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Abstract This study is the first attempt to assess 
rice cultivation under alternate wetting and drying 
(AWD) and continuous flooding (CF) using the lat-
est scenarios from the Intergovernmental Panel on 
Climate Change  (IPCC), utilizing AquaCrop Model. 
Field experiments were conducted during the dry sea-
son 2023 to get the model calibration and validation 
input. We used two shared socioeconomic pathways 
scenarios (SSP3-7.0 and SSP5-8.5) developed within 
Coupled Model Intercomparison Project Phase 6 
(CMIP6) and projected the rice growth during 2040–
2070. The simulation results demonstrated the effec-
tiveness of AquaCrop in capturing crop development 
across treatments and varieties. This model’s accuracy 
in simulating canopy cover (nRMSE = 14–32.5%), 
time series biomass (nRMSE = 22–42.5%), grain 
yield (Pd = 4.36–24.38%), and total biomass 

(nRMSE = 0.39–18.98%) was generally acceptable. 
The analysis of future climate shows an increas-
ing trend in the monthly average temperature by 
0.8 °C (Tmin) and 1.3 °C (Tmax) in both scenarios. 
While ETo values were not anticipated, rainfall was 
expected to increase with average values of 5.62 mm 
to 11.25 mm. In addition, the study found that varie-
ties with growing periods longer than 93  days after 
transplanting (DAT), such as CAR15 and Sen Kra Ob, 
were most impacted by heat stress conditions, leading 
to reduced yield, harvest index (HI), and water use 
efficiency (WUE). In our case, CAR15 and Sen Kra 
Ob grain yields were reduced by 53% and 8%, respec-
tively. AWD maintains superior WUE compared with 
CF regardless of the type of varieties, suggesting this 
technique is a drought-adaptive strategy.

Keywords Alternate wetting and drying · Rice 
variety · Water use efficiency · Dry season rice · 
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Introduction

The single food that more people on the planet con-
sume than any other harvest is rice. Nearly 90% of 
the rice producers and consumers are from Asia. It is 
grown in over a hundred countries, with a combined 
harvested area of over 158 million hectares and an 
annual production of approximately 700 million tons 
(Sarwar et al., 2022).
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Cambodia’s economy is narrowly based and 
driven by four main sectors: garment, tourism, con-
struction, and agriculture. Agriculture, of which 
rice is the dominant crop, contributes about 24.4% 
of GDP in 2021 (MAFF, 2022a). Agriculture’s 
gross value added has increased annually by an 
average of 3 to 4% between 2015 and 2021. Cam-
bodia must increase its rice production twice by 
2050 to secure future food security and exporta-
tion (MAFF, 2022b). To achieve this goal, there is 
a need to increase dry-season production, which is 
currently limited due to water scarcity. Dry-season 
rice covers only 19% of the paddy land (3.6 million 
ha) and produced 26.15% of the total paddy yield 
(wet and dry paddy) of 11,700 million tons between 
2023 and 2024 (Sokkea, 2024).

In addition to water scarcity, climate change is 
another issue for rice producers. The  Intergovern-
mental Panel on Climate Change  (IPCC) reports 
decreased precipitation in the Gulf of Thailand during 
winter and summer, especially at + 4 °C higher tem-
peratures. These climate risks are expected to lower 
crop yields and fish harvests, threatening food secu-
rity in the region, including Cambodia. (FAO 2024). 
Climate change is projected to reduce total rice pro-
duction by about 2.5% in 2030 and 9.8% in 2050 
(MAFF, 2022b).

Traditional rice cultivation, such as continuous 
flooding (CF), consumes much water. As a result, 
cultivated rice fields use about 30% of freshwater 
resources and 40% of irrigation worldwide (Sarwar 
et al., 2022). There are plenty of water-saving meth-
ods that have been developed to improve water use 
efficiency (WUE), including raised-bed systems for 
direct seeding, the system of rice intensification, non-
flooded mulching cultivation, aerobic cultivation, and 
alternate wetting and drying (AWD) irrigation (Car-
rijo et  al., 2017). Fields under AWD are exposed to 
intermittent drying cycles during the growth season. 
As soon as the drying criteria are reached, fields are 
re-ponded (Isafaq et  al., 2020). Because of its sim-
plicity of use, AWD is among the most employed 
water-saving techniques. It has been used and proven 
to increase WUE worldwide, including in Asia (Arai 
et al., 2021; Cao et al., 2021; Yao et al., 2012; Sriphi-
rom et al., 2019), Europe (Monaco et al., 2021; Oliver 
et  al., 2019), the USA (Artwill et  al., 2023; Runkle 
et al., 2018), and Africa (de Vries et al., 2010). The 
above studies claimed 20% to 60% of water saving.

Under potential climate change conditions, rice 
undergoing the alternate wetting and drying (AWD) 
cycle may face drought alongside extreme heat. 
Investigating this hypothesis to confirm the viabil-
ity of using the AWD method for dry-season rice in 
Cambodia as an adaptive technique is essential.

Various techniques, including crop modeling, have 
been employed to investigate the effects of climate 
change on rice production. Crop simulation mod-
els, for example, explore how specific agronomic 
traits and management practices interact with geno-
types and the environment (Raoufi & Soufizadeh, 
2020). AquaCrop, a crop water productivity model 
developed by the Food and Agriculture Organiza-
tion (Steduto et  al., 2012), is among the various 
models available to assess water-limited crop yields 
under various environmental and management con-
ditions. The model reasonably accurately predicts 
crop growth indices and soil, plant, and environ-
ment continuum components despite its simplicity. 
Various studies have demonstrated the capability of 
the AquaCrop model to simulate the growth of rice 
under AWD conditions successfully (Xu et al., 2019; 
Maniruzzaman et al., 2015; Porras-Jorge et al., 2020; 
Mirfenderski et  al., 2021). In Cambodia, AquaCrop 
was used to predict the yield of lettuce (Ket et  al., 
2018), maize (Na et al., 2017), and rice (Alvar‐Belt-
rán et al., 2022). Nevertheless, none has attempted to 
use the model under AWD conditions.

In addition, integrating climate scenarios into crop 
modeling offers numerous benefits. They allow for 
measuring climate change’s impact on rice produc-
tion and the probability of specific weather patterns 
in the areas studied. This information helps prepare 
for adaptation strategies, such as yield forecasting 
(Zachow et  al., 2023), improving irrigation and fer-
tilizer scheduling (Osman et al., 2022; Shrestha et al., 
2014), selecting resilient crop varieties (Osman et al., 
2022), selecting planting date (Deb et al., 2015), and 
mitigating the impact of abiotic stresses on rice yields 
(Abhishek et  al., 2023). In Cambodia, on the other 
hand, applying a crop model to explore future climate 
scenarios with adaptation strategies such as the selec-
tion of suitable varieties and water management has 
rarely been explored in dry-season rice (Alvar‐Belt-
rán et  al., 2022). Interestingly, global studies inves-
tigating climate impacts on rice growth under AWD 
irrigation are scarce. So far, the only available study 
by Mirfenderski et  al. (2021) is in Iran. Their study 
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reported that the AWD strategy would be a more 
effective climate change adaptation than mid-season 
drainage from crop yield, water productivity (WP), 
and economic water productivity (EWP) viewpoints. 
However, their studies did not include a comparison 
with CF and were limited to old versions of scenarios 
from the IPCC 5th assessment report. More evidence, 
especially from other geographic locations, climate 
conditions, and various cultivars, is required to sup-
port AWD irrigation as an adaptive technique for cli-
mate change.

Our research fills the literature gap by utilizing the 
AquaCrop model, together with the latest emission 
scenarios from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6), for the first time to test 
the hypothesis that AWD could be used as a water 
productivity improvement technique under climate 
change for the mid-century period (2041–2070) in 
Cambodia.

Therefore, this paper aims to (1) calibrate and vali-
date AquaCrop on four rice varieties and various irri-
gation strategies and (2) assess the impact of climate 
change on yield and WUE of dry-season rice under 
CF and AWD in Cambodia. In our approach, we con-
ducted a field experiment in Cambodia to parameter-
ize the AquaCrop model. We downscaled data from 
multi-model ensembles to project future climate and 
explored how different short-cycle rice varieties and 
water management would respond to climate change.

Materials and methods

Study area and experiment detail

Crop trials were conducted at the Agricultural 
Research and Development Institute (CARDI) in 
Phnom Penh (11°28′ N, 104°48′ E). The region is 
classified as a tropical climate governed by monsoon 
winds. Total yearly precipitation varies nationwide, 
ranging from 1400 to 4000  mm (FAO, 2024). In 
Cambodia, the average daily maximum temperature 
(Tmax) is approximately 28  °C, while the average 
daily minimum temperature (Tmin) is approximately 
22  °C. Mean Tmin is consistently above 25  °C dur-
ing the monsoon season, although mean Tmax may 
surpass 35 °C during the pre-monsoon months (April 
and May). The trial was conducted in 2023 during the 
dry season from January to April.

The experimental site (20 × 45  m2) was split 
into two blocks, with alternate wetting and drying 
(AWD) and continuously flooded (CF) replicates 
adjacent to each other. Within each block were indi-
vidual randomized plots of four rice cultivars and 
three replications. The size of each plot was 5 × 5 
 m2. The rice varieties included Sen Kra Ob (SK), 
CAR15 (CAR ), Sen Pidor (SP), and check rice: 
OM5451 (OM). The varieties were short-cycle, tak-
ing between 89 and 100  days after transplanting 
(DAT) to maturity. A 60:30:30 N:P2O5:K2O ferti-
lizer ratio was used.

Plastic film was placed over the bundles to pre-
vent lateral seepage, a crucial factor in the experi-
ment. This film acted as a barrier, ensuring that water 
did not seep laterally from the main plots. To further 
control water flow, the blocks were divided by gaps 
of five meters. During the continuous flooding (CF) 
regime, the water depth in the entire field was main-
tained between 1 and 5  cm from 7  days after trans-
planting until ten days before maturity. In the AWD 
regime, 35-cm long and 10  cm in diameter hollow 
PVC tubes were placed vertically in the soil at a depth 
of 15 cm in each trial. The tube was perforated with 
holes on all sides. In the AWD cycle, the soil was re-
flooded to 5 cm after the field water disappeared from 
the tube. The cycle began 3 weeks after transplanta-
tion and ended 1 week before peak flowering.

Data collection and measurement

Weather data inputs

The daily weather data, such as air temperatures, rain-
fall, wind speed, relative humidity, and solar radia-
tion, were recorded from an automated weather sta-
tion (iMETOS 3.3, Pessl Instruments, Werksweg, 
Weiz, Austria) at the experimental site. Reference 
evapotranspiration (ETo) was determined using the 
Penman–Monteith Method.

Irrigation inputs

The pump was connected to tubes that supplied irri-
gation. The irrigation volume was calculated by mul-
tiplying the plot’s cross-section area by the water 
height at the plot’s reference point.
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Crop inputs

Twenty-one-day-old seedlings were transplanted at 
20  cm × 20  cm spacing in each trial. The flowering 
date was identified as when 50% of the rice plants 
in a plot started flowering, and the maturity date was 
calculated as 30 days after flowering. Regular meas-
urements of aboveground biomass and canopy cover 
were taken over time. Aboveground biomass from 10 
plants was harvested biweekly and dried in an oven 
at 70  °C for 48  h. Canopy cover data was collected 
weekly through digital photos taken at a consist-
ent height of 1.8  m, with three points per replicate. 
The fraction of canopy covering the soil was deter-
mined by dividing the total number of crop pixels by 
the total number of picture pixels. To eliminate bor-
der effects that can distort images and inflate canopy 
cover values, three by four plants in the center of the 
image were retained for analysis. Image analysis was 
conducted using Adobe Photoshop 2020.

At the point of maturity, 10 randomly selected 
hills were sampled from a 6  m2 area to assess grain 
yield (Y) and total aboveground biomass (B), exclud-
ing the first and second row and column of rice plants 
to mitigate border effects. The harvest index (HI), 
calculated as the ratio of grain yield to total above-
ground biomass, was determined. Grain yield values 
were adjusted to a standard moisture content of 0.14 g 
 H2O  g−1 fresh weight. Once a month, one plant per 
plot was collected to measure the effective root depth 
(ERD), defined as the depth at which at least 70% of 
the roots are concentrated.

Soil inputs

Before planting rice seedlings, soil samples were 
taken in a column 0.8  m deep from different hori-
zons. Three replicates were collected for each hori-
zon. Hydrometers (ASTM D 422, Eijkelkam, Nijver-
heidsstraat, EM Giesbeek, Netherlands) were used 
to identify the soil texture. A pressure plate (1600F1 
and 1500 F2, Eijkelkam, Nijverheidsstraat, EM Gies-
beek, Netherlands) was used to measure the field 
capacity and permanent wilting point at pressures 
of − 33 and − 1500 Kpa, respectively. Soil saturation 
was derived from the bulk density determined by 
the ring method. Saturated conductivity was meas-
ured by KSAT  (Meter Group, Pullman, WA, USA). 
Teros 12 and Teros 21 (Meter Group, Pullman, WA, 

USA) were used to measure the hourly volumetric 
soil moisture content (SMC) and soil tension from the 
35th to the 65th day after transplanting (DAT) during 
the AWD cycle.

Determination of water use efficiency

Water usage efficiency (WUE) is defined as the yield 
of grain per unit of total water input, which includes 
irrigation and precipitation.

Description of AquaCrop model

The FAO AquaCrop model simulates crop yield 
through a series of steps: (i) crop development, (ii) 
crop transpiration, (iii) biomass production, and (iv) 
yield formation. Evapotranspiration calculations in 
the model are split into transpiration, linked to canopy 
cover (CC), and soil evaporation, which is propor-
tional to bare soil. The CC is multiplied by the refer-
ence evapotranspiration (ETo) derived from the Pen-
man–Monteith equation and the crop coefficient (Kc) 
to determine potential crop transpiration. Actual tran-
spiration (Ta) is then calculated from potential evapo-
transpiration. Ta is further utilized to compute crop 
biomass (B) by multiplying it by water productivity 
(WP) (Eq. 1). The harvest index (HI) is employed to 
determine crop yield (Y) based on crop biomass (B) 
(Eq. 2) (Raes et al., 2017):

Model calibration and validation

The current investigation utilized AquaCrop model 
version 6.1. Calibration involved using AWD data and 
comparing it against observed canopy cover (CC), 
biomass, soil moisture content, and final grain yield 
for each replicate across all varieties. The model was 
run individually for each replicate to ensure accuracy. 
Before calibration, a sensitivity analysis adapted from 
Geerts et al. (2009) was conducted to identify crucial 
parameters needing adjustment during calibration. 
The model’s projections were then adjusted through 
a trial-and-error method, focusing on one input vari-
able at a time, and iteratively repeated until observed 

(1)Crop biomass (B)as kg∕ha =
∑

Ta ∗ WP

(2)Crop yield(Y)as kg∕ha = HI ∗ B
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and model-simulated values closely matched for all 
treatments. Default settings were used for temperature 
and water stress, with no consideration for fertility or 
salinity stress.

In the validation phase, calibrated AquaCrop 
model data was converted to the growing degree days 
(GDD) mode and tested against CF data. GDD repre-
sents the accumulated temperature required for a crop 
to transition from one phenological stage to another. 
Using the GDD mode, it is feasible to compare simu-
lated phenology under various future climatic sce-
narios. The statistical goodness-of-fit indicators used 
were Percent of deviation (Pd), coefficient of deter-
mination (R2), root mean square error (RMSE), nor-
malized root means square error (nRMSE), and Will-
mott’s index of agreement (d). Percent of deviation 
(Pd) is determined by the following equation (Eq. 3):

where Mi and Si are the observed/measured and sim-
ulated values for the irrigation treatment data set.

Lower nRMSE values indicate good agreement 
between simulated and measured values. Simula-
tion results can be considered excellent if nRMSE is 
smaller than 10%, good if it is between 10 and 20%, 
fair if it is between 20 and 30%, and poor if it is larger 
than 30% (Raes et al., 2012).

Climate data downscaling and bias correction

The dataset known as the NASA Earth Exchange 
Global Daily Downscaled Projections (NEX-GDDP-
CMIP6) consists of climate scenarios that have been 
downscaled globally from the General Circulation 
Model (GCM) experiments carried out as part of 
the Coupled Model Intercomparison Project Phase 6 
(CMIP6) (Eyring et al., 2016). These scenarios cover 
two out of the four primary greenhouse gas emissions 
pathways referred to as Shared Socioeconomic Path-
ways (SSPs) (Meinshausen et al., 2020; O’Neill et al., 
2016). The CMIP6 GCM runs were created for the 
Sixth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC AR6). This dataset 
contains downscaled projections from ScenarioMIP 
models distributed through the Earth System Grid 
Federation (O’Neill et al., 2016).

(3)Pd =

(

Si −Mi

Mi

)

× 100%

NEX-GDDP-CMIP6 was used to obtain possible 
projections of future climate variables for the period 
2041–2070. We adopted two shared socioeconomic 
pathways (SSP3-7.0 and SSP5-8.5) to represent 
medium and high greenhouse gas emissions. For each 
scenario, we applied four different GCMs, including 
EC-Earth3, FGOALS-g3, MIROC6, and MPI-ESM1-
2-LR. The ETo for baseline and future data was esti-
mated from T maximum and T minimum using the 
FAO-Penman–Monteith equation as described in 
Allen et al. (1998).

Though the NEX-GDDP-CMIP6 dataset was glob-
ally bias-corrected (Maurer et  al., 2008; Thrasher 
et al., 2012), the application of correction using data 
from the actual site would significantly improve the 
errors. The linear scaling approach has proved its 
capability for bias correction of climate data (Dan-
iel, 2023; Shrestha et  al., 2017) and was adopted in 
this study. The CIMP6 dataset was adjusted for bias, 
utilizing baseline data T maximum, T minimum, and 
precipitation data from historical records spanning 
1996 to 2011. The baseline data was from the nearby 
station (Pochentong Station: 104°50′, 11°33′, altitude 
11 m) obtained from the Ministry of Water Resources 
and Meteorology (MOWRAM). In the linear scaling 
approach outlined in Eq. (5), the future CIMP6 data, 
such as precipitation is corrected with a multiplier, 
and the temperature is adjusted by the additive term:

where Pf ,m,d and Tf ,m,d denote the future precipita-
tion and temperature, respectively;  Ph,m,d and  Th,m,d, 
respectively, denote the historical precipitation and 
temperature from the original RCM outputs;  Pob,m 
and  Tob,m denote the observed historical precipitation 
and temperature; the subscripts d and m are specific 
days and months, respectively; C denotes the cor-
rected value; and μ denotes the mean value.

Statistical analysis

R (version 4.2.2) was used to analyze the future data, 
and an analysis of variance (ANOVA) was done at a 
95% significance level.

(4)PC
f ,m,d

= Pf ,m,d ×
�(Pob,m)

�(Ph,m)

(5)TC
f ,m,d

= Tf ,m,d ×
[

�(Tob,m) − �(Th,m)
]
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Result and discussion

Result

Model parameterization

Table  1 displays the calibrated parameters and their 
respective sensitivity levels. From the sensitive analy-
sis, the initial soil condition, WP, and HI had a nota-
ble impact on Y and B, while Ksat was identified as 
a critical factor affecting SMC. Furthermore, stress 
factors such as canopy expansion, early senescence, 
and stomatal closure were low sensitive since the soil 
moisture and tension levels in this study had never 
experienced a drop below field capacity, as shown 
in Fig.  1. Therefore, these parameters were set to 
default.

Most of the model inputs were derived from aver-
aging direct measurements, as detailed in Sect. "Data 
collection and measurement". The values for plant 
density, time to achieve maximum canopy cover, 
flowering duration, maximum ERD, and time taken 
to reach maximum ERD were consistent across all 
varieties. However, differences were noted in the 
observed values for HI, recovery time, maximum can-
opy cover (CCx), initial canopy cover (CCo), canopy 
size seedling, time to flowering, and maturity across 
the various varieties.

The different varieties exhibited varying values for 
WP, CCo, seedling canopy size, and time to recov-
ery. While canopy decline typically occurred in less 
than a week, it was set at 9 days, which is the mini-
mum value allowed by AquaCrop. The rate of decline 
influenced the time to senescence. Effective root 
depth (ERD) ranged from 4 to 13 cm, but AquaCrop 
allowed a minimum depth of 10 cm. In cases where 
ERD fell below 10 cm, it was fixed at 10 cm for the 
entire season. The maximum canopy cover (CCx) 
ranged from 50 to 65% for all varieties and was usu-
ally achieved around 45  days after transplanting 
(DAT) during the flowering stage. These values were 
then used for model parameterization.

Model calibration and validation

Grain yield and final biomass

The results in Table 2 confirm the model’s accuracy 
in simulating grain yield (Y) and biomass (B) within 

an acceptable range. The grain yield (Y) measured for 
different rice varieties ranged from 2.28 to 5.1 tons/
ha under both irrigation management. The model’s 
estimated grain yield for the genotypes fell within the 
2.61 to 5.12 tons/ha range. Notably, OM displayed 
the highest yield, while SK exhibited the lowest. 
The measured biomass (B) for various rice varieties 
ranged from 7.91 to 11.03 tons/ha under both irriga-
tion management, while the modeled values ranged 
from 9.34 to 11.47 tons/ha. CAR, OM, and SP varie-
ties had comparable B, with SK presenting the lowest 
B.

During calibration and validation, the prediction 
errors for Y ranged from − 4.36 to 11.49% and 1.59 to 
24.38%. In contrast, B production ranged from − 0.39 
to 5.67% and − 3.23 to 18.98%. However, the SP vari-
ety notably showed the highest relative error in model 
validation for B and Y.

Despite these variations, the model’s overall accu-
racy in simulating grain yield and biomass production 
is evident.

CC and time series B

The model was calibrated using field data collected 
in the AWD regime. Generally, the calibrated CC 
and time series B matched the measured values well 
(see Fig.  2). The average goodness-of-fit metrics 
obtained for modeling CC and time series B for the 
four varieties were as follows: R2 > 0.93, D > 0.94, 
and RMSE < 15% for CC and R2 > 0.95, D > 0.94, 
and RMSE < 1.5 tons/ha for B. The nRMSE of cali-
brated CC indicated a good fit (nRMSE = 17.5–27%). 
This suggests that the model calibration is robust. 
While the model accurately simulated CC patterns, it 
underestimated B by 25–33.5%. This predictive error 
in simulating B for all rice varieties during the grain-
filling stage was attributed to the substantial increase 
in total B weight.

The figures in Fig.  3 depict indicators showing 
how closely the validated model matches the actual 
field observations. The average goodness-of-fit 
metrics for validating CC and time series B of the 
four varieties were as follows: R2 > 0.95, D > 0.92, 
and RMSE < 15% and R2 > 0.98, D > 0.92, with 
1 < RMSE < 2.2 tons/ha. The nRMSE for the vali-
dated CC of the three varieties indicated a good fit 
(nRMSE < 20%), except for OM, where the nRMSE 
was 32.5%. This discrepancy occurred because the 
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Table 1  Parameters used for calibrating AquaCrop model

Inputs Units Value
observed (calibrated)

Sensitivity

CAR OM SK SP

1. Crop
Plant density Plants/ha 250,000 250,000 250,000 250,000
Type of planting 

method
- Transplanting Transplanting Transplanting Transplanting

Initial canopy cover 
 (CCo)

% (1.50) (1.00) (1.13) (1.50) Low

Canopy size seed-
ling

cm2/plant (5) (4) (4.5) (6) Moderate

Canopy decline Days (9) (9) (9) (9) Moderate
Time to recovery Days (7) (10) (7) (10) Low
Time to maximum 

canopy cover
Days 45 45 45 45 Moderate

Time to senescence Days (85) (80) (90) (86) -
Time to maturity Days 94 89 99 93 -
Maximum canopy 

cover (CCx)
% 75 65 58 66 Moderate

Time to flowering Days 64 59 69 63 Low
Duration of the 

flowering
Days 7 7 7 7 -

Max. effective root-
ing depth

cm 11–13 (10) 11–13 (10) 11–13 (10) 11–13 (10) Low

Time for maximum 
root depth

Days 94 (CST) 45 (CST) 45 (CST) 70 (CST) Low

Crop water produc-
tivity (WP*)

kg/m3  (16)  (19)  (15)  (16) High

Harvest index (HI) % 38 50 28 41 High
water stress: 

Default value
Effect of crop tran-

spiration (KcTr)
- 1.1 1.1 1.1 1.1 -

Canopy expansion - Extremely sensitive 
to water stress

Extremely sensitive 
to water stress

Extremely sensitive 
to water stress

Extremely sensitive 
to water stress

Low

Stomatal closure - Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Low

Early canopy senes-
cence

- Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Moderately sensi-
tive to water stress

Low

Heat stress: default 
value

Base temperature 8 8 8 8 -
Upper temperature 30 30 30 30 -
Start of heat-stress 

effect
35 35 35 35 -

Maximum heat-
stress effect

40 40 40 40 -

2. Field
Surface practice Soil bund 0.25 m Soil bund 0.25 m Soil bund 0.25 m Soil bund 0.25 m -
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measured CC values in CF conditions were lower 
than in AWD conditions throughout the season. 
However, the poor fitting of OM did not impact the 
accuracy of the model’s simulation for grain yield 
and final biomass.

Similarly, during the validation phase, like in the 
calibration phase, AquaCrop accurately simulated 
CC patterns but underestimated B by 22–45.2%. This 
underestimation was mainly due to the substantial 
increase in rice biomass during the grain-filling stage. 

Table 1  (continued)

Inputs Units Value
observed (calibrated)

Sensitivity

CAR OM SK SP

3. Soil profile
Layer 1: 0—0. 3 m
Texture Sandy loam Sandy loam Sandy loam Sandy loam -
PWP (V%) 9.6 ± 2.8 9.6 ± 2.8 9.6 ± 2.8 9.6 ± 2.8 Moderate
FC (V%) 29 ± 2 (39) 29 ± 2 (39) 29 ± 2 (39) 29 ± 2 (39) Moderate
SAT (V%) 39 ± 1 (45) 39 ± 1 (45) 39 ± 1 (45) 39 ± 1 (45) Moderate
Ksat (mm/d) 169 ± 97 (4) 169 ± 97 (4) 169 ± 97 (4) 169 ± 97 (4) Hight
Layer 2: 0.3–0. 4 m
Texture Sandy loam Sandy loam Sandy loam Sandy loam -
PWP (V%) 10 ± 2.8 10 ± 2.8 10 ± 2.8 10 ± 2.8 Moderate
FC (V%) 23 ± 1 (32) 23 ± 1 (32) 23 ± 1 (32) 23 ± 1 (32) Moderate
SAT (V%) 36 ± 4 (38) 36 ± 4 (38) 36 ± 4 (38) 36 ± 4 (38) Moderate
Ksat (mm/d) 5.5 ± 1.2 (7) 5.5 ± 1.2 (7) 5.5 ± 1.2 (7) 5.5 ± 1.2 (7) Hight
Layer 3: 0.4–0. 8 m
Texture Sandy loam Sandy loam Sandy loam Sandy loam -
PWP (V%) 9.5 ± 1.5 9.5 ± 1.5 9.5 ± 1.5 9.5 ± 1.5 Moderate
FC (V%) 22 ± 3 22 ± 3 22 ± 3 22 ± 3 Moderate
SAT (V%) 37 ± 4 37 ± 4 37 ± 4 37 ± 4 Moderate
Ksat (mm/d) 2.4 ± 1.9 (3) 2.4 ± 1.9 (3) 2.4 ± 1.9 (3) 2.4 ± 1.9 (3) Hight
4. Initial condition
Soil moisture 

content
Saturated Saturated Saturated Saturated Hight

Fig. 1  (a Mean observed 
VSMC and b mean 
observed soil potential dur-
ing AWD cycle



Environ Monit Assess        (2024) 196:1190  Page 9 of 18  1190 

Vol.: (0123456789)

Despite these challenges, the indices for CC and B in 
the validation phase indicated an acceptable model 
prediction.

Soil moisture content

Though the model mimicked the soil moisture bet-
ter in the calibration than validation (Fig. 4), R2 and 
D values were in the acceptable range of R2 > 0.5, 
D > 0.5, and nRMSE < 10%. In calibration, we 
achieved R2 = 0.51, RMSE = 4.25%, nRME = 5.55%, 
and D = 0.51. In validation, we achieved R2 = 0.54, 
RMSE = 4.73%, nRME = 6.2%, and D = 0.57.

Overview of future climate

Variability in mean monthly minimum and maxi-
mum temperature, ETo, and rainfall in the future 
(2041–2070) at CARDI under two climatic scenarios 
is shown in Fig. 5. The temperature indicated a low-
ering trend from May to January and an increasing 
trend from February to April, according to the over-
all baseline trends and future estimates for Tmax and 
Tmin (Fig. 5a and 5b). In comparison to the baseline 
(1996–2011), the monthly temperature would rise on 
average by 0.88 °C (Tmin) and 1.33 °C (Tmax) under 
the SSP3-7.0 scenarios and by 0.99  °C (Tmin) and 
1.36  °C (Tmax) under the SSP5-8.5 scenario. April 
showed the baseline highest minimum of 25.58  °C 
and maximum temperature of 35.54 °C, which were 
slightly close to the heat stress zone. The mean Tmax 
and Tmin of April were projected to increase by 0.96 

and 1.23 °C for SSP3-7.0 scenarios and by 0.76 and 
1.27  °C for SSP5-8.5 scenarios, respectively. Typi-
cally, the driest months occur during the dry-season 
rice growing period, which falls between March and 
May. During this time, the monthly baseline ETo 
ranged from 135 to 160 mm (Fig. 5c). While the mean 
ETo values for both the baseline and future peri-
ods were not much different, there was an expected 
increase in ETo in the future, with maximum values 
projected to reach up to 195 mm (a 31% increase) per 
month in April. Figure  5d illustrates a rising trend 
in rainfall across all months, with average values of 
5.62 mm (4%) and 11.25 mm (9%) for SSP3-7.0 and 
SSP5-8.5, respectively. However, the future monthly 
rainfall from December to April would be lower than 
the total monthly ETo, indicating the need for addi-
tional water input to ensure the health of the rice 
plants.

Future impact of climate change on rice growing and 
WUE

The simulations of the effect of future climatic condi-
tions on maturity, grain yield, crop damage, biomass, 
HI, and WUE under two water regimes for the mid-
century (2041–2070) are shown in Fig. 6. Figure 6a 
illustrates the effect of future climatic conditions on 
the maturity of the four rice cultivars. The projected 
maturity dates for varieties OM, CAR , and SP were 
expected to be earlier by 0.8–2.4  days (CF) and 
1.2–5.19  days (AWD) under SSP3-7.0, while delays 
of 0.36 to 2.66 days were anticipated for both regimes 

Table 2  Calibration 
and validation results of 
simulating biomass and 
grain yield production of 
the four varieties. Standard 
deviations are given in 
brackets

*The simulating biomass 
and grain yield remained 
the same for each 
replication

Grain yield (tons/ha) Biomass (tons/ha)

Obs Sim Pe (± %) Obs Sim Pe (± %)

Calibration
  AWD
    CAR 4.12 (0.46) 4.06 10.30 (5.36) 10.67 (0.68) 10.85 5.67 (4.23)
    OM 5.1 (0.27) 4.86  − 4.36 (5.33) 10.7 (0.2) 10.13  − 5.32 (1.79)
    SP 4.44 (0.24) 4.23  − 4.51 (5.31) 10.32 (0.58) 10.28  − 0.39 (0.5)
    SK 2.28(0.27) 2.5 11.49 (14.26) 8.55 (0.25) 9.5 5.31 (3.05)

Validation
  CF
    CAR 3.86 (0.33) 4.29* 8.88 (8.94) 10.33 (0.87) 11.47 8.68 (8.89)
    OM 5.04 (0.18) 5.12 1.59 (4.02) 11.03 (0.58) 10.67  − 3.23(4.94)
    SP 3.63 (0.31) 4.48 24.38 (10) 9.19 (0.19) 10.93 18.98 (2.39)
    SK 2.4 (0.21) 2.61 12.23 (11.46) 7.91 (1.2) 9.34 18.01 (1)
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under SSP5-8.5. In contrast, the days to maturity for 
variety SK were projected to be delayed by 5.17 days 
(SSP3-7.0) and 6–7.82  days (SSP5-8.5) under both 
regimes.

Compared with the baseline, the simulated average 
grain yield of SK showed a substantial reduction of 
approximately 53%, followed by CAR , which showed 
around an 8% decrease under future climate change 
scenarios across both water management approaches. 
Conversely, under both scenarios, OM and SP in both 
regimes demonstrated an increase in average grain 
yield of 18% and 14%, respectively (Fig. 6b).

According to Fig. 6c, the likelihood of crop dam-
age incidents under both regimes was estimated at 
17% (SSP3-7.0) and 9% (SSP5-8.5) for CAR  and 
23.5% (SSP3-7.0) and 17% (SSP5-8.5) for SK. The 
crop damage for SP and OM was not anticipated 
under SSP3-7.0. Under SSP5-8.5, the damage of 
1.2% for SP and 0.8% for OM was expected.

In Fig. 6d, it was observed that the simulated aver-
age WUE of SK experienced a significant reduction 
of about 54%, followed by CAR  with an approxi-
mately 8.3% decrease under future climate change 
scenarios across both water management strategies. 

Fig. 2  Simulated and 
measured canopy cover 
(CC) and time series B for 
the calibration under AWD 
regime. Error bars indicate 
the standard deviation 
across replicated measure-
ments
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Fig. 3  Simulated and measured canopy cover (CC) and time series B for the validation under CF regime. Error bars indicate the 
standard deviation across replicated measurements
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In contrast, under both scenarios, OM and SP in both 
regimes exhibited an increase in average WUE of 
around 19% each. However, under any condition, the 
simulated average WUE of AWD15 surpassed that 
of CF under both future scenarios across all varieties 
and regimes. Under SSP3-7.0, the WUE of AWD was 
between 22 and 26% higher than those grown under 
CF, while under SSP5-8.5, the WUEs of AWD were 
between 18 and 25% greater. Except for SK (Fig. 6e), 
all varieties were projected to experience an increase 
in average biomass ranging from 16 to 22% under 
future climate change scenarios across both water 
management approaches. However, the reduction in 
SK’s biomass was minimal, approximately 1.5 tons. 
 ha−1 across all scenarios and regimes. As a result of 
the increased biomass, a decrease in average HI was 
simulated under future climate change scenarios 
across all varieties and regimes (Fig. 6f). Regardless 
of water regime and climate scenarios, the simulated 
average HI was reduced by 54.2%, 23%, 3.5%, and 
1.5% for SK, CAR , SP, and OM, respectively.

Discussion

AquaCrop performance for growth simulation in 
AWD and CF

Grain yield (Y) and total aboveground biomass (B)

Given the significant influence of variety, it is essen-
tial to calibrate the model against specific varieties for 
accurate simulation (Steduto et al., 2012). AquaCrop 
successfully simulated rice varieties’ yield (Y) and 
biomass (B) using different water management strat-
egies. The percent of deviation (Pd) between the 
simulated and observed Y and B values was outstand-
ing, consistent with other studies using AquaCrop 
for rice growth under AWD and water stress condi-
tions (Maniruzzaman et al., 2015; Mirfenderski et al., 
2021; Vahdati et  al., 2020). However, the model 
overestimated Y and B of SP variety in the validated 
model (CF regime) due to differences in the measured 
values between both treatments.

CC and time series B and CC

The simulation results showed that AquaCrop effec-
tively captured the development of crop canopies 

across all treatments and varieties. It was demon-
strated through a variety of statistical measures that 
were calculated. In general, the metrics of time series 
CC indicated good performance by the calibrated 
and validated model, as cited in AquaCrop stud-
ies by Maniruzzaman et  al. (2015) and Raoufi et  al. 
(2018). However, AquaCrop did not capture the CC 
growth for OM well, which is the improved variety. 
The nRMSE of OM was the highest compared to the 
three local varieties. This difference could be due to 
local growth behavior and improved variety (Saito 
et al., 2006). This finding contrasted with the finding 
of Raoufi et al. (2018), who observed a poorer predic-
tion of CC in the local variety than the improved one. 
This model may require further investigation to dif-
ferentiate between the canopy development of local 
and improved cultivars.

In general, the metrics of time series B indicated 
good to fair performance by the calibrated model, as 
cited in AquaCrop studies by Maniruzzaman et  al. 
(2015) and Raoufi et al. (2018). Nonetheless, the nor-
malized root mean square error (nRMSE) was higher 
than in those studies due to the substantial increase in 
total B weight during the grain-filling stage, primarily 
driven by the weight of the grains. The bias between 
observation and simulation in the grain-filling stage 
varied between 30 and 40%. We tried to reduce such a 
bias by increasing the CCo and Canopy size seedling, 
which caused a slight overestimation of time series 
CC at the early growing stage. In addition, increasing 
B to fit the measured value also led to a considerable 
bias in the final Y and B. Thus, we restricted the fit-
ting in the way that the final Y and B were most fitted 
to the observed values, as these two variables were 
critical factors for the future climate projection.

This means the model’s ability to simulate B for 
the selected type of varieties during the grain-filling 
stage needs improvement. The model’s inability to 
distinguish grain yield density from total biomass at 
this stage limits its accuracy. However, an option is 
available and recommended by AquaCrop to update 
unexpected growth or damage (Raes et  al., 2017). 
This adjustment is inconvenient during the numerous 
future climate projections under multiple scenarios. 
Therefore, model improvements that incorporate 
development rates of grain yield after the flowering 
stage would be highly desirable to enable the appli-
cation of the calibrated model across a broader range 
of genetic conditions. This model weakness was not 
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problematic for CC because CC became stable from 
45 DAT and started reducing during the grain falling 
stage. Furthermore, the increase in time series B after 
flowering was due to the increasing weight of grain 
rather than the rice canopy, which had nothing to do 
with CC.

However, the imperfection of time series CC 
and time series B did not influence the final Y and 
B since we can calibrate WP to compromise the 
errors. The calibrated WP values were between 
15.0 and 19.0  g   m−2, which falls within the range 
(15–20  g   m−2) recommended for C3 crops by Raes 
et al. (2009).

Soil moisture content

The calibration and validation of SMC were only fair 
(R and D > 0.5; NRMSE < 10%). Since our paddy 
sub-soil was mostly near saturation, this agreed with 
the finding of Xu et al. (2019), whose AWD method 
was irrigating the field to saturation but not flooding. 
However, Perros-Jorge et  al. (2020) better predicted 
when the soil was drier (soil potential between − 10 
and − 20 kPa). In addition, while our experiments did 
not present severe water stress conditions on the crop, 
we did not see any gradient in model performance 
with the degree of water stress.

Impact of climate change on short-cycle rice during 
mid-century

In comparison to the baseline (1996 − 2011), pro-
jected temperature increases were expected to 
increase on average 0.93 °C for Tmin and 1.35 °C 
for Tmax under both SSP3-7.0 and SSP5-8.5 sce-
narios, with notable spikes in March and April, where 
temperatures could exceed 40 °C. As per Raes Dirk 
(2017), heat stress in rice is triggered between 35 and 
40 °C. Fahad et al. (2016) suggested a 10% decline in 
rice grain yield for each 1 °C rise in growing-season 
minimum temperature during the dry season. While 
rainfall was forecasted to rise by 4–9% monthly, ETo 
demand in April also would increase by 31%, pos-
ing a severe threat to crops if cultivated during that 
period. This month coincides with our experiment 
period, which ran from late January to April.

Each short-cycle rice variety displayed dis-
tinct flowering times and growth durations in our 

experiment. The impact of climate change was most 
pronounced on the yield, HI, and WUE of the CAR  
and SK varieties, which had more extended growth 
periods than the other two varieties. The impact of 
water shortage during the projection was less critical, 
as rice growth under full irrigation also suffered the 
same damage. SK, having the most extended grow-
ing period (99 days) in particular, faced significant 
exposure to heat stress conditions (Tmax ≥ 35 °C) 
among the short-cycle varieties. While CAR  had a 
mean maturity of one day longer time to flower than 
SP, it experienced severe damage, which may be due 
to high temperature. This finding aligns with previ-
ous research findings indicating that prolonged expo-
sure to high temperatures greater than 35 °C during 
flowering, even from 1 h to a day, can lead to spikelet 
sterility (Devkota et  al., 2013; Shi et  al., 2016; Van 
Oort & Dingkuhn, 2021). Short-cycle varieties with 
growing periods of less than 93 days, such as OM 
and SP in our case, were not affected by heat stress. 
However, under the highest emission scenario, SSP5-
8.5, the overall risk of damage for these two varie-
ties was very low, about 3–6%, regardless of water 
management.

Due to its correlation with yield, WUE was 
observed to increase in the SP and OM varieties but 
decrease in CAR  and SK. AWD maintained superior 
WUE compared to CF throughout. This highlights 
AWD’s potential as a drought-adaptive strategy going 
forward, maintaining yields while reducing water 
input for short-cycle rice varieties under 93 days. 
Interestingly, biomass showed low sensitivity to heat 
in our study, indicating that climate change impacts 
grain yield more than biomass.

Conclusions

AquaCrop demonstrated considerable potential in 
simulated rice varieties and water management. 
Under medium and high emission scenarios, the fre-
quency of heat stress on rice would happen quite fre-
quently in Cambodia when the maximum temperature 
exceeds the rice’s tolerance level below 35 °C. The 
ensemble projection indicated that rice grown longer 
than 93 DAT is more prone to damage. In our case, 
Sen Kra Ob experienced a significant reduction of 
about 54%, followed by CAR15 with an approximately 
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8.3% decrease under future climate change scenarios 
across both water management strategies.

OM5451 and Sen Kra Ob are the suitable varieties 
to adapt to climate change. Regarding WUE, AWD is 
a promising technique for saving water in the future.

To effectively address the challenges posed by 
climate change in rice production, it is crucial to pri-
oritize the selection of rice varieties with traits that 

enhance climate resilience and support efficient water 
management. It is essential to acknowledge that this 
study was conducted at a field experimental level, and 
further research is necessary to validate these find-
ings across a broader range of rice varieties and on a 
larger scale. Additionally, a more thorough investiga-
tion into the water stress coefficient for rice varieties 
under more severe AWD conditions is recommended, 

Fig. 4  Simulating and 
observed SMC for the 
calibration (four plots) and 
validation (four plots) under 
AWD regime

Fig. 5  Projected changes in surface air temperature (a,b), ETo (c), and rainfall (d) under SSP3-7.0 (Medium emission trajectory) 
and SSP5-8.5 (highest emission trajectory) scenarios for 2041–2070 for the baseline period 1996–2011. Solid lines indicate medians
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Fig. 6  Simulated days to 
maturity (a), grain yield (b), 
percentage of damage (c), 
WUE (e), biomass (e), and 
HI (f) of the four rice varie-
ties in historical weather 
data and two climate change 
scenarios (SSP3-7.0 and 
SSP5-8.5) in 2041–2070. 
Solid lines indicate medi-
ans. The percentage of crop 
damage equals the number 
of damaged years divided 
by 120 (30 years * 4 GCM)
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as this aspect could not be explored in the current 
study. Nevertheless, the results suggest that AWD 
shows promising potential as a climate adaptation 
strategy for dry-season rice cultivation in Cambodia.
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