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Abstract 
In this paper, a simplified model is proposed for the shear strength of short shear walls based on the original three-
parameter kinematic theory (3PKT). The model is built on first principles – compatibility of deformations, constitutive 
relationships and equilibrium – and aims to combine simplicity and accuracy for structural assessment applications. The 
model focuses on shear failures along diagonal cracks, while other failure modes such as sliding shear, out-of-plane 
instability, or detailing/lap splice failures need to be evaluated separately. The simplified 3PKT is validated with 29 
specimens with a wide range of properties and is compared to the ASCE (ASCE 2014) and Japanese (AIJ 2001) seismic 
code shear provisions. It is shown that the model captures well the effect of all key test variables, and significantly re-
duces the conservatism and scatter of the code strength predictions. It is also shown that the proposed approach can be 
particularly helpful in the assessment of structures with less-than-minimum shear reinforcement to avoid costly and 
disruptive strengthening interventions. 
 

 
1. Introduction 

While the flexural behavior of slender shear walls is 
well understood, the response of short shear-dominated 
walls is still under investigation due to the complexity 
of the shear-resisting mechanisms and their interactions. 
This paper aims to propose a rational mechanical model 
for the shear strength of short shear walls with aspect 
ratios a/h≤3.0, where brittle shear failures occur before 
the yielding of the flexural reinforcement. 

Several approaches with different levels of complex-
ity have been proposed for predicting the shear strength 
of shear walls. The simplest engineering approach is the 
use of empirical or semi-empirical equations provided 
in design codes such as the ASCE code (ASCE 2014) or 
AIJ code (AIJ 2001). While such equations are conven-
ient, they typically feature significant conservatism, 
which can lead to overdesign of newly constructed walls 
or, more importantly, to costly retrofit of existing struc-
tures. Other simple models have been proposed (Pristely 
2007; Biskinis and Fardis 2010; CEN 2005; Beyer et al. 
2011), where all the plastic deformations are lumped in 
a plastic hinge at the base of the wall (plastic hinge 

models). This approach is based mainly on flexural be-
havior, and it is not well suited for the modelling of brit-
tle shear failures of short walls occurring before yield-
ing of the flexural reinforcement. To capture such fail-
ures, researchers have also proposed truss (or strut-and-
tie) models (Mazars et al. 2002; Park and Eom 2007; 
Panagiotou et al. 2012), where the wall is discretized 
into a number of one-dimensional vertical, horizontal, 
and inclined truss elements (struts for concrete in com-
pression and ties for reinforcement in tension). The 
struts and ties are assigned nonlinear load-displacement 
relationships based on the properties of the concrete and 
reinforcement. Several difficulties are encountered in 
this approach, as for example the proper selection of the 
layout and dimensions of the truss members, and in par-
ticular, the struts. Moreover, the critical shear cracks are 
not modelled explicitly in truss models; therefore, this 
approach is not suitable for evaluating aggregate inter-
lock resistance and crack widths. The main limitation of 
truss models however is that they are not applicable to 
brittle structures with less-than-minimum shear rein-
forcement. In order to take into account the complex 
behavior of cracked reinforced concrete, nonlinear finite 
element (FE) formulations have also been used to model 
shear walls (Bažant and Oh 1985; Vecchio and Collins 
1986; Vecchio 2000; Kagermanov and Ceresa 2016). 
However, while FE models can produce adequate results 
of strength and deformations when applied properly, 
they require considerable time to conduct appropriate 
modelling, in addition to, the need for engineers with 
strong FE background. Therefore, there remains a need 
for simplified mechanical models for the engineering 
practice to reliably predict the ultimate behavior of short 
shear-dominated walls. 

A suitable basis for addressing this need is provided 
by a three-parameter kinematic theory (3PKT) for shear-
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dominated walls (Mihaylov et al. 2016), which was de-
veloped from an earlier two-parameter kinematic theory 
(2PKT) for deep beams (Mihaylov et al. 2013). This 
approach is built on a kinematic description of the de-
formation patterns of diagonally cracked walls with 
rectangular sections, and also includes equilibrium con-
ditions and constitutive relationships for the shear 
mechanisms in the wall. It was developed to simulate 
the complete nonlinear response of walls by using three 
degrees of freedom (DOFs), capturing both global and 
local deformations from zero load up to failure. The 
adequacy of the 3PKT has been demonstrated via com-
parisons with a large number of tests (Mihaylov et al. 
2016; Tatar and Mihaylov 2019). Because the 3PKT is 
based on first principles, it allows to be either extended 
or simplified depending on the goal of the analysis. 

In this paper, the 3PKT is simplified to focus solely 
on the shear strength (peak response) of short shear-
dominated walls. While the complete nonlinear response 
of walls can be of interest, it is the shear strength that is 
typically sufficient for safety verifications. For such 
calculations, it is preferred to use either closed-form 
equations or simple iterative procedures, rather than the 
complete nonlinear analysis offered by the original 
3PKT. The proposed simplified 3PKT approach is vali-
dated with a wide range of shear walls from past ex-
periments, and the results demonstrate the robustness of 
the model. Moreover, different test variables of shear 
walls are studied based on the simplified 3PKT to un-
derstand their impact on the shear strength.  

This proposed simplified model allows engineers to 
conduct safety checks on the shear strength of walls by 

simple calculations since it is based on only three DOFs 
without the need of FE modeling and nonlinear simula-
tion software. However, more detailed methods can be 
used to check in further detail the performance and 
evaluate the deformations of shear-critical shear walls. 

 
2. Original 3PKT approach of shear-
dominated shear walls 

The 3PKT approach (Mihaylov et al. 2016) is based on 
a kinematic model that describes the deformation field 
of cracked shear-dominated rectangular walls. The 
model has been developed based on observations and 
measurements from tests of walls under the combined 
effect of vertical and lateral loads, where the failure is 
governed mainly by the opening of diagonal shear 
cracks. 

According to the 3PKT, the ultimate deformation pat-
tern of the wall can be obtained as a superposition of 
three deformation fields, where each field is a function 
of a single DOF – see Fig. 1(a). The deformation fields 
are marked by a straight diagonal shear crack with an 
inclination of α1 with respect to the vertical axis. This 
crack divides the wall into two regions: a rigid block 
above the crack and a fan of struts below the crack. The 
flexural reinforcement in the fan is modelled with a ver-
tical tie, which represents the bars in the tensile one-half 
of the section in terms of their area As and centroidal 
axis. 

The first deformation pattern corresponds to the elon-
gation of the vertical tie, expressed with the average 
strain along the tie εt,avg. As DOF εt,avg increases, the fan 
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Fig. 1 Three-parameter kinematic theory (3PKT) for shear-dominated shear walls: (a) kinematic model and degrees of 
freedom; (b) load-bearing mechanisms across the critical crack and in the critical loading zone (CLZ). 
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of struts opens and the rigid block rotates about the toe 
of the wall (pivot A). Associated with that, the critical 
shear crack widens. The second deformation pattern is 
characterized by lateral displacement Δc of the rigid 
block with respect to the fan (DOF Δc). This displace-
ment results in widening and slip displacements in the 
critical crack. Moreover, Δc is associated with compres-
sive strains and stresses in the critical loading zone 
(CLZ) near the toe of the wall. The third deformation 
pattern is characterized by a downward displacement Δcx 
occurring in the CLZ, which results in rotation of the 
rigid block about pivot B at the bottom of the vertical tie. 
While DOFs εt,avg and Δc are sufficient for the modelling 
of members without axial load or prestressing, DOF Δcx 
is necessary in the presence of axial compression N, 
which tends to drive the rigid block downwards. The 
rotation about pivot B is associated with widening and 
slip displacements in the critical crack. By superimpos-
ing the three deformation patterns for given values of 
the three DOFs, the full deformation field and crack 
displacements are obtained. 

Moreover, the load-bearing mechanisms of the wall 
are modelled by nonlinear springs across the critical 
crack and in the CLZ – Fig. 1(b). The deformations of 
the springs are derived from the kinematic model (com-
patibility of deformations) and are used together with 
constitutive relationships for the load-bearing mecha-
nisms in the wall. The springs represent the tension in 
the flexural reinforcement (tie) Ft,min, the shear due to 
aggregate interlock Fci, the tension is the transverse re-
inforcement Fs, the contact forces Fcn and Fct (if present) 
between the rigid block and the fan in the vicinity of the 
CLZ, the dowel action of the flexural reinforcement 
(tie) Fd, the compression forces in the concrete of the 
CLZ FCLZ1 and FCLZ2, and the compression (Fsc) in the 
vertical reinforcement in the CLZ. These forces can be 
evaluated for any set of DOFs εt,avg, Δc and Δcx. 

In the solution procedure outlined in (Mihaylov et al. 
2016), a lateral displacement Δ is imposed at the top of 
the wall, thus reducing the unknown DOFs to two. In 
addition, by satisfying the vertical and moment equilib-
rium of the forces acting on the rigid block (i.e., spring 
forces Fi and normal force N), the two other DOFs are 
determined. In a final step, the horizontal equilibrium of 
the rigid block is used to determine the lateral load V on 
the wall corresponding to the imposed lateral displace-
ment Δ. 

This approach was developed to model the complete 
nonlinear load-displacement response of shear-
dominated walls, including the post-peak response. It is 
applicable to walls that fail either in shear along diago-
nal cracks or at the base section under the combination 
of flexure and shear. The failure along the diagonal 
cracks can occur either in a brittle manner prior to yield-
ing of the flexural reinforcement, or in a more ductile 
manner after flexural yielding. However, while the 
3PKT is computationally efficient and uses simple input, 
it still represents significant complexity for practical 

safety verifications. For this reason, in the following, 
the 3PKT is simplified to focus only on the peak re-
sponse (strength) of shear walls. 

 
3. Simplified 3PKT approach for the shear 
strength of shear-dominated walls 

Of most interest and challenge for practical applications 
is the prediction of brittle shear failures along diagonal 
cracks. In short walls with aspect ratios a/h≤3.0, such 
failures occur under the complex interaction between 
shear, bending and axial load. Therefore, the simplified 
3PKT targets namely the shear strength of walls that fail 
prior to yielding of the flexural reinforcement. 

Figure 2 shows the geometrical properties of the ki-
nematic model, which are adopted from the original 
3PKT. The angle of the shear crack α1 is estimated as 

1
1 max( ,30 ), tan ( / )clh aα α α −= ° =  (1) 

where α is the angle of the diagonal of the wall region 
with respect to the vertical axis, h is the length of the 
wall, and acl is the clear height of the wall. At the top 
end of the critical crack, a heavily cracked zone devel-
ops with a length lk along the vertical tie. This zone is of 
significance for the opening of the critical crack and for 
the dowel action of the vertical reinforcement. Length lk 
is estimated according to Eqs. (2) to (5) taking into ac-
count the crack spacing along the vertical tie scr: 

( )0 1min , cot cotk crl l s d α α= + × −⎡ ⎤⎣ ⎦  (2) 
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Fig. 2 Geometry of kinematic model. 
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where d is the distance from the outer most compression 
fibers of the wall to the vertical tie, As is the area of the 
tie representing the reinforcement in the tensile one-half 
of the section (i.e., within h/2), db is the diameter of the 
main vertical reinforcement in the tie, b is the width of 
the rectangular wall section, ρl is the total ratio of verti-
cal reinforcement in the section, and ρl1 is the rein-
forcement ratio in the zone with enhanced crack control 
around the vertical tie. The total cracked length along 
the vertical tie extends from the bottom section of the 
wall to the top end of length lk: 

1 0/ tan ( )t kl d l lα= + −  (6) 

It is along this length that the average tie strain εt,avg is 
defined and integrated. The other important geometrical 
property of the kinematic model is the characteristic 
length of the critical loading zone lb1e The CLZ is ideal-
ized as a circular sector with a radius 3lb1ecosα1 and a 
center located at the compression toe of the wall. Length 
lb1e has been derived based on comparisons with tests 
(Mihaylov et al. 2016): 

2 2
1 min 0.11 , 370 mmb el a h⎡ ⎤= +⎣ ⎦

 (7) 

where a is the height of the member from the base sec-
tion to the level of the lateral load. 

Taking into account the above geometrical properties 
and the kinematics in Fig. 1(a), the crack width w and 
the strain in the transverse reinforcement εv halfway 
along the critical crack have been derived – see Eqs. (8) 
to (10) (Mihaylov et al. 2016). Both deformations are 
functions of the three DOFs of the kinematic model. In 
the expression for w, ncr takes into account the crack 
control in the web of the wall. In the presence of suffi-
cient vertical reinforcement in the web (reinforcement 
ratio ρlw), the crack width determined from the kine-
matic model is divided among ncr major cracks. In the 
expression for εv, the factor of 2 accounts for strain lo-
calization in the critical crack. Length d1 in Eq. (10) is 
the distance from the compression edge of the wall to 
the farthest layer of vertical bars in the section. 
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To simplify the 3PKT approach, it will be assumed 
that the concrete in the CLZ crushes at shear failure. 
This assumption is based on multiple test observations 
showing significant spalling of concrete at the toe of the 
wall, which occurs simultaneously with the opening of 
the critical diagonal crack. To reflect this observation, 
the strain in the CLZ at failure is estimated at 
εCLZ=−0.0035, which is also consistent with digital im-
age correlation measurements from wall tests (Langer 
2019). The goal of this simplification is to estimate 
DOFs Δc and Δcx at failure without the need for a com-
plete nonlinear analysis from zero load. 

Figure 3 shows the proposed simplified model of the 
CLZ. Strain εCLZ is oriented in the direction of the resul-
tant force in the CLZ, FCLZ, which itself is inclined at 
angle αF with respect to the vertical axis. As short shear 
walls work predominantly in diagonal compression, 
angle αF is estimated at tan-1(h/a). Furthermore, the an-
gle of force FCLZ is linked to the angle of the displace-
ment in the CLZ, ΔCLZ, where ΔCLZ is the resultant vector 
of DOFs Δc and Δcx. In a study on prestressed concrete 
deep beams, Mihaylov et al. (2021) have proposed the 
following simplified relationship between the force an-
gle αF and displacement angle αΔ:  

1
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where α1 is the angle of the critical crack [Eq. (1)]. Ac-
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Fig. 3 Simplified model of the critical loading zone. 
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cording to Eq. (11), when FCLZ is aligned with the criti-
cal crack (i.e., αF≈α1), ΔCLZ is horizontal. This limit case 
is consistent with test observations in deep members 
without axial load or prestressing (Mihaylov et al. 2013). 

To proceed with the evaluation of DOFs Δc and Δcx, 
the CLZ displacement in the direction of force FCLZ is 
obtained by multiplying strain εCLZ by the radius of the 
critical loading zone 3lb1ecosα1. This displacement 
represents the projection of ΔCLZ on the direction of FCLZ, 
and therefore ΔCLZ is obtained as: 

1 13 cos
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CLZ b e
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F

l

Δ

ε α
Δ

α α
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=
−
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In turn, when ΔCLZ is projected on the horizontal and 
vertical axes, the two DOFs of the kinematic model at 
shear failure are obtained: 

sin , cosc CLZ cx CLZΔ ΔΔ Δ α Δ Δ α= =  (13) 

Note that these DOFs are determined in advance 
based on the geometry of the wall without the need for 
iterative calculations. 

To calculate the third DOF of the kinematic model 
εt,avg and the shear strength of the wall, it is necessary to 
model the shear mechanisms in the CLZ and along the 
critical crack. To simplify the model further, simpler 
equations are proposed as compared to the complete 
nonlinear relationships of the springs used in the origi-
nal 3PKT. There are four main shear mechanisms in 
shear walls that are taken into account in the simplified 
3PKT as follows. 

 
- Shear carried in the critical loading zone VCLZ 
The average compressive stress in the CLZ in the direc-
tion of force FCLZ is evaluated at 1.48fc

0.8 as proposed in 
(Mihaylov et al. 2021). This value is obtained for a 
maximum strain εCLZ=−0.0035 by using an appropriate 
stress-strain relationship for the concrete in compression 
(Popovics 1973). The critical section of the CLZ is lo-
cated at a vertical distance of lb1e from the compression 
toe of the wall (Fig. 3), and the width of this section is 
lb1esinα1. When the area of the section (lb1esinα1)b is 
multiplied by the average stress 1.48fc

0.8, force FCLZ is 
obtained. This force is projected on the horizontal axis 
to obtain the shear carried in the CLZ: 

0.8
1sin 1.48 sinCLZ ble c FV l b fα α′= ×  (14) 

 
- Shear carried by aggregate interlock Vci 
The aggregate interlock shear stress νci is evaluated 
based on the crack width w by using an expression pro-
posed by Vecchio and Collins (1986). Stress vci is inte-
grated along the critical crack to obtain the shear resis-
tance provided by aggregate interlock: 
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where w (mm) is calculated from Eq. (8) and ag (mm) is 
the maximum size of coarse aggregates in the concrete. 
 
- Shear carried by transverse reinforcement Vs 
The stress in the transverse reinforcement fv is evaluated 
based on strain εv from Eq. (10) by using an elastic-
perfectly-plastic stress-strain relationship for the steel. 
Stress fv is multiplied by the area of activated stirrups 
along the critical crack to obtain the shear carried by the 
stirrups (Mihaylov et al. 2016): 
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where ρv is the transverse reinforcement ratio. The ex-
pression in the brackets represents the height along the 
wall within which the transverse reinforcement is con-
sidered effective. 
 
- Shear carried by dowel action of the flexural rein-
forcement Vd 
The dowel action of the flexural tension reinforcement 
(tie) develops within length lk and is associated with the 
transverse displacement Δc. The bar-dowels are mod-
elled as fixed-fixed beam elements with a length lk, 
which work in double curvature with zero bending mo-
ment halfway along lk. The ultimate capacity of the bar-
dowels is governed by the formation of plastic hinges at 
the two ends of lk. Based on these assumptions, the fol-
lowing expression for the shear carried by the dowels 
has been derived (Mihaylov et al. 2013): 

2
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where the expression in the square brackets is minimum 
zero. As evident from this equation, Vd depends on the 
unknown DOF εt,avg. The larger is the tensile strain in 
the bar-dowels, the lower is the moment capacity of the 
plastic hinges, and therefore the weaker is the dowel 
action. Note also that DOF εt,avg similarly affects shear 
contributions Vci and Vs via the crack width w and stir-
rups strain εv, respectively [Eqs. (8) to (10)]. 

The four shear strength contributions are added up to 
express the shear resistance of the wall: 

CLZ ci s dV V V V V= + + +  (18) 

where V is a function of the unknown DOF εt,avg. 
In addition to the shear resistance expressed by Eq. 

(18), the shear force acting on the shear wall is also de-
rived from the moment equilibrium of the entire wall as 
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follows: 
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where Es≈200 GPa is the modulus of elasticity of the 
reinforcement, N is the axial load on the wall (positive 
for compression), and z is the lever arm of the vertical 
forces in the base section. In shear calculations of mem-
bers without axial load, z is typically estimated at 0.9d. 
In this study, Eq. (20) is proposed to capture in an ap-
proximate manner the decrease of z under increasing 
axial compression. This expression is derived based on 
multiple classical flexural analyses of wall sections with 
various properties. 

Finally, as the shear forces expressed by Eqs. (18) and 
(19) must be equal, this equilibrium condition is used to 
determine DOF εt,avg and the shear strength of the wall. 

This is illustrated graphically in Fig. 4, where both V 
and Veq are plotted as functions of εt,avg. The solution of 
the 3PKT equations lies at the intersection of the two 
curves, which is found by iterative calculations (e.g., the 
bisection method). The ordinate of the intersection point 
is the predicted shear strength of the wall Vpred. 

Taking into account the simplifying assumptions of 
the proposed model, its applicability is limited to rela-
tively short walls with a/h ratios ≤3.0 and normalized 
axial compression n=N/fc′bh≤0.4. In addition, given the 
available test data that can be used for the validation of 
the model, the compressive strength of the concrete is 
limited in the range 20≤ fc′≤60 MPa, which includes 
most practical cases. It is also noted that the model does 
not capture other failure modes such as sliding shear, 
out-of-plane instability, or detailing/lap splice failures. 

 
4. Sample 3PKT calculations 

To illustrate the calculations required by the proposed 
approach, it is applied to shear wall RF0 tested by 
(Franssen et al. 2021). The wall had a length h=1500 
mm and an aspect ratio a/h=1.70. The total vertical rein-
forcement ratio was ρl=1.75% and the transverse rein-
forcement ratio was ρv=0.07%. The wall was subjected 
to an axial load N=1200 kN (n=N/bhfc′=0.07) and failed 
under a shear force Vexp=1043 kN. All properties of the 
wall are provided in Table 1. 

Figure 5(a) shows a photograph of the wall after fail-
ure and Fig. 5(b) shows the deformed shape at failure 
(scaled ×10) measured via digital image correlation 
(Langer 2019). The gray scale in Fig. 5(b) corresponds 
to the sum of the principal strains |ε1|+|ε2| obtained from 
the measured displacement field. The critical diagonal 
crack and CLZ can be clearly identified in both figures. 
It can also be seen that the global deformation pattern of 
the wall is in agreement with the idealized kinematics in 
Fig. 1(a). 

Step-by-step calculations for the shear strength of 

(a) (b) (c)

30.5

33.1
o

o

17
57

25
5060

7

C
LZ

25
6

cracks81
8

ρl1
1.75%

1500

dimensions in mm

cr
itic

al 
cr

ac
k

396
1146

 
Fig. 5 3PKT modelling of test specimen RF0 by (Franssen et al. 2021): (a) Observed cracks and damage at failure; (b) 
Deformed shape (×10) obtained by digital image correlation (DIC) measurements at failure (Langer 2019); (c) Idealized 
crack pattern and critical loading zone. 

 
Fig. 4 Solution of the simplified 3PKT equations based 
on the equilibrium of the shear forces – specimen RF0 
by (Franssen et al. 2021). 
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wall RF0 are presented in the Appendix to the paper. 
The calculations begin with the geometry of the kine-
matic model, which is drawn to scale in Fig. 5(c). For 
this wall, the critical crack extends along the diagonal of 
the test region at an angle α1≈33° as observed in the test. 
Using this geometry, the next step is to calculate DOFs 
Δc and Δcx associated with the CLZ: 4.65 mm and 0.59 
mm, respectively.  The shear carried in the CLZ is also 
calculated in this step: VCLZ=727 kN. The other three 
shear mechanisms, as well as DOF εt,avg, are determined 
through iterative calculations by varying εt,avg and 
checking the equilibrium condition V=Veq. The relation-
ships V(εt,avg) and Veq(εt,avg) for specimen RF0 are plot-
ted in Fig. 4. 

It can be seen from Fig. 4 that the final converged so-
lution is reached at εt,avg=0.00330, which is slightly lar-
ger than the yield strain of the reinforcement. This is a 
conservative estimate that stems from the approximate 
nature of Eq. (20). It is also noted that some limited 
yielding was observed in the outer layers of the rein-
forcement in the test. The shear force at this strain is 
Vpred=1037 kN, corresponding to an experimental-to-
predicted ratio Vexp/Vpred=1.01. The shear carried by the 
CLZ dominates the shear resistance with a contribution 
of 70.1% (727 kN). The shear carried by aggregate in-
terlock is 191 kN or 18.4%. The shear carried by the 
light transverse reinforcement is 119 kN or 11.5%. Fi-
nally, the dowel action is predicted to have a negligible 
strength contribution due to the high longitudinal strain 
in the flexural reinforcement. 

 
5. Validation dataset and comparisons with 
code equations 

For the sake of a more thorough validation of the pro-
posed simplified 3PKT approach, a dataset of 69 short 
shear walls with a/h≤3.0 were collected from past ex-
perimental studies (Franssen et al. 2021; Hirosawa 
1975; Maier and Thürlimann 1985; Wiradinata 1985; 
Lefas et al. 1990; Pilakoutas and Elnashai 1995; Lopes 
2001; Oh et al. 2002; Greifenhagen and Lestuzzi 2005; 
Dazio et al. 2009; Bimschas 2010; Liu et al. 2010; Han-
newald et al. 2013; Choun and Park 2015; Luna et al. 
2015; Tran and Wallace 2015; Christidis et al. 2016; 
Yuniarsyah et al. 2017; Ji et al. 2018; Terzioglu et al. 
2018; Xiong et al. 2018; Hosseini et al. 2019; Huang et 
al. 2020; Nie et al. 2020; Rong et al. 2020; Zhou et al. 
2021; Wu et al. 2022) as shown in Table 1. This dataset 
features a wide range of test variables including differ-
ent material and geometrical properties. The length of 
the walls h varies from 450 mm to 3050 mm, the a/h 
ratio from 0.3 to 3.0, the vertical reinforcement ratio ρl 
from 0.4% to 3.0%, the transverse reinforcement ratio 
ρv from 0 to 1.4%, the concrete compressive strength 
from 20.1 MPa to 57.5 MPa, and the normalized vertical 
force n from 0.1 in tension to 0.4 in compression. This 
dataset does not include failures reported as sliding-
shear, out-of-plane instability, or failures due to poor 

detailing/lap splice deficiencies. The tests are divided 
into two subsets, i.e., shear failures (S) and flexural fail-
ures (F) according to the 3PKT shear strength predic-
tions and flexural strength predictions. The minimum of 
these two predictions determines the governing failure 
mode and the predicted strength Vpred of each wall (re-
ported in Table 1).  

The main assumptions used for the flexural strength 
calculations are summarized in Fig. 6. The normal 
strains in the base section of the wall vary linearly along 
the section, starting from a strain of −0.0035 at the 
compressive edge. The distribution of the vertical rein-
forcement is simplified in two types of zones: end zones 
of length tc (hidden columns) and a middle zone of 
length lm=h−2tc (web of the wall). The bars in the end 
zones are lumped in the middle of length tc, while those 
in the middle zone are smeared along length lm. The 
compressive stresses in the concrete are approximated 
by using stress block factors according to Eurocode EC2 
(CEN 2004), while the behavior of the reinforcement in 
tension and compression is simplified as elastic-
perfectly-plastic. The equilibrium of the vertical forces 
is used to determine the position of the neutral axis, and 
the moment equilibrium to evaluate the lateral force on 
the wall at flexural failure. 

Figure 7 and Table 1 illustrate the accuracy of the 
flexural and shear strength predictions in terms of ex-
perimental-to-predicted ratios Vexp/Vpred. For the flexural 
strength of 40 wall specimens, the average Vexp/Vpred 
ratio is 1.05 and the coefficient of variation (COV) is 
10.0%. For the shear strength of the remaining 29 
specimens, the average ratio is 1.10 and the COV is 
10.5%. These results show that (on average) the 3PKT 
is slightly conservative, and that the scatter of its predic-
tions is similarly low as that of the flexural predictions. 
It is also noted with regards to Fig. 7(a) that the shear 
failure dominates at low a/h ratios, and the flexural fail-
ure governs in the range of a/h≥≈2.0. Moreover, Fig. 
7(b) shows that the 3PKT exhibits no apparent bias with 
respect to the shear reinforcement ratio ρv, which is var-
ied widely from 0 to 1.40%. If the same calculations are 
performed with the original 3PKT, the average Vexp/Vpred 
ratio is slightly less conservative at 1.04, while the COV 
is slightly larger at 13.4%. 
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Fig. 6 Assumption for simplified flexural analysis of shear 
walls.
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Table 1 Measured and predicted strength of shear walls by the simplified 3PKT and flexural analysis. 
a/h b h tc d d1 a acl ρl db ρl,web fy ρv fyv fc' ag n=N/ fc'bh Vexp Vpred Vexp/Vpred Failure Vexp/VASCE Specimen Reference 
- mm mm mm mm mm mm mm % mm % MPa % MPa MPa mm - kN kN - - - 

73 1.00 160 1700 85 1419 1657 1700 1600 1.54 19 0.50 384 0.26 427 21.2 16 0.09 796 666 1.19 S 1.29 
74 1.00 160 1700 85 1419 1657 1700 1600 1.54 19 0.50 384 0.57 430 21.2 16 0.09 786 828 0.95 S 0.80 
82 

Hirosawa (1975) 
2.00 160 850 85 735 807 1700 1600 2.31 22 0.40 388 0.57 430 21.2 16 0.09 321 336 0.95 F - 

S9 1.12 100 1180 50 885 1154 1322 1200 0.99 8 0.99 560 0.00 0 29.2 16 0.08 342 272 1.26 S 2.15 
S10 Maier (1985) 1.12 100 1180 200 1004 1154 1322 1200 2.91 16 1.00 513 0.98 496 31.0 16 0.07 670 648 1.03 S 1.23 

Wall2 Wiradinata (1985) 0.33 100 2000 60 1585 1970 660 500 0.80 11.3 0.70 435 0.26 425 22.0 12 0.00 683 593 1.15 S 1.50 
SW12 1.10 70 750 140 573 720 825 750 2.68 8 2.45 470 1.10 520 47.9 10 0.10 340 355 0.96 S 1.13 
SW15 1.10 70 750 140 573 700 825 750 2.68 8 2.45 470 1.10 520 37.8 10 0.10 320 315 1.02 S 1.19 
SW22 2.12 65 650 140 499 620 1378 1300 2.86 8 2.51 470 0.82 520 44.9 10 0.10 150 155 0.97 F - 
SW26 

Lefas et al. (1990) 

2.12 65 650 140 499 620 1378 1300 2.86 8 2.51 470 0.40 520 25.5 10 0.00 123 120 1.03 F - 
SW4 2.10 60 600 110 511 580 1260 1200 2.82 12 0.50 535 0.39 545 36.9 10 0.00 107 114 0.94 F - 
SW5 2.10 60 600 60 545 580 1260 1200 3.01 16 0.47 500 0.31 400 31.8 10 0.00 113 119 0.95 F - 
SW6 2.10 60 600 110 511 580 1260 1200 2.82 12 0.31 535 0.31 400 38.6 10 0.00 113 112 1.01 F - 
SW7 2.10 60 600 60 545 580 1260 1200 3.01 16 0.47 500 0.39 545 32.0 10 0.00 127 119 1.06 F - 
SW8 2.10 60 600 110 515 580 1260 1200 2.93 10 0.31 430 0.42 400 45.8 10 0.00 94 95 0.99 F - 
SW9 

Pilakoutas and Elnashai (1995) 

2.10 60 600 110 515 580 1260 1200 2.93 10 0.31 430 0.56 400 38.9 10 0.00 103 94 1.09 F - 
SW13 1.10 45 450 75 401.3 435 495 495 2.36 8 0.56 515 0.93 414 44.0 10 0.00 108 103 1.05 F - 
SW16 1.10 45 450 75 401.3 435 495 495 2.11 8 0.00 527 1.40 414 35.6 10 0.00 80 88 0.92 F - 
SW17 1.10 45 450 75 401.3 435 495 495 2.11 8 0.00 527 0.80 414 36.1 10 0.00 84 88 0.95 F - 
SW18 

Lopes (2001) 

1.10 45 450 75 401.3 435 495 495 2.73 12 0.00 533 0.80 414 35.7 10 0.00 100 103 0.97 S 1.03 
WR-0 2.00 200 1500 150 1250 1450 3000 2000 0.67 13 0.36 449 0.31 342 27.6 19 0.10 394 391 1.01 F - 
WR-10 2.00 200 1500 150 1250 1450 3000 2000 0.67 13 0.36 449 0.31 342 27.6 19 0.10 397 391 1.01 F - 

WR-200 
Oh et al. (2002) 

2.00 200 1500 150 1250 1450 3000 2000 0.67 13 0.36 449 0.31 342 27.6 19 0.10 415 391 1.06 F - 
M3 Greifenhagen and Lestuzzi (2005) 0.77 80 900 40 786.5 880 690 565 0.39 6 0.32 504 0.26 745 20.1 10 0.10 176 163 1.08 F - 

WSH1 2.28 150 2000 175 1685 1975 4560 4030 0.54 10 0.30 562 0.25 584 45.0 10 0.05 336 333 1.01 F - 
WSH2 2.28 150 2000 175 1685 1975 4560 4030 0.54 10 0.30 542 0.25 485 40.5 10 0.06 359 334 1.08 F - 
WSH3 2.28 150 2000 230 1668 1970 4560 4030 0.82 12 0.54 587 0.25 489 39.2 10 0.06 454 445 1.02 F - 
WSH4 2.28 150 2000 230 1668 1970 4560 4030 0.82 12 0.54 550 0.25 519 40.9 10 0.06 443 435 1.02 F - 
WSH5 2.28 150 2000 230 1618 1975 4560 4030 0.39 8 0.27 523 0.25 519 38.3 10 0.13 439 404 1.09 F - 
WSH6 

Dazio et al. (2009) 

2.26 150 2000 230 1668 1975 4520 4030 0.82 12 0.54 550 0.25 519 45.6 10 0.11 597 564 1.06 F - 
VK1 2.20 350 1500 65 1190 1467 3300 3100 0.82 14 0.82 515 0.08 518 35.0 16 0.07 729 699 1.04 F - 
VK3 Bimschas (2010) 2.20 350 1500 65 1160 1467 3300 3100 1.23 14 1.23 515 0.08 518 34.0 16 0.07 879 879 1.00 F - 
N4T0 1.86 100 700 100 609.8 675 1300 1200 2.49 14 0.44 414 0.44 414 38.9 10 0.15 297 261 1.14 F - 
N4T0 Liu et al. (2010) 1.86 100 700 100 611.7 675 1300 1200 2.58 14 0.66 414 0.66 414 38.9 10 0.15 302 266 1.13 F - 
RW2 2.00 152.4 1219 180 1071 1191 2438 2362 2.84 19.1 0.61 477 0.61 443 48.6 9.5 0.07 730 708 1.03 F - 
RW3 1.50 152.4 1219 180 1064 1191 1829 1753 1.31 12.7 0.33 472 0.33 516 48.8 9.5 0.08 589 558 1.06 F - 
RW4 1.50 152.4 1219 180 1057 1191 1829 1753 2.54 19.1 0.73 476 0.73 443 55.8 9.5 0.06 841 881 0.95 F - 
RW5 

Tran and Wallace (2015) 

1.50 152.4 1219 180 1064 1191 1829 1753 2.46 19.1 0.61 476 0.61 443 57.5 9.5 0.02 665 728 0.91 F - 
VK6 3.00 350 1500 65 1160 1467 4500 4300 1.23 14 1.23 521 0.08 528 44.4 16 0.06 666 682 0.98 F - 
VK7 Hannewald et al. (2013) 2.20 350 1500 65 1160 1467 3300 3100 1.23 14 1.23 521 0.22 528 30.0 16 0.08 903 861 1.05 F - 
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Table 1 (Continued from previous page). 
a/h b h tc d d1 a acl ρl db ρl,web fy ρv fyv fc' ag n=N/ fc'bh Vexp Vpred Vexp/Vpred Failure Vexp/VASCE Specimen Reference 
- mm mm mm mm mm mm mm % mm % MPa % MPa MPa mm - kN kN - - - 

RC Choun and Park (2015) 1.39 370 1220 100 915 1170 1700 1400 2.05 22 2.05 400 1.37 400 40.2 19 0.00 1323 1274 1.04 F - 
SW5 0.33 203 3050 135 2290 2982 1007 854 1.00 12.7 1.00 462 1.00 462 29.7 20 0.00 2830 2361 1.20 S 1.01 
SW6 0.33 203 3050 135 2290 2982 1007 854 0.67 12.7 0.67 462 0.67 462 26.2 20 0.00 2183 1953 1.12 S 0.83 
SW9 0.54 203 3050 135 2290 2982 1647 1495 1.50 12.7 1.50 462 0.67 462 29.7 20 0.00 2820 2322 1.21 S 1.02 
SW10 

Luna et al. (2015) 

0.54 203 3050 135 2290 2982 1647 1495 1.50 12.7 1.50 462 0.33 462 31.7 20 0.00 2350 2256 1.04 S 1.29 
W13 Christidis et al. (2016) 2.00 125 750 55 634.5 721 1500 1400 1.21 12 1.05 580 0.11 568 25.4 10 0.00 146 151 0.97 F - 

NSW2 Yuniarsyah et al. (2017) 1.33 120 1050 95 881.7 995 1400 1050 0.67 13 0.26 355 0.26 347 24.2 10 0.15 290 245 1.18 F - 
T2-S2 0.63 120 1500 250 1288 1460 950 750 1.40 16 0.67 455 0.67 481 25.8 10 0.00 666 628 1.06 S 0.88 
T2-S3 0.63 120 1500 250 1288 1460 950 750 1.40 16 0.67 513 0.67 584 29.0 10 0.00 813 673 1.21 S 1.01 
T4-S1 0.47 120 1500 90 1263 1460 700 500 1.19 14 0.67 547 0.67 584 34.8 10 0.00 874 757 1.15 S 0.99 
T5-S1 1.13 120 1500 90 1380 1460 1700 1500 1.97 22 0.34 536 0.67 584 35.0 10 0.00 710 802 0.89 F - 
T6-S1 1.13 120 1500 90 1342 1460 1700 1500 2.19 22 0.67 541 0.67 584 22.6 10 0.00 735 752 0.98 S 1.03 
T1-S2 0.63 120 1500 250 1343 1460 950 750 1.17 16 0.34 499 0.34 584 24.0 10 0.00 563 560 1.01 S 0.98 

T1-N5-S1 0.63 120 1500 250 1343 1460 950 750 1.17 16 0.34 499 0.34 584 26.3 10 0.05 789 602 1.31 S 1.35 
T1-N10-S1 0.63 120 1500 250 1343 1460 950 750 1.17 16 0.34 499 0.34 584 27.0 10 0.10 793 623 1.27 S 1.35 

T1-S1 

Terzioglu et al. (2018) 

0.63 120 1500 90 1343 1460 950 750 1.17 16 0.34 450 0.34 481 23.7 10 0.00 635 553 1.15 S 1.25 
SW6 Ji et al. (2018) 1.10 180 1500 280 1311 1450 1650 1350 2.54 22 0.58 477 0.37 480 42.1 10 0.00 1225 1111 1.10 S 1.33 
SW0 Xiong et al. (2018) 1.50 180 1440 200 1239 1395 2160 2020 2.09 26 0.28 454 0.28 417 32.3 10 0.15 965 749 1.29 S 1.44 

RCSW1 Hosseini et al. (2019) 0.90 150 1600 300 1342 1560 1435 1380 0.73 12 0.27 430 0.34 497 31.0 13 0.00 503 424 1.19 F - 
T00 1.06 150 1700 250 1529 1650 1800 1500 2.47 16 0.38 443 0.38 402 49.8 10 0.00 1430 1203 1.19 S 1.71 
T30 1.06 150 1700 250 1529 1650 1800 1500 2.47 16 0.38 443 0.38 402 49.8 10 -0.06 1127 895 1.26 F - 
T40 1.06 150 1700 250 1529 1650 1800 1500 2.47 16 0.38 443 0.38 402 49.8 10 -0.08 1049 792 1.32 F - 
T50 

Nie et al. (2020) 

1.06 150 1700 250 1529 1650 1800 1500 2.47 16 0.38 443 0.38 402 49.8 10 -0.10 952 683 1.39 F - 
SW9 Rong et al. (2020) 2.14 100 700 100 603.6 678 1500 1400 1.62 12 0.38 381 0.28 270 44.0 15 0.19 213 222 0.96 S 1.61 

H1.0-R Huang et al. (2020) 1.20 100 1000 100 750 950 1200 1000 1.57 10 1.57 413 0.38 390 24.6 10 0.10 266 279 0.95 S 0.98 
SSW-1 Zhou et al. (2021) 1.14 100 700 100 624.8 684 800 700 1.62 12 0.38 341 0.28 305 20.6 10 0.20 162 176 0.92 S 1.16 

RF0 Franssen et al. (2021) 1.70 230 1500 75 1146 1461 2550 2300 1.75 16 1.75 522 0.07 578 52.3 16 0.07 1043 1032 1.01 S 1.38 
A1 1.16 200 2500 400 2033 2465 2900 2750 0.75 14 0.39 413 0.39 415 40.1 10 0.30 1678 1636 1.03 S 1.04 
B1 Wu et al. (2022) 1.16 200 2500 400 2033 2465 2900 2750 0.75 14 0.39 413 0.39 415 40.1 10 0.40 1814 1657 1.09 S 1.13 

Notations:  
a/h = shear-span-to-length-ratio; b = width of wall cross-section; h = length of wall section; d = effective length of section; d1 = distance from compressive edge of section to furthest tension longitudinal bar; a = wall height 
subjected to shear; acl = clear height of wall; ρl = ratio of total longitudinal reinforcement; db = diameter of main flexural reinforcement; ρl,web = ratio of longitudinal web reinforcement;  
fy = yield strength of longitudinal reinforcement; ρv = ratio of transverse reinforcement; fyv = yield strength of transverse reinforcement; fc' = compressive cylinder strength; ag = concrete maximum aggregate size; n = N/bhfc' 
= vertical axial force ratio; Vexp = experiment shear strength, Vpred = predicted lateral strength which is smaller of (3PKT shear strength, flexural strength); Failure = failure mode (F: flexural, S: shear failure). 
Notes: 
Italic values in the table are assumed or estimated due to missing reported data from the experiments.  
*The failure modes (F or S) are based on the predicted strength values by the 3PKT and flexural analysis. 
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To further put these results in context, the 3PKT ap-
proach is compared to the shear provisions of the ASCE 
41-13 code (ASCE 2014) – see Fig. 8 and Table 1. The 
code uses the following semi-empirical equation for the 
shear strength of short walls: 

( ' ) 0.83 '  (MPa)ASCE c c v y cV f f v bh f bhα ρ= + ≤ ⋅  (21) 

where αc=0.17 for acl/h≥2.0 and 0.25 for acl/h≤1.5, with 
a linear transition for intermediate values of acl/h. Eq. 
(21) implies that the transverse reinforcement is taken 
into account along a 45° crack (see second term), and 
that the concrete shear components are lumped in the 
first term of the equation. The positive effect of the 
transverse reinforcement is limited by the upper bound 
imposed on the shear strength. 

As evident from Fig. 8, the ASCE 41-13 code (ASCE 
2014) is more conservative than the 3PKT approach, 
resulting in an average shear strength experimental-to-
predicted ratio of 1.21. The code also results in a sig-
nificantly larger scatter: a COV of 23.8%. The scatter 
appears to be linked mainly to the effect of the trans-
verse reinforcement. As evident from Fig. 8(b), the code 
tends to be very conservative for walls with small rein-
forcement ratios ρv≤≈0.3%. For instance, the Vexp/VASCE 
ratio for wall RF0 with ρv=0.07% is 1.38, compared to 

1.01 obtained with the 3PKT. The most conservative 
code prediction is obtained for specimen S9 (Maier and 
Thürlimann 1985) without transverse reinforcement: 
Vexp/VASCE=2.15 versus Vexp/Vpred=1.26 for the 3PKT. 
These results show that, while the 3PKT requires more 
calculations, it can significantly improve the shear 
strength predictions. This can be particularly important 
in the assessment of existing lightly reinforced struc-
tures, where overly conservative predictions can result 
in costly and disruptive strengthening interventions. It is 
evident that the ASCE code significantly underestimates 
the shear contribution of the concrete. 

A semi-empirical equation [see Eq. (22)] for shear 
strength is also provided by the Japanese seismic code 
(AIJ 2001). The equation has a more limited application 
as the aspect ratio of the wall needs to be between 1 and 
3. Within this range, there are 17 specimens in the data-
base that were shear critical. For this limited set, the AIJ 
standard produces more conservative results than the 
ASCE code with an average Vexp/VAIJ ratio of 1.36 and a 
COV of 18.1%, as shown in Fig. 9. 

( ) ( )
0.023

c0.053 18 '
0.85 0.1 ' 0.8  (MPa)

0.12
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 (22) 
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(b) Effect of transverse reinforcement ratio ρv 

Fig. 7 3PKT shear strength predictions and flexural 
strength predictions for a database of 69 shear wall 
tests. 
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(b) Effect of transverse reinforcement ratio ρv 

Fig. 8 ASCE (2014) shear strength and flexural strength 
predictions for a database of 69 shear wall tests. 
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6. Effect of wall properties on the shear 
strength 

In addition to the overall validation of the 3PKT ap-
proach with 29 wall specimens, it is also of interest to 
study the effect of different wall properties on the ulti-
mate shear behavior of such members. In the following, 
individual wall series are selected that feature a single 
test variable, and their shear strength and shear mecha-

nisms are predicted with the 3PKT. As there can be 
slight variations in material properties between test 
specimen, the predictions are performed with averaged 
properties within each test series. 
 
6.1 Effect of reinforcement ratio 
A test series reported by Luna et al. (2015) is suitable to 
study the effect of the reinforcement ratio on the shear 
strength (Table 1). The specimens were reinforced with 
uniform orthogonal reinforcement without hidden end 
columns. Specimens SW5 and SW6 had the same sec-
tional dimensions (b=203 mm and h=3050 mm) with an 
aspect ratio a/h=0.33, and differed mainly in the amount 
of vertical and horizontal reinforcement: ρl=ρv=1.0% for 
SW5 and ρl=ρv=0.67% for SW6. 

Figure 10 compares the measured shear strengths of 
specimens SW5 and SW6 to the 3PKT predictions, both 
normalized by the area of the section and by c 'f . As 
evident from the plot, an increase of ρl and ρv of 50% 
leads to an increase in measured shear strength of 
around 21%, and an increase of predicted strength of 
around 13%. The increase is predicted to result mainly 
from shear components Vs and Vci, which are plotted in 
the figure together with components VCLZ and Vd. As can 
be expected, component Vs increases linearly with the 
amount of transverse reinforcement [Eq. (16)]. At the 
same time, the increase of aggregate interlock contribu-
tion is explained with the width of the critical crack at 
failure. The crack width is plotted on the right axis of 
Fig. 10 and decreases with increasing ρl and ρv due to 
the crack control provided by the reinforcement, and in 
particular by the vertical reinforcement which is elastic. 
The smaller is the crack width, the stronger is the ag-
gregate interlock mechanism as expressed by Eq. (15).  

A similar analysis is performed for specimens SW9 
and SW10 (Luna et al. 2015), which had an aspect ratio 
of 0.54 and differed mainly in terms of the transverse 
reinforcement ratio: ρv=0.67% for SW9 and 0.33% for 
SW10. The results are shown in Fig. 11 in the same 
format as Fig. 10. The plot shows that when ρv is dou-

Fig. 10 Effect of amount of vertical and transverse rein-
forcement on the shear strength of short walls - Tests by 
Luna et al. (2015) with average properties a/h=0.33, 
h=3050 mm, fc'=28 MPa, and n=0. 
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(b) Effect of transverse reinforcement ratio ρv 

Fig. 9 AIJ (2001) shear strength and flexural strength 
predictions  for a database of 69 shear wall tests. 
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Fig. 11 Effect of amount of transverse reinforcement on 
the shear strength of short walls walls - Tests by Luna et 
al. (2015) with average properties a/h= 0.54, h=3050 
mm, fc'=30.7 MPa, ρl=1.5%, and n=0. 
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bled, the measured shear strength increases by around 
25% and the 3PKT prediction by 7%. As discussed ear-
lier, increasing ρv results in a linearly increasing shear 
contribution of the transverse reinforcement Vs. On the 
other hand, because the transverse reinforcement yields 
before failure, ρv does not contribute significantly to the 
control of the critical diagonal crack (no crack control 
by ρv is assumed in the 3PKT), and therefore the aggre-
gate interlock contribution Vci is predicted to remain 
nearly constant. 

It is noted that the ASCE code produced better shear 
strength predictions for specimens SW5 and SW9 than 
the 3PKT approach (Table 1). The code predictions for 
both specimens are governed by the upper limit on the 
shear strength imposed in Eq. (21). This limit implies 
that the failure occurred with inclined crushing/sliding 
of the wall, which is consistent with the test observa-
tions (Luna 2016). However, when the transverse rein-
forcement is reduced in the companion specimens SW6 
and SW10, and when yielding of the reinforcement be-
gins to govern the response (particularly for SW10), the 
code predictions become inconsistent (i.e., either uncon-
servative or conservative, respectively). 

It is also noted that the crushing/sliding failures ob-
served in the shortest specimens SW5 and SW6 
(a/h=0.33) are not fully captured by the 3PKT. More 
specifically, while walls SW5 and SW6 failed along 
nearly horizontal planes, the 3PKT assumes a diagonal 
failure crack. Nevertheless, as the diagonal crack is very 
flat, the 3PKT shear strength predictions remain rea-
sonably close to the measured values.  

 
6.2 Effect of concrete strength 
To study the effect of the compressive strength of the 
concrete c 'f , test specimens SW9 and SW10 by Lefas 
et al. (1990) are selected from the test database. The 
specimens had the same dimensions and an aspect ratio 
of 1.10, with the measured values of c 'f  varying from 
47.9 MPa for SW9 to 37.8 MPa for SW10. Figure 12 
shows that when the concrete strength was increased by 
27%, the measured shear strength of the walls increased 
by around 3%, and the 3PKT prediction by 9%. Natu-
rally, this strength increase is explained with the en-
hancement of the concrete shear mechanisms, i.e., the 
inclined compression in the CLZ (VCLZ) and the aggre-
gate interlock along the critical crack (Vci). 
 
6.3 Effect of axial load 
Specimens A1 and B1 by (Wu et al. 2022) are used to 
study the effect of axial compression on the shear 
strength of short walls. The aspect ratio of the speci-
mens was 1.16 and the normalized axial load n=N/ c 'bhf  
was varied from 0.3 in A1 to 0.4 in B1. Figure 13 
shows that the 33% increase of axial compression re-
sulted in a slight increase in shear strength according to 
both the tests (8%) and the 3PKT approach (2%). It can 
also be seen that the model predicts that the axial load 
has a small influence on the shear strength across the 

entire range of analyzed n values from 0 to 0.4. The 
only shear component that is predicted to increase 
slightly with n is Vci. The higher is the axial compres-

 
Fig. 13 Effect of axial compression on the shear strength 
of short walls - Tests Wu et al. (2022) with average prop-
erties a/h=1.16, h=2500 mm, fc'=40.1 MPa, ρl=0.75%, 
and ρv=0.39%. 

 
Fig. 12 Effect of compressive strength of concrete on the 
shear strength of short walls - Tests by Lefas et al. 
(1990) with average properties a/h=1.10, h=750 mm, 
ρl=2.7%, ρv=1.1%, and n=0.1. 

 
Fig. 14 Effect of axial compression on the shear strength 
of short walls - Tests by Terzioglu et al. (2018) with aver-
age properties a/h=0.63, h=1500 mm, fc'=25.7 MPa, 
ρl=1.17%, and ρv=0.34%. 
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sion on the wall, the smaller is the strain in the flexural 
tensile reinforcement and the narrower is the critical 
crack, thus resulting in a more effective interlocking of 
the crack surfaces. 

A different range of axial load values was tested by 
Terzioglu et al. (2018): specimens T1-S1, T1-S1-N5 and 
T1-S1-N10 had n values of 0, 0.05 and 0.1, respectively. 
Compared to specimens A1 and B1, these walls featured 
a smaller section (h=1500 mm vs. 2500 mm), a smaller 
aspect ratio (a/h=0.63 vs. 1.16), similar amounts of web 
reinforcement ratio (≈0.35% in both directions), and 
larger total vertical reinforcement ratio (ρl=1.17% vs. 
0.75%). Nevertheless, the trend illustrated in Fig. 14 is 
similar to that in Fig. 13, i.e., a slight increase of shear 
strength with increasing axial compression according to 
both the tests and predictions, even though the predic-
tions in this case are rather conservative. This trend is 
distinctly different from those observed in slender 
members, where the axial load has been shown to en-
hance the shear strength (Collins et al. 2016) signifi-
cantly. 

 
6.4 Effect of aspect ratio a/h 
The effect of wall slenderness is studied with the help of 
two walls from different test series: specimen SSW-1 
(Zhou et al. 2021) and SW9 by (Rong et al. 2020) (Ta-
ble 1). The walls had a length h=700 mm, total vertical 
reinforcement ρl=1.62%, vertical and horizontal web 
reinforcement ρl,web=0.38% and ρv=0.28%, respectively, 
and a normalized axial load n≈0.20. The main differ-
ences between the walls were the concrete strength c 'f  
of 20.6 MPa for SSW-1 and 44.0 MPa for SW9, as well 
as the aspect ratio a/h of 1.14 and 2.14, respectively. 

Due to the significant difference in concrete strength, 
the 3PKT calculations are performed with both values 
of c 'f  for a wide range of a/h ratios – see Fig. 15. The 
shear forces are normalized by fc′0.7 (MPa) in order to 
minimize the influence of the compressive strength on 

the concrete shear VCLZ and Vci. The obtained shear 
strength experimental-to-predicted ratios for SSW-1 and 
SW9 are 0.92 and 0.96, receptively. Figure 15 illus-
trates clearly the transition from short to slender walls 
predicted by the 3PKT and consistent with the experi-
mental points. In very short (or squat) walls, the shear 
strength is high and decreases rapidly with increasing 
a/h. Following this rapid decrease, the strength gradu-
ally approaches a nearly constant value in slender mem-
bers with a/h≥≈2.5.  

This trend is underlined by shear contributions VCLZ, 
Vci and Vs. As a/h increases, the angle of the critical 
crack decreases, leading to a higher contribution of the 
transverse reinforcement Vs (more bars cross the crack). 
On the other hand, the CLZ becomes slenderer, which 
results in a reduction of its strength VCLZ and an increase 
of its deformation Δc. In turn, as Δc increases, so does 
the width of the critical crack, leading to lower aggre-
gate interlock contribution (Vci). In total, the reduction 
of concrete contributions VCLZ and Vci is more rapid than 
the increase of reinforcement contribution Vs, thus re-
sulting in a decreasing shear strength with increasing 
aspect ratio a/h. In slender walls, the strength becomes 
nearly constant as the angle of the critical crack ceases 
to decrease (α1 is limited to a minimum of 30° in the 
3PKT). 

It should be noted that walls SSW-1 and SW9 con-
firm the observation made with regards to Fig. 8(b). 
Even though the transverse reinforcement in these walls 
was larger than the minimum ratio of 0.25% typically 
required by designed codes (ACI 2014), their shear 
strength is significantly underestimated by the ASCE 
41-13 shear provisions. The obtained Vexp/Vpred ratios are 
1.16 for the shorter wall and 1.61 for the slenderer 
specimen. It is worth noting that the crack angle in the 
shorter specimen α1 is approximately 45° as h=acl, and 
thus equal to the assumed angle in the ASCE 41-13 
equation. Therefore, the shear contribution of the trans-
verse reinforcement is well predicted by the equation. 
This shows that the ASCE code significantly underesti-
mates the shear carried by the concrete. 

 
6.5 Size effect 
It is well known that the shear carried by the concrete 
can exhibit size effect, particularly for members with 
less-than-minimum transverse reinforcement. Size effect 
has been studied extensively for beams and slabs with-
out stirrups, where a significant decrease of shear stress 
at failure occurs as the size of the member increases 
(Collins and Kuchma 1999). It has also been shown that 
a certain minimum amount of stirrups can eliminate this 
effect (Collins and Kuchma 1999). However, because 
shear walls always feature web reinforcement even in 
older existing structures, less effort has been devoted to 
size effect studies of such members. This is evidenced 
by the test database, which does not include test series 
of geometrically similar walls with variable dimensions. 
Nevertheless, it is of interest to use the 3PKT method to 

 
Fig. 15 Effect of aspect ratio on the shear strength of 
short walls - Tests by Zhou et al. (2021) and Rong et al. 
(2020)  with properties h=1500 mm, fc'=20.6 MPa and 
44.0 MPa, respectively, ρl=1.62%, ρv=0.28%, and n=0.2.
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simulate the size effect in shear walls with small 
amounts of transverse reinforcement. 

Figure 16 shows how the normalized shear strength 
Vpred/b varies with increasing wall dimensions. The 
simulations are performed on the basis of test specimen 
S9 (Maier and Thürlimann 1985) with a/h=1.12. All 
wall dimensions are scaled proportionally (see figure 
caption) up to an h of 3000 mm, except for the maxi-
mum size of the coarse aggregates which is kept con-
stant. In addition, light transverse reinforcement with a 
ratio ρv=0.10% is added to the walls to represent realis-
tic cases of existing structures (specimen S9 had no web 
reinforcement). It can be seen from Fig. 16 that the 
shear strength does not increase proportionally with the 
wall length, and therefore the 3PKT predicts size effect. 
Up to h of approximately 2000 mm, the size effect is 
mostly caused by the aggregate interlock shear contribu-
tion Vci. The larger is the wall, the wider is the critical 
diagonal crack, and therefore the smaller is the pre-
dicted aggregate interlock shear stress [Eq. (15)]. For 
larger walls, shear component VCLZ also exhibits size 
effect, determined by the upper limit on the size of the 
CLZ imposed in Eq. (7). As mentioned earlier, this limit 
was proposed based on comparisons with limited data 
from large wall specimens (Mihaylov et al. 2016). 
However, while the upper limit can be devoted to local-
ization of compressive deformations in the toe of the 
wall, it can be seen as a conservative approximation of a 
more complex nonlinear trend. Therefore, future ex-
perimental research is needed to understand better the 
localization effects in large lightly-reinforced walls. 

 
7. Range of applicability 

In summary, the 3PKT approach was developed for 
shear-dominated walls where the failure occurs along 
critical diagonal cracks. Considering the assumptions 
made in the derivation of the 3PKT, as well as the limits 
imposed by the validation database, the following range 
of applicability of the model should be respected: 

a) Shear-span-to-length-ratio a/h≤3; 
b) Rectangular sections; 
c) Transverse reinforcement ratio ρv≤0.6%; 
d) Normalized compression ratio n=(N/fc′bh)≤0.4. 

Failures modes associated with sliding shear, out-of-
plane instability, or inadequate detailing/lap splices need 
to be modelled separately. Further experimental and 
analytical research is needed to study the size effect in 
shear of large lightly-reinforced shear walls. 

 
8. Conclusions 

This paper presented a simplified three-parameter kine-
matic theory (3PKT) approach for the shear strength of 
reinforced concrete walls with aspect ratios ≤3.0. The 
original 3PKT for complete nonlinear analysis was sim-
plified by estimating two of the three DOFs of the 
model at peak load, as well as by using simpler expres-
sions for the mechanisms of shear resistance. The pro-
posed model aimed to capture shear failures along di-
agonal cracks, and it is not applicable to other failure 
modes such as sliding shear, out-of-plane instability, or 
detailing/ lap splice failures. 

The model was validated with a database of 29 shear 
critical test specimens, and the results were compared to 
those from the ASCE (2014) and AIJ (2001) shear pro-
visions. It was found that the code provisions provide 
conservative and scattered shear strength predictions. 
The average experimental-to-predicted ratios produced 
by the two codes are respectively 1.21 and 1.36, and the 
COVs are 23.8% and 18.1%. In comparison, while the 
3PKT requires more calculations, it reduces the average 
value to 1.10 and the COV to only 10.5%, achieving a 
similar accuracy to that of flexural strength calculations. 
The 3PKT was also shown to adequately capture the 
effect of key test variables on the shear strength of walls, 
including the amounts of flexural and shear reinforce-
ment, concrete strength, level of axial load and aspect 
ratio of the wall. 

Of particular importance in practice is the ratio of 
shear reinforcement which can vary widely in existing 
structures. Most importantly, existing structures can 
feature ratios that are smaller than the minimum values 
required by modern design codes (e.g., 0.25%). It was 
shown that the ASCE code is particularly conservative 
for such walls (up to 100% strength underestimation), 
and thus can result in costly and disruptive strengthen-
ing interventions. In contrast, the 3PKT maintains the 
same accuracy across the whole range of reinforcement 
ratios featured in the wall database, and therefore can be 
used as a reliable tool for shear assessment. 

 
Notations 
As = one-half of total area of total longitudinal rein-

forcement 
Av = area of transverse reinforcement resisting shear 
a = wall height subjected to shear 
acl = clear height of the wall 
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Fig. 16 Effect of members’ size on the shear strength 
shear walls (wall properties: a/h=1.12; b=0.085h; 
d=0.75h; fc'=29.2 MPa; ρl=1%; ρv=0.1%; ag=16 mm; 
fy=fyv=560 MPa). 
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ag = concrete maximum aggregate size 
b = width of wall cross-section 
d = effective length of section 
d1 = distance from compressive edge of section to fur-
thest tension longitudinal bar 
db = diameter of main flexural reinforcement 
FCLZ = compression force in the concrete of CLZ 
fc,CLZ = average compressive strength in CLZ 
fy = yield strength of longitudinal reinforcement 
fyv = yield strength of transverse reinforcement 
fu = strength of longitudinal reinforcement 
fuv = strength of transverse reinforcement 
fv = stress in transverse reinforcement 
h = length of wall section 
lb1e = characteristic length of CLZ 
lt = cracked length along longitudinal reinforcement 
lk = length of transition zone between fan and rigid 

block 
l0 = portion of lk below the critical diagonal crack 
M = bending moment at the base of the wall 
N = axial load 
nb = number of bars corresponding to As 
ncr = number of major diagonal cracks 
scr = crack spacing in effective tension zone 
V = shear force and lateral load 
Vmax = peak shear force and peak lateral resistance 
Vci = aggregate interlock shear resistance 
Vs = transverse reinforcement shear resistance 
Vd = dowels shear resistance 
w = crack width 
Δci = crack slip 
α = angle of wall diagonal with respect to the vertical 

axis 
α1 = angle of critical crack 
αΔ = angle of displacement at CLZ 
αF = angle of force FCLZ 
Δ = applied lateral displacement 
Δc = horizontal displacement at CLZ 
Δcx = vertical displacement at CLZ 
εCLZ = average strain in CLZ 
εt,avg = average strain along longitudinal tension rein-

forcement 
εy = yield strain of longitudinal reinforcement 
εu = breaking strain of longitudinal reinforcement 
εv = strain in transverse reinforcement 
ρl = ratio of total longitudinal reinforcement 
ρl,w = ratio of longitudinal web reinforcement 
ρl1 = reinforcement ratio in effective tension zone 
ρv = ratio of transverse reinforcement 
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Appendix: Example of 3PKT calculations 
The following example is given for shear wall RF0 of 
(Franssen et al. 2021). 
 
1) Geometry of the kinematic model 

1 1tan ( / ) tan (1500 / 2300) 33.1clh aα − −= = = °  

1 max( ,30 ) 33.1α α= ° = °  

2

1 1/100 1.75 230 1500 /100
2 2
3020 mm
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= × − − ⋅
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( )0 1min , cot cot
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k crl l s d α α= + × −⎡ ⎤⎣ ⎦
= + =
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t kl d l lα= + − = + −
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1 1tan ( / ) tan (1500 / 2550) 30.5F h aα − −= = = °  
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2) CLZ degrees of freedom and its shear strength 
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3) First iteration , 0.00150t avgε→ =  
Note: The contributions of the DOF Δcx in the calcula-
tions of the crack width w and transverse reinforcement 
strain εv are neglected for simplicity. 
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4) Final iteration , 0.00330t avgε→ =  
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