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A B S T R A C T

Friction interfaces are unavoidable components of large engineering assemblies since they
enable complex designs, ensure alignment, and enable the transfer of mechanical loads between
the components. Unfortunately, they are also a major source of nonlinearities and uncertainty
in the static and dynamic response of the assembly, due to the complex frictional physics
occurring at the interface. One major contributor to the nonlinear dynamic behavior of the
interface is the mesoscale geometry of a friction interface. Currently, the effects of the interface
geometry on the nonlinear dynamic response is often ignored in the analysis due to the
high computational cost of discretizing the interface to such fine levels for classical finite
element analysis. In this paper, the influence of mesoscale frictional interface geometries on the
nonlinear dynamic response is investigated through an efficient multi-scale modeling framework
based on the boundary element method. A highly integrated refined contact analysis, static
analysis, and nonlinear modal analysis approach are presented to solve a multi-scale problem
where mesoscale frictional interfaces are embedded into the macroscale finite element model.
The efficiency of the framework is demonstrated and validated against an existing dovetail
dogbone test rig. Finally, the effects of different mesoscale interface geometries such as surface
waviness and edge radius, are numerically investigated, further highlighting the influence of
mesoscale interface geometries on the nonlinear dynamics of jointed structures and opening
a new research direction for the design of friction interfaces in friction involved mechanical
systems.

1. Introduction

Frictional interfaces can be found in almost all large engineering systems that consist of multiple components. These interfaces
re widely regarded [1–4] as the main source of uncertainty and nonlinearity in assembled structures since they can significantly
educe overall stiffness, shift resonance frequencies and increase structural damping. The latter makes them of particular interest
or the design of dry friction dampers, which can significantly reduce vibration levels, such as Under-Platform Dampers (UPDs) for
urbine blades [5] and ring dampers for integrally bladed disks (blisks) [6,7]. To ensure a reliable design for mechanical structures
ith frictional interfaces, their nonlinear effects on the dynamic response must be accurately predicted [8,9].

Previous studies [10,11] have shown how frictional interfaces can significantly affect the nonlinear dynamic response of large
ero-engine structures. Petrov [10,11] carried out a numerical study on the performance of UPD designs for different contact
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parameters at the blade-damper interface, such as friction coefficient, contact stiffness, clearance, and interference. A similar study
was also performed by Krack et al. [12] to analyze the uncertainties associated with contact parameters showing the significant
influences of these uncertainties on the nonlinear dynamical response. The effects of macro-scale frictional interface designs have
been also widely studied. The macro-scale interface refer to different geometries such as length, width and global shape of the
interface at a scale of centimeter that can be easily used as manufacturing parameters [13]. Sun et al. [4] proposed a parametric
model of UPDs to investigate the effects of contact angle, length, and position of the platform of a UDP on nonlinear modal
properties of turbine blades. Tang and Epureanu [14] investigated four global geometric parameters of a V-shaped friction ring
damper, including the length of the friction interface and the angle between the two surfaces, on the dynamic response of a blisk.
Panning et al. [15] evaluated the effects of the contact geometry on damping effectiveness by varying the geometry of both the
blade platform and the friction damper. Hüls et al. [16] studied the effects of geometrical parameters of turbine friction dampers on
the nonlinear dynamic response. Yuan et al. [17] further optimized the geometrical parameters of a wedged UPD (such as the height
and width) using a robust approach considering the manufacturing uncertainties. All of these studies have shown the importance
of contact parameters (such as contact stiffness, and friction coefficients) and the macro-scale geometries of the frictional interface
but a lot of uncertainties remains due to smaller scale variations at the micro/mesoscale. The mesoscale of a friction interface refers
to the surface curvature while the micro-scale refers to the surface roughness [13].

Because of the high computational expense of using a Finite Element (FE) approach to discretize micro/mesoscale features,
here are very few numerical studies so far to address this multi-scale challenge. To reduce some of the computational cost of a
ull 3D FE modeling approach, alternatively, the elastic contact problem can be analytically formulated to estimate the behavior
f a frictional interface, particularly for completely smooth surfaces. For a surface with micro-scale asperities, a compliant model
as developed [18] which considers a statistical distribution of asperities. Such a statistical approach considers the effects of the

urface asperities in a statistically averaged sense, which is more computationally feasible. For the normal contact problem, either a
inear penalty stiffness approach [19] or a nonlinear penalty model [20] can be used to represent the asperity effects. Alternatively,
ractal and self-affine geometries can be used to model the roughness at all length scales [21]. To couple the effects of micro-scale
oughness with the dynamic response of the system, zero-thickness elements have been modified to include multi-scale contact
onstitutive laws [22]. A semi-analytical solver was also developed to include the effects of the surface roughness on the nonlinear
ynamic response [23]. Although surface roughness at the micro-scale can influence the contact stiffness, it is not very significant
n the nonlinear dynamic response [13,23].

Experimentally, it was recently established that mesoscale variations at the interface (eg. waviness due to manufacturing
olerances) appear to lead to a much larger variation in the nonlinear dynamic response. Allara et al. [24] studied the effects of a
crowned’ frictional interface (at the mesoscale level) on dovetail blade root behavior. In comparison to a flat-to-flat interface, the
rowned interface showed much smoother damping behavior with increasing excitation levels. A similar impact of a non-conforming
nterface was observed in an UPD test rig [25], where only the accurate and detailed discretization of the interface geometry enabled

model validation. Gastaldi et al. [26] experimentally studied the influence of different surface finishes at micro and mesoscale
n the performance of UPDs, indicating the significance of contact conditions on the dynamic properties. Recently, Sun et al. [7]
nvestigated the influence of different levels of waviness of the friction interface geometry on the dynamic response of a blisk with a
ing damper. It has been shown that the waviness introduced into the interface can significantly change the initial normal pressure
nd gap distribution and hence impact the dynamic response significantly. Based on these experimental findings, the mesoscale
ontact geometry appears to be a determining factor when predicting the nonlinear dynamic response but modeling such detailed
nterface geometries, using a direct FE approach, can become extremely computationally expensive and up to now, the multi-scale
pproach seems to only include micro, but not these mesoscale features.

Advanced multi-scale approaches have been recently actively explored to reduce the computational cost of detailed interface
odeling. A multi-scale approach was originally proposed by Gallego [27] to evaluate the influence of fretting wear on a bladed
isk system. Such an approach allows a fine discretization of the contact zone and fast computation of fretting wear on the contact
nterfaces without the need for detailed FE models. The method was then extended by Salles et al. [28,29] to couple the fast
ynamic analysis with the slow tribological analysis based on a dynamic Lagrangian frequency-time scheme. This approach was
urther expanded by Armand et al. [23,30] to simulate the effects of the micro-scale surface roughness and fretting wear on the
onlinear dynamic response. An alternative multi-scale framework was recently proposed by Balaji et al. [22] for modeling the
ynamics of bolted structures through zero-thickness elements and quasi-static modal analysis. However, the effects of mesoscale
rictional interface geometry have not been thoroughly investigated.

In addition to the investigation of the influence of mesoscale friction interfaces, this work will also improve the efficiency of the
ulti-scale approach originally presented in [23]. As an alternative to forced response frequency analysis, the concept of nonlinear
odal analysis was originally proposed by Rosenberg [31] and extended into non-conservative systems by Shaw and Pierre [32]. It

an be used to obtain resonance frequency and damping levels over a wide range of excitation from a single simulation that greatly
ncreases the computational efficiency. There are two main approaches, one is based on the Extended Periodic Motion Concept
EPMC) [33] and the other is based on Complex Nonlinear Modal (CNM) analysis [34]. Both of these approaches can be used to
btain the nonlinear modal properties over a wide range of energy levels. CNM is based on the damped motion concept while EPMC
s based on the periodic motion by adding an artificial damping term [35,36]. Based on nonlinear normal modes, the corresponding
esonant forced response can be effectively evaluated using single mode theory [37] or extended energy balance approaches [38].

The applicability of these two approaches to an industrial case study of an aero engine fan blade has been shown in [39]. Recently,
quasi-static modal analysis was further introduced to obtain resonant frequencies and damping [40–42] of nonlinear mechanical
2

systems by applying a distributed load to the structure that would deflect the linear structure into a user-specified mode shape.
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Fig. 1. A general structure of the multi-scale approach.

omparing to EPMC and CNM [42], this quasi-static approach can achieve higher computational efficiency but the accuracy cannot
e fully guaranteed in the presence of modal interaction and high excitation levels.

Overall, the main aim of this study is to investigate the influence of mesoscale contact geometry on the nonlinear dynamics
f large assembled structures through a multi-scale approach. The principle of this approach consists of embedding the mesoscale
rictional interfaces, obtained by an existing semi-analytical solver [23], into the coarser FE model used for the nonlinear dynamical
nalysis. The dynamic analysis solver will further integrate advanced nonlinear modal analysis and adaptive reduced order modeling
echniques [43,44] into the multi-scale modeling framework [23] to increase the computational efficiency. The proposed framework
ill be used to, for the first time, assess the influence of a mesoscale interface geometry on the dynamic response of assembled

tructures. The impact of mesoscale interface geometries (such as radius, and interface topology) and contact parameters (including
riction coefficients and pre-loading) will be shown for an existing blade root dog bone test rig [45,46].

2. Methodology of multi-scale analysis

Fig. 1 presents the methodology of the multi-scale modeling approach. Nonlinear dynamic and static analysis of the entire system
is performed using a macro-scale FE model while nonlinear contact analysis for the local frictional interfaces is performed using
mesoscale interface models. In this study, the micro-scale interface is defined as the friction interface representing surface roughness
while the mesoscale refers to features such as surface waviness and curvature, which are often caused by machining tolerances. The
macroscale interface refers to different geometries such as length, width, and global shape of the interface at a scale of centimeters
[13]. The overall contact loads on the interfaces are initially evaluated via a nonlinear static analysis with a flat-on-flat contact
interface. More refined contact analysis is then carried out with a semi-analytical solver based on the previously obtained overall
contact loads. The calculated initial normal pressure and gap distributions are then used as the input parameters for the nonlinear
dynamic analysis based on nonlinear modal analysis using the macro-scale FE model. The main advantage of this approach is that
there is no need to re-mesh the contact surface for different mesoscale interface profiles since their features can be expressed in
terms of load distribution and gap sizes in the macroscale model.

The original equation of motion, including static and dynamic loads, can be decomposed into a static problem (including only
static loads) and a dynamic problem around the static equilibrium position (including only dynamic loads). The static contact loads
obtained from the initial quasi-static analysis will provide the initial contact conditions for the subsequent nonlinear dynamical
problem. A dynamic analysis around this static equilibrium position will then be used to obtain the nonlinear dynamical response.
It should be noted that during a vibration cycle, the contact load can change due to the relative vibrational displacement of each
contact pair, leading to a change in the overall stiffness and damping of the structure. More details about each part of the analysis
are introduced in the following sections.

2.1. Nonlinear static analysis

The purpose of the nonlinear static analysis is to obtain the overall contact loads at the contact interface. It is performed to
identify the nonlinear static equilibrium status using the macro-scale FE model. This nonlinear contact analysis can be carried
out using any commercial software (ABAQUS in this study), where the surface-to-surface hard contact is defined at the interface.
Eq. (1) shows the equation of this analysis where 𝐾 is the linear joint stiffness; 𝐹𝑛𝑙 represents the nonlinear contact friction force as
a function of relative displacement of the interface DOFs; 𝐹𝑠(𝑡) is the static loading vector applied to the system. Once equilibrium
has been reached in the analysis, the obtained distribution of the normal contact loads from the interface can be summarized for a
refined contact analysis including different mesoscale interface profiles.

𝐊 𝑢(𝑡) + F (𝑢(𝑡)) = F (𝑡) (1)
3
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2.2. Refined contact analysis

The refined contact analysis will be conducted with an existing semi-analytical boundary element solver [47,48]. This solver is
ased on the projected conjugate gradient method [49] and a discrete-convolution Fast Fourier Transform (FFT). Based on the half-

space assumption, the Boussinesq and Cerruti potentials are used to compute the elastic deflections of the surface in the normal and
tangential directions due to the applied pressures and shear tractions which are obtained by the initial quasi-static analysis [50,51].
The main advantage of this semi-analytic solver is that a very fine contact mesh can be used to represent both micro/mesoscale
friction interface features, such as surface roughness and waviness. The normal displacement 𝑢𝑧 caused by a pressure distribution 𝑝
is described by Eq. (2):

𝑢𝑧(𝑥, 𝑦) =
1 − 𝜈2

𝜋𝐸 ∫

+∞

−∞ ∫

+∞

−∞

𝑝(𝜉, 𝜂)
√

(𝜉 − 𝑥)2 + (𝜂 − 𝑦)2
𝑑𝜉𝑑𝜂 (2)

here 𝐸 and 𝑣 are the Young’s modulus and Poisson ratio of the material respectively. Eq. (3) is the discretized form of Eq. (2) for
a regular grid of 𝑁𝑥 ×𝑁𝑦 points, providing data for individual nodes in the mesh:

𝑢𝑧(𝑖, 𝑗) = 𝐾𝑧𝑧 ⊗ 𝑝 =
𝑁𝑥
∑

𝑘=1

𝑁𝑦
∑

𝑙=1
𝑝(𝑘, 𝑙)𝐾𝑧𝑧(𝑖 − 𝑘, 𝑗 − 𝑙) (3)

where 𝐾𝑧𝑧(𝑖, 𝑗) are the discrete influence coefficients that give the normal displacement resulting from unit pressure on the element
centered on the grid point (𝑖, 𝑗); ⊗ denotes the discrete convolution product. During the solution process, the normal contact problem
is first solved using the conjugate gradient method. Once a solution is obtained, the tangential problem can be then solved, where the
Coulomb friction law is applied as a bound to the shear distribution [47]. As a result, the distributions of the static normal pressure,
the initial gap, and the contact stiffness for the contact interface can be obtained [30,47,48] and used for the nonlinear dynamic
analysis. It was worth noting that the contact stiffness for either smooth or rough surfaces can be obtained from the semi-analytical
solver using the following steps [52]: (1) Solve the normal contact problem for several normal loads around the given overall normal
load; (2) Interpolate the normal indentation curve for each dynamical contact element where the slope of that curve gives the normal
contact stiffness that defines for each dynamical contact element; (3) Solve the tangential problem for small values of tangential
load (force or displacement) where the entire contact area remains in stick condition. This gives a portion of the linear part of the
frictional hysteresis loop, from which the tangential contact stiffness can be extracted for each dynamical contact element.

2.3. Nonlinear dynamical analysis

The distributions of contact interface parameters from the semi-analytic solver are then associated with each 3D node to node
contact element that discretized on the friction interface in the macro dynamic FE model [7]. Four parameters of each contact
element, namely the normal load, the initial gap, and the normal and tangential contact stiffness, are defined, based on the previously
refined contact analysis, at the beginning of the nonlinear dynamic analysis. The up-scaling of these distributions to the coarser FE
model follows Newton’s third law to ensure that the forces and moments at the contact interface are the same across different
interface geometry scales. This expansion of highly detailed semi-analytic solver data to the much coarser FE model, significantly
simplifies the modeling of a mesoscale interface geometry while maintaining high accuracy of the actual geometry, since it allows
considering strong local interface geometry effects on the pressure distribution characteristic of the non-smooth contact.

A nonlinear dynamic analysis, based on the harmonic balance methods, is performed using the macro-scale FE model with
the input contact loads from the semi-analytic solver. The methodology for the nonlinear dynamical analysis is based on damped
nonlinear modal analysis, adaptive reduced order modeling and extended-energy balance method [33,35,39]. A brief introduction
will be given here for completeness.

2.3.1. Equation of motion
The equation of motion for the dynamic analysis is shown in Eq. (4):

𝐌 �̈�(𝑡) + 𝐂 �̇�(𝑡) +𝐊 𝑢(𝑡) + F𝑛𝑙(𝑢(𝑡)) = F𝑒(𝛾, 𝜑,𝛺, 𝑡) (4)

where 𝑢(𝑡) is the structural displacement; F𝑒 is the periodic excitation force; F𝑛𝑙 is the nonlinear contact friction force; 𝛺 is the
excitation frequency; 𝛾 is the excitation forcing level; 𝜑 is the absolute phase of the excitation force; and 𝐌, 𝐂 and 𝐊 are mass,
iscous damping and stiffness matrix respectively.

.3.2. Contact friction modeling
The contact friction model used in the FE model is based on a 3D node-to-node element, which incorporates two coupled

angential Jenkins elements to describe the slip and stick motions in the in-plane directions, and a normal spring to describe the
ransition of variable normal load and separation conditions. Fig. 2(a) shows the used contact element, where 𝑘𝑛 and 𝑘𝑡 are the
ormalized normal and tangential contact stiffness (N/mm3), and 𝜇 is the friction coefficient. The pre-defined normal load 𝑁0 and
he gap defines the initial contact condition for each element. 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are the resulting relative tangential and normal
isplacements between two matching contact nodes in the local coordinate system of the element. Fig. 2(b) shows a comparison
f numerical hysteresis loops from this 3D contact friction element and experimental one from [53]. In this study, the pre-defined
ormal load, the gap, the normal and tangential contact stiffness of each contact friction element, are all obtained from the semi-
nalytical solver. This 3D contact friction is then used to evaluate the normal and tangential contact force 𝐹𝑛𝑙(𝑢(𝑡)) for each contact
4

lement as shown in Eq. (4).
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Fig. 2. (a) 3D node-to-node element [54] (b) Hysteresis loop.

2.3.3. Reduced order modeling
An adaptive reduced-order method is used to reduce the size of the macro-scale FE model. The fundamental formulation will be

briefly shown here, but for more detail can be referred to [43,55]. The method is based on the linearized system, where the entire
contact interface is assumed to be in a stuck condition. An internal variable 𝛥𝑝 is introduced to the equation of the motion to take
the slipping or separation condition into account. The modified equation of motion can be written as:

[

𝐌 𝟎
𝟎 𝟎

] [

�̈�
𝛥�̈�

]

+
[

𝐂 𝟎
𝟎 𝟎

] [

�̇�
𝛥�̇�

]

+
[

𝐊𝐿 𝐁𝐊𝐉
(𝐁𝐊𝐉)𝑇 𝐊𝐉

] [

𝑢
𝛥𝑝

]

=
[

F𝑒
F𝑛𝑙

]

(5)

where the 𝐊𝐿(𝑘𝑡, 𝑘𝑛) is the linearized stiffness matrix, 𝐊𝐉 is the linear joint stiffness matrix associated with the DOFs at the contact
interface, and 𝐁 is the Boolean matrix to transform the joint matrix to the global system matrix. The adaptive reduced order model
can then be constructed through two constitutive reductions. The first reduction is carried out using the vibration modes of the
linearized system 𝝓 and a full set of static constraint modes 𝝍 that are associated with the nonlinear DOFs on the contact friction
interfaces. The second reduction removes the static modes associated with constantly stuck contact nodes from 𝝍 since these modes
are redundant on the reduced basis as the motion of the stuck nodes is already represented by the linearized dynamic modes. The
transformation matrix for the second reduction can be expressed as:

𝑞0 =
[

𝑢
𝛥𝑝

]

=
[

𝝓 𝝍
𝟎 𝐈

] [

𝐈 𝟎
𝟎 𝐁𝑝

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛷

[

𝜂
𝛥𝑝𝑅

]

(6)

𝐌𝐑 = 𝛷𝑇𝐌𝐆𝛷,𝐊𝐑 = 𝛷𝑇𝐊𝐆𝛷,𝐂𝐑 = 𝛷𝑇𝐂𝐆𝛷 (7)

where 𝜂 are the modal participation factors of the selected dynamic modes, 𝝓 are the dynamic modes, and 𝝍 is the full set of static
constraint modes. 𝛥𝑝𝑅 is the non-zero part of 𝛥𝑝 and 𝐁𝑝 is the Boolean matrix that helps to identify the non-zero part of 𝛥𝑝 with
an additional simulation to check the contact condition of the last converged solution, and finally 𝛷 is the transformation matrix
for the adaptive reduced order model. The size of 𝛷 depends on the contact condition of the contact nodes. This adaptive ROM
is highly effective for interfaces with a large number of stuck nodes, which is often the case for bladed disk connections, while
contacts where all nodes slide during a vibration cycle would be less effective. 𝐌𝐆, 𝐊𝐆 and 𝐂𝐆 are extended mass, stiffness and
damping matrix from the Eq. (5). Using the adaptive modal projection matrix 𝛷, the reduced mass matrix 𝐌𝐑, stiffness matrix 𝐊𝐑
and damping matrix 𝐂𝐑 can be computed via Eq. (7).

2.3.4. Damped nonlinear modal analysis
The damped nonlinear modal analysis, based on EPMC [33], is used to obtain resonance frequencies and damping ratios of the

nonlinear dynamical system. As shown in Eqs. (8) and (9), an artificial mass proportional modal damping 𝐂𝐚 is added to make the
motion of the system periodic [33]. Since the modal properties of the dNNM are dependent on the level of energy within the system,
the modal amplitude 𝛼 is used to represent the system energy. 𝜔𝑜(𝛼) and 𝜂(𝛼) are the amplitude-dependent resonance frequency and
the artificial mass proportional modal damping of this dissipative system. This additional term is used to balance the dissipation of
the frictional energy from the nonlinear contact interface with the linear damping terms in the modified Eq. (5). Using the adaptive
reduced order models from above, the equation of motion can be rewritten as Eq. (9):

𝐂𝐚 = −2𝜔𝑜(𝛼)𝜂(𝛼)𝐌𝐑 (8)

𝑅 (9)
5

𝛼(𝐌𝐑 𝑞0(𝛼, 𝑡) + 𝐂𝐚 ̇𝑞0(𝛼, 𝑡) + 𝐂𝐑 ̇𝑞0(𝛼, 𝑡) +𝐊𝐑 𝑞0(𝛼, 𝑡)) + F𝑛𝑙(𝛷(𝛼𝑞0(𝛼, 𝑡))) = 0
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2.3.5. Forced resonant response prediction
To enable a direct comparison to experimental results, the prediction of forced resonance response can be obtained. Since dNNMs

re essentially a series of resonant solutions, the forced response at different excitation levels and locations can be interpolated from
he dNNMs via the Extended-Energy Balance Method (E-EBM) [38]. Under the assumption of small forcing amplitudes and damping,
he solution between forced resonance and dNNM is nearly identical. Here the forced resonant solution 𝑞𝑓 is assumed to be equivalent

to the dNNM with a certain level of modal amplitude 𝑞 = 𝛼 ⋅ 𝑞0(𝛼) under the condition that the excitation frequency 𝛺 coincides
with the modal resonance frequency 𝜔𝑜. The shared solutions between the dNNM and forced response level will be noted as 𝜒 .

𝜒 = 𝑞 ≈ 𝑞𝑓 ,when 𝛺 = 𝜔𝑜(𝛼) (10)

𝐸𝑑 = ∫

2𝜋∕𝜔𝑜(𝛼)

0
(2𝜔𝑜(𝛼)𝜂(𝛼)𝐌𝑅) ⋅ �̇� ⋅ �̇�𝑑𝑡 (11)

𝐸𝑓 (𝛾, 𝜑) = ∫

2𝜋∕𝛺

0
F𝑒(𝛾, 𝜑,𝛺, 𝑡) ⋅ �̇�𝑑𝑡 (12)

𝐸𝑓 (𝛾, 𝜑) (the external excitation energy) can be integrated as shown in Eq. (12). It varies with the applied forcing level 𝛾 and
the forcing phase 𝜑. Similarly, 𝐸𝑑 , the internal dissipated energy, can be obtained through numerical integration of the artificial
damping force in Eq. (8), where the displacement over one vibration period is shown in Eq. (11). One single intersection will occur
at the maximum position between the curve of 𝐸𝑓 (𝐸𝑓 against 𝜑) and the constant 𝐸𝑑 , which can help to determine the value of 𝛾
and 𝜑 for the solution. The corresponding forced resonance amplitude can be found for each value of a modal amplitude 𝛼 at the
selected excitation position, leading to a complete frequency response function.

2.3.6. Harmonic balance methods
The Harmonic Balance Method (HBM) is used to evaluate the steady-state dynamic response of large-scale nonlinear systems.

The principle of this method is to discretize the displacement 𝑞(𝑡) in the frequency domain using a truncated Fourier series:

𝑞(𝑡) = �̃�0 +
𝑛ℎ
∑

𝑖=1
(�̃�𝑐

𝑖 cos𝑚𝑖𝜔𝑜𝑡 + �̃�𝑠
𝑖 sin𝑚𝑖𝜔𝑜𝑡) (13)

where �̃�0 is the zeroth harmonic coefficient; �̃�𝑐,𝑠
𝑖 are the cosine and sine coefficients for the 𝑖th harmonic; 𝑛ℎ is number of harmonics

to be included in the analysis; and 𝜔𝑜 is the forcing frequency. The equation of motion is transformed into a set of algebraic equations
including the Fourier series. To solve these nonlinear equations, a Newton–Raphson solver, an Alternating Frequency Time (AFT)
procedure, and a continuation technique [3,43,56] are used. The AFT technique thereby evaluates the nonlinear force in the time
domain and transfers the results back to the frequency domain. The detailed implementation of HBM with the adaptive reduced
order model method and nonlinear modal analysis can be found in [39]. In this study, to track the nonlinear dynamic response, a
continuation technique that tracks the modal amplitude 𝛼 has been implemented. A predictor–corrector procedure [56] based on
the Secant method is employed for the predictor while the arc-length method is used for the corrector. Two additional constraints
are applied to the damped nonlinear modal analysis which are the phase constraint and mass normalization [33].

In summary, the proposed multi-scale framework integrates advanced nonlinear modal analysis coupled with adaptive reduced-
order modeling techniques for the first time. It will be used in this study to investigate the effect of mesoscale features on a typical
engineering jointed structures and evaluate the effectiveness of the proposed framework.

3. Case study

3.1. Dogbone test rig and FE model

The case study is based on an assembled model that represents an available blade root test rig for fan blade systems at the
Dynamics Group at Imperial College London [46]. Fig. 3(a) shows the so-called dog bone test rig setup to measure blade root
damping. It includes two major components: (i) a set of identical solid root-block disks that contain the root slots; (ii) a single
‘‘Dogbone’’ with matching blade roots on both ends.

The disks can accommodate up to 16 root designs, where five adjacent sides have currently been machined to house various
blade root designs for dovetail joints and fir-tree roots. A near-point contact with a hardened U-shaped hook is used to suspend the
disks in a tensile test machine. Fig. 3(b) shows a typical dovetail joint, which is used in fan blade disks, and which is the focus of
his case study. The FE model representing the overall test rig can be seen in Fig. 3(c) and a detailed view is shown in Fig. 3(d).
he mesh was obtained with Hypermesh and a large effort was made to provide very detailed matching meshes at the four contact

nterfaces (two for the top root and two for the bottom root). The size of each contact friction interface is approximately 18 mm 𝑥
.6 mm which is discretized via 28 nonlinear elements (involving 40 contact nodes) in the macro-scale FE model. For four contact
nterfaces in the Dogbone test rig, there are in total 160 contact nodes namely 480 nonlinear DOFs. The whole test rig is made up
f a total of 58,592 quadratic hexahedral elements. To reduce the computational cost, the disks are simplified as a cyclic sector as
hown in Fig. 7(a). The test rig is made of steel with a Young’s modulus of 200 GPa and a density of 7.84 g/cm3.
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Fig. 3. (a) Dogbone Test rig setup; (b) The dovetail root; (c) FE model of Dogbone rig; (d) FE model of the dovetail root.

Fig. 4. (a) Dogbone friction interface; (b) R=2 mm; (c) R=6 mm; (d) R=10 mm .

3.2. Friction interface geometry

In this study, the impact of different mesoscale interface geometry design parameters (contact edge radius and interface topology)
will be investigated, together with the influence of some of the key friction contact parameters for a fan blade system.

3.2.1. Interface edge radius and topology
Fig. 4(a) shows one of the four contact friction interfaces in the Dogbone root. Due to the symmetry of the setup, it will be

assumed that all four interfaces load up in an identical manner. The edge radius of the contact interface is regarded as an important
parameter that not only impacts the maximum hoop stress and fatigue life of the dovetail root design in fan blade systems [57],
but also influences the nonlinear dynamic response due to a concentration of contact pressure close to the edges. Fig. 4(b), 4(c) and
(d) show three friction interface geometries with different edge radii (R=2 mm, R=6 mm and R=10 mm) on the bone itself that
ill be considered in this study. It can be seen that, with the increase of the edge radius, the curvature on the edge becomes much

ess significant.
The second mesoscale interface feature of interest is the actual interface shape. Fig. 5 shows the three different interface profiles

hat have been investigated: (a) the Y-wise bump, (b) the Center bump, and (c) the Y-wise Concave respectively. These profiles
an mitigate the maximum hoop stress on the interface [58] and are expected to significantly affect the dynamic response [24] of
he Dogbone. Besides investigating the effect of the different shapes, a parametric study with different levels of bump height will
e performed for the center bump in Fig. 5(b). The results will be referenced to a flat-on-flat contact interface, which represents
he nominal case. To represent these mesoscale friction interface geometry, 250 × 125 meshing points are used for refined contact
nalysis using the semi-analytic solver.
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Fig. 5. Interface profiles: (a) Y Bump; (b) Center Bump; (c) Y wise Concave.

Fig. 6. (a) Pressure distribution in Dogbone rig dovetail root; (b) Contact pressure on the friction interfaces.

.2.2. Interface contact parameters
Different levels of the pre-loading applied to the Dogbone rig will be studied. For a fan blade system, the level of the pre-loading

ill be dependent on the centrifugal loading due to the rotation speed. In this study, four different pre-loading levels, including
00 N, 1000 N, 1500 N, and 2500 N will be considered. These pre-loading levels will be applied for nonlinear static analysis by
ulling one disk while clamping the other one using the developed FE model. The effect of the Coefficient of Friction (CoF) will
lso be investigated since fan blade roots are often dry film lubricated to mitigate the effects of fretting wear [59–61]. Based on the
revious experimental data [59], two CoF will be studied in this paper, which is 0.4 for the dry lubricated surface and 0.8 for the
urface without coating.

. Results

This section presents the numerical results using the proposed multi-scale approach for an analysis of the Dogbone rig. The
ffects of the interface geometry and contact parameters on the nonlinear dynamic response will be discussed.

.1. Nonlinear static analysis

Fig. 6 a shows the stress distribution from nonlinear static analysis of the Dogbone test rig, which was performed using ABAQUS.
Surface-to-surface hard contact is used on the flat contact interfaces. The end of the top disk sector is fully fixed while a pulling
loading of 1000 𝑁 is applied at the opposite side to the bottom disk. The resulting distribution of the normal pressure on the two
opposing lobes of the root is shown in Fig. 6b. Due to a predicted small deformation of the dovetail root, leading to an opening of
the root slot, the normal contact pressure is concentrated at the lower part of the interface but all of the interfaces stay in contact
with no opening of a gap appearing. Due to the symmetry of the test rig and loading conditions, the pressure distribution on the
other two doge bone lobes is the same.

The pressure distributions from the quasi-static analysis are summed up to obtain an equivalent force and moment vector at
the center of each contact interface, which will be used for the refined contact analysis in the semi-analytic solver. It is worth
noting that the obtained contact force for each interface can be affected by the selection of the penalty parameter. The choice of
8
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Fig. 7. (a) Reduced FE model; (b) First mode; (c) Second mode; (d) Third mode.

enalty parameters is mainly dependent on the criteria defined by the user. In this study, the contact stiffness (one of key penalty
arameters) that relates contact force to the penetration distance for the hard contact was chosen automatically by the solver to
ptimize the time increment. Such an approach has also been used in previous studies for the design of friction dampers [6,17],
here it showed to lead to good results.

.2. Linear modal analysis

Fig. 7(b), 7(c) and 7(d) show the first three bending modes of the test rig FE model from a linear modal analysis, where the
ontact interfaces were fully glued. The first out-of-plane mode will thereby be the focus of this study.

.3. Effects of the interface edge radius

The overall contact load obtained from the nonlinear quasi-static analysis is applied to the semi-analytic contact solver. The
ontact interface is discretized into a much finer mesh (250 × 125 meshing points) so that different mesoscale profiles can be well
epresented. The computation of the refined contact analysis for each profile only takes around 20 s using the semi-analytical solver.
ig. 8 shows the resulting contact pressure distribution at the edge of the interface for different values of the edge radii. With the
ncrease of the edge radius from 0 mm (no radius) to 10 mm, the maximum contact pressure at the edge of the interface is reduced
ignificantly from 250 MPa to 140 Mpa. As the radius increases, the pressure distribution starts to move slightly toward the center
f the contact surface, leading to a more uniform pressure distribution and a smaller maximum contact stress. The detailed pressure
istribution results are being expanded out to the 3D FE model to allow a nonlinear dynamic analysis. The gap on the contact
nterface for different levels of radii considered in this study is zero.

Fig. 9 shows the influence of the edge radius on the nonlinear dynamical response, in terms of the resonance frequency and
riction loss factor 𝜂 where the damping is mainly contributed from the friction interface. The equivalent force is evaluated using
he E-EBM by applying the periodic forcing in the middle of the bone and in the out-of-plane direction. It can be seen that with an
ncrease in the force the resonance frequencies drop by approximately 5% for all radii, while the damping initially increases before
t starts to drop again. The increase in damping is thereby attributed to an increase of sliding elements at larger amplitudes, while
he decrease is mainly due to the macro-slip at the contact interface where the interface lost the contact. Fig. 10 shows the energy
issipation distribution across the contact interface at different excitation levels when the edge radius is 2 mm. With the increase
f the force level, the energy dissipation gradually grows from the center of the contact outwards.
9
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Fig. 8. Normal contact pressure from refined contact analysis (a) R=0 mm; (b) R=2 mm; (c) R=6 mm; (d) R=10 mm;.

Fig. 9. (a) Resonance frequency (b) Friction loss factor.

Comparing the effects of the three radii, it can be seen that the rate of increase/decrease in both friction loss factor and resonance
requency has been reduced by the increasing edge radius, and hence that the system becomes less nonlinear as the edge radii
ncrease. This is in agreement with the contact pressures in Fig. 8, where it could be seen that the contact pressure of the inner
ontact area increases with the edge radius leading to a higher sliding limit.

.4. Effects of interface profiles

Fig. 11 shows the normal pressure distribution of various interface profiles as described in Fig. 5. Not surprisingly the pressure
s concentrated along the middle of the interface for the Y-wise bump profile, in the center for the central bump profile, and along
he edge for the Y-wise concave profile. The gap distribution for the central bump configuration, obtained from the refined contact
nalysis, is shown in Fig. 12. It gives an example of how the gap distribution is obtained for the central bump profile through
he initial gap and the deformation distribution on the contact interface. The initial gap refers to the space between two contact
10
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Fig. 10. Energy dissipation on the friction interface with a edge radius of 2 mm with increasing force levels (a) 0.05 N (b) 0.2 N (c) 0.6 N (d) 0.8 N.

Fig. 11. Normal contact pressure from refined contact analysis (a) Y-wise Bump; (b) Center Bump; (c) Y-wise Concave.

nterfaces without any applied contact loads. The deformation distribution refers to the deformation of the interface after the contact
oad is applied. The difference between the initial gap and the deformation is therefore the gap distribution.

Fig. 13 shows the resonance frequencies and friction loss factors of all three profiles. Once more the resonance frequencies
decrease with the force level while the loss factors increase due to the increasing slipping area on the friction interface. Interestingly
the global trends for these profiles are quite similar, given the strong variations in the normal load distribution, but the gradients
of the curves are somewhat different. For the flat and the Y concave profile, both resonance frequencies, and damping change
very rapidly once sliding occurs since their normal pressure is localized at the interface edges and once they break loose, nothing is
stopping the contact from sliding. The Y and C bumps change much more gradually as their contact pressure distribution is covering
a much wider contact zone. The initial resonance frequencies for the Y and C bumps are lower than those of the Y concave and
flat interface. This can be attributed to a reduction in the overall interface stiffness since the bumped profiles lead to gaps or much
lower pressures on the edge of the contact interface. The loss factors of these four profiles are also slightly different, especially at low
11
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Fig. 12. An example of the gap distribution of a central Bump.

Fig. 13. The comparison of three different interface geometries (a) Resonance frequency (b) Friction loss factor.

excitation levels. The bumpy interfaces show a steady growth of damping while the other two show an initial steep and unsteady
increase in excitation levels due to a much more localized pressure distribution at the contact interface. Overall, with a different
mesoscale friction interface geometry, the resonance frequency drops by up to 5.7% while the growth of the friction loss factor can
up by an order of magnitude indicating that different mesoscale interface profiles may be used to design the nonlinear dynamic
response. The distribution of energy dissipation for these four contact interface profiles at the excitation level of 2N is shown in
Fig. 14. The energy distribution is consistent with the pressure distribution of these four interface profiles as shown in Fig. 11.

4.5. Effect of the level of interface bump height

Figs. 15 and 16 show the variation of interface pressure and gap distribution with the increase of the bump height for the Central
ump interface from 40 μm to 140 μm. While the lowest bump provides a relatively even distribution across the entire interface,
ach increase leads to a more concentrated pressure in the center. The maximum pressure increases from 25 Mpa to 40 Mpa as
he bump height increases. Fig. 16 shows that the contact area decreases with an increasing bump height. Applying the obtained
ressure distributions and gaps to the FE model allows to compute the nonlinear dynamic response.
12
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Fig. 14. The comparison of Energy dissipation on three interface geometries.

Fig. 15. The normal pressure of the Central Bump at diffident levels of bumpiness.

Fig. 17 shows the change of the nonlinear modal properties for the central bump with different heights. As the bump height
ncreases, the linear resonance frequency reduces from 700 to 600 rad/s due to the reduction in the contact area. As the force level
rows, the resonance frequency increases initially and then goes down a bit. The initial increase can be attributed to a closing of the
nitial gaps as vibration occurs, leading to an increase of interface stiffness. The decrease at higher force levels is due to the onset of
lip at the interface. The resonance frequency of the interface profile with low bump heights are more sensitive to large force levels,
hile the interface with higher bumps behave more linearly at large amplitudes but are quite sensitive to low amplitude excitation.
he interfaces with higher bumps lead to smaller damping at high amplitudes, while they appear to generate a bit more damping
t low amplitudes.

.6. Effects of contact parameters

The effects of the pre-load and the interface COF on the nonlinear modal properties has also been investigated for the Central
ump case. The height of the central bump is 60 um. Fig. 18 shows the resulting contact pressure distribution for four different

pre-loading levels with a CoF of 0.4. As expected, the contact area and maximum contact pressure increase with the pre-loading
levels. It is worth noting that once the contact pressure reaches the edges, a significant jump in the maximum contact pressure can
be observed due to the singularity at the edge. Figs. 18b and 18e show a comparison of the pressure distribution of the central bump
for CoF of 0.4 and 0.8 under the same pre-load of 1000 N. Both pressure profiles share the similar maximum contact pressure and
distribution. However, for a higher CoF, the distribution of the contact pressure is more centralized. Fig. 19 shows the resulting gap
13
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Fig. 16. The gap distribution of the Central Bump at diffident levels of bumpiness.

Fig. 17. Nonlinear dynamics of the Central Bump at diffident levels of bumpiness.

istributions of the center bump at the different pre-loading levels and CoFs. As expected, the gap area decreases with the increase
f pre-load. For the higher CoF of 0.8 shown in Fig. 19e, it can be seen that the gap area is slightly larger than for the contact
nterface with a CoF of 0.4 shown in Fig. 19b.

Fig. 20 shows the comparison of the nonlinear modal properties of the central bump at four pre-loading levels and for two
ifferent CoF. The solid line represents the interface with a CoF of 0.4 while the dashed line represents the interface with a CoF
f 0.8. The normal load has a significant impact on the resonance frequencies of the system, leading to a nearly 100 rad/s shift
rom the lowest to the highest load. Similar to the increase in bump height, the initial resonance frequencies increase due to the
ncreasing deformation that close the gap on the edges but then tend to drop again as the interface starts to slip more so that the
riction damping effect dominates. The resonance frequency is not too much affected by the CoF change, indicating that a bump
rofile is relatively robust in terms of frequencies. Not surprisingly the friction loss factors reduce significantly with an increasing
re-load since a higher load leads to more stuck elements and hence less energy dissipation. The CoF shows a significant effect on
he damping behavior, where the higher CoF almost maintains a stuck condition throughout the investigated range, while the lower
riction coefficient shows much more damping.

These obtained results can be compared, in the first instance, to available measurement results in the literature [24] obtained
from a very similar test setup. The comparison shows that the results from the simulations in this study share very similar trends
in the loss factor curves for both flat-to-flat friction interfaces and crowning bump interfaces at different pre-loading levels where
the friction loss factor changes abruptly for the flat-on-flat surface while the transition is more smooth for the crowning bumped
surface.
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Fig. 18. Normal pressure of the Central Bump at diffident levels of Preloading and CoFs.

Fig. 19. Gap distribution of the Central Bump at diffident levels of Preloading and CoFs.

. Conclusions

The objective of this study was to initially develop a computationally efficient framework that allows to assess influence of
esoscale friction interface geometries, such as waviness or edge radii, on the nonlinear dynamic response of large assembled

tructures through a multi-scale approach. The developed approach was then applied to a blade root test setup to highlight the impact
f mesoscale parameters on the nonlinear dynamic response. The mesoscale friction interface model was effectively integrated into a
acro-scale FE model for multi-scale analysis of the friction interface geometry. To further improve the efficiency of the multi-scale

nalysis, advanced nonlinear modal analysis, and an extended energy balance method were added to an existing framework.
A fan blade dovetail damping testing rig model was used as a case study. A nonlinear dynamic model of the system was created,

ollowing the developed framework and the effect of a series of different mesoscale interface geometries, such as surface bumps and
dge radii, on the nonlinear modal properties were numerically investigated for the first time. Due to regular lubrication of such
nterfaces different contact parameters including pre-loading levels and the coefficient of friction were also simulated.

The results have demonstrated that the influence of mesoscale interface profiles on the damping and resonance frequencies can
e quite significant. The edge radii can greatly change the contact stress on the friction interface, and significantly impact the
onlinear behavior of both friction loss factor and resonance frequencies. The height of a bumped profile can be used to influence
he distribution of contact loads and area at the interface, significantly shifting the resonance frequencies and affecting the sensitivity
f the damping toward the force levels. As expected a very strong dependency on the normal load levels was observed where higher
oads lead to stiffer and more linear systems. A higher CoF was shown to make the resonance frequencies and damping ratios less
ensitive to the forcing level.
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Fig. 20. Nonlinear dynamics of the Central Bump at diffident levels of bumpiness.

The study has shown that an accurate representation of the mesoscale interface geometry is highly recommended, since it can
mpact the observed nonlinear dynamic response significantly, and the current state of the art to model a flat-on-flat interface
ondition should not be considered accurate enough. In the future, a pre-optimized mesoscale friction interface geometry may be
otentially used to improve the dynamic design of complex and nonlinear systems. The work opens a new research direction of the
esign of the friction interface for general friction involved mechanical systems.
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