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SUMMARY
Aging is a pivotal risk factor for cancer, yet the underlying mechanisms remain poorly defined. Here, we
explore age-related changes in the rat mammary gland by single-cell multiomics. Our findings include
increased epithelial proliferation, loss of luminal identity, and decreased naive B and T cells with age. We
discover a luminal progenitor population unique to old rats with profiles reflecting precancerous changes
and identify midkine (Mdk) as a gene upregulated with age and a regulator of age-related luminal progenitors.
Midkine treatment of young rats mimics age-related changes via activating PI3K-AKT-SREBF1 pathway and
promotes nitroso-N-methylurea-induced mammary tumorigenesis. Midkine levels increase with age in hu-
man blood andmammary epithelium, and higherMDK in normal breast tissue is associatedwith higher breast
cancer risk in younger women. Our findings reveal a link between aging and susceptibility to tumor initiation
and identify midkine as a mediator of age-dependent increase in breast tumorigenesis.
INTRODUCTION

Aging is a major risk factor for cancer as most tumors are diag-

nosed in individuals over 50 years of age.1,2 Breast cancer is the

most common cancer in women and the average age of diag-

nosis is 62,3 yet studies involving aged animals remain limited

and elderly patients are underrepresented in clinical trials. To

better understand age-associated increase in breast tumor initi-

ation and progression, we must dissect how aging impacts the

normal mammary gland. Although histologic, mammographic,

cellular, and molecular analysis of mammary tissues have

already uncovered significant changes during aging in humans

and mice,4–11 their functional relevance in breast tumorigenesis

has not been defined.

Normal mammary gland function requires tightly orchestrated

interactions between epithelial and stromal cells12 and perturba-

tions of this contribute to tumorigenesis. The mammary epithe-

lium is a bilayered ductal structure composed of luminal epithe-

lial and basal/myoepithelial cells, and progenitor populations are

considered the cell-of-origin in breast cancer.7,13 Luminal

epithelial cells, comprised of hormone-responsive luminal and

secretory luminal progenitors, line the apical surface of the milk

duct.8,12 Encompassing the luminal cells, basal and myoepithe-
1936 Cancer Cell 42, 1936–1954, November 11, 2024 ª 2024 The Au
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lial cells exhibit a dual nature of contractile muscle and epithelial

characteristics.8,14 Aging perturbs luminal-basal cell differentia-

tion, leading to reduced epithelial lineage fidelity and the emer-

gence of ‘‘intermediary’’ cells with mixed luminal and basal fea-

tures, potentially increasing mammary tumorigenesis risk.15–18

Nevertheless, the mechanisms by which aging perturbs epithe-

lial differentiation and its impact on tumorigenesis remain

unclear.

Rats are an ideal experimental model for aging and cancer, not

only are theymore physiologically similar to humans thanmice,19

but the nitroso-N-methylurea (NMU)-induced mammary tumor

model stands as the only preclinical immunocompetent model

for hormone-dependent estrogen receptor-positive (ER+) mam-

mary tumors,20,21 the most common subtype, especially in older

postmenopausal women. NMU-induced rat mammary tumors

resemble the histopathology and immune environment of human

breast cancer,22 and prior studies described that susceptibility

to NMU-induced mammary tumors changes with age.23

Investigating the dynamics of naturally agingmammary glands

is crucial toward understanding the complexities underlying age-

associated increases in breast cancer susceptibility. Here, we

describe age-associated changes in the histology and single-

cell multiomic profiles of normal mammary glands from aged
thor(s). Published by Elsevier Inc.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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rats. We identified precancerous changes, including aberrant

proliferation of epithelial cells, emergence of a unique luminal

progenitor population, and decreasing proportion of naive B

and T cells in the mammary glands. In follow up mechanistic

studies, we discovered that midkine, a heparin-binding growth

factor secreted by basal epithelial cells, is a mediator of an

age-associated transcriptional shift and increased mammary

epithelial cell proliferation. Using organoid cultures, we delin-

eated that midkine induces mammary epithelial proliferation via

the activation of the sterol regulatory element-binding transcrip-

tion factor 1 (SREBF1) through the PI3K-AKT pathway. Further-

more, midkine treatment of young rats induced age-related

changes and increased susceptibility to NMU-induced mam-

mary tumors. Importantly, midkine levels increased with age in

humans, both in the plasma and breast, and are higher in normal

breast tissue of women with greater breast cancer risk, including

BRCA2 germline mutation carriers. Thus, our studies identify

midkine as a clinically valuable marker of biological aging and

cancer risk, as well as a promising therapeutic target for breast

cancer prevention.

RESULTS

Single-cell profiles of the rat mammary gland at
different ages
To investigate age-related changes in the cellular composition

and molecular profiles of mammary tissues, we performed

comprehensive characterization of mammary glands from virgin

inbred Fischer 344 (F344) rats at ages 3, 6, 12, and 22 months

(Figure 1A). Histologic analysis of hematoxylin-eosin-stained

(H&E) sections demonstrated ductal structures in the 3-12-

month age group and epithelial changes resembling gestational

hyperplasia in 22-month-old rats accompanied by a gradual

decrease of periductal stroma (Figure 1B). Immunofluorescence

for the Ki67 proliferation marker, ER and progesterone receptor

(PR), and human epidermal growth factor receptor 2 (HER2)

revealed significantly more Ki67+ mammary epithelial cells in
Figure 1. Single-cell transcriptome and chromatin profiles of rat mam

(A) Schematic overview of experimental design.

(B) Left, representative images of H&E-stained sections of mammary glands from

area. n = 4.

(C) Left, representative images of Ki67 and smooth muscle actin (SMA) immunoflu

bar, 50 mm. Right, quantification of Ki67+ cells based on immunofluorescence. n

(D) UMAP plot depicting the major cell types of rat mammary glands based on s

(E) Dot plot showing the expression of known cell-type-specific markers in rat m

(F) Representative scATAC-seq peaks at genomic loci of known cell-type-specifi

(G) UMAP plots illustrating the dynamic changes of major cell clusters in mamm

(H) Stacked bar plot showing the absolute percentage of each cell type in mamm

(I) Left, heatmaps showing the expression of aging-dependent DEGs in seven ma

(upregulated DEGs) are highlighted in red, while those with decreasing expressio

represent the order of gene clusters. Right, bar chart showing the number of DE

(J) GO term analysis of upregulated (left) and downregulated (right) aging-depen

each term.

(K) Violin plot showing the expression of proliferation signature in the epithelial c

value of the proliferation signature in the 22-month-old group.

(L) UMAP plot showing the expression of proliferation signature in breast epithelial

epithelial cell; LP, luminal progenitor; ML, mature luminal.

(M) Dot plot showing the expression of proliferation signature in breast epithelial

Graphs (B andC) are presented asmean ± standard error ofmean (SEM). p values

test (B, C, and K). ns, not significant. Figure 1A was created with BioRender. See
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22-month-old rats with a concomitant decrease in ER+ and

PR+ cells and no change in HER2 (Figures 1C and S1A).

Enzyme-linked immunosorbent assay (ELISA) for reproductive

hormones in the peripheral blood showed significantly higher

progesterone and prolactin in 6-month-old rats compared to

other age groups, while estradiol levels gradually declined with

age (Figure S1B).

Next, we performed single-cell transcriptome (scRNA-seq)

and chromatin accessibility (scATAC-seq) sequencing on mam-

mary glands from different aged rats to dissect gene expression

and chromatin changes with age. We identified major cell popu-

lations using known cell-type-specific markers and performed

unsupervised analyses including dimension reduction using uni-

form manifold approximation and projection (UMAP) as well as

hierarchical clustering and gene ontology (GO) term enrichment

(Figures 1D–1F and S1C-S1F, and Table S1). To assess age-

related changes in cellular composition, we segregated the

scRNA-seq UMAP data by age and quantified major cell clus-

ters. The most notable changes included a pronounced

decrease in B cells and transcriptional shifts in luminal epithelial

and T cells with age (Figures 1G and 1H). Similar trends and

increased open chromatin were observed in the scATAC-seq

data (Figures S1G and S1H). To assess if these changes are clin-

ically relevant, we re-analyzed the integrated human breast cell

scRNA-seq data (integrated Human Breast Cell Atlas, iHBCA)11

and similarly observed a transcriptomic shift in luminal cells and

fewer B cells in normal breast tissues of women R50 years old

compared to younger women (Figures S1I and S1J).

To identify differentially expressed genes (DEGs) among age

groups, we aligned the data for each major cell type by age

and classified the DEGs into 6 clusters based on their expression

patterns (Figure 1I and Table S1). GO term analysis of upregu-

lated genes in epithelial cells showed enrichment in PPAR and

prolactin signaling, chemical carcinogenesis, and fatty acid

metabolism (Figure 1J). Cellular senescence was enriched in

aged B cells, while aged T cells and myeloid cells exhibited

enrichment in apoptosis (Figure 1J). Aged fibroblast upregulated
mary glands at different ages

rats with the indicated age. Scale bar, 100 mm. Right, quantification of stroma

orescence staining of mammary glands from rats with the indicated age. Scale

= 4.

cRNA-seq (left) and scATAC-seq (right) analysis.

ammary tissue based on scRNA-seq data.

c markers.

ary glands of different aged rats based on scRNA-seq data.

ary glands of different aged rats based on scRNA-seq data. n = 4.

jor cell types in different aged rats. Genes with increasing expression with age

n (downregulated DEGs) are highlighted in blue. The numbers on the left side

Gs.

dent DEGs in each cell type. The dot size indicating the enrichment score of

ells from different aged rats. The dashed line represents the mean expression

cells from iHBCA split into young (n = 200) and old (n = 53) groups. Basal, basal

cells from iHBCA split into young and old groups.

were calculated by one-way ANOVA followed by Tukey’s multiple comparisons

also Figures S1 and S2 and Table S1.



Figure 2. Age-related changes in the mammary epithelium

(A) UMAP plots colored by mammary epithelial cell subpopulations (left) or split by age (right) based on scRNA-seq data. Basal, basal epithelial cell; ML, mature

luminal; LP, luminal progenitor; bridge, basal-luminal intermediate cell; SBC, secretory basal cell.

(legend continued on next page)
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chemokine, chemical carcinogenesis, and proteoglycan in can-

cer pathways (Figure 1J), potentially promoting an inflammatory

pro-tumorigenic environment.24 Downregulated terms were

associated with cellular functions including estrogen signaling

in epithelial cells, B and T cell receptor signaling in B and

T cells, respectively, underscoring the functional decline with

age (Figure 1J). Proliferation markers were elevated in aged

mammary epithelial cells in rat scRNA-seq data (Figure 1K)

and also in luminal epithelial cells of older women (R50 years)

in the iHBCA dataset (Figures 1L and 1M).

Cellular and molecular changes in the
microenvironment during aging
The microenvironment significantly impacts tumor initiation and

progression,25 and age-related alterations in stromal cells

facilitate tumorigenesis. We assessed age-related changes in

immune cells, fibroblasts, and vascular cells (Figure 1G). T and

natural killer (NK) cells were classified into twelve distinct sub-

clusters (Figures S2A and S2B). We observed an age-related

loss of both CD4+ and CD8+ naive T cells and an accumulation

of memory and effector T cells (Figure S2C). Pseudotime anal-

ysis of CD4+ and CD8+ T cell populations individually revealed

a trajectory of transition from naive to central memory to effector

states (Figures S2D and S2E), possibly due to age-associated

decline of thymic activity.26 B cells were subclustered into five

subtypes, and naive B cells and overall B cell frequency declined

in both mammary glands and bone marrow (Figures S2F–S2I),

implying a systemic reduction in humoral immune responses

during aging. Macrophages accounted for a large portion of

the age-associated alterations inmyeloid cells with an expansion

of monocyte-derived macrophages. (Figures S2J–S2L). We vali-

dated age-related changes in immune cell populations by flow

cytometry, confirming a decrease in total B cells, particularly

naive B cells, a declining trend in both CD4+ and CD8+ naive

T cells, and an increasing trend in monocyte-derived macro-

phages (Figure S2M). Lastly, we classified fibroblasts, endothe-
(B) UMAP plots colored by age based on scATAC-seq data.

(C) Line chart showing the proportion of mammary epithelial cell subpopulations

(D) UMAP plots depicting the major epithelial subclusters from iHBCA colored b

(E) Heatmaps showing the expression of aging-dependent DEGs in six epithelial c

and aging-LPs. Red and blue indicates genes with increasing (upregulated DEG

(F) Network visualizing representative GO terms and pathways of aging-dependen

LP (all) includes both LPs and aging-LPs. Nodes are pie charts colored by cell

with >0.3 similarity are connected by lines.

(G) Violin plots showing cell-to-cell distances in the indicated cell populations.

(H) Boxplots showing the expression of ML signature (pct.1 R 0.5, pct.2 % 0.

(pct.1R 0.5, pct.2% 0.1) in luminal epithelial cells (LP and ML) from different age

age groups, connecting the mean values for each group.

(I) Representative images of immunofluorescence staining for KRT14 and KRT18

graph depicting quantification of the KRT14 and KRT18 double-positive cells in e

and 10 mm (right).

(J) Dot plot showing the expression of H4K20 methyltransferase and H3K4 dem

seq data.

(K) Western blot showing the expression of KRT18, P63, H3K4me3, total H3, H4K

for 5 days n = 3. Tubulin was used as loading control. The relative contents of ea

(L) Representative images of immunofluorescence staining for KRT14 and KRT18

graph depicting the quantification of the KRT14 and KRT18 double-positive cells

Graph (C) is presented as mean ± standard deviation (SD). Graphs (G and H): the

percentile (bottom), the whiskers range from minimum to maximum values and th

p values were calculated by one-way ANOVA followed by Tukey’s multiple compa

test (K and L). Figure 2K was created with BioRender. See also Figure S3, Table
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lial cells, and pericytes into ten subclusters. While there were no

obvious alterations in cellular composition (Figures S2N and

S2O), we observed a decline in extracellular matrix gene expres-

sion (Figure S2P).

In summary, aging-related changes in the mammary microen-

vironment, including loss of naive T and B cells, expansion of

monocyte-derived macrophages, and diminished collagen pro-

duction, imply a shift to a more cancer-prone environment.

Changes in mammary epithelial cell transcriptomes
with age
Mammary epithelial progenitors are considered the cell of origin

of breast cancer,7,13 therefore understanding the impact of age

on normal epithelial cells is essential. Thus, we interrogated

mammary epithelial cellular heterogeneity across ages, classi-

fying them into seven subtypes: basal, mature luminal (ML),

luminal progenitor (LP), proliferative Ki67+ LP, basal-luminal in-

termediate cell (bridge), and secretory basal cells (SBCs) with

stem cell features (Figure 2A and Table S2).21 We also detected

a distinct cluster positive for known LP markers specifically en-

riched in the oldest (22-month old) rats in both scRNA-seq

and scATAC-seq data, termed aging-related LP (Aging-LP)

(Figures 2A–2C and S3A–S3C). Furthermore, there was a

marked decline in ML and normal LP cells with age (Figure 2C).

We further analyzed the epithelial subset of the iHBCA dataset

and confirmed an LP subcluster enriched in older women (R50

years) with high expression of the rat Aging-LP signature

(Figures 2D and S3D).

Next, we identified age-related DEGs in each epithelial sub-

population and observed variability in DEGs across cell types

with only a few commonly enriched GO terms (Figures 2E, 2F,

S3E, and S3F; Table S2). DEGs upregulated with age in

each subcluster were enriched in oxidative phosphorylation,

response to steroid hormones, and aging (Figure 2F). DEGs

downregulated in older animals were associated with RNA pro-

cessing and translation (Figure 2F and Table S2), implying an
in different aged rats based on scRNA-seq data. n = 4.

y age (left) or the expression of our rat aging-LP signature (right).

ell subtypes in different age rats (from 3 to 22 months). LPs includes both LPs

s) and decreasing (downregulated DEGs) expression, respectively.

t upregulated (top) and downregulated (bottom) DEGs in epithelial subclusters.

types, with slice size representing the fraction of genes from each list. Terms

2) in ML, LP signature (pct.1 R 0.5, pct.2 % 0.5) in LP and basal signature

d rat. The red line represents the mean LP signature value across the different

epithelial cell markers in mammary glands from rats with the indicated age and

ach group. n = 4. Arrows indicate double-positive cells. Scale bar, 20 mm (left)

ethylase in epithelial subclusters from different aged rats based on scRNA-

20me3, and total H4 in the organoids treated with A196 (5 mM) and C70 (10 mM)

ch target were labeled below the blots.

in mammary organoids treated with A196 (5 mM) and C70 (10 mM) for 5 days and

in each group. n = 4. Arrows indicate double-positive cells. Scale bar, 50 mm.

boxes represent the upper 75% percentile (top), median (line) and lower 25%

e bold dots represent outliers. Graphs (I and L) are presented as mean ± SEM.

risons test (G and I), Kruskal–Wallis test (H) and Dunnett’s multiple comparisons

S2.



Figure 3. Trajectory and cell-cell communications analysis of mammary epithelial cells in different aged rats

(A) Pseudotemporal analysis of epithelial subclusters colored by pseudotime (left), age (top right) or age group (bottom right). Pseudotime is depicted from dark

purple to light yellow. Basal, basal epithelial cell; ML, mature luminal; LP, luminal progenitor; Bridge, basal-luminal intermediate cell; SBC, secretory basal cell.

(legend continued on next page)
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accumulation of dysfunctional proteins in the epithelial cells of

aged rats, a hallmark of both aging and cancer.27

Increasing cellular transcriptomic heterogeneity and loss

of lineage fidelity has been associated with aging,28 and may

contribute to tumor initiation. We calculated the cell-to-cell dis-

tances within each epithelial subpopulation and within each

age group and found that cell-to-cell distance increased with ag-

ing in ML and LP cells but decreased in basal cells (Figure 2G). In

addition, the expression of ML and LP signatures in the corre-

sponding cell types decreased with age, while basal signatures

increased in luminal epithelial cells (Figure 2H). Immunofluores-

cence staining for luminal (KRT18) and basal (KRT14) cell-spe-

cific markers confirmed their mutually exclusive expression in

young (3-month old) rats and progressively increasing colocali-

zation with age (Figure 2I), consistent with findings in human

breast.17,18,29 These results demonstrate an age-related in-

crease in luminal epithelial cellular heterogeneity and declining

lineage fidelity, reflecting perturbed epigenetic programs that

may increase breast cancer risk.

We and others previously described that cellular transcrip-

tomic heterogeneity and luminal identity are regulated by

KDM5B histone H3 lysine 4 trimethyl (H3K4me3) demethylase

activity,30,31 and that H4K20me3 is one of the most variable his-

tone modifications in triple-negative breast cancer (TNBC), link-

ing cellular differentiation, senescence, aging, and cancer.32 We

first analyzed the expression of histone demethylases and meth-

yltransferases regulating these histone marks in our scRNA-seq

data. We found that expression of both H3K4me3 demethylases

(Kdm5a and Kdm5b) and H4K20me3methyltransferases (Kmt5b

and Kmt5c) decreased in epithelial cells with age, especially in

ML and bridge cells (Figure 2J). Correspondingly, H3K4me3
(B) Volcano plot showing the DEGs between aging-LP and normal LP. Yellow dots

and adjust p value %0.05). Purple dots represent downregulated genes in midki

(C) Gene set enrichment analysis (GSEA) showing the top enriched and depleted h

method.

(D) Nichenet analysis showing the top 15 ligands from basal, SBC, and bridge to LP

activity predicted based on ligands and corresponding target gene expression.

(E) Left, representative images of immunofluorescence staining for MDK and SMA

of MDK expression in epithelial cells of different age rats. n = 4.

(F) Dot plot showing the expression of MDK in in breast epithelial cells from iHBC

(G) Left, representative images of immunofluorescence staining for MDK and SM

(55–73 years old, n = 14) women and tumor adjacent normal breast tissues from y

bar, 50 mm. Right, quantification of MDK expression in epithelial cells of normal a

(H) Scatterplot showing the Pearson correlation of MDK concentration in normal

aged humans were obtained from a previous study.40

(I) Dot plot showing the expression ofMDK in various human tumor types (data from

exhibit significantly higher MDK expression compared to their paired normal tiss

(J) Left, representative images of immunofluorescence staining for MDK and SM

20 mm. Right, quantification of MDK expression in the indicated groups.

(K) Kaplan-Meier plot depicting DSS of hormone receptor (HR)+ breast cancer p

expression into high versus low split by upper quartile and patient age at diagno

lated with log rank tests.

(L) Forest plot of showing hazard ratio and 95% confidence intervals (CIs) modelin

specific survival in a Cox proportional hazards regression in METABRIC HR+ bre

(M) Boxplot showing the expression of proliferation signature score of HR+ breas

expression into high versus low split by upper quartile and patient age at diagno

(N) Boxplot showing the Gail 5-year risk scores of healthy women, which were seg

and patient age at diagnose (cutoff 45-year-old). n = 66. This transcriptome data

Graphs (E, G, and J) are presented asmean ± SEM.Graphs (M andN): the boxes re

(bottom) and thewhiskers range fromminimum tomaximum values. p valueswere

Pearson correlation test (H), Wilcoxon signed-rank test (I), Log rank test (K and L
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increased and H4K20me3 decreased with age with the most

dramatic drop in H4K20me3 in the oldest group (Figures S3G

and S3H). Treatment of young rat mammary organoids with

KDM5 (C70) or KMT5B/5C (A196) inhibitors revealed decreased

KRT18 luminal and increased P63 basal protein levels in A196-

treated organoids, while C70 had no significant effect (Figure 2K).

Immunofluorescence showed an increase in double-positive

cells for KRT14 and KRT18 after A196 treatment (Figure 2L).

These findings suggest that decreased KMT5B/5C activity and

H4K20me3 levels might contribute to perturbed luminal differen-

tiation and decreased mammary epithelial lineage fidelity dur-

ing aging.

Alterations in mammary epithelial cell hierarchy and
cell-to-cell communication with aging
To investigate how aging perturbs mammary epithelial differen-

tiation, we performed Monocle333 analysis on our scRNA-seq

data using the stem cell-like SBCs as starting point.21 The pseu-

dotime trajectory extended from SBCs to basal cells and

continued through bridge cells to aging-LPs, then to LPs and

toMLs via proliferating Ki67+ LPs (Figure 3A). Our trajectory anal-

ysis placed aging-LPs before LPs, implying that aging-LPs may

reflect less differentiated LPs (Figure 3A). Given that LPs are

considered the cell-of-origin of most breast cancers regardless

of subtype,34 we explored molecular differences between ag-

ing-LPs and LPs. We identified a significant number of DEGs be-

tween the two distinct LP populations with several genes encod-

ing milk proteins (e.g., Wap and Csn2) being top upregulated in

aging-LPs (Figure 3B and Table S3), implying a shift to alveolar

state. Gene set enrichment analysis (GSEA) unveiled genes

downregulated in aging-LPs were associated with P53 and
represent upregulated genes in midkine treated group (log2 fold changeR0.25

ne treated group (log2 fold change %0.25 and adjust p value %0.05).

allmarks in aging-LPs. p values were adjusted by the Benjamini-Hochberg (BH)

. Left, heatmap showing the ligand expression. Right, heatmap showing ligand

inmammary glands of different aged rat. Scale bar, 20 mm. Right, quantification

A split by age group (top) and germline mutation status (bottom).

A in normal human breast tissues from young (21–49 years old, n = 17), old

oung (32–47 years old, n = 10) and old (60–77 years old, n = 10) women. Scale

nd tumor adjacent normal breast tissues.

human plasma with age (n = 171). The proteome data of plasma from different

GEPIA, http://gepia.cancer-pku.cn). *, p < 0.05. Cancer names colored as red

ues.

A in normal (n = 9), DCIS (n = 15), and IBC (n = 12) patient samples. Scale bar,

atients in METABRIC dataset. Patients were classified based on tumor MDK

se (cutoff 55-year-old). n = 766. Hazard ratio, 95% CI and p value was calcu-

g contributions of theMDK expression and patient age at diagnosis to disease-

ast cancers.

t cancer patients from TCGA dataset, which were segregated based on MDK

se (cutoff 55-year old). n = 446.

regated based onMDK expression into high versus low split by upper quartile

were obtained from a previous study.48

present the upper 75%percentile (top), median (line) and lower 25%percentile

calculated by one-way ANOVATukey’smultiple comparisons test (E, G, and J),

) and Kruskal-Wallis test (M and N). See also Figure S3 and Table S3.
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apoptosis pathways, whereas upregulated geneswere related to

oxidative phosphorylation (Figure 3C). These findings suggest

that aging-LPs are less differentiated, have diminished activity

of tumor suppressive pathways, and are metabolically more

active than LPs.

Luminal-basal cell interactions are critical for normal mam-

mary gland development and function.35,36 To assess age-

related changes in cell-to-cell communication, we performed in-

teractome analysis on all epithelial subtypes in our scRNA-seq

data. Basal, SBC, and bridge cells were the major senders of li-

gands, whereas luminal epithelial cells (including LP and ML),

basal and bridge cells were the major targets (Figure S3I). To

explore mechanisms underlying the age-related transcriptional

shift of LPs, we analyzed differential ligands and receptors be-

tween basal, SBC, and bridge cells and LPs at different ages us-

ing NicheNet.37 We found thatMDKwas among the top differen-

tial ligands expressed by basal cells and had the most notable

age-related increase in expression and activity (Figure 3D).

Identification of midkine as a biomarker of age and
breast cancer
Mdk encodes midkine, a heparin-binding growth factor overex-

pressed in various tumors.38 Midkine is highly elevated in the

blood of breast cancer patients compared to healthy controls

and further increases with disease progression.39 We further

investigatedmidkine expression across different ages and found

an increase in midkine at both mRNA and protein levels with ag-

ing (Figures 3E and S3J). Our scATAC-seq data also showed an

age-related increase in chromatin accessibility at the Mdk locus

(Figure S3K). MDK expression was also significantly higher in

normal breast epithelial cells from older (R50-year old) women

and BRCA2 germline mutation carriers in the iHBCA dataset

(Figure 3F).11 To validate the scRNA-seq data, we performed

immunofluorescence for MDK in normal breast tissues from

healthy women and detected elevated expression in older (55-

73-year old) versus younger (21-49-year old) women (Figure 3G).

We also analyzed tumor-adjacent normal tissue from breast can-

cer patients and found higher expression of midkine compared

to normal breast from healthy women in all age groups (Fig-

ure 3G), indicating that midkine could be a biomarker of breast

cancer risk. Furthermore, plasmaMDK levels in published prote-

omics datasets40 showed significant positive correlation with

age in healthy human individuals regardless of sex (Figure 3H).

Next, we analyzed MDK expression in tumors by comparing

mRNA levels in normal and corresponding tumor tissues in the

TCGA and GTEx datasets.41,42 We found that MDK had signifi-

cantly higher expression in 24 out of 31 tumor types including

breast cancer (Figure 3I). To further investigate the expression

of MDK during human breast tumor progression, we performed

immunofluorescence staining for MDK in normal breast tissue,

ductal carcinoma in situ (DCIS), and invasive breast cancer

(IBC), and found higher MDK levels in DCIS and IBC compared

to normal (Figure 3J).

To determine if MDK expression correlates with clinical

outcome in breast cancer patients, we analyzed associations

between MDK levels and disease-specific survival (DSS) of pa-

tients in hormone receptor positive (HR+) breast cancer fromMo-

lecular Taxonomy of Breast Cancer International Consortium

(METABRIC).43 Due to the associations of age with survival
andMDK expression, we divided patients into younger and older

groups using age 55 as a cutoff. We found that older patients had

shorter DSS regardless ofMDK levels, while in younger patients,

high MDK expression was associated with significantly shorter

DSS (Figures 3K and 3L). In the TCGA-BRCA cohort, we corre-

lated MDK expression with clinicopathologic features in HR+ tu-

mors, since DSS data were unavailable. We found that younger

patients (<55 years old) with high MDK expression had a higher

proliferation signature than those with low MDK, whereas no

difference was observed in older patients (R55 years old)

(Figure 3M).

To understand why high tumor MDK levels were associated

with shorter survival in younger patients, we analyzed correla-

tions between survival and signaling pathways in HR+ tumors

from younger and older patients. We found that the activity of

hypoxia, PI3K-AKT-mTOR, and reactive oxygen species path-

ways was positively correlated with poor prognosis only in

younger patients (Figure S3L). Since MDK can activate PI3K-

AKT-mTOR signaling38,44,45 and augment oxidative stress,46

the activation of these pathways in tumors from younger women

might explain why MDK levels are prognostic in younger but not

in older patients.

Lastly, we evaluated if midkine expression in normal breast tis-

sue of healthy women could predict risk of breast cancer by

analyzing associations between MDK expression and Gail

5-year score,47 a currently used predictor of breast cancer risk,

in a previously reported RNA-seq dataset.48 We found that

younger (%45 years old) women with higher MDK levels had a

significantly higher Gail 5-year risk score than those with lower

MDK expression, and older age (>45 years old) was associated

with higher Gail 5-year risk score regardless ofMDK (Figure 3N).

Altogether, these data suggest MDK as a candidate biomarker

of aging and a predictor of breast cancer risk and clinical out-

comes in younger women.

Midkine treatment mimics aging-related changes in the
mammary gland
Next, to test the functional relevance of midkine in age-related

changes in the mammary gland, we treated young (3-4-week-

old) rats with recombinant midkine for 4 weeks, collected tissues

and performed histology analysis and scRNA-seq (Figure 4A).

We analyzed 25,932 single-cell transcriptomes that grouped

into eight major clusters based on known cell-type-specific

marker genes (Figures 4B and S4A). The most noticeable differ-

ences between vehicle and midkine-treated tissues included an

increase in epithelial cell fraction and a decrease in the relative

proportion of B and naive T cells (Figures 4C and S4B–S4D).

Within T cells, the populations of CD4+ and CD8+ naive T cells

declined following midkine treatment, and the number of B cells

also decreased, while both tissue-resident and monocyte-

derived macrophages exhibited a slight increase (Figures S4C–

S4E). Intriguingly, these MDK-induced changes resembled the

age-related alterations we identified.

We further analyzed the pronouncedMDK-induced changes in

epithelial cells by subclustering into LP, ML, basal, and SBC,

which revealed transcriptomic shifts in both luminal (comprising

LP andML) and basal epithelial cells (Figures 4D, S4F, and S4G).

Trajectory analysis showed earlier pseudotime of midkine-

treated LPs compared with vehicle rendering them more similar
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Figure 4. The effect of midkine on the mammary glands

(A) Overview of experiment designed to test the effect of midkine in rats.

(B) UMAP plot showing the major cell types in the mammary glands of control vehicle and midkine-treated rats.

(legend continued on next page)
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to basal cells and mimicking the differences between aging-LP

and LPs (Figure S4H). We also noted a significant increase in

Ki67+ epithelial cells in midkine-treated mammary epithelium

again resembling the increased epithelial proliferation observed

in aged mammary glands (Figure 1C and 4E–4F).

Since LPs were a major target cell for midkine based on our

cell-to-cell communication analysis, we further explored their

transcriptomic differences between vehicle and midkine-treated

rats, revealing 698 significantly up and 302 significantly downre-

gulated genes (Figure 4G and Table S4). GSEA demonstrated

significant enrichment for metabolic pathways related to oxida-

tive phosphorylation, fatty acid metabolism, and MYC targets

v1 signaling in upregulated DEGs consistent with highly prolifer-

ative states. Whereas downregulated DEGs were mainly en-

riched in hallmarks of apoptosis, inflammatory response, and

P53 pathway, implying muted tumor suppression (Figure 4H).

GSEA of DEGs in ML and basal cells yielded similar results, sug-

gesting a general midkine effect (Figures S4I–S4L and Table S4).

We also tested the expression of these midkine-induced genes

in our scRNA-seq dataset from normal, DCIS, and IBC tissue,

and observed a significant progressive increase during tumor

progression (Figure 4I).

To assess how midkine treatment mimics aging-related

changes in LPs, we integrated all our epithelial scRNA-seq

data, including data from rats of different ages and midkine-

treated rats. UMAP and clustering analysis revealed a remark-

able similarity between age and midkine treatment, with aging-

LP cells enriched in both 22-month-old rats and midkine-treated

2-month-old rats (Figure 4J). To identify genes altered by both

midkine treatment and age in LPs, we analyzed the overlap of

DEGs and found that 181/262 (69%) genes upregulated with

age overlapped with genes upregulated by midkine (defined as

‘‘MDK-age signature’’), and 235/792 (30%) downregulated

genes with age overlapped with genes downregulated in mid-

kine-treated group (Figure 4K and Table S5). Similar to MDK it-

self, the expression of the MDK-age signature was also

higher in LPs from older (R50-year old) compared to younger
(C) Stacked bar plot showing the absolute percentage of each cell type in mamm

(D) Left, UMAP showing the distribution of epithelial subclusters colored by treatm

mammary glands from vehicle and midkine-treated rats (n = 2). Basal, basal epith

(E) UMAP plot showing the expression of Mki67 in mammary epithelial cells split

(F) Left, representative images of immunofluorescence staining for Ki67 and SMA

bar chart shows the percentage of Ki67 positive epithelial cells. n = 4.

(G) Volcano plot showing the DEGs between luminal progenitors from vehicle and

treated group (log2 fold changeR0.25 and adjust p value%0.05). Purple dots rep

and adjust p value %0.05).

(H) GSEA showing the significantly enriched and depleted hallmarks of LP DEGs b

(I) Violin plot showing the expression of significantly upregulated genes in midkin

(J) UMAP plots showing mammary epithelial subclusters from 3-, 6-, 12-, 22-mo

(K) Venn diagram showing the overlap of genes between DEGs of LP from midk

downregulated genes.

(L) Dot plot showing the expression of MDK-age signature (sign) in breast epith

(bottom).

(M) Kaplan-Meier plot depicting DSS of hormone receptor (HR)+ breast cancer p

signature expression into high versus low split by upper quartile and patient age a

calculated with log rank tests.

(N) Forest plot of showing hazard ratio and 95% CIs modeling contributions of th

proportional hazards regression in METABRIC HR+ breast cancer cohort.

Graph (F) is presented as mean ± SEM. p values were calculated by unpaired two

(M and N). Figure 4A was created with BioRender. See also Figure S4, Tables S
(<50-year old) women and from BRCA2 germline mutation car-

riers relative to non-carriers in the iHBCA dataset (Figure 4L).

Lastly, we evaluated whether the ‘‘MDK-age signature’’ can

predict clinical outcome in breast cancer patients using the

METABRIC cohort. HR+ breast cancer patients were stratified

into four groups based on age (young and old, using age 55 as

a cutoff) and signature enrichment (MDK-age high and low).

We found that among young patients, lower expression of

the ‘‘MDK-age’’ signature was associated with longer DSS,

but there were no differences in DSS in older patients be-

tween high and low MDK-age signature groups (Figures 4M

and 4N). Furthermore, the MDK-age signature better sepa-

rated patients into outcome groups than MDK expression

alone (Figure 3K).

Overall, our rat treatment data show that midkine is a major

driver of aging-related changes in the mammary epithelium

and that genes commonly upregulated by both midkine and ag-

ing have prognostic value in younger HR+ breast cancer patients.

An MDK-SREBF1 interaction network orchestrates
aging-related mammary epithelial changes
To identify regulators of aging-related changes in LPs, we con-

structed gene regulatory networks of transcription factors and

their target genes using single-cell regulatory network inference

and clustering (SCENIC).49 We identified a series of transcrip-

tional factors (TFs), including Mlx, Creb3l1, Atf6b, Xbp1, and

Srebf1, with binding motifs enriched in the cis-regulatory ele-

ments of co-expressed genes in aging-LPs (Figure 5A). By

analyzing the expression of the top 10 enriched TFs in LPs

from different aged and midkine-treated rats, only Srebf1 was

consistently expressed and upregulated and acted as a top reg-

ulatory hub (red dot) with the highest number of target genes

(pink dots), including the majority of the 181-gene MDK-age

signature (Figures 5B–5D and S5A). Additionally, we analyzed

SREBF1 TF activity in LPs in our scATAC-seq rat data and

observed a gradual increase with aging and higher activity in ag-

ing-LP compared to LP (Figures 5E and 5F).
ary glands from vehicle and midkine-treated rats (n = 2).

ent. Right, stacked bar plot showing the percentage of epithelial subclusters in

elial cell; ML, mature luminal; LP, luminal progenitor; SBC, secretory basal cell.

by treatment.

in mammary glands of vehicle or midkine-treated rats. Scale bar, 20 mm. Right,

midkine treated rats. Yellow dots represent the upregulated genes in midkine

resent downregulated genes in midkine-treated group (log2 fold change%0.25

etween midkine and vehicle group. p values were adjusted by the BH method.

e treated LP in normal, DCIS, and IBC patient samples.

nth old, and vehicle and midkine-treated rats of 2-month old.

ine-treated rats and age-dependent DEGs. Top, upregulated genes, bottom,

elial cells from iHBCA split by age group (top) and germline mutation status

atients in the METABRIC dataset. Patients were classified based on MDK-age

t diagnosis (cutoff 55-year old). n = 766. Hazard ratio, 95% CI and p value was

e MDK-age signature expression and patient age at diagnosis to DSS in a Cox

-tailed t test (F), Kruskal Wallis test (I), hypergeometric test (K) and Log rank test

4 and S5.
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Notably, SREBF1was also more highly expressed in LPs from

older (R50-year old) versus younger (<50-year old) women and

from BRCA2 germline mutation carriers in the iHBCA dataset

(Figure 5G). Furthermore, by exploring public RNA-seq datasets

of normal human breast tissues we found a positive correlation

between SREBF1 and MDK expression (Figure 5H), suggesting

thatSrebf1might be a downstreammediator of midkine-induced

aging-related changes in LPs and confirming the human rele-

vance of the MDK-SREBF1 link.

Srebf1 is a proteolytically cleaved transcription factor whose

active form translocates to the nucleus to regulate transcrip-

tion.50 Immunofluorescence for SREBF1 in rat mammary tissue

showed increasing nuclear SREBF1 protein levels with age

(Figure 5I). Immunofluorescence for SREBF1 in human breast

showed increased nuclear localization in DCIS and IBC

compared to normal non-cancerous breast tissues (Figure 5J).

Consistently, SREBF1 expression was higher in breast epithelial

cells from DCIS and IBC compared to normal in our scRNA-seq

data (Figure 5K) and was also increased in IBC compared to

normal in the TCGA cohort (Figure 5L).

Next, we tested whether SREBF1 is a mediator of midkine-

induced aging-associated alterations using a ratmammary orga-

noid model. Mammary epithelial organoids were derived from

young Fischer rats8 and subjected to midkine treatment, with

and without inhibitors blocking SREBF1 maturation (betulin

and fatostatin),51,52 and an mTOR pathway inhibitor (rapamycin)

given the reported involvement of both midkine and SREBF1 in

the PI3K-AKT-mTORpathway.53 Organoids treatedwithmidkine

were significantly larger compared to vehicle-treated, mirroring

the growth promoting effects we observed in vivo (Figures 5M

and 5N). Notably, this midkine-induced proliferation was

blocked by both SREBF1 inhibitors and rapamycin treatment
Figure 5. SREBF1 is master transcriptional factor mediating age-relate

(A) Regulon specificity score plot showing the core transcriptional factors regula

(B) Venn diagram showing the overlap of upregulated genes among DEGs of LP f

enriched transcriptional factors.

(C) Violin plots showing the expression of Srebf1 in LPs (all) from different age ra

(D) Network visualization of potential transcriptional regulation in aging-LP. Red n

SREBF1 targets and non-targets, respectively.

(E) Violin plot showing the SREBF1 activity in aging-LP and normal LP based on

(F) UMAP showing the SREBF1 transcriptional activity in epithelial subclusters fr

lighted with gray.

(G) Dot plot showing the expression of SREBF1 in breast epithelial cells from iHB

(H) Scatterplot showing the linear regression Pearson correlation of Mdk and S

patients in the TCGA dataset.

(I) Representative images of immunofluorescence staining for SREBF1 and SMA in

nuclear SREBF1 expression in mammary epithelial cells (right). Scale bar, 20 mm

(J) Representative images of immunofluorescence staining for SREBF1 and SMA

depicting quantification of nuclear SREBF1 expression in the indicated groups (r

(K) Violin plot showing the expression of Srebf1 in normal, DCIS, and IBC patien

(L) Boxplot showing the expression of Srebf1 in normal breast tissues and brea

n = 113; tumor, n = 940.

(M) Representative images of rat mammary organoids treated with midkine (300 n

bar, 100 mm.

(N) Bar chart showing the quantification of organoid size in each treatment group

(O) Immunoblot showing the expression of MDK,mature SREBF1 (SREBF1 (M)), S

(300 ng/mL), betulin (5 mM), fatostatin (5 mM), and rapamycin (25 nM) for 5 days.

Graphs (I, J, and N) are presented as mean ± SEM. Graph (E) shows all points. Gr

lower 25% percentile (bottom), the whiskers range from minimum to maximum va

Wallis test (C [left] and K), Wilcoxon signed-rank test (C [right], E and L), Pearson c

test (J), and one-way ANOVA Sidak tests (N). See also Figure S5.
(Figures 5M and 5N). Immunoblot analysis revealed that midkine

treatment activated the AKT pathway, and upregulation of

SREBF1 was blocked by rapamycin treatment (Figure 5O).

Treatment with betulin and fatostatin also dampened the mid-

kine-induced activation of the AKT pathway and rapamycin

reduced MDK protein levels (Figure 5O). We also found that ra-

pamycin and SREBF1 inhibitors reduced MDK at both mRNA

and protein levels in the LA7 rat mammary tumor cell line (Fig-

ure S5B) and mammary organoids from both young and old

rats (Figure S5C), implying a potential MDK-PI3K-AKT-mTOR-

SREBF1 signaling loop.

Altogether, these data indicate that midkine-induced mam-

mary epithelial proliferation is mediated by SREBF1 via the

PI3K-AKT-mTOR pathway.

Midkine treatment promotes mammary tumor initiation
To investigate whether increasing levels of midkine with age

might contribute to aging-related increased cancer risk, we

tested the effect of midkine treatment on NMU-induced mam-

mary tumorigenesis. We treated 3-4-week-old female virgin

Fischer rats with midkine for two weeks, performed a single

NMU injection at day 14, followed by an additional 2-week mid-

kine treatment and a second NMU injection at day 28 (Figure 6A).

Animals were sacrificed either when reaching endpoint or when

the last rat in the midkine-treated group was euthanized. We

found that rats treated with midkine developed more palpable

mammary tumors with shorter latency than vehicle-treated con-

trols (Figures 6A, 6B, and S6A). Tumors in the midkine-treated

group had faster growth rates, leading to shorter survival

compared to vehicle (Figures 6C and 6D). Tumors in the mid-

kine-treated group had significantly higher tumor weight and vol-

ume at endpoint compared to control (Figure 6E). The smaller
d shift in luminal progenitors

ting the transcriptome of aging-LP.

rom midkine-treated rats and age-dependent DEGs as well as top 10 aging-LP

ts (left) and midkine-treated rats (right).

odes represent potential transcriptional factors. Pink and blue nodes represent

scATAC-seq data.

om different aged rats. Aging LPs were highlighted with pink, LPs were high-

CA split by age group (top) and germline mutation status (bottom).

rebf1 expression in normal tumor-adjacent breast tissues from breast cancer

mammary glands of different aged rat (left) and plot depicting quantification of

. n = 4.

in normal (n = 9), DCIS (n = 15), and IBC (n = 12) patient samples (left) and plot

ight). Scale bar, 20 mm.

t samples.

st tumors based on TCGA dataset. Box and whisker plot, quartiles. Normal,

g/mL), betulin (5 mM), fatostatin (5 mM), and rapamycin (25 nM) for 5 days. Scale

. n = 3.

6, p-S6(Ser235/236), AKT, p-AKT(Ser473) in the organoids treatedwithMidkine

Tubulin serves as loading control.

aph (L): the boxes represent the upper 75% percentile (top), median (line), and

lues and the bold dots represent outliers. p values were calculated by Kruskal

orrelation test (H), one-way ANOVA Tukey’s test (I), one-way ANOVA Dunnett’s
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Figure 6. The effect of midkine on mammary tumorigenesis

(A) Overview of experiment designed to test the effect of midkine on mammary tumorigenesis.

(B) Spaghetti plot depicting the growth of mammary tumors from control vehicle and midkine-treated groups. Vehicle, n = 6. MDK-treated, n = 8.

(legend continued on next page)
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size of some tumors was due to NMU treatment inducing multi-

ple tumors per rat, requiring euthanasia when any tumor reached

the maximum allowed size. Histologic analysis did not reveal

noticeable differences in tumor cellularity, nuclear size, circu-

larity, and receptor expression (ER, PR, and HER2), but we did

observe an increasing trend in the number of Ki67+ cells in tu-

mors from the midkine group (Figures S6B–S6D). Furthermore,

we detected amicroscopic tumor in the normal-appearingmam-

mary gland of an MDK-treated rat (Figure S6E).

To characterize the immune environment of mammary tumors

from vehicle and MDK-treated animals, we performed polychro-

matic flow cytometry. We observed significantly fewer NK cells

(including activated XCR1+ NK cells) and conventional type 1

dendritic cells (cDC1) in tumors from the midkine-treated group,

although there were no obvious differences in overall leukocyte

composition (Figures 6F and S6F). The relative fraction of NK

cells positively correlated with XCR1+ NK cells and cDC1 (Fig-

ure 6G), consistent with prior reports suggesting a role for NK

cells in recruiting cDC1 and promoting anti-tumor immune re-

sponses.54 Multivariate correlation analysis highlighted that

higher NK and CD8+ T cell proportions, coupled with lower

Treg levels, were associatedwith slower tumor growth rates (Fig-

ure S6G). Specifically, simple linear regression analysis under-

scored NK cell proportion as significantly negatively correlated

with tumor growth rate, indicating a potential impact on tumor

growth (Figures 6H and S6H).

To dissect transcriptomic differences, we performed bulk

RNA-seq on tumors from vehicle (n = 6) and midkine (n = 9)

treated groups. Principal-component and sample-to-sample

correlation analyses of RNA-seq data demonstrated that a sub-

set of tumors in the midkine group was different from vehicle

(Figures 6I and S6I). Additionally, tumors from midkine-treated

rats exhibited higher Euclidean distances compared to vehicle

(Figure 6I), indicating greater heterogeneity. DEG analysis re-

vealed higher expression inflammation-related genes, such as

chemokines (e.g., Ccl3, Ccl7, and Ccl11), complement factors
(C) Spaghetti plot showing the cumulative growth rate of mammary tumors from c

(D) Kaplan-Meier survival plot for control vehicle and midkine-treated rats. p valu

(E) Dot plots showing the mammary tumor volume (left) and weight (right) at the

treated, n = 9. One small tumor in midkine-treated group was discovered at the

(F) Polychromatic FACS analyses of myeloid cells in mammary tumors from con

(G) Scatterplot showing the positive correlation of percentage of NK cell with the p

area surrounding the lines represents the 95% confidence interval. Vehicle, n = 6

regression.

(H) Scatterplot showing the negative correlation of percentage of NK cell of tota

rounding the lines represents the 95%confidence interval. Vehicle, n = 6.MDK-tre

(I) Left, principal component analysis plot of mammary tumors from vehicle andmi

in each group. Vehicle, n = 6. MDK-treated, n = 9.

(J) Heatmap illustrating the expression of DEGs (adjust p value <0.05, |Log2FC| >

(K) Network showing representative GO terms enriched in tumors from midkine-t

rendered in a network plot, with terms connected by edges if similarity >0.3.

(L) Network showing representative GO terms enriched in tumors from MDK-hig

rendered in a network plot, with terms connected by edges if similarity >0.3.

(M) Boxplot showing midkine signature expression in HR+ breast tumors from ME

tumor MDK expression (high vs. low, upper quartile) and age at diagnosis (cuto

quartiles.

(N) Summary of the observed phenotypic and molecular changes in the mamma

Graphs (E and F) are presented as mean ± SEM. Graphs (I and M): the boxes rep

(bottom) and the whiskers range from minimum to maximum values. p values we

and I) and Kruskal Wallis test (M). Figures 6A and 6N were created with BioRend
(e.g., C1s and C3), and cell proliferation (e.g., Igf1, Rasal3, and

Klf4), and very few consistently downregulated genes in mid-

kine-treated tumors (Figure 6J and Table S6). GO term analysis

showed enrichment of inflammation- and cancer progression-

related terms in the upregulated DEGs associated with positive

regulation of cytokine production, inflammatory response, and

cell activation in midkine-treated tumors (Figure 6K). Consis-

tently between rat and human, similar terms were enriched in

MDK-high clinical breast tumors, including immune response,

response to cytokines, cell activation, and regulation of cell pro-

liferation (Figure 6L). We defined a ‘‘midkine signature’’ based on

the genes upregulated in tumors from midkine-treated rats (Fig-

ure 6J). Analysis of this signature in METABRIC and TCGA data-

sets showed that HR+ breast tumors with high MDK expression

levels also had elevated midkine signature regardless of patient

age (Figure 6M). Overall, these data provide strong evidence that

midkine promotes mammary tumor initiation and progression,

implying that higher midkine levels in older individuals may favor

tumorigenesis.

DISCUSSION

Aging is one of the strongest risk factors for breast cancer,1,2 yet

the mechanisms by which aging promotes tumor initiation and

progression remain elusive. Here, we describe single-cell multio-

mic profiling of mammary glands of different age rats. Unlike

most murine models, rats develop ER+ mammary tumors16,20,55

which is the most common subtype diagnosed in older, post-

menopausal women.56 We observed an age-related increase in

mammary epithelial cell proliferation, a decline in luminal epithe-

lial cell identity, and a decrease in naive B and T cell proportions.

We also discovered a distinct subset of luminal progenitors spe-

cific to old rats with molecular profiles reflecting precancerous

changes, providing a tentative link between aging andmammary

tumor initiation. Furthermore, we provide functional evidence

for potential mechanisms linking age-related molecular and
ontrol vehicle and midkine-treated groups. Vehicle, n = 6. MDK-treated, n = 8.

e was calculated with log rank tests. Vehicle, n = 6. MDK-treated, n = 6.

endpoint of control vehicle and midkine-treated groups. Vehicle, n = 6. MDK-

time of tissue dissection, it did not have a corresponding growth curve data.

trol vehicle and midkine-treated groups. Vehicle, n = 6. MDK-treated, n = 9.

ercentage of cDC1 (red), and XCR1+NK (blue) of total myeloid cells. The shaded

. MDK-treated, n = 9. Best-fit R2 and p values were computed by simple linear

l myeloid cells with the tumor growth rate of all tumors. The shaded area sur-

ated, n = 8. Best-fit R2 and p valueswere computed by simple linear regression.

dkine-treated groups. Right, boxplot showing the Euclidean distance of tumors

0.5) between the tumors from vehicle and midkine-treated groups.

reated groups (Midkine signature). Enriched terms with p values <0.00001 are

h patients of METABRIC dataset. Enriched terms with p values <0.00001 are

TABRIC (top) and TCGA-BRCA (bottom) datasets. Patients were classified by

ff 55-year old). n = 766 (METABRIC) and 446 (TCGA). Box and whisker plot,

ry gland with age.

resent the upper 75% percentile (top), median (line) and lower 25% percentile

re calculated by Log rank (Mantel-Cox) test (D), unpaired two-tailed t test (E, F,

er. See also Figure S6 and Table S6.
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phenotypic changes. Specifically, we identified midkine, one of

the top upregulated genes with age, as a mediator of aging-

associated mammary changes through the activation of the

PI3K-AKT-SREBF1 signaling axis. We also showed that mid-

kine-treated rats had increased susceptibility to NMU-induced

mammary tumors (Figure 6N). In humans, midkine levels in-

crease with age in the normal breast tissue of women and in

the peripheral blood of both men and women. Higher MDK

expression in normal breast tissue is associated with a higher

risk of breast cancer in younger women, while higherMDK levels

in HR+ tumors predict shorter DSS in younger patients.

Our results demonstrating increasing transcriptomic hetero-

geneity and decreasing lineage fidelity with age align with previ-

ous findings in the mammary epithelium8,9,18,57 and other cell

types like T cells28,58 and oocytes.59 Cell states are maintained

by epigenetic programs and perturbations in DNA methylation

and chromatin patterns have been commonly observed with ag-

ing and tumorigenesis.60–63 Our finding of increased H3K4me3 in

the mammary epithelium is consistent with the higher H3K4me3

levels observed in aged hematopoietic stem cells in mice.64 We

also uncovered a loss of H4K20me3 in the oldest age group and

showed that inhibition of the H4K20 methyltransferases pro-

motes luminal-to-basal shift in vitro. H4K20me3 has not previ-

ously been linked to aging but is known to be important for main-

taining genomic stability and heterochromatin,32 thus, its decline

with age may contribute to increasing transcriptomic heteroge-

neity and decreasing lineage fidelity.

Aging is associated with substantial alterations in the stroma,

including declining tissue stiffness65 and immune function,

increasing susceptibility to age-related diseases and cancer.66

Consistently, we observed a loss of naive T and B cells and

diminished collagen production in aged rat mammary glands,

suggesting a more cancer-prone environment.8,67–70 Many

age-related tumorigenic changes involve non-cell-autonomous

mechanisms and tissue landscape alterations, andmost anti-ag-

ing compounds (e.g., rapamycin) and interventions (e.g., exer-

cise and caloric restriction) act through modulating the microen-

vironment.71 Intriguingly, while some of the changes we

observed in the mammary gland were gradual, including the

decrease in B cells and LP, others, like the increase in aging-

LP population, were mainly detected in the oldest group. This

could be due to the limited evaluation of age groups between

12 and 22 months or may indicate that gradual alterations culmi-

nate in sudden phenotypic shifts. Similarly, functional decline

and cancer incidence show sharp increases around ages 55–

60 in women, coinciding with reproductive cessation and sug-

gesting evolutionary selection.71,72

Our single-cell profiles revealed midkine as a candidate driver

of aging-related changes in the mammary epithelium, confirmed

through in vitro and in vivo studies. Specifically, midkine treat-

ment potently increased mammary epithelial cell proliferation

and induced aging-related transcriptional changes. Midkine

was originally identified as a product of a retinoic acid-respon-

sive gene in embryonal carcinoma cells.73,74 Along with pleiotro-

phin, it belongs to the neurite growth factor family and has been

implicated in various neurological and inflammatory diseases.75

We found that plasma midkine levels in healthy individuals posi-

tively correlate with age, regardless of sex, establishing midkine

as a putative aging biomarker. Midkine is upregulated in various
1950 Cancer Cell 42, 1936–1954, November 11, 2024
human cancer types and is proposed as a potential tumor

marker.75 Concordantly, we found higher midkine levels in

DCIS and IBC patient samples compared to normal breast tissue

and younger breast cancer patients with high MDK-expressing

ER+ tumors had significantly shorter DSS, suggesting that

MDK expression can be an age-dependent prognostic marker

in ER+ breast cancer. Furthermore, higher MDK expression in

normal breast tissue of younger women was associated with

higher Gail score, implying that MDK is also an age-dependent

predictor of breast cancer risk.76

Germline mutation carriers of cancer predisposition genes are

commonly diagnosed with cancer at a much younger age than

the general population. Emerging evidence indicate commonal-

ities between aging and germline predisposition for cancer. For

example, changes in luminal progenitors and increase of mam-

mary epithelial cells with ‘‘mixed’’ luminal-basal phenotypes is

observed during aging but also detected inBRCA1 germline mu-

tation carriers at amuch younger age.29,77 Human epidemiologic

data also indicate that adults with early onset cancer show signs

of ‘‘accelerated aging’’.78 Our finding of higher MDK expression

in luminal progenitors from BRCA2 germline mutation carriers

supports this hypothesis and suggests that midkine may espe-

cially be important in ER+ breast cancer development, the pre-

dominant breast cancer subtype diagnosed in these women.79

Utilizing the NMU-induced rat mammary tumor model, we

showed that midkine treatment promotes tumor initiation and

progression potentially by increasing epithelial cell proliferation

that expands the target population for NMU, and results in

more heterogeneous and rapidly growing tumors. The higher

transcriptomic heterogeneity in tumors from midkine-treated

rats supports this hypothesis that multiple different epithelial

cell types may serve as the cell of origin of cancer. However,

midkine treatment also altered the microenvironment as evi-

denced by a decrease in infiltrating T and B cells in the normal

mammary gland and fewer NK cells in tumors from midkine-

treated animals, both of which may contribute to increased tu-

mor initiation and progression. Consistent with our findings,

breast cancer patients with higher tumor NK signature have bet-

ter prognosis54 and in human gastric cancer, midkine has asso-

ciated with lower NK cell cytotoxicity and enhanced tumor

development.80

In summary, our work provides a comprehensive understand-

ing of mammary tissue aging at the single-cell level and illumi-

nates the role of midkine in driving age-related cellular and mo-

lecular changes that promote mammary tumorigenesis. Our

discovery of a luminal progenitor population with precancerous

molecular profiles specific to older rats that is also induced by

midkine treatment is consistent with the hypothesis that progen-

itor cells are the normal cell-of-origin for cancer7,13 and provide a

biological link between aging and cancer. Based on our findings,

midkine is both a biomarker of breast cancer risk and a target for

cancer prevention.

Limitations of the study
In our study we showed that midkine treatment promotes mam-

mary tumorigenesis but did not test whether a midkine inhibitor

(iMDK) would block age-related increase in tumorigenesis. This

limitation is due to the lack of specificity and toxicity of iMDK,

the only currently available midkine inhibitor. iMDK reduces



ll
OPEN ACCESSArticle
MDK level through an unidentified mechanism but it also inhibits

PI3K signaling. Furthermore, iMDK needs to be dissolved in high

concentration of DMSO, which creates a problem for in vivo

administration.

Another limitation is the lack of functional characterization of

the of age and midkine treatment-related changes in immune

cell populations in mammary tumorigenesis. However, the pri-

mary focus of our study was understanding how age-related

changes in the mammary epithelium promote tumorigenesis

and the role of midkine in this. Thus, while we recognize the

importance of altered immune cell populations, characterizing

their functional relevance is beyond the scope of the current

study and it is a crucial area for future research.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Ki67 Abcam Cat# ab16667; RRID: AB_302459

Mouse monoclonal anti-SMA Thermo Fisher Scientific Cat# MS113P; RRID: AB_64000

Rabbit polyclonal anti-Progesterone

Receptor

Abcam Cat# ab16661; RRID: AB_443421

Mouse monoclonal anti-Estrogen

Receptor alpha

Thermo Fisher Scientific Cat# MA5-13304; RRID: AB_11002193

Mouse monoclonal anti-ErbB2/HER2 Abcam Cat# ab16901; RRID: AB_443537

Rabbit monoclonal anti-Midkine Abcam Cat# ab52637; RRID: AB_880698

Rabbit polyclonal anti-Midkine Proteintech Cat# 11009-1-AP; RRID: AB_2250619

Rabbit polyclonal anti-SREBF1 Proteintech Cat# 14088-1-AP; RRID: AB_2255217

Rabbit monoclonal anti-Phospho-S6

(Ser235/236)

Cell Signaling Technology Cat# 4858; RRID: AB_916156

Rabbit monoclonal anti-S6 ribosomal

protein

Cell Signaling Technology Cat# 2217; RRID: AB_331355

Rabbit polyclonal anti-Phospho-Akt

(Ser473)

Cell Signaling Technology Cat# 9271; RRID: AB_329825

Rabbit polyclonal anti-AKT Cell Signaling Technology Cat# 9272; RRID: AB_329827

Mouse monoclonal anti-alpha-Tubulin Sigma-Aldrich Cat# T5168; RRID: AB_477579

Mouse monoclonal anti-Cytokeratin 18 Abcam Cat# ab668; RRID: AB_305647

Rabbit polyclonal anti-Keratin 14 BioLegend Cat# 905301; RRID: AB_2565048

Rabbit polyclonal anti-Histone H4 (tri

methyl K20)

Abcam Cat# ab9053; RRID: AB_306969

Mouse monoclonal anti-Histone H3 Active Motif Cat# 39763; RRID: AB_2650522

Rabbit polyclonal anti-Cytokeratin 17 Abcam Cat# ab53707; RRID: AB_869865

Mouse monoclonal anti-Histone H4 Abcam Cat# ab31830; RRID:AB_1209246

Rabbit polyclonal anti-H3K4me3 Abcam Cat# ab8580; RRID:AB_306649

Rabbit monoclonal anti-P63 Abcam Cat# ab214790; RRID: AB_10971840

Mouse monoclonal anti-CD45 BD Biosciences Cat# 740371; RRID: AB_2740103

Mouse monoclonal anti-MHC Class II Thermo Fisher Scientific Cat# 46-0463-82; RRID: AB_10736599

Mouse monoclonal anti-CD45R (B220) Thermo Fisher Scientific Cat# 25-0460-82; RRID: AB_2573352

Mouse monoclonal anti-CD3 Bio-Rad Cat# MCA772A700; RRID: AB_2073345

Mouse monoclonal anti-CD19 Abcam Cat# ab24936; RRID: AB_726191

Mouse monoclonal anti-CD161 Bio-Rad Cat# MCA1427A647; RRID: AB_322589

Mouse monoclonal anti-CD4 BioLegend Cat# 201518; RRID: AB_1186084

Mouse monoclonal anti-CD8 BD Biosciences Cat# 740139; RRID: AB_2739895

Mouse monoclonal anti-TCR gamma/delta BioLegend Cat# 202605; RRID: AB_492904

Rat monoclonal anti-FOXP3 Thermo Fisher Scientific Cat# 48-5773-82; RRID: AB_1518812

Mouse monoclonal anti-CD11b Bio-Rad Cat# MCA275PB; RRID: AB_566459

Rabbit-polyclonal anti-EMR1 Bioss Cat# bs-7058R-PE

Rat monoclonal anti-Ly6g Abcam Cat# ab25024; RRID: AB_470400

Mouse monoclonal anti-CD11c Abcam Cat# ab11029; RRID: AB_297683

Mouse monoclonal FITC anti-rat CD3 BioLegend Cat# 201403; RRID: AB_2073344

Mouse monoclonal APC anti-rat TCR a/b BioLegend Cat# 201110; RRID: AB_313919

Mouse monoclonal APC/Cyanine7 anti-

rat CD4

BioLegend Cat# 201518; RRID: AB_1186088

(Continued on next page)
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Mouse monoclonal BV711 anti-rat CD8a BD Biosciences Cat# 740724; RRID: AB_2740402

Mouse monoclonal PerCP/Cyanine5.5 anti-

rat CD45RA

BioLegend Cat# 202318; RRID: AB_2565944

Mouse monoclonal BV786 anti-rat CD45RC BD Biosciences Cat# 742491; RRID: AB_2740824

Mouse monoclonal PE/Cyanine7 anti-

rat CD45

BioLegend Cat# 202214; RRID: AB_2174546

Armenian hamster monoclonal BV605 anti-

human/mouse/rat CD278 (ICOS)

BioLegend Cat# 313538; RRID: AB_2687079

Mouse monoclonal BV650 anti-Rat CD25 BD Biosciences Cat# 742755; RRID: AB_2741020

Rat monoclonal PE anti-FOXP3 Thermo Fisher Scientific Cat# 12-5773-82; RRID: AB_465936

Mouse monoclonal InVivoMAb anti-mouse/

human/rat PD-L1

Bio X Cell Cat# BE0383; RRID: AB_2927520

Rabbit monoclonal anti-CD163 Abcam Cat# ab182422; RRID: AB_2753196

Mouse recombinant PE anti-rat CD68 BioLegend Cat# 201004; RRID: AB_2936606

Mousemonoclonal BV421 anti-rat CD11b/c BD Biosciences Cat# 743977; RRID: AB_2741898

Mouse monoclonal BV650 anti-rat RT1B BD Biosciences Cat# 744129; RRID: AB_2742019

Mouse monoclonal BV605 anti-rat Integrin

aE2 (CD103)

BD Biosciences Cat# 745138; RRID: AB_2742741

Mouse monoclonal APC/Cyanine7 anti-

mouse/rat XCR1

BioLegend Cat# 148224; RRID: AB_2783117

Mouse monoclonal BV786 anti-rat

CD314 (NKG2D)

BD Biosciences Cat# 744734; RRID: AB_2742444

Mouse monoclonal BV711 anti-rat CD161a BD Biosciences Cat# 744053; RRID: AB_2741956

Mouse monoclonal PE/Cyanine7 anti-rat

CD45R(B220)

Thermo Fisher Scientific Cat# 25-0460-82; RRID: AB_2573352

Mouse monoclonal FITC anti-mouse/rat/

human CD27

BioLegend Cat# 124208; RRID: AB_1236466

Biological samples

Human normal breast tissue samples Seoul National University Bundang Hospital

(Seoul, Korea)

Human DCIS and IBC tissue samples Seoul National University Bundang Hospital

(Seoul, Korea)

Human normal breast tissue samples Brigham and Women’s Hospital

(Boston, USA)

Chemicals, peptides, and recombinant proteins

Recombinant rat midkine protein Novus Biologicals Cat# NBP2-35273

N-Nitroso-N-methylurea MedChemExpress Cat# HY-34758; CAS# 684-93-5

Betulin MedChemExpress Cat# HY-N0083; CAS# 473-98-3

Fatostatin MedChemExpress Cat# HY-14452; CAS# 125256-00-0

Rapamycin Selleckchem Cat# S1039; CAS# 53123-88-9

A-196 MedChemExpress Cat# HY-100201; CAS# 1982372-88-2

C70 Xcess Bio Cat# M60192; CAS# 1596348-32-1

Advanced DMEM/F-12 Gibco Cat# 12634028

GlutaMAX� Supplement Gibco Cat# 35050061

HEPES Buffer (1 M, pH 7.4) Boston BioProducts Cat# BBH-74; CAS# 7365-45-9

Recombinant Human R-Spondin-1 Peprotech Cat# 120-38

Amphotericin B Gibco Cat# 15290026; CAS# 1397-89-3

B-27� Supplement (50X), serum free Gibco Cat# 17504044

N-Acetyl-L-cysteine Sigma-Aldrich Cat# A9165; CAS# 616-91-1

Nicotinamide Sigma-Aldrich Cat# N0636; CAS# 98-92-0

SB 202190 Sigma-Aldrich Cat# S7067; CAS# 152121-30-7

(Continued on next page)
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Recombinant Human Keratinocyte Growth

Factor (KGF or FGF-7)

Peprotech Cat# 100-19

Recombinant Human FGF-10 Peprotech Cat# 100-26

Recombinant Human Heregulinb-1 Peprotech Cat# 100-03

Animal-Free Recombinant Human EGF Peprotech Cat# AF-100-15

Insulin, human recombinant, zinc solution Thermo Fisher Scientific Cat# 12585014

DMEM high glucose Corning Cat# 10-013-CV

Hydrocortisone Sigma-Aldrich Cat# H0135

Corning� Matrigel� Growth Factor

Reduced (GFR) Basement Membrane

Matrix, Phenol Red-Free, LDEV-Free

Corning Cat# 356238; Lot# 2025001

Clarity Max Western ECL Substrate Bio-Rad Cat# 1705062

LI-COR Intercept T20 (TBS) Antibody

Diluent

LI-COR Cat# 92765001

Collagenase type IV Worthington Biochemical Corporation Cat# LS004189; CAS# 9001-12-1

Hyaluronidase Sigma-Aldrich Cat# H3506; CAS# 37326-33-3

Critical commercial assays

Progesterone ELISA Kit Cayman Chemical Cat# 582601; RRID: AB_2811273

Prolactin (rat) EIA Kit Cayman Chemical Cat# 589701

Estradiol ELISA Kit Cayman Chemical Cat# 501890; RRID: AB_2832924

RNeasy Micro Kit QIAGEN Cat# 74106

PrimeScript RT Reagent Kit TAKARA Cat# RR037A

TB Green� Premix Ex Taq� II TAKARA Cat# RR82WR

LIVE/DEAD� Fixable Aqua Dead Cell Stain

Kit, for 405 nm

Thermo Fisher Scientific Cat# L34966

Chromium Next GEM Single Cell 5’ HT

Kit v2

10x Genomics PN: 1000356

Chromium Next GEM Single Cell ATAC

Kit v2

10x Genomics PN: 1000406

Deposited data

scRNA-seq, scATAC-seq and bulk-RNA-

seq data

This study GSE251835

scRNA-seq data of iHBCA Reed et al.11 https://cellxgene.cziscience.com/e/

55003f67-c494-46f1-83fb-

902745646379.cxg/

RNA-seq data of normal breast tissues from

healthy women

Kang et al.48 https://xenabrowser.net/datapages/?

cohort=Normal%20Breast%20(Benz%

202020)

Experimental models: Cell lines

LA7 American Type Culture Collection (ATCC) Cat# CRL-2283; RRID:CVCL_3838

Experimental models: Organisms/strains

Rat: Fisher 344 (3-4-week-old rats) Envigo N/A

Rat: Fisher 344 (3-, 6-, 12- and 22-month-

old rats)

National Institute on Aging N/A

Oligonucleotides

Mdk-F: GAGCCGACTGCAAGTACAA This study N/A

Mdk-R: ATTGTAGCGCGCCTTCTT This study N/A

Actb-F: CTCCCTGGAGAAGAGCTATGA This study N/A

Actb-R: AGGAAGGAAGGCTGGAAGA This study N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

QuPath (version: 0.4.0) Bankhead et al.81 https://qupath.readthedocs.io/en/0.4/

index.html

ZEISS ZEN lite ZEISS https://www.zeiss.com/microscopy/en/

products/software/zeiss-zen-lite.html

GraphPadPrism (version: 10.0.3) GraphPad Software Inc. https://www.graphpad.com/updates/

prism-900-release-notes

FlowJo (version: 10.8.2) FlowJo, LLC https://www.flowjo.com/

Cell Ranger (version: 6.1.2) 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger

Cell Ranger-ATAC (version 2.0.0) 10x Genomics https://software.10xgenomics.com/single-

cell-atac/software/pipelines/2.0/what-is-

cell-ranger-atac

Metascape Zhou et al.82 https://metascape.org/gp/index.html#/

main/step1

Cytoscape (version: 3.9.1) Shannon et al.83 https://cytoscape.org

Seurat (version: 4.3.0) Hao et al.84 https://satijalab.org/seurat/

Image Lab (version: 6.1.0) Bio-Rad https://www.bio-rad.com/en-us/product/

image-lab-software?ID=KRE6P5E8Z

monocle3 (version: 1.2.9) Cao et al.33 https://cole-trapnell-lab.github.io/

monocle3/

ggplot2 (version: 3.4.0.9000) Randle Aaron et al.85 https://ggplot2.tidyverse.org

Rsamtools (version: 2.14.0) Morgan et al.86 https://bioconductor.org/packages/

release/bioc/html/Rsamtools.html

SCENIC (version: 1.3.1) Aibar et al.49 https://scenic.aertslab.org

Nichenetr (version: 1.1.1) Browaeys et al.37 https://github.com/saeyslab/nichenetr

Signac (version: 1.9.0) Stuart et al.87 https://stuartlab.org/signac/index.html

clusterProfiler (version 4.2.1) Yu et al.88 https://github.com/YuLab-SMU/

clusterProfiler

CellChat (version 1.6.1) Jin et al.89 https://github.com/sqjin/CellChat

DESeq2 (version 1.40.2) Love et al.90 http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

Scanpy (version 1.9.6) Wolf et al.91 https://scanpy.readthedocs.io/en/stable/#
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal model
Female Fischer rats were purchased from Envigo at 3-4 weeks of age. Aged rats were obtained from NIA. Animal experiments were

performed by P.Y. and E.R.J. according to protocol 15-005 approved by the Dana-Farber Cancer Institute Animal Care and Use

Committee. All rats were housed in individually ventilated, solid bottom, polysulfone 135 sq. in. microisolator cages. The cages

were used in conjunction with the Optimice� rack systems with integrated automatic watering. Temperature and humidity in the ro-

dent facility were controlled at 20�C and a target range of 35–55% relative humidity. A standard photoperiod of 12 h light/12 h dark

was controlled by an automated system.

Human breast tissue samples
Fresh normal breast tissue samples were collected fromwomen undergoing reduction mammoplasty or prophylactic mastectomy at

Brigham and Women’s Hospital following informed consent using protocols DF-HCC #93-085 and #10-458 approved by the Dana-

Farber Cancer Institute Institutional Review Board. Normal and tumor adjacent normal breast tissues, as well as formalin fixed

paraffin embedded DCIS and IBC tissue samples were obtained from Seoul National University Bundang Hospital (Seoul, Korea) us-

ing Institutional Review Board-approved protocols. All human tissue samples were de-identified prior to transfer to the laboratory.
e4 Cancer Cell 42, 1936–1954.e1–e9, November 11, 2024

https://qupath.readthedocs.io/en/0.4/index.html
https://qupath.readthedocs.io/en/0.4/index.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html
https://www.graphpad.com/updates/prism-900-release-notes
https://www.graphpad.com/updates/prism-900-release-notes
https://www.flowjo.com/
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://software.10xgenomics.com/single-cell-atac/software/pipelines/2.0/what-is-cell-ranger-atac
https://software.10xgenomics.com/single-cell-atac/software/pipelines/2.0/what-is-cell-ranger-atac
https://software.10xgenomics.com/single-cell-atac/software/pipelines/2.0/what-is-cell-ranger-atac
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://cytoscape.org
https://satijalab.org/seurat/
https://www.bio-rad.com/en-us/product/image-lab-software?ID=KRE6P5E8Z
https://www.bio-rad.com/en-us/product/image-lab-software?ID=KRE6P5E8Z
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://ggplot2.tidyverse.org
https://bioconductor.org/packages/release/bioc/html/Rsamtools.html
https://bioconductor.org/packages/release/bioc/html/Rsamtools.html
https://scenic.aertslab.org
https://github.com/saeyslab/nichenetr
https://stuartlab.org/signac/index.html
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/sqjin/CellChat
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://scanpy.readthedocs.io/en/stable/#


ll
OPEN ACCESSArticle
METHOD DETAILS

Rat treatment and tissue harvesting
All animal experiments were conducted in an AAALAC-accredited SPF rodent-only barrier facility at Dana-Farber Cancer Institute

(Boston, MA) in strict accordance with protocol 15-005 approved by the Dana-Farber Cancer Institute Animal Care and Use Com-

mittee. F344 rats of different age were purchased from Envigo or provided by the National Institute of Aging. Tissues were collected

as previous described.22 Briefly, two small pieces of mammary tissues were collected for histology analysis, fixed overnight in 4%

formalin, stored in 70% ethanol, followed by paraffin embedding, sectioning, and hematoxylin and eosin staining by the Rodent Pa-

thology Core of Harvard Medical School. The remaining tissue was digested in Dulbecco’s modified eagle medium/nutrient mixture

F-12 (DMEM/F12) medium containing 2 mg/mL collagenase type IV, 2 mg/mL hyaluronidase, and 2 mg/mL bovine serum albumin

(BSA) at 37�C for 1 to 2 hours, and frozen in freezing medium (containing 90% fetal bovine serum (FBS) with 10% dimethyl sulfoxide

(DMSO)) in liquid nitrogen. Bone marrow was collected by flushing the femurs and frozen in freezing medium for subsequent flow

cytometry analysis. Blood was extracted from heart, collected in purple-capped K2EDTA-coated tubes and mixed immediately to

prevent blood clots from forming. The samples were then centrifuged at 2000 RPM for 7 min at 4�C. The plasma supernatant was

transferred to another tube and stored at -80�C.
Formidkine treatment experiment rats were randomly assigned to vehicle andmidkine treatment groups. Ratmidkine recombinant

protein was dissolved in ddH2O and stored at -80�C for up to one month. Midkine was injected intraperitoneally 3 times/week at

300 mg/kg for four consecutive weeks. All rats were sacrificed immediately after the final dose, and mammary tissue were collected

for histology, flow cytometry and single cell sequencing analysis.

For NMU-induced mammary tumor experiment, Fischer rats were treated with rat recombinant midkine protein at 300 mg/kg 3

times/ week for two weeks and followed by a single intraperitoneal injection (i.p.) of 50mg/kg NMU. Then, rats were treated with mid-

kine protein for another twoweekswith same injection frequency, followed by another single NMU injection. Ratswere checked three

times/ week, and tumor growth wasmonitored using caliper measurements.Maximum tumor size burden allowed for rats is 4 cm and

this was not exceeded in any of the experiments. All the remaining rats were sacrificed upon the last tumor inmidkine treatment group

reached the size limit. Rats were euthanized by CO2 inhalation. Tissues and tumors were saved for histology, flow cytometry and

transcriptomic analysis.

Mammary organoid and cell culture
Mammary gland organoids were isolated and cultured as previous described.8 In brief, freshly collected tissue wasminced into small

pieces and dissociated to single cells as described above. After 1 h digestion, the tissue was filtered through a 500 mm strainer, and

the cells were harvested by centrifugation at 1,500 rpm for 5 mins. The resulting pellet was resuspended in an appropriate volume of

Matrigel and promptly dropped into 24-well plate. After a 30-min solidification, 700 mL of full organoid culture medium (containing

Advanced DMEM/F12 supplemented with 1% GlutaMax, 1% HEPES (1 M), 1% penicillin/streptomycin, 0.1% Amphotericin B, 1X

B27, 500 ng/mL recombinant R-spondin, 1.25 mM N-acetylcystine, 10 mM Nicotinamide, 1 mM SB202190, 5 ng/mL FGF7,

20 ng/mL fibroblast growth factor 10 (FGF10), 5 nM Heregulin beta-1, 5 ng/mL epidermal growth factor (EGF)) was added on top

of the 3D matrix. Subsequently, the medium was changed every 3 days. The rat breast cancer cell line LA7 was obtained from

ATCC. This cell line was maintained in DMEM high glucose supplemented with 5% FBS, 0.005 mg/mL insulin, 50 nM hydrocortisone

and 20 mM HEPES, cultured in a humidified incubator at 37�C with 5% CO2 and were regularly tested and verified to be free of my-

coplasma contamination. Reagents used in organoid culture are listed in key resources table.

Immunoblotting
Cells were lysed in SDS buffer containing 4% SDS, 100 mM Tris-HCl (pH 7.0) and 4% 2-mercaptoethanol. Proteins were resolved in

SDS-polyacrylamide gels (4-12%) and transferred to PVDFmembranes using a Tris-glycine buffer system.Membraneswere blocked

with 5%milk powder in Tris Buffered Saline with 0.1% Tween 20 (TBST) for 1 h at room temperature (RT), followed by incubation with

primary antibodies in antibody diluent (LI-COR) overnight at 4�C. Then, after being washed for three times with TBST, the membrane

was incubated with secondary antibodies at RT for 1 h. Finally, immunoreactive bands were detected with Clarity Max Western ECL

Substrate (Bio-Rad) and imaged using ChemiDoc MP imaging system (Bio-Rad). Antibodies used in immunoblotting are listed in key

resources table.

Immunofluorescence staining
Following deparaffinization and rehydration, formalin-fixed paraffin-embedded (FFPE) slides underwent antigen retrieval in Tris/

EDTA buffer (pH 6 or 9, Dako) for 45 minutes within a steamer. A blocking solution (10% goat serum) was applied for 1 hour at

RT. Incubation with primary antibody was conducted overnight at 4�C within a moist chamber. Subsequently, corresponding sec-

ondary antibodies were applied for 1 hour at RT. Slides were then mounted with VectaShield HardSet Antifade Mounting Medium

with DAPI (Vector Laboratories). The images were taken using a Zeiss 980 Confocal or THUNDER Imager 3D, then analyzed using

QuPath (version 0.4.0). For immunofluorescence staining of KRT14 and KRT18, organoids in the 3D matrigel structures were

embedded in Histogel (Epredia) to make blocks. Then the blocks were sectioned and stained following the FFPE protocol described

above. Antibodies used in immunofluorescence staining are listed in key resources table.
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Histology
FFPE tissue sections were deparaffinized and stained with H&E by the Rodent Histopathology Core in Harvard Medical School.

Normal mammary gland and mammary tumor histology were determined by an experienced rodent pathologist. H&E slides were

imaged using the Olympus VS120 Virtual Slide Microscope and visualized and quantified using QuPath software. Stroma area in

normal mammary gland and tumor cell cellularity were quantified using H&E images in Qupath.

Plasma hormone ELISA
Plasma was collected as described in the above and stored in -80�C before used for ELISA. ELISA was performed using diluted and

undiluted plasma according to the manufacturer’s instructions for estradiol, prolactin and progesterone ELISA kits (Cayman Chem-

ical). Absorbances were measured using BioTek Synergy 2microplate reader (Agilent). The concentration of each sample was deter-

mined by using the equation obtained from the standard curve plot.

Flow cytometric analysis
Immune cell compositions in mammary glands, bone marrows and tumors were analyzed using flow cytometry. Mammary glands,

tumors and bone marrows were harvested and dissociated as mentioned above. Lymphocytes and myeloid cells were analyzed us-

ing separate panels. Briefly, single-cell suspensions were initially stained with Live/Dead Aqua and Fc blocking antibody at 4�C for

20 mins. For lymphocyte panel, cells were stained with cell surface markers in FACS buffer (contained 0.5%BSA, 1% FBS and 4mM

EDTA) on ice for 1 h and followed by staining with intracellular marker post-fixation and permeabilization. The myeloid panel involved

an initial incubation with unconjugated primary antibodies and corresponding secondary antibodies, succeeded by staining with the

remaining conjugated antibodies. Unstained cells were used as negative controls, single antibody staining and Fluorescence Minus

One (FMO) controls were used for gating controls. Cells were analyzed using BD LSR Fortessa cell analyzer. FlowJo (Becton Dick-

inson, version 10.8.2) was used for analysis and graphing. Gating strategies are shown in Data S1–S3. Antibodies used in flow cy-

tometry are listed in key resources table.

Quantitative real-time PCR
RNA was isolated using RNeasy Mini Kit (Qiagen). 2 mg RNA per reaction was used for reverse transcription with PrimeScript RT Re-

agent Kit (Takara). TB Green Premix Ex Taq II (Takara) was used for real-time PCR on a CFX96 Touch Real-Time PCR Detection Sys-

tem (Bio-Rad). Primer sequences for Actb and Mdk are indicated in key resources table.

Single cell RNA-seq library preparation
For whole mammary gland scRNA-seq, viable cells were resuspended in PBS with 0.04% BSA at a cell concentration of 1000 cells/

mL. 10,000 cells were loaded onto a 10x Genomics Chromium� instrument (10x Genomics) according to the manufacturer’s instruc-

tions. The scRNA-seq libraries were prepared according to the Chromium Next GEM Single Cell 5’ HT v2 protocol (10x Genomics).

Quality control for amplified cDNA libraries and final sequencing libraries were performed using Bioanalyzer High Sensitivity DNA Kit

(Agilent). The pooled libraries were sequenced on Illumina NovaSeq S4 platform.

Single cell ATAC-seq library preparation
Single cell ATAC-seq experiments were conducted on the 10x Chromium platform using the Chromium Next GEM Single Cell ATAC

Kit v2 following established procedures.92 Briefly, digested single cells frommammary gland of different aged rats were subjected to

nuclei isolation according to the protocol of the manufacturer. Approximately 15,000 nuclei were selected for tagmentation. After

tagmentation, the nuclei were processed for capture using the 10x Chromium controller. Gel emulsion generation was followed

by linear amplification and DNA purification, performed according to the manufacturer’s protocol. The resulting DNA was used for

library construction as described on the manufacturer’s website. Finally, libraries were quantified by quantitative PCR and were

sequenced on an NovaSeq 6000 sequencer.

Bulk RNA-seq library preparation
Tumors were collected at the time of dissection and snap frozen in liquid nitrogen. RNA was isolated using RNeasy Mini Kit (Qiagen)

with on-column DNA digestion. Libraries preparation with poly(A) selection and 150-bp paired-end sequencing on an Illumina HiSeq

platform were performed by GENEWIZ (USA; www.GENEWIZ.com).

Single-cell RNA-seq data analysis
Data processing and cell type annotation

Sequenced reads were processed and aligned to the rat reference genome Rnor_6 using 10x Genomics Cell Ranger 6.1.2. We

applied stringent filters to eliminate cells with (1) nFeature_RNA < 500, (2) percent_mito > 15%, and (3) percent_ribo < 5%. This

pre-filtering resulted in the detection of 17,818 genes in 166,433 cells. The filtered data were then imported into Seurat (version

4.3.0)84 and normalized using SCTransform and decomposed using PCA. Neighborhood graph computing was performed

FindNeighbors() using the first 20 dimensions and clusters were determined using FindClusters() at a resolution of 0.4. UMAP em-

beddings were then computed using the first 20 PCA dimensions as input. Clusters 15 and 27 were removed from further analysis

due to those clusters only appeared in one out of sixteen samples. Multiple classic cell type specific markers were used jointly to
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annotate each cluster. Go term analysis of each cell type specific genes were also employed to further confirm the accuracy of anno-

tation. Cell subtypes were distinguished by evaluating the expression of well-knownmarkers and the top DEGs defining each cluster.

To assess differential expression, the ‘‘FindMarkers’’ function in Seurat was employed with the default Wilcoxon rank-sum test. The

lists of differentially expressed genes were typically refined based on a corrected p value threshold (‘p_val_adj’% 0.05) and absolute

Log2(Fold change) R 0.25.

Details of each scRNA-seq sample:
scRNA-seq sample Age Analyzed cell number

3M-1 3 months old 11,175

3M-2 3 months old 13,129

3M-3 3 months old 7,672

3M-4 3 months old 10,139

6M-1 6 months old 11,837

6M-2 6 months old 6,209

6M-3 6 months old 12,693

6M-4 6 months old 10,678

12M-1 12 months old 9,734

12M-2 12 months old 10,927

12M-3 12 months old 6,119

12M-4 12 months old 10,997

22M-1 22 months old 10,174

22M-2 22 months old 9,024

22M-3 22 months old 10,195

22M-4 22 months old 1,2376

Total 16,3078
Generation of aging-LP signature

The aging-LP, Basal, LP and ML signatures (Table S2) were generated by considering positive differentially expressed genes

(‘p_val_adj’ % 0.05) with certain pct.1 and pct.2 cutoffs among all epithelial subtypes. The proliferation signature was

composed of the following genes: Mki67, Top2a, Pcna, Cdk6, Ccnb1, Ccne1, Plk1, Mybl2, Foxm1, Bub1, Cdc6, Ccna2,

Ccnf, and E2f3. The expression of the signature in a cell was quantified by using the ‘‘AddModuleScore’’ function of the Seurat

R package.

Identification of aging-dependent DEGs

To identify aging-dependent DEGs, we used the function of ‘‘FindAllMarkers’’ in Seurat to identify age-dependent DEGs of different

ages (3-, 6-, 12-, 22-month-old) for each cell type. Cell types with less than 3 cells were removed before differential expression anal-

ysis. The log2fold change of each DEG and the adjusted p value were tested by non-parametric bilateral Wilcoxon rank sum test. Only

those with absolute Log2(Fold change)R 0.25 and ‘p_val_adj’% 0.05 were considered as aging-dependent DEGs. To generate the

age-dependent heatmap, first, we used the age-dependent DEGs calculated to define an expressionmatrix, and the cells of each cell

type are sorted by age scale. The ComplexHeatmap package was then used to visualize the spline smooth expression pattern of

aging-dependent DEGs and the genes were divided into 6 groups based on their expression pattern. Finally, the up or down ag-

ing-dependent DEGs was determined based on general expression trend. The DEGs are listed in Tables S1 and S2.

Gene ontology (GO) and gene set enrichment analysis (GSEA)

GO analysis of DEGs was performed through Metascape (https://metascape.org/)82 and visualized with GraphPad Prism (Version

10.0.3). GSEA for the DEGs were conducted using clusterProfiler package.93 Hallmark gene set from MsigDB94 (version 7.5.1)

were used for GSEA. p values were adjusted by the Benjamini–Hochberg method.

Pseudotime analysis

Pseudotime analyses for T cells (CD4+ and CD8+ T cells) and epithelial cells were performed with the R package monocle3 (version

1.2.9).33 Briefly, scRNA-seq data was visualized with UMAP, cells were clustered, and the graph was learned based on the reduced

dimensions using the learn graph function. Subsequently, cells were ordered using the ‘‘order_cells’’ function where root nodes were

set to the SBC (for epithelial trajectory analysis) and naı̈ve T cell (for T cell trajectory analysis). Finally, the visualization functions

‘‘plot_cells’’ were used to plot each cell type along the same pseudotime trajectory.

Cell-cell communication analysis

Cell-cell communication analysis was conducted using CellChat89 (version 1.6.1) and NicheNet37 (version 1.1.1) packages. CellChat

was used to quantify the total number of interactions among all the epithelial subtypes, then the major sources of ligands to LP were
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further analyzed using NicheNet. In brief, the total epithelial expression data were imported into CellChat, and a CellChat object was

made using ‘‘createCellChat’’ function. After annotating the object with relevant labels and identifying overexpressed genes, the

communication probability was inferred using ‘‘computeCommunProb’’ function. Cell–cell communications for each cell signaling

pathway were generated with ‘‘computeCommunProbPathway’’ function. The circle plot of number of interactions were generated

using ‘‘netVisual_circle’’ function. The interaction among Basal, SBC, Bridge and LPwere further studied using ‘‘NicheNet’’ package.

TheBasal, SBC andBridge cells were chosen as ‘‘sender’’ populations, and LP (including aging-LP) was set as ‘‘receiver’’ population.

For ligands and receptor interactions, geneswhich are expressed in larger than 10%cells of clusters were considered. Top 50 ligands

and top 250 targets of differential expressed genes of ‘‘sender’’ and ‘‘receiver’’ were extracted for paired ligand-receptor activity

analysis. Finally, expression and scaled activity of top 15 ligands were plotted using ‘‘make_ligand_activity_target_exprs_plot’’ func-

tion, and the circle plot showing top 15 ligand-receptor pairs were plotted using ‘‘make_circos_lr’’ function.

Transcriptional regulatory network analysis

Core regulatory transcription factors of aging-LP were predicted based on the scRNA-seq data by the GENIE3 (version 1.22.0)95 and

RcisTarget (version 1.20.0) R packages of the SCENIC workflow (version 1.3.1).49 GENIE3 inferred gene regulatory networks from

gene expression matrix of luminal progenitors (including aging-LP) from all four age groups. RcisTarget was used to identify enriched

transcription factor-binding motifs and to predict candidate target genes (regulons) based on the RcisTarget database containing

motifs with genome-wide rankings. The transcription factor and target gene networks were visualized with Cytoscape

(version 3.9.1).83

Single-cell RNA-seq analysis of iHBCA dataset

The iHBCA dataset was retrieved from CELLxGENE (https://cellxgene.cziscience.com). Milk-derived epithelial cells in this dataset

were removed before analysis. iHBCA dataset was analyzed using Scanpy. Samples were classified based on age (young, <50 years

old; old R50 years old) or germline mutation types. The results were illustrated using Python code around Scanpy.

Single-cell ATAC-seq data analysis
The scATAC-seq data was initially processed using the Cell Ranger ATAC pipeline (version 2.0.0). This involved converting BCL files

into fastq format and demultiplexing reads using "cellranger-atac mkfastq." The subsequent step, "cellranger-atac count," aligned

Tn5-cut sites to the rat genome (Rnor_6), removed duplicate reads, and filtered out background cells. The resulted peak-by-cell

matrices and barcoded fragment files were then imported into the Signac package in R.84Within Signac, peak calling was performed,

and the data underwent quality control checks. Latent semantic indexing (LSI) was used to reduce noise, and UMAP embeddings

were computed to identify clusters representing different cell types. Known marker genes were used to annotate these clusters,

and motifs were added to the peaks. Finally, ‘‘RunChromVar’’ function was used to assess motif activity across all cells. Details

of each sample:
scATAC-seq sample Age Analyzed cell number

3M-1 3 months old 5,476

3M-2 3 months old 8,684

6M-1 6 months old 5,178

6M-2 6 months old 5,619

12M-1 12 months old 2,834

12M-2 12 months old 3,402

22M-1 22 months old 5,947

22M-2 22 months old 9,586

Total 46,726
Bulk RNA-seq data analysis
RNA-seq datasets were analyzed using VIPER pipeline.96 In brief, paired-end reads were aligned to the rat reference rn6 genome.

Genes with 0 counts across all samples were filtered out and the remaining counts were then normalized using TMM with edgeR.97

Log2transformed TMM-normalized counts per million [log2(TMM-CPM + 1)] were used for analysis. Batch effects among different

biological replicates were removed using removeBatchEffect function from the LIMMA package.98 Principle component analysis

were performed using prcomp function provided by Stats package. DEGs were identified by using DESeq290 with cutoff of

Log2(Fold change) R 0.5, padj % 0.05 for all the samples.

Survival analysis
For the survival analysis in METABRIC data set, normalized probe intensity values were obtained from Synapse (Syn1688369). For

genes with multiple probes, probes with the highest inter-quartile range (IQR) were selected to represent the gene. Patients were

assigned an ER+/HER2- status based on the downloaded clinical annotation files with ‘‘Negative’’ annotation for HER2 and ‘‘Positive’’
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annotation for ER based on IHC evaluation. Enrichment levels ofMDK and ‘‘MDK-age’’ signature in each tumor sample were quan-

tified by ‘‘GSVA’’ R package after converting all gene names to human homology using ‘‘gprofiler2’’ R package. Old and young pa-

tients were defined using the cutoff of 55 years old. Top (high) and bottom (low) 25% patients ranked byMDK expression or ‘‘MDK-

age’’ signature’’ enrichment level were further overlayed by age groups (old and young) and all four groups were subjected to survival

comparison using the disease-specific survival outcome. Survival analysis was performed usingCox proportional hazards regression

models using ‘‘survminer’’ package and censored to 9,000 days. Patients in ‘‘Old high’’ groupwas used as a reference, harzard ratios

with 95% confidence intervals and log-rank p values were reported for other subgroups. The Hallmark gene signature collection

enrichment scores were calculated by ‘‘GSVA’’ package from each tumor. In addition, the proliferation signature score of each tumor

from TCGA dataset was calculated by the average enrichment score of ‘‘G2M_Checkpoint’’, ‘‘E2F_Targets’’ and ‘‘Mitotic_Spindle’’

signatures from the Hallmark collection.

For breast cancer risk analysis, RNA-seq data with RSEM TPM values from 151 normal human mammary glands and the associ-

ated Gail 5-year risk scores were obtained from Kang et al.48 Old and young patients were defined using the cutoff of 45 years old.

MDK high and low groups were defined based on the top and bottom 25% populations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Bioinformatic statistical tests are performed in R or Python. Statistical tests are described in the relevant sections above. Statistical

analyses were performed by using GraphPad Prism 10 software or R. All the p values were labeled in the figures. p < 0.05 is consid-

ered statistically significant.
Cancer Cell 42, 1936–1954.e1–e9, November 11, 2024 e9


	Midkine as a driver of age-related changes and increase in mammary tumorigenesis
	Introduction
	Results
	Single-cell profiles of the rat mammary gland at different ages
	Cellular and molecular changes in the microenvironment during aging
	Changes in mammary epithelial cell transcriptomes with age
	Alterations in mammary epithelial cell hierarchy and cell-to-cell communication with aging
	Identification of midkine as a biomarker of age and breast cancer
	Midkine treatment mimics aging-related changes in the mammary gland
	An MDK-SREBF1 interaction network orchestrates aging-related mammary epithelial changes
	Midkine treatment promotes mammary tumor initiation

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Animal model
	Human breast tissue samples

	Method details
	Rat treatment and tissue harvesting
	Mammary organoid and cell culture
	Immunoblotting
	Immunofluorescence staining
	Histology
	Plasma hormone ELISA
	Flow cytometric analysis
	Quantitative real-time PCR
	Single cell RNA-seq library preparation
	Single cell ATAC-seq library preparation
	Bulk RNA-seq library preparation
	Single-cell RNA-seq data analysis
	Data processing and cell type annotation
	Generation of aging-LP signature
	Identification of aging-dependent DEGs
	Gene ontology (GO) and gene set enrichment analysis (GSEA)
	Pseudotime analysis
	Cell-cell communication analysis
	Transcriptional regulatory network analysis
	Single-cell RNA-seq analysis of iHBCA dataset

	Single-cell ATAC-seq data analysis
	Bulk RNA-seq data analysis
	Survival analysis

	Quantification and statistical analysis
	Statistical analysis




