigns, we build a full mesh infrastructure
around Cloud Providers (CPs). The reason for this approach is twofold: (i) we
wanted full control on destinations in order to capture the received traffic and
make sure they are configured to process all IPv6 EHs correctly, which is not
possible with Internet data measurement systems such as RIPE Atlas; and (ii)
we were interested in the core/edge point of view, without end-users. Table 4
gives the list of considered CPs and the exact location of the virtual machines
(VMs) running our experiments. We made efforts in spreading our experiments
over distinct CPs to avoid the particular case of inter data-center traffic, with
VMs scattered around the world. The majority of the VMs are located in Europe
(39.1%), followed by Asia (21.7%). 13% of VMs are located in North America,
the same proportion in South/Latin America. Finally, we were able to deploy a
few VMs in Africa (8.7%) and Oceania (4.3%).

We run five measurement campaigns (called Runs in the following) over
two weeks. Each Run roughly lasts 40 hours. This allows us to finally collect
2, 018, 940 traces (5 × 403, 788 traces per measurement campaign). Fig. 6 de-



Run 1

Run 2

Run 3

Run 4

Run 5

0140028004200

3886

3930

4071

3994

4017

0
400
800

1200
1600
2000
2400
2800
3200

In
te

rs
e
ct

io
n

si
ze 3019

247 230 205 174 144 130 119 117 115 114 89 77 69 63 48 39 34 33

Fig. 6. UpSet plot – IPv6 addresses collected during Step2, Step3, and Step4 of each
Run, and the intersection between Runs.

picts an UpSet plot [11] illustrating the unique IPv6 addresses we collected
during Step2, Step3, and Step4 of each Run and how they intersect. It is an-
other representation for a Venn diagram with a large number of sets (i.e., more
than three sets). The figure is made up of three parts: the matrix (bottom right)
shows the number of different IPv6 addresses collected in Runs. A dot in the
matrix means that at least one IPv6 address has been collected during that Run
(e.g., the dot, second column, third row, indicates that some IPv6 addresses were
collected during Run 3). If there are multiple black dots on a column, it corre-
sponds to IPv6 addresses collected during multiple Runs (e.g., the first column
refers to IPv6 addresses seen in every Run). The histogram on the bottom left is
the size of each matrix row, while the histogram on top right gives the number
of IPv6 addresses in the corresponding column of the matrix (if we focus on
the dot, second column, third row, 4, 071 IPv6 addresses were collected during
Run 3 – left histogram – with, in particular, 247 of them uniquely observed
during Run 3 – top histogram). It is worth mentioning that, for readability rea-
sons, intersection sizes lower than 30 are not shown on Fig. 6. Run 3 is the one
in which we collected most IPv6 addresses (4,071) while the minimum was in
Run 1 (3, 886). Most of IPv6 addresses (3, 019) were observed during every Run.
Those addresses are mapped to 64 ASes (consistent over the five Runs – relying
on ipwhois, for lookups against RIR’s databases), most of them (56.25%) being
Transit ASes, and 15.62% of them being Tier1 ASes (see Fig. 5).

6 Survivability in the Wild

This section describes our results for IPv6 EHs survivability in the wild, i.e.,
as we measure it in the Internet. As discussed in Sec. 5, survivability is assessed
through Paris traceroute measurements (Step3).

In Sec. 6.1, we provide a general overview of IPv6 EHs survivability, while
Sec. 6.2 shows results on a per IPv6 EH basis. Then, Sec. 6.3 discusses where
the drop of packets with IPv6 EHs occurs in the network. Finally, Sec. 6.4 and



A
F

R
B

E
I

B
E

L
B

R
A

C
A

M
C

H
I

C
Y

P
D

A
L

D
U

B
F

M
T

G
U

A
IN

D
N

IG
N

Y
C

R
U

S
S

E
O

S
G

P
S

O
F

S
Y

D
T

B
I

T
O

K
U

K
R

V
IE

Source

AFR
BEI
BEL
BRA
CAM

CHI
CYP
DAL
DUB
FMT
GUA
IND
NIG

NYC
RUS
SEO
SGP
SOF
SYD
TBI

TOK
UKR
VIE

D
e
st

in
a
ti

o
n

0.40

0.42

0.44

0.46

0.48

0.50

0.52

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

(a) ICMPv6

A
F

R
B

E
I

B
E

L
B

R
A

C
A

M
C

H
I

C
Y

P
D

A
L

D
U

B
F

M
T

G
U

A
IN

D
N

IG
N

Y
C

R
U

S
S

E
O

S
G

P
S

O
F

S
Y

D
T

B
I

T
O

K
U

K
R

V
IE

Source

AFR
BEI
BEL
BRA
CAM

CHI
CYP
DAL
DUB
FMT
GUA
IND
NIG

NYC
RUS
SEO
SGP
SOF
SYD
TBI

TOK
UKR
VIE

D
e
st

in
a
ti

o
n

0.38

0.40

0.42

0.44

0.46

0.48

0.50

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

(b) UDP

A
F

R
B

E
I

B
E

L
B

R
A

C
A

M
C

H
I

C
Y

P
D

A
L

D
U

B
F

M
T

G
U

A
IN

D
N

IG
N

Y
C

R
U

S
S

E
O

S
G

P
S

O
F

S
Y

D
T

B
I

T
O

K
U

K
R

V
IE

Source

AFR
BEI
BEL
BRA
CAM

CHI
CYP
DAL
DUB
FMT
GUA
IND
NIG

NYC
RUS
SEO
SGP
SOF
SYD
TBI

TOK
UKR
VIE

D
e
st

in
a
ti

o
n

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

(c) TCP

Fig. 7. High level overview of IPv6 EHs survivability between CPs, according to a
specific upper-layer protocol. Results have been merged between the five Runs.

Sec. 6.5 respectively discuss the impact of IPv6 EHs on path lengths (i.e., number
of hops), and on the round-trip time.

6.1 General Overview

Fig. 7 provides a high level overview of IPv6 EHs survivability between CPs.
In particular, it shows the proportion of survivability, whatever the IPv6 EH
considered, between the full mesh of CPs. Tick labels used in Fig. 7 refer to
labels in Table 4. IPv6 EHs survivability is summarized per upper-layer protocol,
i.e., ICMPv6 (Fig. 7a), UDP (Fig. 7b), and TCP (Fig. 7c). A value of 0 in the
heatmap colorbar means that, somewhere on the path between two CPs, the
packet with an IPv6 EH is dropped every time. Said otherwise, it never reaches
the destination. On the contrary, a value of 1 means that the packet with an
IPv6 EH is never dropped and always reaches the destination.

We see that IPv6 EHs with ICMPv6 offers the best survivability (average
of 50.4%), while TCP and UDP offer roughly the same survivability rate (aver-
age of 49.67% and 49.9% respectively). The lowest survivability, whatever the
upper-layer protocol, is between SGP and IND (in that direction), i.e., 38.59%
for ICMPv6, 36.84% for UDP, and 35.43% for TCP. On the contrary, the highest
survivability depends on the upper-layer protocol: between UKR and NYC (in
both directions – 52.63%) for ICMPv6, NYC to FMT (50.99%) for UDP, and UKR
to CYP (51.01%) for TCP.

To summarize, half of the Paris traceroutes containing an IPv6 EH are
dropped along the path. This result is inconsistent3 with our results in the
controlled environment (see Sec. 4), where we observed a perfect survivability
rate with default configuration on routers. In the next section, we investigate

3 An effort was made to identify [1] vendors for each encountered router. However,
only 85 were identified, which only represents 2% of the total. The distribution is as
follows: Juniper (57), Cisco (16), Huawei (12).



drops on a per IPv6 EH basis and we try to understand who is responsible for
the drop of IPv6 EHs.

6.2 IPv6 EHs Survivability

Fig. 8 shows the survivability rate on a per IPv6 EH basis. For each plot,
the results have been merged over the five Runs. It is worth mentioning that
the observed survivability rates are consistent over all traces, i.e., if the drop
of a packet with an IPv6 EH is observed in one trace during Step3, then it
is also observed in the four other traces. However, in a very limited number
of cases (between 0.02% and 0.05%), we detected inconsistent experiments in
which a packet with an IPv6 EH was dropped in a few traces, and reached the
destination in others. Some incomplete vanilla traces (Step2 and Step4) were
also detected: between 1.05% and 1.32% of two incomplete vanilla traces, and
between 0.49% and 0.61% of only one (out of two) complete vanilla trace. More
generally, we can say that the above does not affect our results and we believe
such situations are most probably due to temporary failures.

Fig. 8a shows the survivability of the Routing Header according to its type
(first value in the X-Axis couple) and its size (second value in the X-Axis couple
– ∅ for type 2 as it has a fixed and predefined size). It is worth mentioning that
a Routing Header mechanism is to be deployed only in limited domains, for
security reasons, thus we might see a low survivability. In Fig. 8a, we see that
the Routing Header survivability is dependent on its size, but not necessarily
on its type. In particular, the best survivability (up to 0.7) is obtained with a
24-byte Routing Header (i.e., the smallest size), while considering larger ones
leads to a low survivability (< 0.1). There is no real difference between upper-
layer protocols, except for a small Routing Header where UDP provides a slightly
better survivability. The fact that Type 0 suffers from more drops is not sur-
prising since it is deprecated. Types 2 (Mobility support), 3 (RPL), 4 (Segment
Routing), and 55 (undefined Routing Header type) receive the same treatment,
except maybe for Segment Routing that suffers from a few more drops, which
could be explained by the fact that it is more deployed and is treated more ag-
gressively for security reasons. One can conclude that the Routing Header hits
operators’ policies, which is especially true for small sizes. Those policies are
applied on Layer-3 and are therefore completely independent of the upper-layer
protocol. As for a larger Routing Header, one cannot say for sure by looking at
Fig. 8a alone. At first glance, it is most likely due to operators’ policies as well,
but there seems to be a pattern that may suggest hardware limits. Indeed, it is
not impossible that some traversed ASes still have old routers deployed. How-
ever, large Encapsulating Security Payload sizes (see Fig. 8d) have a perfect
survivability (compared to larger Authentication Header sizes). This hint is
a clear indication that the main cause is therefore operators’ policies. Overall,
having a low Routing Header survivability in the wild is not a problem, since the
Routing Header should be deployed in limited domains. The only condition for
operators is to ensure that their hardware supports Routing Header deployment.



(0
,2

4)

(0
,6

80
)

(0
,1

36
8)

(2
,∅)

(3
,2

4)

(3
,6

80
)

(3
,1

36
8)

(4
,2

4)

(4
,6

80
)

(4
,1

36
8)

(5
5,

24
)

(5
5,

68
0)

(5
5,

13
68

)

EH Type & Size

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

ICMPv6

UDP

TCP

(a) Routing Header.

8 16 24 32 40 48 56 64 128 256 512
EH Size

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

ICMPv6

UDP

TCP

(b) Destination Options Header.

A NA 8 256 512
EH Type & Size

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

Fragment

Hop-by-Hop

ICMPv6

UDP

TCP

(c) Fragment Header and Hop-by-Hop
Options Header.

(A
H

,8
)

(A
H

,5
12

)

(A
H

,1
02

4)

(E
S

P
,1

6)

(E
S

P
,5

12
)

(E
S

P
,

10
24

)

M
H

H
IP

S
H

IM
6

EH Type & Size

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

a
b

il
it

y
P

ro
p

o
rt

io
n

ICMPv6

UDP

TCP

(d) Remaining IPv6 EHs.

Fig. 8. Survivability on a per IPv6 EH basis. Results have been merged over the five
Runs.

Fig. 8b focuses on the survivability of the Destination Options Header,
according to its size. We expect packets with a Destination Options Header
to have a high survivability, due to its nature (i.e., processed only by the des-
tination). In Fig. 8b, we see that the Destination Options Header is slightly
reliable until 64 bytes (above 0.7). On the contrary, for larger sizes, the surviv-
ability strongly drops below 0.2, except for TCP with a 128-byte size that offers
a survivability of 0.45. Again, in the fashion of the Routing Header, there is no
strong difference according to the upper-layer protocol for a small Destination
Options Header, but ICMPv6 performs slightly better than UDP and TCP. For
sizes 56 and 64, TCP performs worse than UDP, but tends to decrease more slowly
than ICMPv6 and UDP until 128 bytes. Such a difference between upper-layer
protocols rules out hardware limits as a cause. Instead, it is a clear indication



that operators’ policies are the main reason, again. The difference with TCP was
investigated since middleboxes were suspected to apply different treatment, but
only a few MSS modifications were found and were not problematic. Overall, one
may try to rely on the Destination Options Header over the global Internet,
but one must pay attention to its size.

Fig. 8c shows the survivability of both a Fragment Header and a Hop-by-Hop
Options Header. We focus first on the Fragment Header as an Atomic fragment
(“A” on Fig. 8c – a packet that contains a Fragment Header without being ac-
tually fragmented into multiple pieces, i.e., the fragment offset is 0 and the M
(more) bit is also 0) and as a Non-Atomic fragment (“NA” on Fig. 8c). We ex-
pect a low survivability for Atomic fragments [22], but a high survivability for
Non-Atomic fragments. In fact, none of them are reliable, although Non-Atomic
fragments survive more easily. Atomic fragments are more frequently dropped
either for security reasons [19], or because stateful middleboxes drop them as-
suming they are unexpected whenever no previous related fragment has been
seen. Considering the small size of a Fragment Header (i.e., 8 bytes), hardware
limit is ruled out and the main cause is therefore operators’ policies. Overall,
one could hardly rely on the Fragment Header, as already observed by Jaeggli
et al. [31]. Some actors seem to rely on a fixed and conservative MTU value
rather than fragmentation. Note that the Fragment Header might be allowed
for some specific services such as large DNS requests [27]. Due to its small size,
we can say that a Fragment Header definitely hits policies on transit, which is
bad for IPv6 fragmentation in general. Second, Fig. 8c shows the survivability
of the Hop-by-Hop Options Header (processed by all devices along the path),
according to its size. The observed Hop-by-Hop Options Header survivability
is quite low (< 0.1), which makes it totally unreliable, even with the smallest
8-byte size. Therefore, the main reason is definitely operators’ policies. Indeed,
the Hop-by-Hop Options Header is heavily dropped by operators for security
and performance reasons, whatever the size and due to the lack of use cases
outside of limited domains. It is not necessarily due to the fact that it goes to
the slow path under heavy load, considering the low survivability rate of even a
small 8-byte Hop-by-Hop Options Header.

Fig. 8d shows the survivability of other IPv6 EHs. We first notice that there is
no difference between upper-layer protocols. Also, both an 8-byte Authentication
Header and Encapsulating Security Payload (whatever the size) offer nearly
perfect survivability, which is good news for IPsec and proves that having a
strong use case helps a lot. This is also another good example of how en-
cryption can help bypass filters. However, unsurprisingly since Encapsulating
Security Payload is generally preferred and more used for security reasons,
larger Authentication Header sizes have very low survivability, which is a
consequence of operators’ policies. Finally, Mobility Header, Host Identity
Protocol Header, and Shim6 Protocol Header offer quite good survivability,
without any distinction between upper-layer protocols, even though Mobility
Header and Host Identity Protocol Header are not standardized with an



upper-layer protocol yet. Considering their respective small sizes (i.e., 8, 48,
and 8 bytes), this suggests that they hit operators’ policies as well.

In summary, size matters when it comes to IPv6 EHs [20]. Note that IPv6
EHs modified on transit were also considered. However, 100% of the IPv6 EHs
received were unmodified. Now, let us compare these observations with the re-
sponses received to our survey. First, 81.8% of operators declare they do not
explicitly filter IPv6 EHs, while the other 18.2% declare they do. This is not
representative of what we observed, probably because none of the respondent
ASes were traversed during our measurements, and because it only represents
a small set of operators. However, this could highlight some cases where old
routers or bugs are the main cause of IPv6 EHs drops. A good illustration is the
following comment from an operator: “While we don’t intentionally filter Exten-
sion Headers, we don’t intentionally use them either and have never done any
testing to confirm they are functional on our network ”. Also, those who explic-
itly filter IPv6 EHs mainly do it on the type (100%), while filters on the size
(12.5%) and data (12.5%) seem less frequent. It is not representative of what we
observed either, as only the size seems to matter. Again, this can be explained
by the fact that the respondent ASes only represent a small set of operators.
But it could also highlight that hardware limits (i.e., old routers) may still be
more present than one thinks, in addition to operators’ policies. Finally, 72.7%
of respondents declare they apply a filter on Layer-3 (e.g., next header, source
or destination address), while 61.4% declare they apply a filter on Layer-4 (e.g.,
ports). While it was proved in Sec. 4 that it does not cause issues for IPv6 EHs,
trying to filter on the IPv6 “Next Header” field versus the protocol (i.e., Layer-4
“proto”, the upper-layer protocol after the IPv6 EHs chain) is not the same. In-
deed, should an operator intentionally use (or not) the former and only accept,
e.g., TCP, UDP, and ICMPv6, any IPv6 EH would therefore not be allowed. After
all, it is up to operators to decide what they accept or not. IPv6 EHs are con-
troversial and some operators would strictly forbid them, as illustrated by the
following comments received to our survey: “death to extension headers”, as well
as “Extension Headers were a trash idea and need to be eradicated”. Some others
are more flexible and listen to Ietf discussions, as illustrated by the following
comment: “We are following the current tests and waiting for BCP in relation
to EH processing”. This one shows that good RFCs and BCPs can influence
operators’ decisions on IPv6 EHs. To conclude, some IPv6 EHs need incentives
to be widely adopted, which is not the case right now.

6.3 IPv6 EHs Drop Attribution

This section tries to assign the IPv6 EHs drops to an AS. The problem is not
trivial due to classic traceroute issues, e.g., incomplete traces. Indeed, some
hops along the path may not respond to probes during a given traceroute but
may respond to subsequent ones. This behavior is usually due to rate limiting [3]
or ICMPv6 “Time Exceeded” being lost in its way back to the source. Note that
some hops never respond, probably because they are configured to not do so.
We also have observed traces with load balancing effects or path modifications



0 10 20 30 40
Nb IP Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Uncertainty 1

Uncertainty 2

Uncertainty 3

Uncertainty 4

Uncertainty 5

IP Hop 1

IP Hop 2

IP Hop 3

IP Hop 4

IP Hop 5

(a) Uncertainty zone size distribu-
tion, with respect to traceroute
length.

0 5 10 15
Nb AS Hops

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Distance Drop 1

Distance Drop 2

Distance Drop 3

Distance Drop 4

Distance Drop 5

AS Hop 1

AS Hop 2

AS Hop 3

AS Hop 4

AS Hop 5

(b) Distance (in terms of AS hop)
distribution of IPv6 EHs drop, with
respect to traceroute AS path
length.

Fig. 9. IPv6 EHs drop attribution.

(roughly, 8-9% of the cases, on average, for Step3 for all experiments in a Run),
despite our efforts to rely on Paris traceroute to maintain flows. This is dis-
cussed in Sec. 6.4 and Sec. 6.5.

To deal with traceroute issues, we introduce the notion of uncertainty zone,
i.e., a set of potentially guilty hops, starting from the IP hop after the last
replying one, and ending at the penultimate IP hop (i.e., the one before the
destination). From that, we derive the uncertainty zone size as the number of IP
hops between those two points. Note that the destination is not part of the guilty
possibilities because we have access to it and we made sure all IPv6 EHs were
accepted. Obviously, the earlier a drop in a trace, the bigger the uncertainty
zone, and the more difficult it will be to assign the drop responsibility to an
AS. Said otherwise, the uncertainty zone size spans between 1 (the best case,
as the uncertainty zone has the smallest size) and the entire path length (the
worst case). Fig. 9a compares the uncertainty zone size distribution and the path
length distribution (in terms of IP hops). In particular, curves labeled “IP Hop
n” refer to the path length distribution of Run n, while “Uncertainty n” is the
uncertainty zone size distribution for Run n. We first notice that most of the
paths are between 5 and 25 hops long. It is not surprising to have longer paths
(25+ hops) due to how CPs are spread all over the world. Some anomalies were
also detected, i.e., traces with a loop, which explains some extreme hop counts
(e.g., 35+). Over the five Runs, we have between 15% and 17% of successful
vanilla traces (i.e., Step2 and Step4) with a loop, and between 8% and 9% of
successful IPv6 EHs traces with a loop (i.e., Step3). More importantly, we notice
that most of the uncertainty zone sizes are between 2 and 20, which confirms
that many traces have an uncertainty zone so large that it complicates the AS
responsibility attribution.



In order to determine the AS responsible for a drop, we chose to follow
this simple assumption: an AS will generally apply ingress filtering on IPv6
EHs [20]. This assumption and trend has been confirmed by contacting different
operators. Of all the operators who responded to our survey, 62.5% declare they
filter IPv6 EHs on the edges (on ingress), while 37.5% declare they filter IPv6
EHs everywhere. Note that some ASes may do it on egress as well, like some
CPs that prohibit sending IPv6 EHs out. Based on the aforementioned rule and
the fact that we reduce the probability of having errors by doing five IPv6 EH
Paris traceroutes (Step3) for a single experiment, we implemented the following
algorithm: (i) we find the ASN for each hop in a trace and rebuild the AS path;
(ii) we take the last responding AS in the AS path of each IPv6 EH trace; (iii)
we keep the furthest AS based on the AS path from vanilla traces; (iv) we declare
the next AS guilty, or the current one if it is the destination one. Fig. 9b compares
the distance (in terms of AS hops) distribution of ASes responsible for dropping
(curves labeled “Distance Drop n”, where n refers to Run n) and the AS path
length of the full trace (labeled “AS Hop n”). We first notice that most of the
paths are between 1 and 5 ASes long. More importantly, we notice that, based
on our algorithm, most of the drops seem to occur early in the path, i.e., within
1-3 ASes. It is worth mentioning that the IPv6 EH drop attribution algorithm
was applied to 96.9% of all incomplete IPv6 EHs experiments (consistent over
the five Runs). The other 3.1% represents incomplete experiments where the
algorithm could not find a satisfactory solution. As a result, the drop percentage
of IPv6 EHs per AS type is consistent over the five Runs as well and is as follows:
Transit (46.95%), CP (36.03%), Tier1 (13.68%), Stub (3.31%), and IXP (0.03%).

Overall, IPv6 EHs seem to have more difficulty passing through Transit and
CP ASes. It is not surprising for CP ASes, i.e., an IPv6 EH is likely to hit strict
policies, or a bug due to infrastructure complexity, both leading to packet drops.
On the other hand, and according to their role, Transit ASes could do a better job
and relax their policies regarding IPv6 EHs, or upgrade their hardware in case of
limitation. Also, based on the algorithm naivety and the proximity between CP
and Transit ASes in collected traces, it is possible that a part of guilty Transit
ASes might be attributed to CP ASes instead. Others do a decent job, even
though Tier1 ASes could do better. A good balance must be found between
avoiding the ossification of the IPv6 protocol and security (i.e., filtering IPv6
EHs). It probably starts with educating people on this topic, so that operators
can better evaluate the pros and cons of their policies. Depending on where
someone operates, a small decision can have big consequences.

6.4 IPv6 EHs Path Length

As mentioned previously, we have observed traces with load balancing effects
or path modifications (roughly 8–9% of the cases, on average), despite relying
on Paris traceroute to maintain flows. Therefore, we want to understand if
IPv6 EHs have an impact on the path length (i.e., number of hops). For each
experiment, we compare the two vanilla traces with the five IPv6 EH traces.
Only complete traces with no loop are kept, the others are ignored. Fig. 10a



0 5 10 15 20 25 30 35 40
Path Length (#hops)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

regular

IPv6 EH

(a) Cumulative distribution of path
length (#hops) over the five Runs
for both Paris traceroute and IPv6
EHs.

−1.0−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Ratio (ρPL)

0.00

0.25

0.50

0.75

1.00

P
D

F

regular shorter IPv6 EH shorter

(b) Path length ratio (See For-
mula 1) between Paris traceroute
and IPv6 EHs.

Fig. 10. Path length comparison between Paris traceroute and IPv6 EHs (data from
Step2, Step3, and Step4).

shows that most of complete traces are approximately between 10 and 20 hops
long. There is no difference between the path length of a vanilla trace and the
path length of an IPv6 EH trace, for a same experiment. It means that despite
load balancers and path modifications, the number of hops remains consistent.

To better observe potential differences in path lengths between vanilla and
IPv6 EH traces, we compute a path length ratio as follow:

ρPL =
#HopsIPv6EH −#Hopsregular

#Hopsregular
. (1)

ρPL has values in [-1, 1], where negative values mean that vanilla traces are
shorter than IPv6. Positive values, on the contrary, mean that IPv6 EH traces
are shorter. Obviously, a null value means that both traces have the same number
of hops. Fig. 10b plots ρPL for the five Runs merged. It shows that the ρPL

distribution is quite symmetric and centered on 0, which confirms that both
traces have generally the same length. Overall, IPv6 EHs do not have an impact
on path length (i.e., IPv6 EHs do not arbitrarily expand or shorten paths).

6.5 IPv6 EHs Round-Trip Time

This section aims at understanding if IPv6 EHs have an impact on the round-
trip time (RTT). For each experiment, we compare the two vanilla traces with the
five IPv6 EH traces. Only complete vanilla traces with no loop are kept, as well
as any IPv6 EH traces with no loop, while the others are ignored. Fig. 11a shows
that most of the RTTs are approximately between 0 and 150 milliseconds. There
is no difference between the RTTs of a vanilla trace and the RTTs of an IPv6
EH trace, for a same experiment. It means that routers do not spend additional
time to process IPv6 EHs, even those in the slow path (e.g., the Hop-by-Hop
Options Header), which would tend to suggest that most routers ignore (i.e., do
not process) IPv6 EHs.



0 500 1000 1500 2000 2500 3000
RTT

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

C
D

F

regular

IPv6 EH

(a) Cumulative distribution of RTTs
over the five Runs for both Paris
traceroute and IPv6 EHs.

−1.0−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Ratio (ρrtt)

0.00

0.02

0.04

0.06

P
D

F

regular slower IPv6 EH slower

(b) RTT ratio (ρRTT – See For-
mula 2) between Paris traceroute
and IPv6 EHs.

Fig. 11. Round-trip time comparison between Paris traceroute and IPv6 EHs (data
from Step1, Step3, and Step5).

In the fashion of path length, for better understanding the RTT potential
differences between vanilla and IPv6 EH traces, we compute an RTT ratio as
follow:

ρRTT =
RTTIPv6EH −RTTregular

RTTregular
. (2)

ρRTT has values in [-1, 1], where negative values mean that vanilla traces are
slower than IPv6. Positive values, on the contrary, mean that IPv6 EH traces are
slower. Obviously, a null value means that both traces follow roughly the same
RTT. Fig. 11b plots ρRTT for the five Runs merge. In the fashion of ρPL, the
distribution is symmetrical and centered on 0. Overall, for our datasets, IPv6
EHs do not have an impact on RTT.

7 Related Work

RFC7045 [6] provides guidelines on how IPv6 EHs should be transmitted,
also with a focus on middleboxes influence on the traffic.

The seminal work by Gontt et al. [21] observes how an 8-byte Hop-by-Hop
Options Header, an 8-byte Destination Options Header, and a Fragment
Header survive over the Internet, which comes from the Ietf and dates back in
2015. Gontt et al. perform traceroute measurements towards servers belonging
to the Alexa top 1M domains and find that such IPv6 EHs are often dropped
in transit networks. Since then, efforts have been made to measure the adoption
of emerging standards around IPv6 EHs and the way they are processed within
the network, as listed below.

Hendrikx et al. [24] state that dropping all traffic containing any IPv6 EH
is the de facto rule applied by operators, for security reasons. To support their
claim, they perform limited measurement campaign on a national research net-
work (CSNET) and a campus network (UTNET). In the same spirit, Padurean
et al. [47] run large-scale traceroute measurements to find the presence of Seg-



ment Routing [17,18] with IPv6 as forwarding plane. They reported no presence
of such a deployment, probably due to IPv6 EHs filtering.

Elkins et al. [15] have proposed a methodology for isolating the reasons and
network devices responsible for IPv6 EHs drops. In particular, they discuss a
situation in which a tested server is behind a Content Delivery Network (CDN).
However, they do not perform any measurements. Elkins et al. [14] also fo-
cus on the Performance and Diagnostic (PDM) Destination Options Header
Option [16]. Such an IPv6 EH option provides sequence numbers and timing
information as a basis for measurement. They do not report any drop when
measurements are performed between hosting services while they observe some
drops when measurements are sent towards Alexa top 1M domains.

Huston and Damas [28] report an improvement, over the years, in process-
ing the IPv6 Fragment Header. They also notice that Destination Options
Header and Hop-by-Hop Options Header IPv6 EHs are generally not supported
on public Internet infrastructure.

Custura et al. [12] present an extensive measurement campaign with a focus
on access and server edge networks, and provide results indicating the traver-
sal across Internet paths of packets that include either a Hop-by-Hop Options
Header or a Destination Options Header. Their results indicate that success-
ful reception across an IPv6 path can currently depend on the type of included
IPv6 EHs, its size, and on the transport protocol used.

James [35, 49] tests a large set of IPv6 EHs in full mesh through multiple
vantage points, with some of them located in distinct Autonomous Systems. By
definition, both source and destination of measurements are controlled. Among
others, James reports that path traversal diminishes as the size of IPv6 EHs
increases.

Finally, Ouelette [42] tested the forwarding of the Hop-by-Hop OptionsHeader
and Destination Options Header on six different routers. Ouelette noticed that
one router failed in forwarding packets in certain scenarios (i.e., packets with
IPv6 EHs of 256 and 512 bytes), which is likely due to hardware limitation.

This paper goes further by testing all IPv6 EHs currently defined, i.e., the
Hop-by-Hop Options Header, the Destination Options Header, the Fragment
Header, the Routing Header, the Authentication Header, the Encapsulating
Security Payload, the MobilityHeader, the Host Identity ProtocolHeader,
and the Shim6 Protocol Header. Each of them is tested with different sizes when
it applies. All vantage points are unique, i.e., hosted by different Cloud Providers
and running in distinct locations, therefore evaluating the edge and core of the
Internet. This paper also provides observations in a controlled environment, com-
paring the behavior of routers from different vendors when processing IPv6 EHs,
and investigates additional features such as RTTs and path lengths.

8 Conclusion

This paper offers an extensive vision of IPv6 EHs survivability, i.e., the ca-
pacity of an IPv6 packet carrying an Extension Header to traverse the Internet



and arrive unmodified at its destination. To study this survivability, we first
setup a controlled environment, tested multiple scenarios with default router
configuration, and injected IPv6 EHs traffic with a specially crafted eBPF pro-
gram, FishNet. We showed that, in such a context, the IPv6 EHs survivability
is perfect. To confront those results with real world, we also performed mea-
surements in the wild, relying on FishNet, in a full mesh of Cloud Providers
virtual machines. On the contrary to controlled environment, our results show
that IPv6 EHs survivability is quite limited (around 50% on average) in the
wild. Depending on the type of IPv6 EH, survivability might be a good point
(e.g., Destination Options Header), while it is not expected for others (e.g.,
Routing Header). We also showed that IPv6 EHs drops are caused by some
ASes, generally quite close to the packet source, due to policies. In terms of
path lengths and round-trip time, we did not observe any particular differences
between regular IPv6 and IPv6 EHs traffic. Measurement software and collected
data are provided to the research community.

Ethical Considerations

For our Internet measurement campaigns, we implemented RFC9511 [48] for
attribution of Internet probes. In particular, we implemented both in-band and
out-of-band recommendations, except for TCP probes where only out-of-band
was used to avoid potential packet drops due to the presence of data with a
TCP SYN. For in-band, an email address was added to the data payload. For
out-of-band, a web server (both HTTP/HTTPS) was running, with the main
page being an alias of /.well-known/probing.txt. That text file described the
on-going measurement campaign. Until now, it is important to note that no one
has contacted us.

Source Code

The source code of FishNet is available at https://github.com/iurmanj/
ebpf-ipv6-exthdr-injection. The dataset with all our measurements is avail-
able at https://shorturl.at/MHwKQ.

Acknowledgments

This work has been supported by the CyberExcellence project, funded by
the Walloon Region, under number 2110186.

References

1. Albakour, T., Gasser, O., Beverly, R., Smaragdakis, G.: Third time’s not a charm:
Exploiting SNMPv3 for router fingerprinting. In: Proc. ACM Internet Measure-
ment Conference (IMC) (November 2021)



2. Albakour, T., Gasser, O., Beverly, R., Smaragdakis, G.: Illuminating router vendor
diversity within providers and along network paths geolocation. In: Proc. ACM
Internet Measurement Conference (IMC) (October 2023)

3. Alvarez, P., Oprea, F., Rula, J.: Rate-limiting of IPv6 traceroute is widespread:
Measurements and mitigations (July 2017), https://shorturl.at/RyY4l, [Last
Accessed: May 22nd, 2024]

4. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Proc. ACM Internet Measurement Conference (IMC) (October 2006)

5. Brockners, F., Bhandari, S., Mizrahi, T.: Data fileds for in-situ operations, ad-
ministration, and maitenance(Ioam). RFC 9197, Internet Engineering Task Force
(May 2022)

6. Carpenter, B., Jiang, S.: Transmission and processing of IPv6 extension headers.
RFC 7045, Internet Engineering Task Force (December 2013)

7. Castineyra, I., Chiappa, N., Steenstrup, M.: The Nimrod routing architecture.
RFC 1992, Internet Engineering Task Force (August 1996)

8. Cisco: TRex: Realistic traffic generator, https://trex-tgn.cisco.com, [Last Ac-
cessed: June 7th, 2024]

9. Cisco: IPv6 extension headers review and considerations (October 2006),
https://www.cisco.com/en/US/technologies/tk648/tk872/technologies_
white_paper0900aecd8054d37d.html, [Last Accessed: May 4th, 2024]

10. Containerlab: Containerlab, https://containerlab.dev/, [Last Accessed: Octo-
ber 7th, 2024]

11. Conway, J.R., Lex, A., Gehlenborg, N.: UpSetR: an R package for the visualization
of intersecting sets and their properties. Bioinformatics 33(18) (September 2017)

12. Custura, A., Secchi, R., Boswell, E., Fairhurst, G.: Is it possible to extend IPv6?
Computer Communications 214, 90–99 (January 2024)

13. Deering, S., Hinden, R.: Internet protocol, version 6 (ipv6) specification. RFC 8200,
Internet Engineering Task Force (July 2017)

14. Elkins, N., Ackermann, M., Deshpande, A.: IPv6 extension headers (performance
and diagnostic metics (PDM) destination option) testing across the Internet (July
2022), https://shorturl.at/GrC2a, [Last Accessed: April, 19th 2024]

15. Elkins, N., Ackermann, M., Dhody, D.: Deep dive into IPv6 extension header test-
ing. Internet Draft (Work in Progress) draft-elkins-v6ops-eh-deepdive-fw-01, Inter-
net Engineering Task Force (October 2022)

16. Elkins, N., Hamilton, R., Ackermann, M.: IPv6 performance and diagnostic metrics
(PDM) destination option. RFC 8250, Internet Engineering Task Force (September
2017)

17. Filsfils, C., Dukes, D., Previdi, S., Leddy, J., Matsushima, S., Voyer, D.: Ipv6
segment routing header (srh). RFC 8754, Internet Engineering Task Force (March
2020)

18. Filsfils, C., Previdi, S., Grinsberg, L., Decraene, B., Likowski, S., Shakir, R.: Seg-
ment routing architecture. RFC 8402, Internet Engineering Task Force (July 2018)

19. Gont, F.: Processing of IPv6 atomic fragments. RFC 6946, Internet Engineering
Task Force (May 2013)

20. Gont, F., Hilliard, N., Doering, G., Kumari, W., Huston, G., Liu, W.: Operational
implications of IPv6 packets with extension headers. RFC 9098, Internet Engineer-
ing Task Force (September 2021)

21. Gont, F., Linkova, J., Chown, T., Liu, W.: Observations on the dropping of packets
with ipv6 extension headers in the real world. RFC 7872, Internet Engineering Task
Force (June 2016)



22. Gont, F., Liu, W., Anderson, T.: Generation of IPv6 Atomic Fragments Considered
Harmful. RFC 8021, Internet Engineering Task Force (January 2017)

23. Google: IPv6 statistics (2008–2024), https://www.google.com/intl/en/ipv6/
statistics.html, [Last Accessed: May, 21st 2024]

24. Hendrikx, L., Velan, P., Schmidts, R., De Boer, P.T., Pras, A.: Threats and sur-
prises behind IPv6 extension headers. In: Proc. IFIP Network Traffic Measurement
and Analysis (TMA) (June 2017)

25. Hui, J., Vasseur, J.P., Culler, D., Manral, V.: An IPv6 routing header for
soruce routes with the routing protocol for low-power and lossy networks (RPL).
RFC 6554, Internet Engineering Task Force (March 2012)

26. Huston, G.: IPv4 address report (2013–2024), https://ipv4.potaroo.net, [Last
Accessed: May, 20th 2024]

27. Huston, G.: Dealing with IPv6 fragmentation in the DNS. https://blog.apnic.
net/2017/08/22/dealing-ipv6-fragmentation-dns/ (August 2017), [Last Ac-
cessed: April 25th, 2024]

28. Huston, G., Damas, J.: IPv6 fragmentation and EH behaviours (March 2022),
https://www.potaroo.net/presentations/2022-03-20-iepg-v6frag.pdf, [Last
Accessed: April, 17th 2024]

29. IANA – Internet Assigned Numbers Authority: Internet protocol version 6 (IPv6)
parameters - IPv6 extension header types. Tech. rep., Internet Assigned Numbers
Authority (2024)

30. iproute2: Introduction to iproute2, see https://tldp.org/HOWTO/
Adv-Routing-HOWTO/lartc.iproute2.html

31. Jaeggli, J., Colitti, L., Kumari, W., Vyncke, E., Kaeo, M., Taylor, T.: Why op-
erators filter framgents and what it implies. Internet Draft (Work in Progress)
draft-taylor-v6ops-fragdrop-02, Internet Engineering Task Force (December 2013)

32. Johnson, D., Perkins, C., Arkko, J.: Mobility support in IPv6. RFC 3775, Internet
Engineering Task Force (June 2004)

33. Kent, S.: IP authentication header. RFC 4302, Internet Engineering Task Force
(December 2005)

34. Kent, S., Atkinson, R.: IP encapsulating security payload (ESP). RFC 2406, In-
ternet Engineering Task Force (November 1998)

35. Léas, R., Iurman, J., Vyncke, E., Donnet, B.: Measuring IPv6 extension headers
survivability with james. In: Proc. ACM Internet Measurement Conference (IMC),
Poster Session (October 2022)

36. Linux: ping6(8) - Linux man page, https://linux.die.net/man/8/ping6, [Last
Accessed: May 21th, 2024]

37. LWN.net: net, sched: add clsact qdisc (January 2016), https://lwn.net/
Articles/671458/, [Last Accessed: June 1st, 2024]

38. Marechal, E., Donnet, B.: Network fingerprinting: Routers under attack. In: Proc.
International Workshop on Traffic Measurements for Cybersecurity (WTMC)
(September 2020)

39. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: Host identity protocol.
RFC 5201, Internet Engineering Task Force (April 2008)

40. Netcat project: The GNU Netcat project, https://netcat.sourceforge.net,
[Last Accessed: May 21th, 2024]

41. Nordmark, E., Bagnulo, M.: Shim6: Level 3 multihoming shim protocol for IPv6.
RFC 55533201, Internet Engineering Task Force (June 2009)

42. Ouellette, K.: IPv6 Hop-by-hop and Destination Options Forwarding In Routers.
Internet Draft (Work in Progress) draft-ouellette-v6ops-eh-router-forwarding-00,
Internet Engineering Task Force (March 2024)



43. Scapy Community: Scapy, https://scapy.net, [Last Accessed: May 7th, 2024]
44. tc: tc(8) – linux manual page, see https://man7.org/linux/man-pages/man8/tc.

8.html
45. The Linux Foundation: eBPF (October 2021), https://ebpf.io
46. Tuxology: An entertaining eBPF XDP adventure (May 2017), https://suchakra.

files.wordpress.com/2017/05/cls-xdp1.png?w=696, [Last Accessed: May 7th,
2024]

47. V.-A Padurean, Gasser, O., Bush, R., Feldmann, A.: SRv6: Is there anybordy out
there? In: Proc. International Workshop on Traffic Measurements for Cybersecurity
(WTMC) (June 2022)

48. Vyncke, E., Donnet, B., Iurman, J.: Attribution of Internet Probes. RFC 9511,
Internet Engineering Task Force (November 2023)

49. Vyncke, E., Léas, R., Iurman, J.: Just another measurement of extension header
survivability (JAMES). Internet Draft (Work in Progress) draft-vyncke-v6ops-
james-02, Internet Engineering Task Force (July 2022)


