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Abstract: Cell division cycle 23 (CDC23) is a component of the tetratricopeptide repeat (TPR) subunit
in the anaphase-promoting complex or cyclosome (APC/C) complex, which participates in the
regulation of mitosis in eukaryotes. However, the regulatory model and mechanism by which the
CDC23 gene regulates muscle production in pigs are largely unknown. In this study, we investigated
the expression of CDC23 in pigs, and the results indicated that CDC23 is widely expressed in
various tissues and organs. In vitro cell experiments have demonstrated that CDC23 promotes
the proliferation of myoblasts, as well as significantly positively regulating the differentiation of
skeletal muscle satellite cells. In addition, Gene Set Enrichment Analysis (GSEA) revealed a significant
downregulation of the cell cycle pathway during the differentiation process of skeletal muscle satellite
cells. The protein–protein interaction (PPI) network showed a high degree of interaction between
genes related to the cell cycle pathway and CDC23. Subsequently, in differentiated myocytes induced
after overexpression of CDC23, the level of CDC23 exhibited a significant negative correlation with
the expression of key factors in the cell cycle pathway, suggesting that CDC23 may be involved in
the inhibition of the cell cycle signaling pathway in order to promote the differentiation process.
In summary, we preliminarily determined the function of CDC23 with the aim of providing new
insights into molecular regulation during porcine skeletal muscle development.

Keywords: CDC23; porcine satellite cells (PSCs); myoblast differentiation; GSEA; myoblast proliferation;
cell cycle pathway

1. Introduction

Skeletal muscle accounts for about 40% of total body weight [1], making it the largest
metabolic-endocrine organ, and plays a vital role in protein storage, metabolism, and the
maintenance of body homeostasis [2]. Mammalian skeletal muscle development is a com-
plex stepwise process that includes the following three stages: firstly, the somites develop
into progenitor cells, followed by myoblast proliferation, migration, and fusion, before the
final differentiation into fast- or slow-twitch muscle fibers which can distinguish different
types of muscles [3]. Inhibition of myoblast differentiation impairs muscle formation and
regeneration [4–6]. Therefore, it is important to elucidate the regulatory mechanisms of
myoblast differentiation in maintaining skeletal muscle mass and function.

Skeletal muscle development is a complex process regulated by various factor net-
works [7,8], such as signaling pathways [9], fibroblast growth factors [10], and insulin-like
growth factors [11]. Many studies have reported that long non-coding RNAs (lncRNAs)
can participate in skeletal muscle development and play an important role in the prolifera-
tion and differentiation process [12,13]. For example, lncRNA MEG3 overexpression may
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relieve the inhibitory effect on serum response factor (SRF) and myoblast differentiation
induced by miR-423-5p [14]. H19 regulates PSC differentiation through direct binding with
Drebrin 1 (DBN1) [15]. LncRNA TCONS_00323213 interacts with PBX/Knotted Homeobox
2 (PKNOX2) to promote the differentiation of PSC by relieving the inhibition of PKNOX2
on myogenin (MyoG) [16]. Many classical pathways play key roles in muscle prolifera-
tion and differentiation processes, such as the canonical Wnt signaling pathway [17,18],
the Notch signaling pathway [19], and the mTOR signaling pathway [20]. In addition,
some hormones, such as parathyroid hormone [21] and thyroid hormone [22], are also
involved in regulating skeletal muscle development. The NFAT5 pathway participates
in muscle development and regeneration by regulating the differentiation of myoblasts
into multinucleated myotubes [23]. Furthermore, MEK5/ERK5 pathway activation by Yes-
associated protein (YAP) during muscle cell differentiation has recently been reported [24].
Many proteins also play important roles in muscle differentiation, such as the MADS box
protein Mef2 [25,26]. Fu et al. [27] have reported that Egl nine homolog 3 (EGLN3, also
known as PHD3) regulates skeletal muscle differentiation by modulating the stability of
the myogenin protein. Cell division control protein 42 homolog (Cdc42) has been identified
as a negative regulator of the differentiation of skeletal muscle cells [28]. Similarly, the
homeobox protein Hox-A11 has a significant inhibitory effect on myogenesis during muscle
differentiation [29].

The proliferation of skeletal muscle satellite cells is closely associated with the positive
regulation of the cell cycle. However, withdrawal of the cell cycle in myogenic cells and
an increase in muscle-specific gene expression are prerequisites for myogenic differentia-
tion [30–32]. During myogenesis, the activation of p38 MAPK promotes cell cycle exit by
inducing the expression of a cyclin-dependent kinase inhibitor, p21, which facilitates termi-
nal differentiation of muscle precursor cells [33,34]. Interestingly, myogenic differentiation
(MyoD) can also regulate cell cycle arrest by inducing p21 (Cdkn1a) [35,36]. Furthermore,
recent research findings have indicated that MyoD controls cell cycle exit and myogenic
gene expression through its synergistic interaction with a master regulator of the cell cycle
progression named Rb (the protein product of the retinoblastoma gene) [37]. The research
conducted by Charasse et al. revealed the crucial role of RhoA activity regulation in my-
oblasts for cell cycle exit, skeletal muscle differentiation gene expression, and myotube
fusion [38]. Therefore, it is of great significance to elucidate the functions of novel cell
cycle regulatory factors and their regulatory networks in skeletal muscle differentiation
and regeneration processes.

In our preliminary research, we conducted pulldown experiments and mass spec-
trometry analysis of MEG3 [39]. We noted the presence of a protein, CDC23, in the mass
spectrometry results. Therefore, we speculate that CDC23 may be involved in the regulation
of muscle development by MEG3. Then, we further conducted protein–protein interaction
(PPI) network analysis using the STRING database. Through PPI analysis, we found that
CDC23 is closely associated with significantly enriched genes in the cell cycle pathway.

In the current research, we found that the specific regulatory role and mechanism of
CDC23 (especially the pig CDC23 gene) in muscle development remains poorly defined.
In this study, we detected the expression profile of CDC23 and explored its function and
molecular mechanism in the myogenesis of porcine satellite cells. Our data revealed a
new regulatory network of CDC23 in skeletal muscle, which may contribute to a better
understanding of the mechanism underlying the epigenetic regulation of skeletal muscle
development and regeneration, and will accelerate the process of genetic improvement
in animals.

2. Results
2.1. Significant Inhibition of Cell Cycle Pathways during Satellite Cell Differentiation

In our preliminary research, we constructed cDNA libraries from two differentiation
time points (24 and 36 h), and 6341 DEGs were detected between the two groups after
sequencing [15]. In order to elucidate the functions, signaling pathways, and upstream reg-
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ulators of the functional gene sets involved in the process of differentiation, we conducted
GO and KEGG biological process enrichment of the 6341 DEGs using Gene Set Enrichment
Analysis (GSEA).

The GO term enrichment (Figure 1A) results revealed that the gene sets suppressed
in the 36 h group relative to the 24 h group were primarily involved in cell cycle phase
transition, the mitotic cell cycle process, regulation of the cell cycle process, the mitotic
cell cycle, chromosome segregation, nuclear division, organelle fission, and the cell cycle
process, whereas the activated gene sets were mainly involved in processes such as skeletal
muscle tissue development, muscle tissue development, heart contraction, the muscle
system process, striated muscle contraction, muscle contraction, myofibrils, and sarcomeres.
We performed KEGG pathway analysis (Figure 1B) and the results indicated that, for DEGs
in D36h, the top downregulated gene sets belonged to the cell cycle pathway, and the top
upregulated gene sets belonged to cardiac muscle contraction.
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significant. 

Figure 1. Functional annotation of DEGs in the differentiation process of skeletal muscle satellite cells
by using GSEA. (A) Gene ontology analysis. (B) KEGG pathway analysis. (C) The top suppressed
gene set in D36h was ranked by NES. Heatmap plots (D) and volcano plots (the dotted line in
(E) indicates |log2FoldChange| = 2) (E) of 26 core enrichment genes in the cell cycle pathway.
(F) Validation via RT-qPCR of several DE mRNAs from RNA-seq. (* p < 0.05). ns is considered to be
not significant.

We further verified the top enriched KEGG pathways using GSEA and discovered
that 26 genes in the cell cycle pathway (Figure 1C), including CDC25C, CCNB1, CDC20,
and CDCA5, were prominently downregulated in the 36 h group (Figure 1D,E). We then
randomly selected several DEGs mentioned above and detected their expression in skeletal
muscle satellite cells using real-time fluorescent quantitative PCR, and the data indicated
that the RT-qPCR results were highly consistent with the RNA sequencing results, demon-
strating the accuracy and reliability of our bioinformatics analysis results (Figure 1F).
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2.2. Potential Role of CDC23 in Myoblast Differentiation

The previous results showed that lncRNA-MEG3 regulated the cell cycle of skeletal
muscle satellite cells, inhibited proliferation, and promoted differentiation [14]. By per-
forming RNA-binding protein experiments (pull down) on lncRNA-MEG3 in vitro, as well
as mass spectrometry analysis of the resulting RNA-protein complexes [39], we obtained a
protein of interest, CDC23, with a size of 69 kDa. The mass spectrometry analysis results
are shown in Figure 2A (Table S2). Through Western blot experiments, we detected the
presence of the CDC23 protein in the pull-down samples of the MEG3 sense strand, whereas
it was not detected in the antisense strand (Figure 2D). RNA immunoprecipitation assay
(RIP) electrophoresis and RT-qPCR results showed that CDC23 binds and significantly
enriches MEG3 (Figure 2E,F).
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proteins of MEG3 and core-enriched genes in the cell cycle pathway were retrieved using the
STRING database. (D) Western blotting results showed that MEG3 specifically binds to the CDC23
protein. (E) RNA immunoprecipitation (RIP) results indicated that the CDC23 protein binds to
MEG3. The PKNOX2 protein and lnc-TCONS_00323213 were used as the negative control. (F) RIP-
RT-qPCR results indicated that MEG3 was significantly enriched by the CDC23 protein. (G) The
interaction of truncated MEG3 and CDC23 was determined via RNA pull-down. Error bars are
the mean ± standard error of the mean (SEM) of three biological replicates. Statistical differences
between groups were determined with a 2-tailed Student’s t-test, and a p-value < 0.05 was considered
statistically significant (** p < 0.01). ns is considered to be not significant.

In order to further determine the interaction relationship, we truncated the full
length of MEG3 (Figure 2G) and the results showed significant binding of CDC23 at
the 425 nt–897 nt position of MEG3 (Figure 2G). The above experimental results demon-
strated the authentic binding between MEG3 and the CDC23 protein. This implied that
CDC23 may be a novel participant in the regulation of skeletal muscle satellite cell growth
and development. Moreover, to investigate whether there were any associations between
CDC23 and the cell cycle pathway during the differentiation process, we constructed a
protein–protein interaction network to reveal potential interactions (Figure 2C). The analy-
sis results revealed that the protein with the highest number of interactions was CDC23
(Figure 2B), suggesting a close correlation between CDC23 and the enriched genes in the cell
cycle pathway. Therefore, we hypothesized that CDC23 may be involved in the regulation
of functional processes during skeletal muscle satellite cell differentiation by influencing
the cell cycle pathway.

2.3. Expression Pattern of CDC23 in Skeletal Muscle

Research has shown that CDC23 is a subunit of the Anaphase-Promoting Com-
plex/Cyclosome (APC/C) during the late stage of polyubiquitination, but its function
remains unknown. Firstly, we sorted its expression profile with the data from Jin et al. in
the GEO public database (GSE162145) [40]. The transcriptomic data demonstrated that
CDC23 exhibits varying levels of expression across different tissues in pigs, indicating its
broad expression profile (Figure 3A). CDC23 is highly expressed in the cerebrum, cere-
bellum, and PK15 cell line, but its expression levels are lower in other tissues and organs.
Interestingly, compared to other muscles, CDC23 exhibits relatively higher expression
in the psoas major muscle. To explore the function of CDC23 in PSCs, we observed the
expression pattern of CDC23 in PSCs at different proliferation and differentiation time
points (Figure 3B). The results showed that the expression levels of CDC23 were relatively
similar between the proliferation and differentiation phases. In the proliferation phase,
the peak expression level of CDC23 occurred at 36 h, whereas in the differentiation phase,
its expression level increased along the differentiation time points. We also detected the
expression level of two proliferation markers and three differentiation markers in different
proliferation and differentiation periods. The RT-qPCR results showed that CCNB1 and
ki-67 exhibited high levels of expression during the proliferation phase (Figure 3C,D).

Consistent with previous reports, MyoD was expressed at both the proliferative and
early differentiation stages, and the expression level during the differentiation phase was
several times higher than that during the proliferation phase (Figure 3E). In contrast,
MyoG and MyHC are expressed almost exclusively during differentiation (Figure 3F,G).
In particular, the mRNA expression level of MyHC increased sharply at the late stage of
differentiation. These results indicated that CDC23 may regulate pig growth and devel-
opment. In order to further validate the relationship between CDC23 and MEG3, rescue
experiments were conducted. The results showed that knockdown or overexpression of
MEG3 had no significant effect on the mRNA and protein expression levels of the CDC23
gene (Figure 3H–K).
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Figure 3. Expression pattern of CDC23 in skeletal muscle. (A) CDC23 expression analysis of the
different tissues of Rongchang pigs by using RNA-seq data in a public database. (ILB, inner layer of
backfat; ULB, upper layer of backfat; GM, gluteus medius muscle; LDM, longissimus dorsi muscle;
PM, psoas major; SOL, Soleus; TM, teres major). (B–G) The mRNA expressions of CDC23, CCNB1, Ki-
67, MyoD1, MyoG, and MyHC in different periods of proliferation and differentiation. ZZ represents
proliferation and FH represents differentiation. (H,J) The mRNA and protein expression levels of
the CDC23 gene after knockdown of MEG3. (I,K) The mRNA and protein expression levels of the
CDC23 gene after overexpression of MEG3 (ns is considered to be not significant).

2.4. CDC23 Promotes Myoblast Proliferation

Given that CDC23 was upregulated during myoblast proliferation (Figure 3B), CDC23
could be involved in the regulation of myoblast proliferation. We performed inhibition and
overexpression experiments to assess its effect on the proliferation of myoblasts. The CDC23
inhibition/overexpression vectors were constructed and, respectively, transfected into
porcine satellite cells cultured in GM. The knockout efficiency of si-CDC23-2 was superior,
and it was subsequently employed in the following experiments. The CCK-8 assay showed
that the overexpression of CDC23 for 24, 36, or 48 h could dramatically accelerate cellular
proliferation (Figure 4B). Inversely, the CDC23 knockdown substantially suppressed the
proliferative ability of porcine satellite cells compared with the negative control (Figure 4A).
In the 5-ethynyl-2′-deoxyuridine (EdU) staining assays, the overexpression of pcDNA3.1-
CDC23 showed higher mitotic activity with an increase in EdU incorporation (Figure 4F).
On the contrary, the interference of si-CDC23 showed lower mitotic activity with a decrease
in EdU positivity (Figure 4E).
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Figure 4. CDC23 promotes myoblast proliferation. (A) CCK-8 cell proliferation assay after knockdown
of CDC23. (B) CCK-8 cell proliferation assay after overexpression of CDC23. (C) Flow cytometry
analysis after knockdown of CDC23. (D) Flow cytometry analysis after overexpression of CDC23.
(E) EdU staining assays after knockdown of CDC23. (F) EdU staining assays after overexpression of
CDC23. The S phase of mitosis cells was stained with EdU. The nuclei were stained with DAPI. Scale
bar: 50 µm. Error bars represent the mean ± SEM of three biological replicates. Statistical differences
between groups were determined with a 2-tailed Student’s t-test, and a p-value < 0.05 was considered
statistically significant (* p < 0.05, ** p < 0.01). ns is considered to be not significant.

Moreover, flow cytometric analysis revealed a considerable reduction in cell quantity
in the G1 phase and a remarkable increase in cell quantity in the S phase after the overex-
pression of CDC23 (Figure 4D). Conversely, the CDC23 knockdown showed an opposite
effect (Figure 4C). These findings validated that CDC23 can promote the proliferation of
porcine satellite cells.
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2.5. CDC23 Positively Regulates Myogenic Differentiation and Myogenin Expression

The results (shown in Section 2.4) demonstrated that CDC23 is important for myoblasts
to be able to withdraw from the cell cycle, a crucial step in myoblast differentiation. In addi-
tion, the expression profile of CDC23 indicated its association with myoblast differentiation
(Figure 3B). To study the role of CDC23 in PSC differentiation, the overexpression vectors
pcDNA3.1-CDC23 and si-CDC23 were transfected into PSCs cultured in DM(Figure 5A,E).
We used RT-qPCR and Western blot to test the changes in myogenic marker genes (MyoD,
MyoG, and MyHC) after total cellular RNA and proteins were collected. The Western blot
results showed that compared with the control group transfected with pcDNA3.1, CDC23
in the overexpression group increased significantly (Figure 5G). In contrast, the si-CDC23
transfection group showed significantly reduced expression of CDC23 (Figure 5C). After
overexpression of CDC23, we found that the expression levels of MyoD, myogenin (MyoG),
and MyHC, which are differentiation marker genes, were significantly increased compared
with the control group (Figure 5F–H). Meanwhile, after transfection of si-CDC23, the ex-
pression of the markers all significantly decreased (Figure 5B–D). In addition, the Western
blot results revealed a strong correlation between the protein expression levels and mRNA
levels of the three myogenic markers following CDC23 knockout and overexpression.
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Figure 5. CDC23 overexpression positively modulates myoblast differentiation. (A) Efficiency assay
of CDC23 interfering RNA. (B) The mRNA expressions of MyoD, MyHC, and MyoG were decreased
after CDC23 knockdown. (C) The protein expressions of MyoD, MyHC, and MyoG were decreased
after CDC23 knockdown. (D) Quantitative analysis of Western blot results after knockdown of
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CDC23. (E) Efficiency measurement of the CDC23 overexpression vector. (F) The mRNA expressions
of MyoD, MyHC, and MyoG were decreased after CDC23 overexpression. (G) The protein expressions
of MyoD, MyHC, and MyoG were decreased after CDC23 overexpression. (H) Quantitative analysis
of Western blot results after overexpression of CDC23. (I) Overexpression of CDC23 increased MyHC-
positive porcine satellite cells. (J) Knockdown of CDC23 reduced MyHC-positive porcine satellite
cells. (K) Overexpression of CDC23 increased MyoG-positive porcine satellite cells. (L) Knockdown
of CDC23 reduced MyoG-positive porcine satellite cells. The scales are all 100 µm. Error bars are the
mean ± SEM of three biological replicates. Statistical differences between groups were determined
with a 2-tailed Student’s t-test, and a p-value < 0.05 was considered statistically significant (* p < 0.05,
** p < 0.01).

To further investigate the role of CDC23 in myoblast differentiation, we conducted
immunofluorescence staining experiments. The results of immunofluorescence staining
indicated that overexpression of CDC23 significantly increased the number of MyHC+-
positive cells and the size of myotubes, whereas the opposite results were observed after
interference (Figure 5I,J). Similar results were observed in the MyoG immunofluorescence
assay, where knockdown of CDC23 significantly reduced the number of MyoG+-positive
cells, whereas overexpression resulted in the opposite effect (Figure 5K,L). In summary,
these results indicated that CDC23 positively regulates the transcription of myogenic factors
and differentiation of porcine skeletal muscle satellite cells.

2.6. CDC23 May Participate in the Cell Cycle Pathway to Regulate Skeletal Muscle Differentiation

There is a highly interdependent relationship between muscle differentiation and cell
cycle regulation. To verify whether CDC23 can affect the cell cycle signaling pathway,
we performed pathway marker gene detection. Several genes related to the cell cycle
signaling pathway were selected for validation with RT-qPCR. Cell cycle pathway-related
genes (AURKB, CDC20, CDK1, and BUB1) were prominently reduced at the mRNA level
by CDC23 overexpression (Figure 6A) in skeletal muscle satellite cells (Figure 6B–E). In
addition, the expression of PLK1 is not significant, but there is a downward trend with
enhanced CDC23 expression (Figure 6F). These data indicated that CDC23 may regulate
muscle growth and development by inhibiting the cell cycle pathway.
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showed no change after CDC23 overexpression. Error bars are the mean ± SEM of three biological
replicates. Statistical differences between groups were determined with a 2-tailed Student’s t-test,
and a p-value < 0.05 was considered statistically significant (* p < 0.05, ** p < 0.01). ns is considered to
be not significant.

3. Discussion

The proliferation and differentiation of myocytes are crucial processes in skeletal
muscle development, and they determine the quality and quantity of meat production
in livestock animals. Elucidating the regulatory mechanisms of muscle development can
contribute to the improvement of meat quality in animal production, and will provide
new insights for identifying therapeutic targets in the treatment of muscular diseases in
the future. Therefore, investigating the development of skeletal muscle is of significance.
The specific function and signaling mechanism of CDC23 in skeletal muscle cells remained
unclear, underpinning the relevance of further research in this area.

Skeletal muscle development is a complex biological process [41] involving not only
the proliferation and differentiation of myogenic cells but also the fusion of myotubes to
form various types of muscle fibers and the establishment of the functional architecture
of skeletal muscle. Our results revealed that CDC23 exhibits widespread expression in
various tissues and organs, and its high degree of expression in the PK15 cell line provides
additional evidence for its role in cancer. We speculated that CDC23 may be involved in
cellular proliferation and migration processes. Similarly, our data demonstrated that the
expression level of CDC23 increases over time at different proliferation and differentiation
stages, reflecting its close association with the development of skeletal muscle satellite cells.
The binding protein CDC23 captured our attention as a partner of MEG3. However, subse-
quent experiments revealed that knocking down or overexpressing MEG3 had minimal
effect on the mRNA and protein expression levels of the CDC23 gene. We speculated that
there may exist a complex and unknown regulatory relationship between them, and further
exploration will need to be conducted in the future.

Proliferation and differentiation are crucial processes in skeletal muscle development.
Cyclin E and CCND1 can bind to cyclin-dependent protein kinases to control cell cycle
progression, such as the G1-S and G2-M transition [42,43]. The expression of Ki67 is closely
associated with cell proliferation and growth and is commonly used as a proliferation
marker in various tumor lesions [44,45]. The results of this study indicated a positive
correlation between the expression levels of CDC23 and the genes CCNB1 and Ki67 dur-
ing skeletal muscle satellite cell proliferation. In addition, the EDU and CCK-8 assays
also demonstrated that CDC23 significantly promotes the proliferation of skeletal muscle
satellite cells. The results of flow cytometry showed that both gain-of-function and loss-of-
function experiments of CDC23 significantly affected the cell cycle progression. Previous
reports have indicated that cell proliferation is regulated by cell cycle progression [46].
These findings were consistent with our data and further support the potential of CDC23
in promoting porcine satellite cell proliferation.

Previous studies have indicated that myogenesis differentiation is regulated by a
complex network of myogenic transcription factors, such as MyoD, Myf5, MyoG, MRF4,
and MyHC [47,48]. MyoD is considered a master regulatory gene for myogenic differentia-
tion [49], whereas MyoG is indispensable for the terminal differentiation of myocytes [48].
Previous studies have shown that MyHC and MyoG can be used as markers of myoblast
differentiation [50]. Our data demonstrated a highly consistent trend between the expres-
sion levels of differentiation marker genes and CDC23 at both the mRNA and protein
levels, regardless of whether CDC23 was knocked out or overexpressed. The results sug-
gested a close association between CDC23 and skeletal muscle satellite cell differentiation.
Immunofluorescence experiments indicated that overexpression of CDC23 significantly
enhanced cell differentiation compared to the control group, whereas knockdown of CDC23
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inhibited cell differentiation. As demonstrated by the significant changes observed in the
fluorescence images of MyHC and MyoG, further evidence supported the positive reg-
ulatory role of CDC23 in cellular differentiation. In conclusion, CDC23 promotes both
proliferation and differentiation in porcine skeletal muscle satellite cells. These results
suggested that CDC23 may be involved in regulating the growth and development of
skeletal muscle satellite cells through different regulatory factors or pathways. However,
the specific regulatory mechanism remains unknown, and further investigation is needed
in the future.

The signaling pathways underlying muscle development are complex [51], and cur-
rently little is known about the regulatory signals involving CDC23 in skeletal muscle. Cell-
cycle arrest is a prerequisite to the differentiation of myoblasts into mature myotubes [52].
MYBL2 regulates cell cycle progression, cell differentiation, and survival [53] by promoting
cell cycle progression [54]. CEND1 (cell cycle exit and neuronal differentiation protein
1) plays an important role in neuronal differentiation by modulating cell cycle progres-
sion/exit or apoptosis of neuronal progenitors [55]. Abnormal cell cycle progression, such
as cell cycle arrest, induces ESC differentiation or apoptosis [56,57]. In our transcriptome
analysis results, the cell cycle pathway was significantly downregulated during skeletal
muscle satellite cell differentiation. In addition, PPI analysis revealed a close association
between CDC23 and enriched genes in the cell cycle pathway. We speculate that CDC23
is involved in the regulation of the cell cycle pathway. However, the specific regulatory
sites remain unclear. Research has revealed that the repressive histone mark H3K27me3
regulates myogenic differentiation via the silencing of muscle-specific genes and cell cycle
genes [58,59]. MyoD1 is involved in proliferating myoblasts and regulating muscle cell
differentiation through the stimulation of cell cycle arrest [60]. DGKZ is a negative regulator
of cell cycle progression [61], such that decreased expression of DGKZ (via siRNA) impairs
muscle cell differentiation [62]. Furthermore, Msx1 was shown to block cellular differentia-
tion by preventing cell cycle exit [63]. Our current research findings were consistent with
previous reports, indicating that CDC23 inhibits cell cycle signaling by downregulating the
expression of AURKB, CDC20, CDK1, and BUB1. It is worth noting that CDC23 does not
affect PLK1. These results further demonstrated that CDC23 may function as an inhibitory
factor in the cell cycle pathway, regulating muscle development. In summary, these ob-
servations suggested that CDC23 plays a positive regulatory role in muscle growth and
development, possibly through the inhibition of the cell cycle signaling pathway.

However, the mechanisms of CDC23 to regulate PSC growth and development have
not yet been thoroughly elucidated. In addition, the regulatory relationship between
CDC23 and the cell cycle pathway could be further validated through the specific activators
of the cell cycle pathway. It is necessary to clarify the form of CDC23 that inhibits key sites
of the cell cycle pathway. CDC23 may have many other functional roles that need to be
explored, and future efforts will be devoted to the detailed analysis of the other diverse
functional mechanisms through which CDC23 regulates PSC differentiation. Here, we
present a molecular model to elucidate the role of CDC23 in regulating PSC differentiation
(Figure 7). This study was the first to identify and report the mechanisms of CDC23 in
PSC proliferation and differentiation and may provide some molecular basis for the future
research of porcine myogenesis.
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4. Materials and Methods
4.1. Animal and Ethics Statement

The animal used in this study was a 7-day-old, 3.1 kg, male Large White piglet. For
porcine satellite cell isolation, the muscles of extremities from the piglets were rapidly
pooled, minced, and digested. Using a sterile surgical knife, we cut off various parts
of muscles including triceps brachii, biceps femoris, semitendinosus, semimembranosus,
and gastrocnemius, and preserved them in PBS containing 1% antibiotic-antimycoti. It is
preferable to complete the entire process within 10 min. Please refer to the “Animals and
PSCs Isolation” section [15] for the detailed experimental procedures. The PAX7 gene is an
important marker for the identification of skeletal muscle satellite cells, and the test results
are shown in Figure S1.

Animal care and experimentation procedures in this study were carried out in accor-
dance with the guidelines from Regulation Proclamation No. 5 of the Standing Committee
of Hubei People’s Congress. All experimental protocols were approved by the Institutional
Animal Care and Use Committee of Huazhong Agricultural University, Wuhan, China
(permit HZAUSW2015-0003).

4.2. Gene Set Enrichment Analysis of DEGs

Gene Set Enrichment Analysis (GSEA) of the DEGs [15] was conducted using the
gseaGO and gseaKEGG functions within the R package ClusterProfiler [64]. The show
category number was set as 10. The org.Ss.eg.db package was applied to map the gene
identifiers. Dotplots were created using the GseaVis and ggplot2 packages [65]. Gene sets
with |NES| > 1 and FDR (padj) < 0.25 were considered to be significant. The database
STRING (version 12.0, https://string-db.org/ (accessed on 6 September 2023)) was used to
study protein–protein interactions [66].

4.3. Cell Culture

PSCs were cultured in a growth medium (GM) containing 76.5% RPMI 1640 (Gibco,
Los Angeles, CA, USA, Cat#A10491), 20% FBS (Wenren Biotechnology, Shanghai, China,
Cat#FBS-AUS050), 0.5% chicken embryo extract (Gemini, Woodland, CA, USA, Cat#100-
163P), 1% GlutaMax (Gibco, Los Angeles, CA, USA, Cat#35050-061), 1% non-essential amino
acids (Gibco, Los Angeles, CA, USA, Cat#11140-050), 1% antibiotic-antimycotic (Gibco, Los
Angeles, CA, USA, Cat#15240-062), and 2.5 ng/mL human recombinant basic fibroblast
growth factor (Gibco, Los Angeles, CA, USA, Cat#13256029). When the PSCs reached 80%
confluence, the GM was replaced with a differentiation medium (DM) containing DMEM
supplemented with 2.5% horse serum (Gibco, Los Angeles, CA, USA, Cat#26050088). The
cells were cultured at 37 ◦C with 5% CO2.

https://string-db.org/
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4.4. RNA Pull-Down Assay

After linearization of the plasmids, T7 RNA polymerase (Roche, Mannheim, Germany)
and biotin RNA labeling mix (Roche, Mannheim, Germany) were used to synthesize
transcripts of the MEG3 full-length and mutant fragments. Then, the transcripts were
treated with DNase I and EDTA. Proteins were extracted and lysed from the PSCs. In vitro
biotinylated RNAs (3 µg) were incubated with the proteins overnight, then the complex
was pulled down with streptavidin beads. The beads were washed five times with a
wash buffer. Then, the protein complexes associated with beads were analyzed with mass
spectrometry and Western blot.

4.5. RNA Immunoprecipitation Assay

We performed RNA immunoprecipitation (RIP) assays using an EZ-Magna RIP kit
(Millipore, Billerica, MA, USA). Briefly, RIP lysis buffer was used to lyse 107 cells, and the
lysates were incubated with 10 µg CDC23 antibody (Abclonal, Wuhan, China, Cat#A6025)
at 4 ◦C overnight. Then, we added the protein A/G beads to pull down the RNA-protein
complex. Subsequently, the RNA was purified from the complex and the abundance of
MEG3 was detected with RT-qPCR. The 18S rRNA was used as an internal control.

4.6. Western Blot

The protein expression levels of the myogenin (MyoG) gene, myogenic differentiation
(MyoD), myosin heavy chain (MyHC), and CDC23 in the PSCs were detected by performing
immunoblotting. Transfected cells were lysed in RIPA buffer with 1% PMSF and the protein
was loaded onto an SDS-PAGE gel and transferred onto a PVDF membrane. Non-specific
binding was blocked with 5% non-fat milk in Tris-buffered saline with Tween 20 for
2 h. Then, the proteins were incubated with anti-MyoG (1:1000, Abclonal, Wuhan, China,
Cat#A17427), anti-MyoD (1:1000, Proteintech, Wuhan, China, Cat#18943-1-AP), anti-myosin
heavy chain (MyHC; 1:3000, Millipore, Darmstadt, Germany, Cat#05-716), CDC23 antibody
(1:1000, Abclonal, Wuhan, China, Cat#A6025), and anti-β-tubulin (1:3000, Proteintech,
Wuhan, China, Cat#10068-1-AP) at 4 ◦C overnight. The blots were subsequently incubated
with HRP-conjugated secondary antibodies (1:4000), including HRP-labeled goat anti-
mouse IgG (Servicebio, Wuhan, China, Cat#GB23301), and HRP-labeled goat anti-rabbit
IgG (Servicebio, Wuhan, China, Cat#GB23303). ECL substrates were used to visualize the
signals (Beyotime, Shanghai, China, Cat#P0018A). Image J software (version 1.53e) was
used to conduct a quantitative analysis of the Western blotting results, according to the
gray value of the strip.

4.7. RNA Oligonucleotide, Plasmid Construction, and Cell Transfection

The small interfering RNA (siRNA) of CDC23 were purchased from Sangon Biotech
(Shanghai, China). The siRNA sequences used are shown below:

CDC23 siRNA-1: GCAGUUGCCUAUCACAAUATT
CDC23 siRNA-2: GGAGUAAAGCUUUACGCUUTT
For the construction of CDC23 overexpression vectors, 2 × Ezmax® Universal Clone-

Mix (Tolobio, Shanghai, China, Cat#24305-02) was used to clone the sequence of CDC23,
and then the sequences were inserted into the pcDNA3.1 vector.

For cell transfection, the relevant plasmids or siRNA were used with the jetPRIME®

transfection reagent (Polyplus, Illkirch, France, Cat#101000046), as advised by the manufac-
turer’s protocol.

4.8. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from the PSCs using a Steady Pure RNA Extraction Kit
(Accurate Biology, Changsha, China, Cat#AG21024), according to the manufacturer’s
instructions. Then, we used the ABScript||cDNA First-Strand Synthesis Kit (Abclonal,
Wuhan, China, Cat#RK20400) to carry out cDNA synthesis for mRNA. The RT-qPCR was
carried out on a Bio-Rad PCR System using 2× Universal SYBR Green Fast qPCR Mix
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(Abclonal, Wuhan, China, Cat#RK21203) and gene-specific primers. The primers are shown
in Table S1. As previously described, the 2−∆∆CT [67] method was used to analyze the
RT-qPCR data.

4.9. CCK-8 Assay

We conducted the experiment based on CCK-8 kit (Abclonal, Wuhan, China, Cat#RM02823)
instructions. When the cell density in the 96-well plate reached around 40%, CDC23
knockdown and overexpression were performed, respectively. A total of 10 µL/well of
CCK-8 reagent was added at different time periods after transfection: 0 h, 12 h, 24 h, 36 h,
and 48 h. Then, culturing was allowed to proceed for 1–4 h. Microplate readers detected the
absorbance of different treatment groups at 450 nm and analyzed the proliferation status of
the cells.

4.10. Flow Cytometry Analysis

Flow cytometry analysis of the cell cycle was performed using a Cell Cycle Assay Kit
(Beyotime, Shanghai, China, Cat#C1052). Briefly, the transfected cells were harvested and
fixed in 70% ethanol overnight at 4 ◦C. Then, the cells were rinsed with PBS and centrifuged
at 2500 rpm for 5 min. Subsequently, the cells were stained with a pre-prepared propidium
iodide (PI) solution, containing RNase A and PI at a volume ratio of 1:9, before incubation
in the dark for 30 min. Flow cytometry analysis was performed on a Beckman Coulter
FC500 Cytometer (Beckman Coulter, Miami, FL, USA), and the data were processed using
FlowJo v10 software.

4.11. 5-Ethynyl-20-Deoxyuridine (EdU) Assay

We conducted this experiment according to the instructions for the BeyoClick™ EdU
Cell Proliferation Kit with Alexa Fluor 555 (Beyotime, Shanghai, China, Cat#C0075S). When
the cell density of the 12-well plate reached 40%, the cells were transfected separately. When
the cell density reached 70%, we added EdU reagent to a final concentration of 50 µM for
each well, followed by culturing for 1.5–2 h. The cells were then fixed at room temperature
with 4% paraformaldehyde solution for 30 min, followed by the addition of 0.5% Triton
X-100 and incubation for 10 min for cell permeabilization. Subsequently, we added the
pre-prepared Apollo staining solution and incubated the solution for a further 30 min at
room temperature, protected from light. The nucleus was stained with 4, 6-diamidino-
2-phenylindole (DAPI). Finally, the staining results were observed using a fluorescence
microscope, and three visual fields of view were randomly selected for photographing. The
changes in the number of EDU-positive cells were compared between the experimental
group and the control group.

4.12. Immunofluorescence Staining

The cells were fixed in 4% paraformaldehyde for 15 min and then permeabilized
in 0.3% Triton X-100 for 15 min. Subsequently, the cells were blocked with blocking
solution (3% bovine serum albumin (BSA), 0.3% TritonX-100, 10% FBS complemented with
PBS) for 2 h. Then, Anti-MyHC (1:1000; Millipore, Billerica, MA, USA) or anti-MyoG
(1:500; Abclonal, Wuhan, China, Cat#A17427) were added and the solution was incubated
overnight at 4 ◦C. After that, the cells were stained with CoraLite594-conjugated Goat
Anti-Rabbit IgG (H + L) (Proteintech, Wuhan, China, Cat#SA00013-4) for 1 h. The cell
nuclei were stained using DAPI (Servicebio, Wuhan, China, Cat#G1012-10ML) solution
in darkness for 10 min. Images from three randomly selected fields were obtained with a
Leica SP8 confocal microscope and processed with Image J software (version 1.53e).

4.13. Statistical Analysis

Generally, the results are presented as the means ± standard error of the mean (SEM).
Statistical differences between groups were determined with a 2-tailed Student’s t-test, and
a p-value < 0.05 was considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).
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