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When a computer scientist

meets a physicist
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From a noisy observation ...y
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... can we recover images ?x

3 / 32



... or parameters ?
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θ = {Re, ρ, f}
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Observation modelPhysical model

Goal: Estimate parameters  or latents  from noisy or incomplete observations
.

θ x
y
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AI for particle physics at the LHC

Kyle Cranmer
(New York University)
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θ = {m ,m ,m ,…}e μ τ
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arg p(y∣θ)?
θ
max
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pre-2019

Reject the null hypothesis that the Higgs boson does not exist by a likelihood-
ratio test , where the likelihood  is
approximated as , for some summary statistic .

λ(θ) = −2 log p(x∣θ)/p(x∣ )θ̂ p(x∣θ)
p(s(x)∣θ) s(⋅)
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Wait a minute Kyle... how do we pick the right summary statistic ?s
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Neural simulation-based inference

Learn the statistic  with a neural network approximating the likelihood ratio 
.

s(⋅)
r(x∣θ) = p(x∣θ)/p (x)ref

―
Credits: Cranmer et al, 2015; Brehmer et al, 2018. 11 / 32

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1805.00020


―
Credits: ATLAS Collaboration, 2024a; ATLAS Collaboration, 2024b. 12 / 32

https://cds.cern.ch/record/2916090
https://cds.cern.ch/record/2915316


Cosmological inference

from stellar streams

Christoph Weniger
(University of Amsterdam)
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What is the nature of dark matter?

θ = mWDM
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Interaction of Pal 5 with two dark Interaction of Pal 5 with two dark ……

Constraining dark matter with stellar streams

.]

―
Image credits: C. Bickel/Science; D. Erkal. 15 / 32

https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://t.co/U6KPgLBdpz?amp=1


―
Credits: Hermans et al, 2021. 16 / 32

https://arxiv.org/pdf/2011.14923


 

Preliminary results for GD-1 suggest a preference for CDM over WDM.
―
Credits: Hermans et al, 2021. 16 / 32

https://arxiv.org/pdf/2011.14923


Wait a minute Gilles... I can't claim that in a paper!
Your neural network must be wrong!
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Enforcing conservative posteriors

Posterior approximations can be either overcon�dent (dangerous and wrong) or
undercon�dent (safe but ine�cient).

―
Credits: Hermans et al, 2021. 18 / 32

https://arxiv.org/abs/2110.06581


Conservative posteriors can be enforced algorithmically!

―
Credits: Delaunoy et al, 2022; Delaunoy et al, 2023. 19 / 32

https://arxiv.org/abs/2208.13624
https://arxiv.org/abs/2304.10978


Data assimilation in weather and

climate models

 

Marilaure Grégoire, Xavier Fettweis
(University of Liège)
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Assuming an initial state , weather forecasts are obtained by propagating the
state forward in time using a dynamical model  based on (costly)
numerical simulations.

x0
p(x ∣x )i+1 i
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GraphCast (Google Deepmind) demonstrated that graph neural networks can
be used for skilful weather forecasts, at a fraction of the computational cost.
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Wait a minute... how do we know  in the �rst place?

We only have noisy observations !

x0

y
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Transition
model

Transition
model

Observation
model

Observation
model

Observation
model

Data assimilation: Estimate plausible trajectories  given one or more noisy
observations  (or  as the posterior

x1:L
y y )1:L

p(x ∣y) = p(x ) p(x ∣x ).1:L
p(y)

p(y∣x )1:L
0

i=1

∏
L−1

i+1 i
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Score-based data assimilation

Diffusion models are deep generative models
capable of producing data from pure noise.
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Our approach:

Build a diffusion model  of arbitrary-length trajectories.

Use zero-shot posterior sampling to generate plausible trajectories from
noisy observations .

p(x )1:L

y

―
Credits: Rozet and Louppe, 2023. 27 / 32

https://arxiv.org/abs/2306.10574


Sampling trajectories  from
noisy, incomplete and coarse-grained observations .

x1:L
y

―
Credits: Rozet and Louppe, 2023. 28 / 32

https://arxiv.org/abs/2306.10574


SDA can assimilate noisy weather observations to produce stochastic
ensembles.

―
Credits: Manshausen et al, 2024. 29 / 32

https://arxiv.org/abs/2406.16947


Assimilating satellite and �oat
observations in ocean models

(with Marilaure Grégoire).

Assimilating local observations in
regional climate models
(with Xavier Fettweis).

Score-based data assimilation for regional models (ongoing)
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Earth-scale data assimilation at 0.25° resolution
with latent diffusion models (ongoing).
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Conclusions

AI can help us make sense of complex systems.

AI unlocks problems we couldn't solve before!

AI should be used in a principled way if we aim for scienti�c progress.

Collaborations between computer scientists and scientists are key.
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The end.
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