When a computer scientist meets a physicist

Gilles Louppe g.louppe@uliege.be November 29, 2024

From a noisy observation y...

... can we recover images x?

$$egin{aligned} \dot{u} &= -u
abla u + rac{1}{Re}
abla^2 u - rac{1}{
ho}
abla p + f \ 0 &=
abla \cdot u \end{aligned}$$

... or parameters $heta=\{Re, ho,f\}$?

Goal: Estimate parameters θ or latents **x** from noisy or incomplete observations

Al for particle physics at the LHC

Kyle Cranmer (New York University)

$$heta=\{m_e,m_\mu,m_ au,\ldots\}$$

 $rg\max_{ heta} p(\mathbf{y}| heta)?$

pre-2019

Reject the null hypothesis that the Higgs boson does not exist by a likelihoodratio test $\lambda(\theta) = -2\log p(\mathbf{x}|\theta)/p(\mathbf{x}|\hat{\theta})$, where the likelihood $p(\mathbf{x}|\theta)$ is approximated as $p(s(\mathbf{x})|\theta)$, for some summary statistic $s(\cdot)$.

Wait a minute Kyle... how do we pick the right summary statistic *s*?

Neural simulation-based inference

Learn the statistic $s(\cdot)$ with a neural network approximating the likelihood ratio $r(\mathbf{x}|\theta) = p(\mathbf{x}|\theta)/p_{ref}(\mathbf{x}).$

Cosmological inference from stellar streams

Christoph Weniger (University of Amsterdam)

What is the nature of dark matter?

 $\overline{ heta}=m_{
m WDM}$

Constraining dark matter with stellar streams

These hives typically hold 100,000 stars or fewer and give rise to long, thin streams.

Palomar 5 — (Pal5) stream

Pal5 was discovered in 2001 as the first thin stream formed from a globular cluster. Its current orbit takes it far over the galactic center.

GD1 stream -

Discovered in 2006, GD1 is the longest known thin stream, stretching across more than half the northern sky. It contains a gap that could be the scar of a dark matter collision 500 million years ago.

Gap

_

Preliminary results for GD-1 suggest a preference for CDM over WDM.

Wait a minute Gilles... I can't claim that in a paper! Your neural network must be wrong!

Enforcing conservative posteriors

Posterior approximations can be either overconfident (dangerous and wrong) or underconfident (safe but inefficient).

Conservative posteriors can be enforced algorithmically!

Data assimilation in weather and climate models

Marilaure Grégoire, Xavier Fettweis (University of Liège)

Assuming an initial state x_0 , weather forecasts are obtained by propagating the state forward in time using a dynamical model $p(x_{i+1}|x_i)$ based on (costly) numerical simulations.

GraphCast (Google Deepmind) demonstrated that graph neural networks can be used for skilful weather forecasts, at a fraction of the computational cost.

Wait a minute... how do we know x_0 in the first place?

We only have noisy observations y!

Data assimilation: Estimate plausible trajectories $x_{1:L}$ given one or more noisy observations y (or $y_{1:L}$) as the posterior

$$p(x_{1:L}|y) = rac{p(y|x_{1:L})}{p(y)} p(x_0) \prod_{i=1}^{L-1} p(x_{i+1}|x_i).$$

Score-based data assimilation

Data

Reverse denoising process (generative)

Diffusion models are deep generative models capable of producing data from pure noise.

Our approach:

- Build a diffusion model $p(x_{1:L})$ of arbitrary-length trajectories.
- Use zero-shot posterior sampling to generate plausible trajectories from noisy observations y.

Sampling trajectories $x_{1:L}$ from noisy, incomplete and coarse-grained observations y.

SDA can assimilate noisy weather observations to produce stochastic ensembles.

Score-based data assimilation for regional models (ongoing)

Assimilating satellite and float observations in ocean models (with Marilaure Grégoire). Assimilating local observations in regional climate models (with Xavier Fettweis).

Earth-scale data assimilation at 0.25° resolution with latent diffusion models (ongoing).

Conclusions

- Al can help us make sense of complex systems.
- Al unlocks problems we couldn't solve before!
- Al should be used in a principled way if we aim for scientific progress.
- Collaborations between computer scientists and scientists are key.

The end.