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Abstract. We study the problem of designing at minimum cost a two-connected network such that each edge 

belongs to a cycle using at most K edges. This problem is a particular case of the two-connected networks with 

bounded meshes problem studied by Fortz, Labbé and Maffioli (Operations Research, vol. 48, no. 6, pp. 866–

877, 2000). 

In this paper, we compute a lower bound on the number of edges in a feasible solution, we show that the 

problem is strongly NP-complete for any fixed K, and we derive a new class of facet defining inequalities. 

Numerical results obtained with a branch-and-cut algorithm using these inequalities show their effectiveness for 

solving the problem. 
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1. Introduction 

In the last decade, telecommunication network planning has become an important problem area for developing 

and applying optimization models. Telephone companies have initiated extensive modeling and planning efforts 

to expand and upgrade their transmission facilities. 

Recently, Fortz et al. [8] introduced a new model for the topological design of backbone telecommunication 

networks. The two-connected network with bounded rings (or meshes) problem (2CNBR) consists in designing a 

minimum cost network N with the following constraints: 

1. N contains at least two node-disjoint paths between every pair of nodes (2-connectivity constraints), and 

2. each edge of N must belong to at least one cycle whose length is bounded by a given constant K (ring 

constraints). 

In the most common mathematical model for topological network design, a graph G = (V, E) is considered 

where V is the set of nodes that have to be connected and E is the set of edges, that is the set of potential links 

between nodes. Each edge e of E has a fixed nonnegative cost ce and the objective is to find the subset F of E of 

minimum total cost, such that the resulting network N = (V, F) satisfies some survivability requirement. 

This requirement can be that the network be either k -edge-connected or k-node-connected, which means that the 

removal of any (k — 1) or fewer edges (respectively, nodes) leaves G connected. 

In most cases, two-connected networks have been found to provide a sufficient level of survivability. Hence, 

a considerable amount of research has focused on so-called low- connectivity constrained network design 

problems, i.e., problems for which each node j is characterized by a requirement rj ∈ {0, 1, 2} and min{rv, rw} 

node-disjoint paths between every pair of distinct nodes v, w are required. Work on this kind of problem goes 

from the early contributions of Steiglitz et al. [16] to the more recent articles of Grötschel and Monma [11], 

Boyd and Hao [3], Monma and Shallcross [14], Gro¨ tschel et al. [12, 13], and others. For in depth surveys in 

this area the reader is referred to Fortz [5] and Grötschel et al. [13]. 

The minimum-cost two-connected network is often a Hamiltonian cycle. Therefore, any edge failure would 
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require to reroute the flow that passed through that edge, using all the edges of the network, an obviously 

undesirable feature. Fortz et al. [8] proposed to add ring constraints to limit the region of influence of the traffic 

which is necessary to reroute if a connection is broken. They implemented a first branch-and-cut algorithm to 

solve the problem as well as several constructive heuristics. More recently, Fortz and Labbé [7] studied the 

structure of the underlying polyhedra, deriving new classes of facet-defining inequalities. 

An important application of ring constraints appears in topologies using the recent technology of self-healing 

rings. Self-healing rings are cycles in the network equipped in such away that any link failure in the ring is 

automatically detected and the traffic rerouted by the alternative path in the cycle. Due to technological 

constraints, the length of self-healing rings must be limited. This is equivalent to set a bound on the length of the 

shortest cycle including each edge. In practice, the length of the ring is computed as the number of hops, i.e., the 

number of nodes that compose the ring. This corresponds to the particular case of 2CNBR that arises when a unit 

length is given to each edge. Our model is only a first step in solving the self-healing ring network design 

problem, as we only ensure the presence of feasible rings in the network. The next step is dimensioning the 

rings, taking into account the demands and the additional cost for inter-ring transfer. A heuristic for the self-

healing ring network design problem was proposed by Fortz et al. [9]. 

In this paper, we derive additional properties for this particular case. The next section introduces some 

notation and a mathematical formulation for our model. In Section 3, we compute a lower bound on the number 

of edges in any feasible solution. This bound is used in Section 4 to show that the problem is NP-complete even 

for K fixed, and is then extended to a new class of valid inequalities in Section 5. The separation problem for 

these inequalities is studied in Section 6, and a branch-and-cut algorithm is outlined in Section 8. Numerical 

results with this algorithm are presented in Section 9. 

2. Notation and model 

As mentioned before, we represent the given set of nodes and possible cable connections by an undirected graph 

G = (V, E). We suppose that E does not contain parallel edges. 

Throughout this paper, n := | V | and m := | E | will denote the number of nodes and edges of G. 

Given the graph G = (V, E) and , the edge set 

 

is called the cut induced by W. We write SG(W) to make clear—in case of possible ambiguities—with respect to 

which graph the cut induced by W is considered. The degree of a node v is the cardinality of . The set 

 

is the set of edges having both end nodes in W. We denote by G (W) = (W, E (W)) the subgraph induced by edges 

having both end nodes in W. If E(W) is empty, W is an independent set. G/ W is the graph obtained from G by 

contracting the nodes in W to a new node w (retaining parallel edges). 

 

We denote by the subsets obtained by removing one node or one edge 

from the set of nodes or edges, and G — z denotes the graph (V — z, E\δ({z})), i.e., the graph obtained by 

removing a node z and its incident edges from G. This is extended to a subset Z C V of nodes by the notation G 

— Z := (V\Z, E\(δ(Z) ∪ E(Z))). 

Each edge e := ij E, has a fixed cost ce representing the cost of establishing the direct link connection. The 

cost of a network N = (V, F) where F E is a subset of possible 

edges is denoted by . The distance between two nodes i and j in this network is denoted by 

dF (i , j ) and is given by the minimum number of edges in a path linking these two nodes in F. 

A useful tool to analyze feasible solutions of 2CNBR is the restriction of a graph to bounded rings. Given a 

graph G = (V, E) and a constant K > 0, we define for each subset of edges F E its restriction to bounded rings 

FK as 
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The subgraph is the restriction of G to bounded rings. A cycle of length less than or equal to K is 

also called a feasible cycle. Remark that an edge will never belong to a feasible solution of 2CNBR. 

In order to formulate the 2CNBR problem, we associate with every subset an incidence vector

by setting 

 

Conversely, each vector induces a subset  

Further we denote by the set of incidence vectors x F with such that 

1. F is two-connected, 

2. F = FK . 

Then, the 2CNBR problem consists in 

 

Since all costs ce , e ∈ E are assumed to be nonnegative, there always exists an optimal solution of 2CNBR 

whose induced graph is minimal with respect to inclusion. Hence, 2CNBR can be equivalently formulated as 

 

For any subset of edges F ⊆ E we define 

 

We also denote by ei the i -th unit vector in . 

If a subset of edges S ⊆ E is such that (G - S)K is not two-connected, then G - S does not contain a feasible 

solution, and therefore each feasible solution contains at least one edge from S. As we are only interested in 

minimal feasible solutions, this is sufficient to formulate the 2CNBR problem as the following integer linear 

program: 

 

Constraints (1) are called subset constraints and provide a set covering formulation of the 2CNBR problem. This 

formulation was introduced by Fortz and Labbe´ [7]. They also characterized which subset constraints are facet-

defining for 

 

the polyhedron associated to the 2CNBR problem. This polyhedron is full dimensional, and is the dominant of 

conv( G,K). 
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3. A lower bound on the number of edges 

In this section, we compute a lower bound on the number of edges in any feasible solution of 2CNBR. This 

result is useful for showing that the problem is NP-complete for any fixed K > 3 and for deriving new valid 

inequalities. 

We first need the following definitions and properties from graph theory. Let G = (V, E) be a connected graph 

with n = | V | nodes and m = | E | edges, and let T be a spanning tree in G . The addition of an edge to T creates 

exactly one cycle, called a fundamental cycle. Since there are m — n + 1 chords in G, there are exactly m — n + 

1 fundamental cycles associated with each spanning tree. 

Now, suppose the edges of G are ordered as e ι, ..., em, and we have a set of cycles σi, i = 1,..., k. Then, we can 

define a cycle matrix C = (cij)kxm in which 

 

If the cycles σi are the fundamental cycles associated to a spanning tree T, this matrix is called fundamental cycle 

matrix. Moreover, if edges in G are numbered starting from the edges not belonging to T , and the fundamental 

cycles are numbered accordingly, then the fundamental cycle matrix has the following form: 

 

where Iμ is an identity matrix of dimension μ = m — n + 1, and Ct is the remaining matrix of dimension μ x (n — 

1) corresponding to the edges of T. 

It is clear that the rank of the fundamental cycle matrix C is μ = m — n + 1. With respect to scalars in {0, 1} 

and the addition modulo 2 (that we denote by φ), the fundamental cycles are independent, and we can define a 

vector space for which the fundamental cycles form a basis. This vector space is called the cycle space, and all 

the other cycles in G can be obtained as a linear combination of rows representing the fundamental cycles in C. 

The dimension μ of the cycle space is also called the cyclomatic number of the graph. 

More details about fundamental cycles and the cycle space can be found, e.g., in Berge [2]. 

We can now prove the first important result of this section. 

Theorem 1. Let G = (V, E) be a two-edge-connected network with n = | V | nodes and m = | E | edges. If there 

exists a covering of the edges of the network by feasible cycles, then there exists such a covering using at most μ 

= m — n + 1 independent cycles. 

Proof: Since G is two-edge-connected, each edge belongs to a cycle, which can be obtained by a linear 

combination of the elements of a basis of the cycle space. This means that each edge must belong to at least one 

cycle in a basis, or, in other words, that a basis of the cycle space covers the edges of the network. Moreover, 

each cycle matrix of rank μ defines a basis of the cycle space. This implies that the set of cycles defined by any 

cycle matrix of rank μ—and in particular, fundamental cycles—covers the edges of the network. 

Let C be a fundamental cycle matrix for G. If a subset of the fundamental cycles that use at most K nodes 

covers the edges, it forms the requested covering. Otherwise, we transform C in a cycle matrix C' of rank μ such 

that the subset of feasible cycles of C' covers the network. 

Suppose C is a cycle matrix of rank μ, defining r(r ≤ μ) feasible cycles. In order to obtain the desired 

transformation, we now show that if the r feasible cycles do not cover the set of edges E, C can be transformed 

into a cycle matrix C' of rank μ such that the feasible cycles in C' cover one more edge. By applying this 

construction iteratively to the fundamental cycle matrix C, we create a sequence of matrices of rank μ, with an 

increasing number of edges covered by feasible cycles. We stop when the feasible cycles cover the network. 

This occurs in a finite number of steps, since in the worst case, we end with a matrix containing μ feasible cycles 

that cover all the edges. 

Let C1 be a μ × m cycle matrix of rank μ and suppose there are r feasible cycles in C1. Without loss of 

generality, we can suppose these cycles form the r first rows of C1, i.e., C1 is of the form 

 

where Cr is a r × m cycle matrix such that each cycle defined by Cr uses at most K nodes and Ct is a (μ — r) × m 
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cycle matrix such that each cycle defined by Ct uses at least K + 1 nodes. 

Suppose cycles in Cr do not cover the network, i.e., there exists an edge e ∈ E which does not belong to any 

cycle in Cr. This edge must belong to a cycle σ using at most K nodes. Since C1 is of rank μ, σ can be obtained by 

a linear combination of its rows. Moreover, since no cycle in Cr uses e, the linear combination uses at least one 

row of Ct . Replacing this row of Ct by the linear combination of rows defining σ, we obtain a new cycle matrix 

C2 of same rank μ and covering one more edge. 

Interestingly, Theorem 1 still holds if the graph G contains parallel edges. Note that the cycles in the cover do 

not necessarily correspond to a spanning tree. 

Theorem 1 is the key to establish the main result of this section. 

Theorem 2. Let G = (V, E) be a two-connected network with n = |V| nodes and m = |E| edges, such that there 

exists a covering of the network by cycles using at most K nodes. Then, 

 
i.e., G contains at least M(n, K) edges. 

Proof: From Theorem 1, there exists a covering of G by at most m — n + 1 independent cycles using at most K 

nodes. We consider two disjoint cases: 

1. There exists a covering satisfying Theorem 1 and using at most m — n cycles. 

In this case, the sum of the number of edges used in each cycle is greater than or equal to m, since the 

cycles cover the network. Moreover, since each cycle uses at most K edges, we have 

 

and the integrality of m allows to conclude that 

 

2. All coverings satisfying Theorem 1 use exactly m — n + 1 cycles. 

It means that there exists such a covering which is also a basis of the cycle space. We first show that each 

cycle in this covering shares at least one edge with the others. Suppose it is not the case for some cycle σ in 

the covering. We define the boundary of σ as the subset of nodes of σ adjacent to nodes that do not belong to 

σ . Since the network is two-connected, there exist two nodes u and v in the boundary of σ that are linked by 

a path P with no edge in common with σ,asdepicted in figure 1. Two other paths P1 and P2 between u andv 

form σ . Combining P with P1 and P2 respectively, we obtain 

two new cycles and . Since the covering defines a basis, σ1 

and σ2 can be obtained by a linear combination of the cycles in the covering. 

If we suppose the edges are ordered starting from those in P1 then P2, and finally the remaining edges, 

the vector corresponding to σ has the form 

 

while the other cycles in the basis have the form 

 

since we supposed σ had no edge in common with any other cycle in the covering. Moreover, the vector 

corresponding to σ1 has the form 
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Figure 1. Combinations of a cycle σ and an outside path P to generate cycles σ1 and σ2. 

 
It is clear from the form of those vectors that σ1 cannot be obtained by a linear combination of cycles in the 

covering, which leads to a contradiction. 

So each cycle in the basis shares at least one edge with some other cycle in the basis. As there are m — n 

+ 1 cycles, at least m — n repetitions of edge occur when we count the edges in all cycles. Moreover, each 

edge is covered by at least one cycle and the sum of the number of edges used in each cycle is thus greater 

than or equal to m + (m — n) = 2m — n. This sum is also less than or equal to (m — n + 1)K since each cycle 

uses at most K edges. We can conclude that 

 

or, since m is integral, 

 

Since one of these two cases must occur, (5) or (6) is satisfied, thus the number of edges m satisfies (4). 

Theorem 2 provides a lower bound on the number of edges in a feasible solution. This bound is tight, as we 

will see in the proof of Theorem 6, and it is useful for showing that the problem is NP-complete, which is done 

in the next section. Moreover, a similar application of Theorem 1 leads to some classes of strong valid 

inequalities that are described in Section 5. 

4. Complexity 

In this section, we show that the recognition version of the 2CNBR problem is NP-complete for any fixed value 

of the bound K . 

Problem 3 (R2CNBR). Let G = (V, E) be a graph, K 3 a given constant and B 0 an integer. To each edge e E 

is associated a cost ce and a unit length de = 1. Does there exists a subset of edges such that FK is two-

connected and ? 

Theorem 4. R2CNBR is NP-complete for any K 3. 

Proof: It is easy to see that R2CNBR belongs to NP. We show that the Hamiltonian cycle problem reduces to 

R2CNBR, for any fixed K 3. Let G = (V, E) be a graph with n = |V| nodes and m = |E| edges, and suppose V = 

{v 1, ..., vn}. The Hamiltonian cycle problem consists in determining if there exists a Hamiltonian cycle in G. 

This problem is NP-complete and it can be transformed into R2CNBR in the following way. 
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If K > n, finding a Hamiltonian cycle is equivalent to finding a two-connected network of cost less than or 

equal to n, for the same graph, with unit edge costs. But K > n implies that R2CNBR is equivalent to the two-

connected network problem, since the constraints on the rings are redundant. Thus the Hamiltonian cycle 

problem reduces to R2CNBR if K > n. 

If K < n, define a graph G' = (V', E') with 

 

and 

 

A unit cost is again assigned to each edge. This transformation is illustrated in figure 2 for K = 5. 

G' is composed of n' = (K — 1)n nodes and m' = 3m + (K — 2)n edges. The transformation can thus be 

performed in polynomial time and space. We will show that there exists a feasible solution of 2CNBR of cost 

less than or equal to Kn in G' if and only if there exists a Hamiltonian cycle in G , and conversely. 

Suppose there exists a solution F of 2CNBR of cost less than or equal to Kn in G'. Since edge costs are 

unitary, the number of edges in F is equal to the cost of the solution, c(F). By Theorem 2, we thus have 

 

But n' = (K — 1)n, so we have 

 

and  

 

Figure 2. Transformation of Hamiltonian cycle into 2CNBR. 
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and F contains exactly Kn edges. 

Since F is two-connected, the degree of each node in this solution is at least two. Moreover, for each vk
i, i = 

1,..., n, k = 1, ..., K — 3, there are only two possible edges, and these edges must belong to any feasible solution. 

There are (K — 2)n such edges that form n paths of length K — 2, (vi
0, vi

1, ..., vi
k-2), as illustrated in bold in figure 

3. Since each edge in these paths must belong to a cycle using at most K nodes, two edges (vK-2, w) and (w, vi
0) 

must be in the solution to close each path and form a feasible cycle. It is clear that the only possible choice for w 

is a node vj
0
 ∈ V0. 

In this way, we get a subgraph (V', F) with Kn edges, with exactly n edges in F(V0), corresponding to edges in E. 

We show that these edges form a Hamiltonian cycle in G . Since there are exactly n edges, it is sufficient to show 

that these induce a two-connected subgraph of G, i.e., that F(V0) is two-connected. Let vi
0 and v0

j be any two nodes 

in V0.In F, there are two node-disjoint paths from vi
0, to v0

j, since F is two-connected. If these paths use only nodes 

in V0, the expected result holds. Otherwise, each node of these paths not belonging to V0
 must appear in a sequence 

of the form vi
0, vk

1,..., vK-2, vl
0 By our previous construction, this imply that (vk

0 , vl
0) is also in the solution. 

Replacing each sequence of the form vk
0, vk

1, ... vk
K-2, vl

0 using nodes outside V0
 by the corresponding shortcut (vk

0, 

vl
0) leads to two disjoint paths from vi

0 to vj
0 in E(V 0). 

So, F(V0) is two-connected and the n edges in F(V0) correspond to a Hamiltonian cycle in G. 

Conversely, it is easy to see that we can complete an edge set F(V 0) corresponding to a Hamiltonian cycle in 

G , defined by the sequence of nodes , into a feasible solution F of 2CNBR with Kn 

edges by adding the paths   for k = 1,..., n to the edges already in F(V0). 

This concludes the proof of Theorem 4. 

Figure 3. A solution of R2CNBR and the corresponding Hamiltonian cycle. 
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5. Cyclomatic inequalities 

From the lower bound on the number of edges in a feasible solution obtained in Section 3, we can conclude that 

 

is a valid inequality for PG,K. In this section, we extend this result to new classes of valid inequalities for PG,K . 

Our first result is an extension of Theorem 2 to a partition of V . 

Proposition 5. Let G = (V, E) be a graph with n = |V| nodes, K ≥ 3 a given constant, and W1, W2, ..., Wp (p ≥ 2) 

a partition of V. Then 

 

is a valid inequality for PG, K . 

Proof: Let F be a feasible solution to the 2CNBR problem and let Ĝ 

 denote the contracted 

graph (V, F)/ W 1 / ... / Wp , and  m̂ the number of edges in Ĝ. We show that  . 

It is easy to see that  Ĝ is two-edge-connected and that each edge in Ĝ belongs to a cycle using at most K 

edges. 

 

 

Figure 4. Agraph G , the contracted graph G and the two steps of G construction, with a bound K = 4. 
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If Ĝ is two-connected, Theorem 2 holds for Ĝ, i.e. m̂ ≥ M(p, k). Otherwise, Ĝ contains q ≥ 1 articulation 

points. Let z be one of these nodes, obtained after the contraction of a subset Z V of nodes in G (figure 4(a) and 

(b)). Since F is two-connected, the boundary of Z contains at least two nodes. Let u be one of these nodes. 

Replacing z by two nodes z1 and z2, and replacing each edge incident to z by an edge connected to z1 if the 

corresponding edge in G was connected to u, and by an edge connected to z2 otherwise, we obtain a graph with 

one articulation point less, as illustrated in Figure 4(c). However, it is possible that this new graph contains some 

edges not belonging to a cycle using at most K edges. In this case, let e be one of these edges. Before replacing z 

, e belonged to at least one feasible cycle. Each of these cycles has been replaced by a path from z1 to z2. It is 

easy to see that one of these paths must contain at most K — 1 edges, otherwise the corresponding edge in F 

cannot belong to a feasible cycle. Therefore, adding an edge linking z1 and z2 is sufficient to create a feasible 

cycle containing e (figure 4(d)). Repeating this construction for each articulation point, we obtain a two-

connected graph Ḡ such that each edge in Ḡ belongs to a cycle using at most K edges. Since Ḡ has p+q nodes, it 

contains at least M(p + q, K) edges by Theorem 2, and by our construction, it contains at most m + q edges. 

Therefore, and we have proved Proposition 5. 

Inequalities (7) are called cyclomatic inequalities. The next theorem shows that the inequality bounding the total 

number of edges (i.e., p = n) is facet-defining for complete graphs. 

Theorem 6. Let G = (V, E) be a complete graphwith V = {v1 , . . . , vn}, and 3 ≤ K < n a given constant. Then x 

(E) > M (n, K) defines a facet of PG,k∙ 

Proof: We consider separately the two cases corresponding to the two possible values of M(n, K).

. Let be a facet-defining inequality such that the face induced by x(E) >M(n, 

k) in PG,K is contained in the facet Fb induced by . 

Our aim is to show that be has the same value for all . 

Consider a permutation {iι,...,in}of {1, ..., n}, and the two following sets of edges: 
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Figure 5. F1 and F2 for n = 12 and K = 4. 

 

 
 

where and . These constructions are illustrated in figure 5 for n = 12 and K = 4. 

It is easy to see that F1 and F2 define feasible solutions of 2CNBR, and that |F11 = |F2∣ = M(n, K). Therefore, 

the incidence vectors of F1 and F2 lie in Fb. Since F2 is obtained from F1 by replacing edge vi 1 vi2 by vi2 viK+1, 

we obtain that bvi 1 Vi2 = bvi2 vκ+1. 

 

Consider three distinct nodes vi,vj and vk. Since the permutation defined above was arbitrary, any 

permutation such that i 1 = i, i2 = j and iκ+1 = k leads to bvi vj = bvj vk. If vι, v j, vk and vl are four distinct nodes, 

we obtain by transitivity that bvi vj = bvj vk = bvk vl, and therefore be has the same value for all e ∈ E. 

 

 

. Let be a facet-defining inequality such that the face induced by x(E) ≥ M(n, k) 

in PG,K is contained in the facet Fb induced by . Our aim is to show that be has the same value for all e 

∈ E . 

Consider a permutation {i 1,..., in} of {1, ..., n}, and the two following sets of edges: 

 

These constructions are illustrated in figure 6 for n = 15and K = 4. It is easy to seethat F3 and F4 define 

feasible solutions of 2CNBR, and that ∖ F3∖ = ∖ F4∖ = M(n, K). Therefore, the incidence vectors of F3 and F4 

lie in Fb . Since F4 is obtained from F3 by replacing edges and by and , we obtain 

that =  
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Figure 6. F3 and F4 for n = 15 and K = 4. 

 
 

 

Consider four distinct nodes vi ,vj,vk and vl. Since the permutation defined above was arbitrary, any 

permutation such that i 1 = i, i2 = j, in = k and in—K+2 = l leads to 

 

Similarly, any permutation such that i1 = k, i2 = l, in = i and in—K+2 = j leads to 

 

This leads to bvi vk = bvj vl. 

It remains to be shown that two edges having a common endpoint have the same coefficient. If vi ,vj,vk,vl and 

vm are five distinct nodes, we obtain by transitivity that bvi vj = bvl vm = bvi vk, and therefore be has the same 

value for all e ∈ E.  

6. Separation of cyclomatic inequalities 

The main difficulty that appears when trying to separate cyclomatic inequalities is the fact that the right-hand-

side of the inequality is not linear in the number p of subsets that define the partition. 

 

To override this difficulty, we decided to approximate M( p , K ) by a linear function of the form a(p — 1). 

Therefore, we try to find a most violated inequality of the form 

 
which can be performed in polynomial time using Barahona’s algorithm [1] for partition inequalities. If such a 

violated inequality is found, itis sufficient to check that the cyclomatic inequality defined by the same partition is 

also violated. 

Figure 7. Approximation of M(p, 4) for n = 50. 
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The effectiveness of this procedure depends heavily on the choice of a in order to have a good approximation 

of M( p, K ). Our choice was to take 

 

which leads to for p = n. Figure 7 illustrates this approximation for 

K = 4 and n = 50. We can observe that the approximation is quite accurate, and gives good results in practice. 

7. Other valid inequalities 

In this section, we briefly present the other valid inequalities used in our Branch-and-Cut algorithm for the 

2CNBR problem. All these inequalities come from [7, 8]. 

7.1. Cut constraints 

Classical inequalities used to impose that a network is two-edge-connected are cut constraints. These contraints 

are widely used to formulate the traveling salesman problem—in this case, they are equivalent to subtour 

elimination constraints—orthe minimum-cost two-connected network problem. Given a subset of nodes

, the cut constraint imposes that there are at least two edges leaving W, i.e., 

 
The separation of cut constraints can be carried out by computing a minimum cut in the graph, with 

capacities given by the current LP solution. This can be done in polynomial time, e.g. by the Gomory-Hu 

algorithm [10] that requires n — 1 maximum flow computations. 

7.2. Metric inequalities 

Metric inequalities arise from the projection of a flow formulation of the 2CNBR problem (Fortz et al. [8]). 
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Let be a feasible solution defined by the variables, and consider an edge . This 

edge belongs to a feasible cycle of length less than or equal to K . This means that the problem 

 
 

 
 

has an optimal solution value such that . 

 

Using duality, the following class of valid inequalities was obtained in [8]. Consider an edge and 

a set of node potentials satisfying 

 

Then 

 

is a valid inequality for 2CNBR (metric inequality) where 

 

for all . 

Algorithm 1 was developed by Fortz et al. [8] and provides a heuristic for solving the corresponding 

separation problem. 

 

Algorithm 1: Separation of metric inequalities 
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7.3. Subset inequalities 

Subset inequalities (1) were used to formulate the 2CNBR problem. The subset inequality induced by a subset of 

edges S ⊆ E such that (G — S)K is not two-connected is x (S) > 1. 

We rely on a greedy heuristic proposed in [7] to separate these inequalities. This heuristic is summarized in 

Algorithm 2. 

The main drawback of the greedy heuristic is that it often fails to find a suitable F .Itis easy to adapt the 

algorithm to perform the exact separation by a backtracking procedure, enumerating all the subsets F such that 

x(E\F) < 1. However, there is an exponential number of such subsets, and complete enumeration is not efficient 

in practice. An intermediate approach is to allow a fixed number of backtracking steps. Our computational 

experiments show that performing 10 backtracking steps is a good tradeoff between computing time and quality 

of the separation. 

Another way of deriving violated subset inequalities comes from the separation of metric inequalities. Let

be a metric inequality, and let : 

. If (G — S)K is not two-connected and x(S) < 1, then S defines a violated subset inequality. This 

situation is often met in practice. Moreover, if vf = 1 for all f ∈ S, then the subset inequality is stronger than the 

metric inequality. 

Algorithm 2: Separation of subset inequalities 
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7.4. Ring-cut inequalities 

The cut defined by a subset of nodes in a two-connected network must contain at least two edges, 

leading to cut constraints (8). To determine if a cut constraint is facetdefining, it is useful to know if there exists 

a vector of lying in the face = 2 

with xe = xf = 1 for a pair of edges . This is the case if and only if the incidence vector of 

 
 

belongs to , i.e. if (Ce, f)K is two-connected. A useful tool to represent and analyze the vectors belonging to 

the face defined by a cut constraint is the ring-cut graph defined below. 

Definition 7 (Ring-cut graph). Let G = (V, E) be a graph, K > 0 a given constant, and a subset of nodes,

. 

The ring-cut graph induced by W is the graph defined by associating one node to 

each edge in δ (W) and by the set of edges > 

Using the ring-cut graph, we derived a new classes of valid inequalities called ring-cut inequalities (see [6]). 

Given a subset of nodes and an independent 

subset in the ring-cut graph , the ring-cut inequality is given by 

 

The separation problem for ring-cut inequalities is NP-complete [7]. We solve it using a greedy heuristic. As 

we use the Gomory-Hu algorithm to separate cut constraints, we benefit from this information in the separation 

of ring-cut inequalities, considering the n — 1 minimum cuts provided by the Gomory-Hu tree as good 

candidates. To each cut of capacity less than 3 in the tree, we apply the greedy heuristic described in Algorithm 3 

to determine an independent subset in the ring-cut graph corresponding to the cut. 

 
Algorithm 3: Separation of ring-cut inequalities 
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7.5. Node-partition inequalities 

The polyhedron of connected networks is completely described by partition inequalities (Grotschel and Monma 

[11]). Given a partition Wι, W2,..., Wp(p > 2) of V into p nonempty subsets, the corresponding partition inequality 

is 

. 

Since a two-connected network remains connected when a node is removed, 

 

is a valid inequality for the polyhedron of two-connected networks, and therefore for 2CNBR, where Wι, W2,..., 

Wp(p > 2) is a partition of V\{z}. These inequalities are called node-partition inequalities. 

The first separation algorithm for these inequalities was given by Cunningham [4] and requires |E | min-cut 

computations. Barahona [1] reduced this computing time to |V| mincut computations. 

Separating node-partition inequalities can thus be done for each node z ∈ V by applying Barahona’s 

algorithm to G — z. This requires |V|2 min-cut computations. In order to reduce this number, note that if G is a 

two-edge-connected network, any articulation point in G has a degree at least equal to 4. Therefore, we decided 

to apply Barahona’s algorithm to G — z only if , which leads to a much faster separation procedure. 

8. Implementation of the Branch-and-Cut algorithm 

In this section, we describe some strategic choices that were made in the implementation of our Branch-and-Cut 

algorithm for the 2CNBR problem. Our aim here is not to describe in detail the general Branch-and-Cut 

framework, but to emphasize the problem-specific aspects of our algorithm. For a general introduction to 

Branch-and-Cut, we refer the reader to Thienel [17] or to Nemhauser and Wolsey [15] for a more complete 

survey on combinatorial optimization and polyhedral theory. 

The algorithm was implemented in C++, using version 2.0 of the ABACUS library (Thienel [17, 18]), and 

CPLEX 4.0 as LP-solver. 

The initial linear program is defined by degree constraints for all and 

the lower bound on the number of edges . 
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An important issue in the effectiveness of a Branch-and-Cut algorithm is the computation of good upper 

bounds. Due to the effectiveness of the Tabu Search heuristic presented in [5], we perform 600 interations of 

Tabu Search in parallel with the Branch-and-Cut algorithm to obtain a good upper bound. 

Moreover, we try to transform each LP-solution obtained in the Branch-and-Cut to a feasible solution by 

rounding up to 1 all the variables with fractional value. 

The pool used to store generated inequalities is the standard pool in ABACUS. We start with a pool size 

equal to 100 times the number of nodes in the network, and we allow this size to be increased dynamically if 

necessary. All the generated inequalities are put in the pool and are dynamic, i.e., they are removed from the 

current LP when they are not active. The separation of valid inequalities is performed as follows. We first 

separate inequalities from the standard pool. If all the inequalities in the pool are satisfied by the current LP-

solution, we separate inequalities in the following order: 

1. cyclomatic inequalities; 

2. subset inequalities; 

3. cut constraints; 

4. ring-cut inequalities; 

5. node-partition inequalities; 

6. metric inequalities. 

The order of separation was chosen after a series of numerical experiments, the choice of inequalities 

separated first seemingly being the best trade-off between separation time and efficiency of the cuts. 

Moreover, we go to the next class of inequalities only if the number of generated cutting planes is less than 

50. Otherwise, we solve the LP again and restart the separation procedure. 

All inequalities are global (i.e., valid in all the tree), except ring-cut inequalities that are valid locally. 

 

9. Computational results 

We present in this section numerical results obtained for the 2CNBR problem with the Branch-and-Cut 

algorithm. 

 

Table 1. List of abbreviations. 

|V| number of nodes in the graph 

|E| number of edges after preprocessing 

K bound on the length of cycles 

p/o for random problems, total number of problems/number of problems solved to optimality 

# ineq. number of inequalities generated 

#B&B nodes number of Branch-and-Bound nodes examined (including the root node) 

LB (root) lower bound obtained at the root node of the Branch-and-Bound tree 

LB (final) global lower bound at the end of the optimization 

UB best upper bound found 

Gap gap between the final upper and lower bounds: 

  
CPU time time spent in the Branch-and-Cut (without the Tabu Search) 

 

Table 2. Branch-and-Cut results, real applications, unit edge lengths. 

 
|V| |E| K # ineq. #B&B 

nodes 

LB (root) LB 

(final) 

UB Gap 

(root) 

Gap 

(final) 

CPU time 

(hh:mm:ss) 

12 39 3 179 31 740 794 794 7.3 0.0 0:00:09 

12 39 4 288 105 647 681 681 5.3 0.0 0:00:18 

12 39 5 73 7 598 606 606 1.3 0.0 0:00:01 

12 39 6 53 5 563 568 568 0.9 0.0 0:00:01 
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12 39 8 39 13 521 537 537 3.1 0.0 0:00:01 

12 39 10 27 7 517 521 521 0.8 0.0 0:00:01 

12 39 16 24 1 496 496 496 0.0 0.0 0:00:01 

17 88 3 1570 3521 1034 1100 1100 6.4 0.0 0:18:29 

17 88 4 2549 5381 907 966 966 6.5 0.0 0:29:37 

17 88 5 270 61 837 855 855 2.2 0.0 0:00:26 

17 88 6 75 1 797 797 797 0.0 0.0 0:00:02 

17 88 8 222 105 752 766 766 1.9 0.0 0:00:22 

17 88 10 36 1 715 715 715 0.0 0.0 0:00:01 

17 88 16 13 1 711 711 711 0.0 0.0 0:00:01 

30 200 3 8481 38011 1310 1417 1431 9.2 1.0 10:00:00 

30 200 4 23545 33887 1171 1227 1326 13.2 8.1 10:00:00 

30 200 5 22860 35693 1078 1127 1176 9.1 4.3 10:00:00 

30 200 6 2683 2721 1018 1055 1055 3.6 0.0 0:45:22 

30 200 8 1957 1049 930 956 956 2.8 0.0 0:18:21 

30 200 10 315 9 895 901 901 0.7 0.0 0:00:41 

30 200 16 1650 781 843 861 861 2.1 0.0 0:08:31 

52 622 3 4143 11115 1630 1674 1870 14.7 11.7 10:00:00 

52 622 4 5129 5783 1411 1457 1663 17.9 14.1 10:00:00 

52 622 5 6474 3781 1303 1354 1478 13.4 9.2 10:00:00 

52 622 6 5233 4099 1256 1292 1362 8.4 5.4 10:00:00 

52 622 8 5974 3049 1178 1209 1246 5.8 3.1 10:00:00 

52 622 10 7535 3933 1136 1160 1208 6.3 4.1 10:00:00 

52 622 16 10117 4693 1074 1091 1104 2.8 1.2 10:00:00 

 

 

The Branch-and-Cut was implemented using ABACUS 2.0 and CPLEX 4.0, and tested on a SUN Sparc Ultra 1 

workstation with a 166 Mhz processor and 128 MB RAM. We fixed the maximum CPU time to 10 hours, except 

for randomly generated problems with 40 and 50 nodes, where it was limited to 3 hours, due to the large number 

of problems to solve. Moreover, for these large problems, we noticed that the bounds did not improve much after 

3 hours. 

We consider costs equal to the rounded Euclidean distance. Tests were made for different values of the bound, 

for instances coming from real applications, with 12, 17, 30 and 52 nodes, and for random problems with nodes 

uniformly generated in a square of size 250 × 250. Random problems with 10 to 50 nodes were generated, and 

we tested five instances of each size. Data on the randomly generated test problems are available at the Web 

page http://www.poms.ucl.ac.be/staff/bf/en/2cnbm/data.html. The CPU times reported do not include the Tabu 

Search procedure, as it was run in parallel on another processor. 

Table 2 reports results obtained for problems coming from real applications, while Table 4 reports the average 

results obtained for randomly generated problems. Abbreviations used in the tables are summarized in Table 1. 

For 20 nodes or less, all problems could be solved to optimality. For larger problems, we remark that the 

problems with a small value of K are much harder, the lower bound at the root of the Branch-and-Bound tree 

being far from the optimum. 

Problems with a large value of K are easier to solve due to the fact that these problems are closer to the two-

connected network problem (without ring constraints), which can be solved efficiently using cut and node-

partition inequalities (for the instances we considered). The most difficult cases seem to be for K between 3 and 

5, and especially for K = 4. 

These instances were not tested in [8] and [7]. Our main new contribution is the introduction of cyclomatic 

inequalities. To test their impact on the efficiency of our algorithm, we tested the small instances coming from 

real application (12 and 17 nodes) without the cyclomatic inequalities. The maximum CPU time was set to 30 

minutes since all the instances were solved to optimality within this time limit using the cyclomatic inequalities. 

Results are reported in Table 3 and clearly show that the use of cyclomatic inequalities considerably improves 

the lower bounds and decreases the computing times. 

 

 

Table 3. Branch-and-Cut results for unit edge lengths without cyclomatic inequalities. 

IVI IEI K # ineq. # B&B 

nodes 

LB 

(root) 

LB 

(final) 

UB Gap 

(root) 

Gap 

(final) 

CPU time 

(hh:mm:ss) 
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12 39 3 566 371 689 794 794 15.2 0.0 0:01:14 

12 39 4 1203 1311 606 681 681 12.4 0.0 0:02:54 

12 39 5 542 265 565 606 606 7.3 0.0 0:00:30 

12 39 6 221 67 544 568 568 4.4 0.0 0:00:08 

12 39 8 105 33 513 537 537 4.7 0.0 0:00:02 

12 39 10 94 19 501 521 521 4.0 0.0 0:00:01 

12 39 16 24 1 496 496 496 0.0 0.0 0:00:01 

17 88 3 2956 5449 965 1057 1108 14.8 4.8 0:30:00 

17 88 4 6015 5135 853 911 966 13.2 6.0 0:30:00 

17 88 5 1960 1773 798 855 855 7.1 0.0 0:08:52 

17 88 6 784 189 772 797 797 3.2 0.0 0:01:17 

17 88 8 1134 567 731 766 766 4.8 0.0 0:02:19 

17 88 10 71 9 709 715 715 0.8 0.0 0:00:02 

17 88 16 217 113 693 711 711 2.6 0.0 0:00:13 

 

 

Table 4. Branch-and-Cut results, random networks, unit edge lengths. 

|V| |E | K p/o # ineq. 

#B&B 

nodes 

Gap 

(root) 

Gap 

(final) 

CPU time 

(hh:mm:ss) 

10 25.6 3 5/5 177.8 64.2 5.7 0.0 0:00:08 

10 25.6 4 5/5 93.6 35.0 4.7 0.0 0:00:03 

10 25.6 5 5/5 72.0 20.6 2.5 0.0 0:00:02 

10 25.6 6 5/5 48.8 14.6 3.6 0.0 0:00:01 

10 25.6 8 5/5 17.0 5.4 1.0 0.0 0:00:01 

10 25.6 10 5/5 3.2 1.0 0.0 0.0 0:00:01 

20 74.4 3 5/4 2763.8 17192.2 8.0 1.1 2:15:54 

20 68.7 4 5/5 6454.4 24128.2 8.4 0.0 2:29:58 

20 68.7 5 5/5 582.8 477.4 4.4 0.0 0:02:31 

20 68.7 6 5/5 355.0 169.8 3.7 0.0 0:00:58 

20 68.7 8 5/5 322.8 169.4 3.4 0.0 0:00:42 

20 68.7 10 5/5 228.8 37.8 2.1 0.0 0:00:19 

20 68.7 16 5/5 68.6 7.0 0.7 0.0 0:00:01 

30 179.4 3 5/2 4845.6 26101.4 10.8 3.9 7:54:33 

30 179.4 4 5/1 15326.2 26165.4 12.2 6.3 8:46:06 

30 179.4 5 5/1 15310.0 21576.6 11.1 5.3 8:03:46 

30 179.4 6 5/4 7763.2 13739.8 6.4 1.0 5:03:45 

30 179.4 8 5/5 2471.2 2261.4 4.1 0.0 0:55:43 

30 179.4 10 5/5 2652.8 1824.6 3.1 0.0 0:43:14 

30 179.4 16 5/5 2264.0 705.4 2.7 0.0 0:16:27 

40 231.6 3 5/0 2237.4 8677.0 10.7 5.8 3:00:00 

40 231.6 4 5/0 3790.6 7089.0 10.9 7.0 3:00:00 

40 231.6 5 5/0 4203.8 6433.8 10.3 5.8 3:00:00 

40 231.6 6 5/0 4863.0 7096.2 8.6 4.3 3:00:00 

40 231.6 8 5/2 4336.4 4258.2 5.6 1.4 2:07:27 

40 231.6 10 5/2 4573.8 3095.0 5.7 1.6 2:00:23 

40 231.6 16 5/4 3850.8 1889.8 3.1 0.4 1:14:11 

50 337.2 3 5/0 2089.4 4400.6 12.8 9.3 3:00:00 

50 337.2 4 5/0 3123.6 3736.2 15.9 12.2 3:00:00 

50 337.2 5 5/0 3680.6 3312.2 13.3 9.7 3:00:00 



Published in : Computational Optimization and Applications, 27, 123–148, 2004 

Status : Postprint (Author’s version)  

 

 

50 337.2 6 5/0 3871.6 3417.4 12.3 8.9 3:00:00 

50 337.2 8 5/0 4227.4 2871.4 8.1 4.9 3:00:00 

50 337.2 10 5/0 4315.8 2744.2 5.8 2.8 3:00:00 

50 337.2 16 5/1 4448.4 2290.2 3.5 1.3 2:28:00 

 

 

 

Conclusion 

In this paper, we studied the particular case of the 2CNBR problem in which each edge has a unit length. This 

problem is practically harder to solve than its weighted counterpart. We presented here new structural properties 

of this problem, leading to new facet-defining inequalities. Numerical results obtained with a branch-and-cut 

algorithm using these new inequalities as well as inequalities introduced in Fortz et al. [8] and Fortz and Labbé 

[7] were reported. From these results, we can conclude that the Branch-and-Cut algorithm is able to solve to 

optimality instances of small size (up to 30 nodes). However, problems with a small value of the bound (3 to 5) 

remain difficult to deal with and should probably need specific methods. 
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