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Abstract: Ice formation on aircraft surfaces poses significant safety risks, and current detection sys-
tems often struggle to provide accurate, real-time predictions. This paper presents the development
and comprehensive evaluation of a smart ice control system using a suite of machine learning models.
The system utilizes various sensors to detect temperature anomalies and signal potential ice formation.
We trained and tested supervised learning models (Logistic Regression, Support Vector Machine,
and Random Forest), unsupervised learning models (K-Means Clustering), and neural networks
(Multilayer Perceptron) to predict and identify ice formation patterns. The experimental results
demonstrate that our smart system, driven by machine learning, accurately predicts ice formation
in real time, optimizes deicing processes, and enhances safety while reducing power consumption.
This solution holds the potential for improving ice detection accuracy in aviation and other critical
industries requiring robust predictive maintenance.

Keywords: aerospace icing prevention; risk mitigation in aviation; graphene-based sensors; dynamic
ice sensing; deicing; conductive polymer applications; smart sensors; PEDOT:PSS polymers; 2D
materials; micromachines

1. Introduction

Ice formation on aircraft surfaces represents a critical safety hazard, thus signifi-
cantly impairing aerodynamic performance by increasing drag and reducing lift. This
phenomenon, known as icing, occurs when supercooled water droplets in the atmosphere
freeze in contact with an aircraft during flight. The presence of ice can lead to increased fuel
consumption, reduced engine performance, and even catastrophic failure of aircraft control
systems. Consequently, the development of effective deicing and anti-icing technologies is
crucial to aviation safety and operational efficiency [1,2].

The primary technologies currently in use include pneumatic systems, electrothermal
heating elements, fluid-based anti-icing, and hybrid ice protection technologies [3–5].

Pneumatic systems work by inflating rubber boots on leading edges to break the ice.
They can be manually or automatically activated, and their effectiveness relies on timely
activation to prevent ice buildup [6]. Electrothermal heating elements, embedded in critical
areas of the aircraft surface, melt and remove ice by utilizing electrical heating elements.
While efficient, they consume a significant amount of power and often require continuous
activation [7].

Fluid-based anti-icing involves spraying glycol-based solutions onto aircraft surfaces,
thus preventing ice formation by lowering the freezing point. However, their efficacy is
limited to specific flight conditions, and they require regular reapplication [8]. Hybrid
ice protection technologies integrate pneumatic, electrothermal, and fluid-based methods
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to create a comprehensive solution. Although these systems are effective due to the
combination of techniques, their complexity and energy demands can be prohibitive [9].

Despite advancements in pneumatic, electrothermal, fluid-based, and hybrid anti-icing
systems, these solutions are often limited by manual activation, high energy consumption,
or complexity. As a result, there is a growing demand for automated, predictive, and
energy-efficient ice detection and removal systems. Our research aims to address this gap
by developing an innovative smart ice control system using machine learning models to
predict ice formation. This system should work as an interpreter for the signal coming from
a graphene-based sensor [10–12], as well as a provider of local heating only when necessary.

Graphene, a two-dimensional material with exceptional properties, offers significant
potential in developing advanced ice detection systems. Graphene’s high thermal and
electrical conductivity, combined with its mechanical strength and flexibility, make it an
ideal material for sensor applications [13,14]. In particular, graphene can efficiently conduct
heat and electricity, which is crucial for real-time ice detection and actuation systems. These
unique properties of graphene have been extensively reviewed in the context of sensor
applications [15–18].

In this study, we focus on utilizing graphene-based thermoresistors for ice detection in
aircraft. Our system leverages the unique properties of graphene to enhance the accuracy
and efficiency of ice detection. The system integrates machine learning models to predict ice
formation patterns, thereby optimizing deicing processes and reducing power consumption.
This approach not only improves safety but also contributes to the operational efficiency
of aircraft.

The characterization of graphene is essential to validate its suitability for this appli-
cation. Instead of performing our own characterization, we utilized graphene that was
previously characterized and detailed in the work by Sibilia et al. (2023). In their study,
the graphene nanoplatelets (GNPs) were produced through thermal expansion and liquid
exfoliation, followed by a thorough analysis using various techniques. Raman spectroscopy
confirmed the quality and number of graphene layers, while Scanning Electron Microscopy
(SEM) was employed to examine the surface structure of the graphene sheets. Additionally,
the electrical and thermal conductivities were assessed, thus validating the high quality
and suitability of the graphene used in our sensors [19].

Furthermore, the functionalization of graphene was carried out to enhance its per-
formance. Chemical functionalization involves introducing functional groups to improve
dispersion in the composite material. Physical treatments, such as plasma treatment, were
applied to modify the surface properties of graphene, thus enhancing its interaction with
the matrix material and overall sensor performance [20–23].

Supercooling is crucial to the method of detecting ice formation because the freezing
process is exothermic and releases heat, thus causing a temperature rise in the surrounding
area. Substantial heat is released in a short time during a freezing event on the airplane
wing surface, and this thermal anomaly can be detected using thermocouples without prior
knowledge of the precise freezing point. The developed device detects the presence of ice
and activates melting via the same graphene-based resistance system.

This research is significant for several reasons. First, using machine learning algo-
rithms allows for the accurate detection and prediction of ice formation patterns, thus
reducing false positives and enabling timely deicing actions. By leveraging supervised
and unsupervised machine learning algorithms, as well as neural networks, the goal is to
optimize the deicing process in real time while reducing power consumption. Machine
learning techniques such as decision trees, support vector machines, and neural networks
are effective for this purpose, thus providing robust models for classification and prediction
tasks [24–27].

The smart ice control system presented in this research lays the foundation for further
exploration into predictive ice detection and control. Future developments could include
enhanced integration with avionics for seamless communication between the ice control
system and other critical flight systems, adaptive learning algorithms that continuously
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refine the system’s ice detection and removal capabilities based on in-flight data, and the
extension of this technology to other industries where ice formation poses a challenge,
such as wind turbines and power lines. Ultimately, this research advances predictive ice
detection and control, thus contributing to safer and more efficient operations in aviation
and beyond.

2. Experimental Setup and Methodology
2.1. Concept of Investigation and Sensor Preparation

The methodology employed in this study is based on one fundamental principle of
thermodynamics [28]. The freezing process of water does not always commence immedi-
ately when the temperature (T) drops below its freezing point (T f ) but often begins at a
significantly lower temperature, which is a phenomenon known as supercooling [29].

In fact, water freezing is an exothermic process, thereby releasing heat that influences
its surroundings. During icing events on aircraft wings, a significant amount of heat is
released over a short period. By using thermocouples to measure the temperature of the
wing surface, the instant heat release can be captured without prior knowledge of the
freezing point. Our device detects ice formation and melts it by sending a current through
a graphene resistor.

In the temperature profiles captured via thermocouples, “Temp1” and “Temp2”, indi-
cate ice detection in the so-called “passive method”. The term “passive” is used because no
active electrical signal is sent through the sensing area; instead, the system observes varia-
tions in terms of resistance and sharp changes in temperature, which allow for the analysis
of the events occurring on the surface. These temperature changes are different from those
caused by evaporation or external temperature fluctuations. Indeed, temperature changes
due to freezing are much more abrupt than by the other aforementioned mechanisms. By
monitoring the temperature profiles, the onset and development of ice formation can be
detected, thus providing critical data for understanding and mitigating ice accretion on
aircraft surfaces. For wet (glaze) ice, the stagnation region remains at 0 ◦C due to the latent
heat released during freezing. For dry (rime) ice, the temperature peaks below freezing. A
characteristic temperature profile can be measured using thermocouples isolated from the
ice accretion area by prepreg composite materials [30].

Prepregs are composite materials consisting of reinforcement fibers preimpregnated
with a thermoplastic or thermoset resin matrix. Cured under high temperature and pressure,
they exhibit unique properties such as high strength, uniformity, and lightweight nature.
The prepreg used in this project is Fibre Glast Prepreg, which is shipped between layers of
backing cloth to prevent sticking. It is partially cured for handling and typically stored in
cool conditions.

First, it is necessary to prepare the shape required for the experiment, which is a square
of 11 cm. The prepreg is partially cured, which means that it is in the B-stage. It can be
trimmed, pleated, and formed using a knife or a pair of scissors. To obtain a glossy finished
component, it is necessary to have a flawless mold, which has been waxed and coated
with PVA.

Then, it is necessary to peel off the backing cloth from one side and adapt this side to
the mold. The prepreg surface is very sticky, so it is important to place the material carefully
into the mold. Once the layer is fixed over the mold, it should not be moved anymore.

Two sheets of Teflon have been used as a mold (Teflon was selected as a mold material
due to its nonstick properties, high thermal stability, and chemical inertness, which prevent
contamination and ensure easy release of the composite material without damaging the
graphene-based sensors), and the layers of prepreg have been placed in the middle to
ensure a smooth surface. It is possible to continue placing layers on top of each up to a total
thickness of 1/4 inch (0.654 cm) at a single time. The prepreg structure used in this work is
multilayer; thermocouples and graphene strips have been placed between the layers.

After the first layer is fixed on the mold, the second cloth is peeled off, and another
piece of graphene measuring 0.5 cm is placed over the first layer. Each graphene strip used
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in the experiment measured approximately 0.5 cm in width and varied in length up to
5 cm, depending on the specific test setup. The graphene employed was multilayered, with
a thickness ranging from 70 µm to 85 µm. These strips were free-standing and directly
integrated into the glass–fiber reinforced polymer (GFRP) without any supporting substrate.
The setup prepared is composed of three layers; between the second and the third layer
were placed 2 thermocouples.

Once the layers and the thermocouples are placed in the mold, the prepreg must be
compressed in order to allow bonding, remove any trapped air between the layers, and
squeeze out any excess resin. To do this, the prepreg has been compressed with 2 steel
plates. The resin will naturally become thinner as the temperature is raised, and there will
be resin flow prior to a full cure of the resin.

Heat and pressure are essential to completely cure the prepreg. While required
pressure can be achieved using a press, an autoclave with temperature and pressure controls
is ideal. Generally, an oven is needed to manage temperature ramp-up, ramp-down, and
maintain uniform temperature throughout the curing process.

All curing cycles start with a temperature ramp-up and conclude with a ramp-down.
The variation lies in the target temperature and the duration needed for a complete cure.
Temperature is maintained throughout the cycle and then reduced at a rate of less than
5 ◦C/min to at least 150 ◦C before the part is removed from the oven.

After curing, the part cools at room temperature and is then removed from the mold.
If the prepreg is not sturdy or remains sticky, adjustments to curing time or temperature
may be necessary.

Figure 1 illustrates the preparation and setup of the sensor and system. Part (a) shows
a clear view of the sensor preparation after the stage of compression, thus detailing the
arrangement of cables, thermocouples, graphene resistance, and prepreg layers. Part (b)
presents the flow diagram of the system, thus depicting the sequence from temperature
sensing to ice detection and the activation of the graphene resistance for temperature control.

Figure 1. (a) Setup of the graphene-based ice detection system. (b) Flowchart of the smart ice
detection and control system.

Figure 2 illustrates the synchronized temperature profiles from two sensors, “Temp1”
and “Temp2”, thus showing the progression of ice formation and melting over time. Key
stages, such as supercooled water formation, latent heat release, and icing development,
are annotated to highlight crucial temperature changes that indicate the presence of ice.
The heating phase, where applied heat melts the formed ice, is evident in the gradual
temperature rise. This collective view of the temperature profiles helps demonstrate
the effectiveness of ice detection using dual thermocouples and shows how the system
accurately identifies and manages icing events through distinct temperature patterns.
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Figure 2. Temperature profiles captured via thermocouples: (a) Icing formation with stages like super-
cooled water and latent heat release annotated. (b) Temperature profile indicating ice detection and
subsequent melting via resistance activation. (c) Cyclic phases have no ice formation. (d) Temperature
profiles without ice formation.

2.2. Experimental Setup

The central objective of this work is the development of a smart ice detection and
control device capable of autonomous operation to minimize operator intervention. This
system leverages existing technologies while ensuring simplicity, cost-effectiveness, and a
streamlined design. Compatibility between Arduino (an open source electronics platform
for building digital devices) and Raspberry Pi (a small single-board computer for various
programming tasks) was assessed to identify the optimal configuration for data collection
and system management. It was determined that both Arduino uno and Raspberry Pi 3b+
could function complementarily, with Arduino handling data collection (specifically tem-
perature data), while Raspberry Pi manages the system and hosts machine learning models.

Graphene-based materials have shown significant promise for various smart sensor
applications, including electronic noses (e-noses) for detecting volatile organic compounds.
For example, Rabchinskii et al. (2023) explored the use of graphene in sensors for environ-
mental monitoring, thus highlighting its sensitivity and versatility [31]. Similarly, Tan and
Ang (2021) reviewed advancements in graphene-based electronic materials for sensors and
highlighted their potential in flexible and wearable devices [32]. These studies demonstrate
the broad applicability and effectiveness of graphene-based materials in enhancing sensor
performance, which supports the rationale for their use in our ice detection system.

Figure 3 illustrates the scheme of the smart ice detection system. Raspberry Pi was
selected for its comprehensive computer-like functionality and versatility, including a
powerful microprocessor, large memory, and versatile I/O ports, thereby making it ideal
for managing the system and implementing predictive ice detection algorithms. Arduino,
serving as a microcontroller, acquires temperature data and communicates these data to
Raspberry Pi via a serial port. The thermocouple amplifier that was used offers optimal
sensitivity and a broad temperature range, thus enabling effective data collection during
ice formation studies.
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An eight-channel relay module acts as a switch, thus activating heating elements
during passive deicing methods. For experiments requiring more than two thermocouples,
a CD74HC4067 multiplexer was incorporated to extend data collection capabilities. An
Adafruit MAX31856 was used to amplify the signal coming from the sensing area.

Figure 3. Schematic of the smart ice detection and control system illustrating the connections
between the Arduino Mega 2560, Raspberry Pi, relays, temperature sensors, and graphene resistance
heating element.

The sensing area was composed of graphene strips GS50-type produced by NANESA
SRL (Arezzo, Italy). In fact, graphene is a unique material known as a zero-gap semicon-
ductor, because its conduction and valence bands meet at the Dirac points. This property
allows it to conduct electrical charges through both electrons and holes, thereby providing
ambipolar conduction. In terms of thermal properties, graphene relies on phonons for heat
conduction, as with other semiconductors, and achieves the highest thermal conductiv-
ity in its single-layer form. Mechanically, graphene is incredibly strong yet lightweight
and flexible, thus making it highly resistant to mechanical stress. Its optical properties
include high transparency despite its ability to absorb a fraction of incident light. These
electrothermal properties make graphene an innovative, versatile material suitable for
applications requiring excellent conductivity and durability. The electrical and mechanical
properties of graphene make it ideal for conducting current in the ice mitigation process.
Graphene’s high thermal conductivity enables rapid heating to melt detected ice accu-
mulations. Graphene has been embedded between two prepreg sheets, as described in
Section 2.1.

Red and green LEDs provide visual indicators of the system state, while an I2C LCD
screen displays operational messages. The final configuration integrates all components
within a metallic enclosure for organized port access and visual indicators.

3. Machine Learning for Ice Detection and Control

Machine learning algorithms can effectively detect and control ice formation by lever-
aging a combination of Python 3.7 programming tools and neural network architectures.
Python, a high-level programming language, offers a rich ecosystem of open source li-
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braries suitable for scientific computing and data analysis. This versatility enables the
development of sophisticated machine learning models using libraries like NumPy, Pandas,
SciPy, and scikit-learn. In fact, machine learning (ML) algorithms are broadly classified into
supervised, unsupervised, semisupervised, and reinforcement learning, each with having
unique applications depending on the nature of the problem being solved. Supervised
learning relies on labeled data to train predictive models, while unsupervised learning
seeks patterns in unlabeled datasets to identify clusters and relationships. Semisupervised
learning combines elements of both approaches, and reinforcement learning enables models
to improve through a feedback loop of rewards and penalties.

3.1. Python Programming and Libraries

Python’s high-level, object-oriented programming facilitates concise and efficient code
writing, while its extensive modules and packages provide robust tools for data analysis
and visualization. Key libraries used in this project include the following:

• SciPy: An open-source library for scientific computing offering modules for optimiza-
tion, linear algebra, signal processing, and special functions.

• NumPy: A numerical computing library that adds support for multidimensional
arrays and high-level mathematical functions.

• Pandas: A data manipulation library designed for numerical tables and time series.
• Matplotlib: A plotting library that integrates with NumPy to provide an API for

embedding plots in applications.
• scikit-learn: A machine learning library featuring algorithms for classification, regres-

sion, clustering, and model evaluation.

A supervised machine learning approach using labeled training data is highly effective
for ice detection tasks. Various algorithms such as Logistic Regression, Random Forests,
Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs) excel in binary
classification and regression tasks, thus making them suitable for this application. In our
research, we will use and compare these methods to determine the most efficient algorithm
for predicting ice formation.

Among these, the K-Means algorithm, which is an unsupervised clustering method,
will be used to group data based on their proximity to k randomly selected centroids. It
uses distance measurements like Euclidean, Manhattan, Chebyshev, and Minkowski to
determine cluster membership.

Logistic Regression, a supervised binary classification model, will be employed to
predict discrete outcomes based on independent variables using a probability function.
This model is particularly effective in situations where the outcome variable is binary, such
as detecting the presence or absence of ice.

Decision Trees, which are hierarchical models used for classification and regression
tasks, will be used to organize decision rules into nodes and split data based on criteria
such as information gain and the Gini index, thus creating a tree-like structure that is easy
to interpret.

Random Forests, an ensemble learning method, will enhance the performance of
decision trees by building multiple trees and averaging their predictions. This approach
reduces overfitting and improves accuracy.

Support Vector Machines (SVMs), which excel in classification and regression problems
by maximizing the geometric margins between classes, will be used for their effectiveness
in high-dimensional spaces.

Artificial Neural Networks (ANNs), inspired by biological neurons, will be used for
their capability to learn data patterns through interconnected layers. These networks,
consisting of input, hidden, and output layers, can be adapted for various tasks, including
classification, regression, and clustering.

Advanced neural network architectures will further extend the capabilities of ANNs
to tackle more complex tasks. Convolutional Neural Networks (CNNs) will process multi-
dimensional input through convolutional, pooling, and fully connected layers, thus making
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them highly effective for image classification and object detection. Recurrent Neural Net-
works (RNNs), which maintain hidden states through time, will be useful for processing
sequential data. Long Short-Term Memory (LSTM), an advanced form of RNN, will in-
corporate memory cells to learn long-term dependencies, enhancing its ability to model
temporal sequences [33,34].

In conclusion, our study will employ and compare these machine learning algorithms
to determine the most effective approach for detecting and controlling ice formation, thus
ensuring aircraft safety and operational efficiency.

3.2. Data Collection and Ice Detection Using Machine Learning Algorithms

This section presents the application of machine learning algorithms to detect ice
formation based on the experimental data collected. The study focuses on supervised and
unsupervised learning approaches to analyze data from both active and passive methods.
The collected data, formatted in comma-separated files and graphical images, underwent
machine learning processing.

The data were collected according to the experimental setups detailed in Section 2.2.
In the method used, real-time temperature measurements were taken to observe graphical
patterns indicative of ice formation, such as the notch-type peak points being visible, as
well as a camera positioned for validation. “No ice” and “ice” presence were recorded and
labeled with “0” = no Ice, “1” = Ice. Table 1 contains a sample of the data collected through
the data collection.

The dataset was processed to be ready for the machine learning algorithms and other
ice detection algorithms. The first processing technique applied was the conversion of the
time string to double. Missing data or anomaly data that were observed were removed
from the data set programmatically.

The dataset was transformed by combining every five consecutive temperature data
points into a single point. The modal class for the five data points was considered the target
class for the combined point.

The ice detection algorithm was evaluated using data collected during ice formation
experiments and in real-time scenarios. For collected data, the algorithms were assessed in
the Jupyter Notebook environment on a Windows operating system. The evaluation em-
ployed machine learning techniques with 5-fold cross-validation, which involves dividing
the dataset into training and testing subsets. The dataset was split into a 1:5 ratio for testing
and training. Here are key terms used in performance evaluation:

• True Positive (TP): The relevant class correctly detected by the model (ice formation).
• True Negative (TN): The irrelevant class correctly identified (nonice formation).
• False Positive (FP): The irrelevant class mistakenly detected as relevant.
• False Negative (FN): The relevant class mistakenly detected as irrelevant.

3.3. Metrics

We introduce some useful definitions based on the key terms for performance evaluation:

• Precision: Measures the portion of correctly detected relevant data points out of all
detected relevant points.

Precision =
TP

TP + FP
(1)

• Recall: Measures the correctly detected relevant data points among all existing rele-
vant points.

Recall =
TP

TP + FN
(2)

• F1 Score: Balances precision and recall.

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)
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• Accuracy: Indicates the proportion of correctly detected relevant and irrelevant data
points among all data.

Accuracy =
TP + TN

TP + FN + FP + FN
(4)

Table 1. Sample data collected using the passive method.

s/n Time T1 (°C) T2 (°C)

1 18:42:55.632 6.732 6.760
2 18:42:55.797 6.621 6.683
3 18:42:56.009 6.348 6.487
4 18:42:56.216 6.041 6.213
5 18:42:56.430 5.704 5.830
6 18:42:56.590 5.406 5.545
7 18:42:56.798 5.028 5.214
8 18:42:57.007 4.686 4.852
9 18:42:57.213 4.363 4.529
10 18:42:57.420 4.040 4.239

3.4. Peak Identification for Ice Detection

Ice detection relies on peak identification in the method used. Peak characteristics
like maximum and minimum heights, widths, and prominence are considered to mini-
mize false positives. Figure 4 defines the peak properties, while Table 2 summarizes the
values obtained.

Figure 4. (a) Definition of peak properties. (b) Ice detection point.

Table 2. Values obtained after several experiments.

s/n Peak Properties Unit Passive Mode

1 Maximum Height ◦C 2.0
2 Minimum Height ◦C 0.8
3 Maximum Width s 1.5
4 Minimum Width s 0.5

3.5. Unsupervised Learning Approach

Unsupervised learning aims to identify ice detection patterns based on clustering. The
K-Means algorithm was used, where the k value was set to 2, thereby representing two
clusters: one for ice and one for no ice. Each cluster has a centroid, which is the central point
of the data points within that cluster. The algorithm classifies the data into ice and no-ice
clusters by computing the Euclidean distance between each data point and the centroids.
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The Euclidean distance Dist(t, c) between a data point t and a centroid c is calculated using
the following equation:

Dist(t, c) =

√√√√ 5

∑
i=1

(ti − ci)2 (5)

In this equation, ti represents the individual data points, and ci represents the coordi-
nates of the centroid. The distance Dist(t, c) helps determine the proximity of each data
point to the centroids. Based on this distance, each data point is assigned to the nearest
centroid, thereby classifying it into either the ice or no-ice cluster.

Table 3 provides a sample of the fitted data used for clustering, and Figure 5 visualizes
the k-means classification, thus showing how the data points are grouped based on their
proximity to the centroids.

Figure 5. Ice detection using K-Means algorithm.

Table 3. Data fitted for the supervised learning algorithm.

t1 t2 t3 t4 t5

6.732 6.621 6.348 6.041 5.704
6.621 6.348 6.041 5.704 5.406
6.348 6.041 5.704 5.406 5.028
6.041 5.704 5.406 5.028 4.686
5.704 5.406 5.028 4.686 4.363

3.6. Supervised Learning Approach

The supervised learning approach involves labeling data points to identify those
resulting in ice formation. The algorithms used include K-Nearest Neighbors (KNNs),
Logistic Regression, Random Forests, Support Vector Machines (SVMs), and Multilayer
Perceptrons.

Logistic regression models classify data based on probabilistic thresholds. Table 4
shows the logistic parameters obtained, and Equation (6) defines the logistic function.

ln
(

π

π + 1

)
= −6.59001252 − 0.0326796t1 + 0.0278647t2

+ 0.10516002t3 + 0.04234012t4 − 0.15719197t5

(6)
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Table 4. Logistic parameters for the regression model.

Parameters Values

t1 Coefficient −0.0326796
t2 Coefficient 0.02786471
t3 Coefficient −0.02323838
t4 Coefficient 0.10516002
t5 Coefficient 0.04234012

Intercept −6.59001252

4. Results

This section outlines the experimental and nonexperimental results collected during
the project. The experimental results were obtained from the ice formation experiments
discussed above, include the graphs and values. The nonexperimental results consist of the
performance evaluation of the ice detection models developed in Python using the Jupyter
Notebook environment.

Figure 5 shows the results obtained from the K-Means algorithm. The first tempera-
ture is plotted against the last temperature, and the centroid computed by the K-Means
algorithm is used to classify the data points. The plot shows that the data points indicating
ice detection are well separated from the data points indicating no-ice detection. However,
there are false detection points indicated by the colors overlapping on each other.

When the system detects the presence of ice, the program gives a message indicating
which thermocouple is affected by ice and the corresponding temperature measured. This
is illustrated in Figure 6. Part (a) shows the Python output with the detected ice event.
Part (b) presents the temperature profile graph with the red and blue lines representing
the two different thermocouples, thus highlighting the ice detection point circled in the
graph. Part (c) displays the LCD screen showing the ice detection message and the blue
LED indicator turned on. Part (d) shows the prepreg setup with a visible formation of
ice over the sensing area. The setup consists of three layers, with graphene strips placed
between the layers and thermocouples embedded for temperature measurement. The ice
formation demonstrates the effectiveness of the graphene-based sensors in detecting ice.

Performance Evaluation of Ice Detection Algorithm

Figure 7 shows the heatmap representing the performance metric, which includes
precision, recall, F1 score, and accuracy obtained from each of the classifiers. From the map,
it is possible to see that the Multilayer Perceptron has the highest accuracy. However, it is
necessary to focus on the detection of the relevant class, which is given by precision and
recall. Therefore, in order to find a balance between precision and recall, the focus is set
on the F1 score. The K-Nearest Neighbor and Decision Tree algorithm had the highest F1
scores. Thus, the algorithms that are effective in detecting ice are the K-Nearest Neighbor
(KNN) and the Decision Tree algorithm. The Receiver Operating Characteristic (ROC)
curve, which is a graphical plot illustrating the diagnostic ability of a binary classifier
system as its discrimination threshold is varied, which is shown for all classifier models in
Figure 8.
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Figure 6. (a) Sensor output showing temperature data and ice detection indication in the Python 3.7
shell. (b) Temperature profiles with Temp1 (red line) and Temp2 (blue line); the circled area indicates ice
formation. (c) LCD display and blue LED light confirming ice detection. (d) Prepreg setup with visible
ice formation over the sensing area illustrating the graphene-based sensors’ ability to detect ice.

Figure 7. Heatmap comparing the performance of six machine learning algorithms across four metrics.
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Figure 8. Receiver Operating Characteristic curve for all classifier models.

5. Discussion

The results of this project demonstrate the feasibility and effectiveness of using ma-
chine learning algorithms to develop a smart system for detecting and controlling ice
formation on aircraft surfaces. Several key findings emerged from the experimental evalua-
tion of the passive and active detection methods, which were tested using supervised and
unsupervised learning models.

The unsupervised K-Means Clustering algorithm was able to distinguish between ice
and no-ice conditions, but some false positives were noted due to overlapping clusters.
This indicates that while K-Means can provide a general classification, the precision could
be improved by refining the clustering criteria or supplementing it with additional features.

Supervised learning algorithms, particularly K-Nearest Neighbors (KNNs) and Deci-
sion Trees showed the highest precision, thus achieving up to 62% accuracy in predicting
ice formation. Labeling of the training data provided better-defined patterns, thus result-
ing in more accurate predictions. However, further improvements could involve tuning
hyperparameters and increasing the volume of labeled training data.

The integration of the Raspberry Pi and Arduino platforms with machine learning
algorithms proved advantageous due to their low cost and flexibility. The inclusion of
indicator LEDs and an I2C LCD provided valuable real-time feedback to visually con-
firm the predictions. Despite this success, challenges were noted in managing the active
heating process and maintaining consistent temperature measurements across different
environmental conditions.

Overall, the results indicate that machine learning models can effectively predict ice
formation patterns, and combining these models with a robust hardware platform like
Raspberry Pi allows for cost-effective ice detection and control. However, to enhance
the precision level of the system, we suggest incorporating additional features that could
improve the accuracy and robustness of the ice detection algorithms. One potential feature
is the integration of environmental sensors to measure humidity and wind speed, which
are critical factors influencing ice formation. Furthermore, employing advanced signal
processing techniques to filter out noise and enhance signal clarity could significantly
improve the detection accuracy. Another promising approach is to utilize a larger dataset
with diverse icing conditions to train the machine learning models, thus ensuring that they
can generalize better to various real-world scenarios. Enhancing the dataset with labeled
examples of different ice formation patterns will also contribute to the improved precision
of the system.

6. Conclusions

The primary objective of this project was to develop a low-cost, smart system capable of
predicting and mitigating ice formation by using machine learning techniques and artificial
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neural networks. The project was conducted in three phases: research, implementation,
and integration.

In the research phase, various single-board computers, interface boards, and sensors
were evaluated for their specifications and suitability. During the implementation phase,
sensors, single-board computers, and Python code were integrated and evaluated. Various
challenges, such as determining suitable heating elements and active detection systems,
were addressed. Ultimately, relay boards were chosen over MOSFETs due to their higher
current support and safety.

The integration phase involved designing the smart device, developing algorithms,
and interfacing components like the Raspberry Pi and Arduino Mega. Two separate
datasets were created for accurate model training. Various machine learning algorithms,
including K-Nearest Neighbors and Decision Trees, were developed and evaluated.

The evaluation phase involved training models and validating their accuracy. The
system was tested by visually confirming the physical formation of ice on the prepreg and
comparing this to predictions displayed on the Raspberry Pi system. Additional features,
such as an I2C LCD screen and indicator LEDs, provided real-time feedback. Among the
tested models, K-Nearest Neighbors and Decision Trees achieved the highest accuracy, with
60% and 62% precision, respectively.

Implementing graphene-based sensors provided significant advantages for the ice
detection system. Graphene’s superior thermal and electrical properties, including high
conductivity and large surface area, enhance the sensitivity and accuracy of ice detection.
This ensures rapid and localized detection, thus improving the overall responsiveness of
the system. The use of graphene not only increases safety by providing timely and precise
ice detection but also highlights the innovation in employing advanced nanomaterials
for practical aviation safety applications. The innovative aspect of this project lies in the
integration of graphene-based sensors with machine-learning algorithms to create a smart
ice detection and control system. This system is capable of providing real-time feedback and
predictions, thus ensuring enhanced safety and efficiency in aviation operations. Future
improvements include expanding the graphene network for localized detection, enhancing
the dataset for more accurate model training, and refining the user interface.

7. Patents

International patent n◦ WO2022162068A1/ EP4036565A1 (accessed on 30 May 2024).
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