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Many basic hydrogeology definitions are relative and influenced by anthropocentrism. The aquifer 
definition is an obvious example. Spatial and time scales influence the values of the main 
parameters/properties to be used for answering in a quantified way any practical question. 
For example, porosity describes the ratio between the volume of pores, cracks, and fissures and the 
total volume of a studied geological medium. This notion implies a volume averaging of the medium 
characteristics using the concept of Representative Elementary Volume (REV). Small volumes can 
contain only pores while larger volumes typically contain both pores and fissures. Porosity can be 
highly scale-dependent, and different porosity values can be measured for the same geological 
formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, 
the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be 
defined, but this remains highly dependent on the existing pressure conditions in the geological 
medium. In unconfined conditions, the term ‘effective porosity’ corresponds usually to the drainage 
porosity corresponding also to the specific yield or the storage coefficient.  
When dealing with solute transport and remediation of contaminated sites, another ‘effective 
porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water 
porosity’ acting in solute transport processes takes typically lower values than the ‘effective porosity’ 
of drainage (Payne, Quinnan and Potter 2008, Hadley and Newell 2014, Dassargues 2018). There 
also, scale issues must be expected as shown by field and lab tracer tests. 
Different groundwater velocities can be defined in function of the adopted ‘effective porosity’, and 
all are averaged over the entire volume of the saturated porous medium considered as the chosen 
REV. The term ‘Darcy velocity’ is to be banished herein because it induces much confusion. For the 
sake of clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective 
porosity’. Physically, this means that the porosity available to transmit solute concentrations is not 
automatically the same as that corresponding to mobile water for drainage. The transport effective 
porosity corresponds probably to the most mobile part of the water occupying the pores, fissures 
and fractures implying to some extent a channeling effect of the solute transport by advection. This 
channeling being described at the macroscopic scale of the considered REV with a lower value of the 
solute transport effective porosity leading (for a constant solute flux) to an increased advection 
velocity. This distinction to be made between different ‘effective porosities’ is still surprisingly not 
mentioned in most of the traditional texts on hydrogeology. However, this is confirmed by well-
known and accepted observations by hydrogeologists, especially by those dealing with aquifers 
affected by multiple porosities (Worthington 2015) but not only by them (Derouane and Dassargues 
1998, Brouyère 2001, Hoffmann et al. 2019). Examples of such observations are presented for 
illustration and discussion. 
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