
Non-Emptiness Test for Automata over Words
Indexed by the Reals and Rationals⋆

Bernard Boigelot[0009−0009−4721−3824], Pascal Fontaine[0000−0003−4700−6031], and
Baptiste Vergain[0009−0003−5545−4579]

Montefiore Institute, B28, University of Liège, Belgium
{Bernard.Boigelot, Pascal.Fontaine, BVergain}@uliege.be

Abstract. Automata have been defined to recognize languages of words
indexed by linear orderings, which generalize the usual notions of finite,
infinite, and ordinal words. The reachability problem for these automata
has already been solved for scattered linear orderings.
In this paper, we design an analogous procedure that solves reachabil-
ity over the specific domains R and Q. Given an automaton on linear
orderings, this procedure decides in polynomial time whether this au-
tomaton accepts at least one word indexed by R or by Q. We claim that
this algorithm constitutes an essential step to designing effective decision
procedures for the first-order monadic theory of order interpreted over
R or Q.

Keywords: Automata · Linear Orderings · Real Domain · Rational Do-
main · Emptiness Test · Reachability

1 Introduction

In [3], Bruyère and Carton introduce automata on words indexed by linear
orderings, which generalize the concept of word, and notably encapsulate the
usual notions of finite, infinite, and ordinal words. Although initially restricted
to scattered linear orderings (i.e., orderings that do not contain a dense sub-
ordering), these automata have later been extended to deal with all linear or-
derings [2]. Notably, a Kleene-like theorem asserting the equivalence between
languages accepted by automata on linear orderings and languages described by
an extended form of rational expressions is proved in [3, 2]. The strong connec-
tions between rational languages and the monadic second-order theory of linear
orderings MSO(<) is investigated in [1], namely, every language accepted by an
automaton on linear orderings is definable in MSO(<). The converse however
only holds when the orderings are countable and scattered.

We are interested in designing effective decision procedures for monadic first-
order theories of order MFO(D, <) interpreted over a fixed dense domain D, in
particular R and Q. The decidability of MFO(Q, <) derives directly from the

⋆ This work is partially supported by the FNRS-DFG PDR Weave (SMT-ART) grant
40019202.

decidability of MSO(Q, <) [15]. For R however, Shelah [19] showed that MSO(R,
<) is undecidable. The decidability of MFO(R, <) has been established in [6].
Some theoretical bounds for the complexity of decision procedures for MFO(Q,
<) and MFO(R, <) have been obtained in [17, 16]. Our long-term goal consists
in designing an automata-based decision procedure in the spirit of the one intro-
duced by Büchi to deal with S1S [4], which roughly corresponds to MSO(N, <),
later extended to deal with all words indexed by countable ordinals [5]. The first
step would consist in building an automaton recognizing the models of a given
formula without any restriction on the domain. Then, a dedicated procedure
would decide the emptiness of the language over a specific linear ordering, equal
to R or Q in our case. This work focuses on the latter part.

Testing for the non-emptiness of the language accepted by an automaton
on linear orderings reduces to deciding whether an accepting state is reachable
from an initial state. Reachability for automata on scattered linear orderings is
discussed in [9]. A generalization over every linear ordering is sketched in [11].
In this paper, we investigate how to design an analogous procedure that decides
reachability over the domains R and Q.

The paper is structured as follows. We first recall in Section 2 the useful defi-
nitions relating to linear orderings, rational expressions, and automata on linear
orderings. In Section 3, we discuss the state of the art regarding the reachability
problem. In Section 4, we provide an algorithm for deciding emptiness over R
in polynomial time. Finally, in Section 5, we show how to adapt the previous
algorithm to deal with Q.

2 Preliminaries

2.1 Linear Orderings

We first give basic definitions and results about linear orderings, and refer to [18]
for further details.

A linear ordering J is a totally ordered set, i.e., a set equipped with a binary
relation <J that is irreflexive, asymmetric, transitive, and total. Two linear
orderings J and K — respectively associated with the order relations <J and
<K — are order-isomorphic if there exists an order-preserving bijection between
J and K. Formally, let b be such a bijection (from J to K), then b(j1) <K b(j2)
iff j1 <J j2 for all j1, j2 ∈ J . We denote by −J the backwards linear ordering
that corresponds to J with its ordering reversed. The class of all linear orderings
is denoted by L.

The order type of a linear ordering J is the class of all linear orderings order-
isomorphic to J . The order types of a singleton, the set composed of the N first
natural numbers, N, Z, Q, and R are respectively denoted by 1, N , ω, ζ, η, and
λ. Notice that the order type of any non-empty open interval of R is λ, and that
the order type of any non-empty open interval of Q is η.

The concatenation of two linear orderings J and K (with respective order
relations <J and <K) is denoted by J+K. It corresponds to the linear ordering

2

Fig. 1: The linear ordering N+ Z.

composed of the set of pairs {(j, 1) | j ∈ J} ∪ {(k, 2) | k ∈ K}, equipped with
the order relation < defined by (j1, 1) < (j2, 1) if j1 <J j2, (k1, 2) < (k2, 2) if
k1 <K k2, and (j, 1) < (k, 2) for every j ∈ J and k ∈ K.

More generally, let K and Jk for all k ∈ K be linear orderings. The linear or-
dering Σk∈KJk is obtained by concatenating the orderings Jk w.r.t. the ordering
K. Formally, the sum Σk∈KJk is the linear ordering defined over the set of pairs
(j, k) such that j ∈ Jk and k ∈ K, with the order relation (j1, k1) < (j2, k2) iff
either k1 <K k2, or k1 = k2 and j1 <Jk1

j2. When Jk = J for every k ∈ K,

we may write JK in place of Σk∈KJk. These operators naturally extend to or-
der types. For instance, the order type ωω is the class of all linear orderings
order-isomorphic to the linear ordering NN.

A cut of a linear ordering J is a partition of J into two sets (K,L) such that
for every pair (k, ℓ) ∈ K×L, one has k < ℓ. The set of all cuts of an ordering J is

denoted by Ĵ . Notice that Ĵ is a linear ordering as well, with (K1, L1) < (K2, L2)

iff K1 ⊊ K2, and that Ĵ always has a first element (∅, J) and a last element
(J, ∅). For every j ∈ J , the consecutive cuts ({k | k < j}, {ℓ | j ≤ ℓ}) and
({k | k ≤ j}, {ℓ | j < ℓ}) are (respectively) denoted by j− and j+. Let c = (K,L)
be a cut that is neither the first nor the last one of J , i.e., K ̸= ∅ and L ̸= ∅. If
K admits a greatest element and L admits a smallest element, then c is called a
jump. If K does not admit a greatest element and L does not admit a smallest
element, then c is called a gap.

A linear ordering J is (Dedekind) complete if the set Ĵ does not contain any
gap. For instance, N and R are complete, while Q is incomplete. A linear ordering
J is dense if between any two distinct elements lies another one, i.e., for every
j1, j2 ∈ J such that j1 <J j2, there exists j3 such that j1 <J j3 <J j2. A linear
ordering is scattered if it does not contain any dense sub-ordering. Given a dense
linear ordering J , a sub-ordering J ′ ⊆ J is said to be dense in J if between any
two distinct elements of J lies an element of J ′. For instance, Q and R \ Q are
both dense in R.

Example 1. Consider the linear ordering N+Z corresponding to the set of natural
numbers followed by the set of integers. A depiction of this set and its cuts is
given in Figure 1. The elements of this ordering are represented as dots, while the
cuts are represented as vertical lines. Notice that this ordering admits a single
gap, hence it is incomplete. It is also scattered.

2.2 Words and Rational Expressions

We now define the notions of words and rational expressions on linear orderings,
as introduced in [3, 2].

3

A word indexed by a linear ordering is a totally ordered sequence of letters.
Formally, given an alphabet Σ and a linear ordering J , a word w = (αj)j∈J
indexed by J is a function w : J → Σ. The length |w| of w is J itself. The empty
word ε denotes the word indexed by the empty set. Two words w1 = (αj)j∈J
and w2 = (βk)k∈K are equal if there exists an order-preserving bijection b from
J to K such that for all j ∈ J , αj = βb(j). Informally, for a given word w, only
the order type of its underlying linear ordering |w| is relevant, not the linear
ordering |w| itself.

We now define a product operator on words. Let K and Jk for all k ∈ K be
linear orderings. Let wk = (αj,k)j∈Jk

be a word of length Jk, for every k ∈ K. The
product Πk∈Kwk is the word w of length |w| = Σk∈KJk equal to (αj,k)(j,k)∈|w|.
The product of two words w1 and w2 is denoted by w1 · w2.

A notion of rational expressions has been introduced in [3, 2] to describe
languages of words indexed by linear orderings. Recall that in this paper, we
consider a fixed domain that is either R or Q. For this reason, we only introduce
the rational operators that are relevant to describe words indexed by R or Q.

Let X and Y be two sets of words on linear orderings. We define the following
operators:

– Concatenation: X · Y = {x · y | x ∈ X, y ∈ Y },
– Infinite repetition: Xω = {Πi∈N xi | ∀i ∈ N, xi ∈ X},
– Reverse infinite repetition: X−ω = {Πi∈(−N) xi | ∀i ∈ −N, xi ∈ X}.

We also define a shuffle operator that generates density. Let Σ⋄ denote the
set of all the words indexed by any linear ordering1 over the alphabet Σ, i.e.,
Σ⋄ = {w | |w| ∈ L}.

Let X1, . . . , Xn ⊆ Σ⋄, for some n ≥ 1. We denote by sh(X1, . . . , Xn) the set
of words of Σ⋄ that can be written as Πr∈R xr such that (1) R is a non-empty,
dense, and complete linear ordering without first or last element, and (2) there
exists a partition {R1, . . . , Rn} of R such that every Ri is dense in R, and for
every r ∈ R and i ∈ [1, n], if r ∈ Ri then xr ∈ Xi.

Some remarks are in order. Notice that the order type of the dense and
complete ordering R mentioned in the shuffle definition can be different from
λ. This will be further discussed in Section 4.1. Also notice that, as mentioned
in [2], although the shuffle operator relies on a complete ordering R, if there
exists i ∈ [1, n] such that ε ∈ Xi (but

⋃
i∈[1,n] Xi ̸= {ε}), then there exists

w ∈ sh(X1, . . . , Xn) such that |w| is incomplete. Intuitively, every element of Ri

corresponding to ε does not belong to |w|, but matches a gap in |̂w|.

2.3 Automata

We now recall definitions initially introduced in [3].

1 This definition slightly differs from what is commonly found in the literature: it
implies that ε ∈ Σ⋄ holds, while the usual definition excludes the empty word from
the set Σ⋄.

4

Definition 1. An automaton on linear orderings is a tuple A = (Q,Σ, I, F,
∆s, ∆ℓ), where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is a set
of initial states, F ⊆ Q is a set of accepting states, ∆s ⊆ Q×Σ ×Q is a set of
successor transitions, and ∆ℓ ⊆ (2Q ×Q)∪ (Q× 2Q) is a set of (left and right)
limit transitions.

The set ∆s contains successor transitions of the form (q, α, q′), with q, q′ ∈ Q

and α ∈ Σ, alternatively written q
α→ q′, which are similar to the transitions

of finite and infinite-word automata. Notice however that automata on linear
orderings do not admit ε-transitions. The set ∆ℓ is composed of left-limit transi-
tions of the form (P, q), with P ⊆ Q and q ∈ Q, written P → q, and right-limit
transitions of the form (q, P), with q ∈ Q and P ⊆ Q, written q → P . We
sometimes write sets of limit transitions in a more compact form, e.g., we write
p, q → {p, q} → p in place of the set

{
p → {p, q}, q → {p, q}, {p, q} → p

}
.

We now define the notion of path in such an automaton. Let J be a linear
ordering, Q a finite set of states, and π = (qc)c∈Ĵ a word over the alphabet Q

(i.e., each cut c ∈ Ĵ is associated with an element of Q). The left-limit set and
right-limit set of π at c are the two subsets lim−c π and lim+

c π of Q defined as
follows:

– lim−c π = {q ∈ Q | ∀i < c, ∃k : i < k < c ∧ q = qk},
– lim+

c π = {q ∈ Q | ∀c < i, ∃k : c < k < i ∧ q = qk}.

The left limit at c is therefore the set of states that can be found before c and
infinitely close to c in π. If c has a predecessor, then this set is empty (intuitively
it means that a successor transition, and not a limit transition, has to be taken to
reach the state mapped to c). The case of a right limit is handled symmetrically.
For the first cut cmin and the last cut cmax of J , we set lim−cmin

π = ∅, and

lim+
cmax

π = ∅, although the definition above implies that both sets are equal to
Q.

Definition 2. Let A = (Q,Σ, I, F, ∆s, ∆ℓ) be an automaton and w = (αj)j∈J
a word of length J . A path π labeled by w is a sequence of states π = (qc)c∈Ĵ of

length Ĵ such that

– For every j ∈ J , (qj− , αj , qj+) is a successor transition in ∆s.

– For every cut c ∈ Ĵ that is not the first cut and does not have a predecessor,
lim−c π → qc is a left-limit transition in ∆ℓ.

– For every cut c ∈ Ĵ that is not the last cut and does not have a successor,
qc → lim+

c π is a right-limit transition in ∆ℓ.

A path is accepting if it starts in a state p ∈ I and ends in a state q ∈ F . A word
is accepted by A if it labels an accepting path.

Note that a finite-word automaton can be seen as an automaton on linear
orderings that has an empty set of limit transitions (i.e., ∆ℓ = ∅). Infinite-
word automata [4, 14] and automata on ordinal words [5, 10] also correspond to
particular cases of automata on linear orderings.

5

q1 q2 q3 q4

{q1} → q2
q2 → {q3} → q4

a b

Fig. 2: An automaton accepting aω · b−ω · bω.

Example 2. Consider the word w = aω ·b−ω ·bω defined over the alphabet {a, b}.
Notice that w is indexed by the linear ordering considered in Example 1. The
automaton depicted in Figure 2 accepts {w}. An accepting path can be described
as follows: it maps the cuts (including the first one) of the first sub-ordering of
order type ω to the state q1, the gap to the state q2, the cuts of the sub-ordering
of order type −ω + ω (or equivalently ζ) to the state q3, and the last cut to the
state q4.

Example 3. Consider the automata depicted in Figures 3a and 3b. Both accept
a non-empty language. The automaton in Figure 3a accepts words indexed by
R, and more generally by any non-empty dense and complete ordering J with
no first and no last element, as long as the set of indices labeled by the letter
a and those labeled by b partition J , and are both dense in J . For instance,
consider the word w : R → {a, b}, such that w(x) = a if x ∈ Q, and w(x) = b if
x ∈ R \Q. Let us describe an accepting path π labeled by w. The first cut (∅,R)
of R is abbreviated by −∞, and the last cut (R, ∅) by +∞. We set π(−∞) = q1
and π(+∞) = q6. Since R is complete, every other cut of R is of the form r−

or r+ for some r ∈ R. If r ∈ Q, then we set π(r−) = q2 and π(r+) = q3. If
r ∈ R \ Q, then we set π(r−) = q4 and π(r+) = q5. The automaton depicted
in Figure 3a does not however accept words indexed by Q, or any incomplete
ordering, since this automaton does not contain any state that can be mapped
to a gap. The language accepted by this automaton is described by the rational
expression sh(a, b).

On the other hand, the automaton depicted in Figure 3b accepts words in-
dexed by Q, but does not accept any word indexed by R. Indeed, any accepting
path necessarily visits the state q4, which can only correspond to a gap, since
it does not admit any incoming or outgoing successor transition. The language
accepted by this automaton is described by the rational expression sh(a, ε).

3 State of the Art

Given an automaton A and two states p and q, the reachability problem consists
in deciding whether A admits a path starting at p and ending at q. In [9],

6

q1

q2 q3

q4 q5

q6

q1, q3, q5 → {q2, q3, q4, q5} → q2, q4, q6

a

b

(a) A complete shuffle of a and b.

q1

q2 q3

q4

q5

q1, q3, q4 → {q2, q3, q4} → q2, q4, q5

a

(b) An incomplete shuffle of a.

Fig. 3: Automata accepting words indexed by dense orderings.

Carton describes a polynomial procedure for deciding reachability on scattered
linear orderings only, i.e., deciding whether there exists a path labeled by a word
indexed by such an ordering. Given an input automaton on linear orderings A,
Carton’s algorithm generates a finite-word automaton AF sharing the same set
of states as A, that accounts for every possible path in A while storing the set of
states visited in the labels read along the paths. More precisely, the existence of
a transition (p, P, q) in AF implies that there exists in A a path p → q labeled
by a word indexed by a scattered linear ordering that visits exactly the set of
states P . Reciprocally, the existence in A of a path p → q labeled by a word
indexed by a scattered linear ordering implies the existence of a path p → q in
AF , although it may not necessarily be composed of a single transition. By not
explicitly building a transition for every possible path, Carton’s solution remains
polynomial. Reachability in A then reduces to reachability in AF .

A generalization of this algorithm over arbitrary linear orderings is sketched
in [11], where the author introduces a specific additional rule for dealing with
shuffles. To the best of our knowledge, a proof of this generalization has not been
published, and it seems that the additional rule is actually only able to deal with
complete shuffles. Actually, a small modification of this rule (somewhat similar
to what will be done in Section 5) is enough to deal with both complete and
incomplete shuffles altogether, so as to accurately cover any linear ordering.

4 Reachability over the Reals

4.1 Characterization

Properties like completeness, density, and not having first or last elements can
be expressed by automata on linear orderings. However, there is no equivalence
between accepting words indexed by complete and dense orderings without first
or last elements, and accepting words indexed by R. In particular, we have the
following result.

Theorem 1. There exists an automaton on linear orderings A∅R that accepts
words indexed by non-empty, dense, and complete linear orderings that do not
have first or last elements, such that A∅R does not accept words indexed by R.

7

q1

q2 q3

q4 q5

q6 q7

q8
q1, q7 → {q2, q3, q4, q5, q6, q7} → q2, q8

q3, q5 → {q4, q5} → q4, q6

a

a

a

Fig. 4: The automaton A∅R, that does not accept words indexed by R.

The automaton A∅R depicted in Figure 4 matches the description given in
Theorem 1. The proof of Theorem 1 ensues from the two following lemmas.

Lemma 1. The automaton A∅R does not accept any word indexed by R.

Proof sketch. Let w be a word accepted by A∅R. By studying the structure of

the automaton A∅R, one first proves that the ordering |w| must be of the form
Σk∈KJk, where for all k ∈ K, Jk is an infinite, dense, and complete ordering
with a first and a last element, and K is an infinite, dense, and complete ordering
without first and last elements. Intuitively, each Jk is recognized by a sub-path
that starts with q2

a→ q3, then follows a dense mix of q4
a→ q5 transitions, and

finally ends with q6
a→ q7.

Then, one shows that R cannot be expressed as such an ordering Σk∈KJk.
By contradiction, assume that R can be partitioned into an infinite, dense, and
complete set I of pairwise disjoint closed intervals [ai, bi] with ai < bi. On the
one hand, thanks to Cantor’s isomorphism theorem [8], there does not exist an
infinite, dense, and complete ordering that is also countable, therefore the set I
must be uncountable. On the other hand, I must be countable since each interval
[ai, bi] ∈ I contains a rational number that is not shared with any other, which
yields a contradiction. ⊓⊔

Lemma 2. The automaton A∅R accepts a word indexed by a non-empty, dense,
and complete linear ordering that does not have a first or a last element.

Proof. Consider the linear ordering S = [0, 1]R, where [0, 1] denotes the closed
interval of R between 0 and 1. Intuitively, S corresponds to the real line in which
every real number has been replaced by a copy of the closed interval [0, 1]. The
ordering S is dense, complete, and does not admit a first or a last element. We
can represent elements of S as pairs (x, y) ∈ [0, 1] × R, ordered by the relation
<S defined by (x1, y1) <S (x2, y2) if either y1 < y2, or y1 = y2 and x1 < x2,
where < denotes the usual order relation on both R and [0, 1]. Now, consider the
word w indexed by S (i.e., |w| = S) obtained by labeling each element of S with
the symbol a. Let us describe an accepting run of A∅R reading w. We denote by

ŝmin (resp. ŝmax) the first (resp. last) cut of S. Consider the mapping π : Ŝ → Q
defined as follows:

8

– π(ŝmin) = q1,
– π(ŝmax) = q8,
– for all y ∈ R, π((0, y)−) = q2 and π((0, y)+) = q3,
– for all y ∈ R, π((1, y)−) = q6 and π((1, y)+) = q7,
– for all x ∈ (0, 1) and for all y ∈ R, π((x, y)−) = q4,
– for all x ∈ (0, 1) and for all y ∈ R, π((x, y)+) = q5.

It is immediate to establish that π describes an accepting run. ⊓⊔

This concludes the proof of Theorem 1.

4.2 Algorithm

We now introduce an algorithm that decides reachability over R.
Let A = (Q,Σ, I, F,∆s, ∆ℓ) be an automaton and qI , qF ∈ Q two states.

We consider the problem of deciding reachability between qI and qF . The first
step of the algorithm consists in constructing a sequence of finite-word automata
A0, . . . ,AM , where M = max{|P | | ∃q ∈ Q : q → P ∈ ∆ℓ ∨ P → q ∈ ∆ℓ}. For
every j ∈ [0,M], the automaton Aj is of the form (Q, 2Q, I, F,∆j , ∅), i.e., the
successor transitions in ∆j (which we define later) are labeled by subsets of Q.
The purpose of each automaton Aj is to characterize every path in A that is
labeled by a word indexed by R, and that only involves limit transitions on sets
of cardinality less than or equal to j.

We introduce the following useful definitions. An open R-path r from q1 to q′n
in Aj of label P = P1∪· · ·∪Pn is a finite sequence of transitions (q1, P1, q

′
1), . . . ,

(qn, Pn, q
′
n) ∈ ∆j (of length n ≥ 1) such that, for every i ∈ [1, n−1], there exists

a successor transition (q′i, αi, qi+1) ∈ ∆s for some αi ∈ Σ. Intuitively, such a
path corresponds to a finite concatenation of open intervals of R (corresponding
to transitions in Aj), connected by single elements (corresponding to successor
transitions in A), resulting in an open interval of R. Analogously, a closed R-path
r from p to p′ in Aj of label P ∪{p, p′} is the combination of an open R-path from
a state q1 to a state q′n (of label P) with two transitions (p, α, q1), (q

′
n, α

′, p′) ∈
∆s, for some α, α′ ∈ Σ.

The transition relation ∆j is defined for j ∈ [0,M] by recursion over j. For
j > 0, ∆j = ∆j−1 ∪ Sj ∪ Lj ∪ Rj , where Sj , Lj , and Rj are sets of transitions
constructed from Aj−1 as described below, and ∆0 = ∅. For every j ∈ [1,M],
the sets Sj , Lj , and Rj are initially empty. They are then filled according to the
following rules.

Shuffle rule: For every pair of transitions q → P ∈ ∆ℓ and P → q′ ∈ ∆ℓ such
that |P | = j, the transition (q, P ∪ {q, q′}, q′) is added to Sj if and only if:

– There exists a (possibly empty) set {r1, . . . , rn} of closed R-paths in Aj−1
with n ≥ 0, where each ri starts in a state qi such that P → qi ∈ ∆ℓ, and
ends in a state q′i such that q′i → P ∈ ∆ℓ. The label of the R-path ri is
denoted by Qi.

9

– There exists a (necessarily non-empty) set of successor transitions{(s1,γ1,s′1),
. . . , (sm, γm, s′m)} ⊆ ∆s, withm > 0, such that, for each i ∈ [1,m], si, s

′
i ∈ P ,

P → si ∈ ∆ℓ, and s′i → P ∈ ∆ℓ.
–

⋃
i∈[1,m]{si, s′i} ∪

⋃
i∈[1,n] Qi = P .

We refer to the case n = 0 as a simple shuffle, and to the case n > 0 as a
Cantor shuffle. Intuitively, a Cantor shuffle represents a dense combination of
intervals of order type 1 + λ+ 1 (corresponding to closed R-paths in Aj−1) and
single elements (corresponding to successor transitions in A). A simple shuffle
represents a dense combination of single elements only.

Infinite repetition rule: For every transition P → q ∈ ∆ℓ such that |P | = j,
and for every state s ∈ P , the transition (s, P ∪{q}, q) is added to Lj if and only
if there exist p, p′ ∈ P such that:

– Aj−1 admits an open R-path from p to p′ labeled by P of the form (r1, P1, r
′
1),

. . . , (rn, Pn, r
′
n) such that s = ri for some i ∈ [1, n], and

– A admits a successor transition of the form (p′, α, p) ∈ ∆s.

Intuitively, we look for a cycle that alternates between open intervals of order
type λ (corresponding to open R-paths in Aj−1) and single elements (corre-
sponding to successor transitions in A) such that the set of states visited by
the whole cycle is exactly P . If such a cycle exists, it can be repeated infinitely
many times, therefore allowing to follow the limit transition P → q. A similar
principle applies to the reverse infinite repetition rule described below.

Reverse infinite repetition rule: For every transition q → P ∈ ∆ℓ such that
|P | = j, and for every state s ∈ P , the transition (q, P ∪ {q}, s) is added to Rj

if and only if there exist p, p′ ∈ P such that:

– Aj−1 admits an open R-path from p to p′ labeled by P of the form (r1, P1, r
′
1),

. . . , (rn, Pn, r
′
n) such that s = r′i for some i ∈ [1, n], and

– A admits a successor transition of the form (p′, α, p) ∈ ∆s.

The final step of the algorithm consists in searching whether there exists an
open R-path in AM that starts in qI and ends in qF . In the positive case, the
algorithm returns yes, otherwise no.

The definitions above ensure that for every j ∈ [0,M], if A admits a path
from a state q to a state q′ that visits a set of states P , is labeled by a word
indexed by R, and only involves limit transitions on sets of cardinality less than
or equal to j, then Aj admits an open R-path from q to q′ labeled by P .

4.3 Correctness

We have the two following results, asserting the correctness of the algorithm of
Section 4.2.

10

Theorem 2. If there exists an open R-path in AM from qI to qF of label P ,
then there exists a path in A from qI to qF , labeled by a word indexed by R, that
visits exactly the states in P .

Proof sketch. The proof proceeds by explicitly building a word indexed by R or,
equivalently, by any open interval (x, y) of R, that labels a path in A.

Let r be an open R-path in AM corresponding to the sequence of transitions
(q1, P1, q

′
1), . . . , (qn, Pn, q

′
n) ∈ ∆M . The proof is by induction on the sequence

of rules involved in the generation of the transitions (qi, Pi, q
′
i). The base case

corresponds to an open R-path r composed of a single transition (q, P, q′) ∈ ∆M

that stems from the simple shuffle rule, since this rule does not rely on preexist-
ing R-paths. Let (s1, γ1, s′1), . . . , (sm, γm, s′m) ∈ ∆s be the successor transitions
that triggered the application of the simple shuffle rule. The domain R can be
partitioned into m non-empty disjoint subsets R1, . . . , Rm such that each Ri is
dense in R. The word w : R → Σ indexed by R and defined by w(x) = γi if
x ∈ Ri labels a path from q to q′.

For the inductive case, we first consider the infinite repetition rule. It is
handled by considering an infinite sequence of words indexed by consecutive
intervals of R, e.g., (−∞, 0), (0, 1), (1, 2), . . . and concatenating them to form
a word indexed by the full set R. The case of the reverse infinite repetition is
handled symmetrically.

To reason about the remaining rule, that is, the Cantor shuffle, we consider a
Cantor set construction [7, 12] that partitions the interval (0, 1) into a countable
set I of disjoint open intervals, together with an uncountable set S of isolated
points. For every n > 0, the set I can be partitioned into n subsets I1, . . . , In
such that for all k ∈ [1, n], an interval in Ik lies between any two intervals in I.
Similarly, for everym > 0, the set S can be partitioned intom subsets S1, . . . , Sm

such that for all j ∈ [1,m], the set Si is dense in S. By associating each R-path
ri involved in the Cantor shuffle with the set of intervals Ii, and each successor
transition (sj , γj , s

′
j) with the set of isolated points Sj , we obtain a word indexed

by (0, 1) (and equivalently R) that labels a path of the desired form. ⊓⊔

Theorem 3. If the automaton A accepts a word indexed by R, then there exists
an open R-path in AM from a state qI ∈ I to a state qF ∈ F .

The proof is essentially based on mechanisms introduced in [13] for establishing
the decidability of the first-order theory of order, and on ideas introduced in [9].

Proof sketch. The proof consists in showing that for all j ∈ [0,M], if A admits a
path from a state q to a state q′ that visits a set of states P , labeled by a word
indexed by R, and that only follows limit transitions on sets of cardinality less
than or equal to j, then Aj admits an open R-path from q to q′ labeled by P .

The proof relies on the property that for all j ∈ [1,M], the construction of
Aj only relies on transitions generated in Aj−1. This ensues from the fact that
at Step j, every application of a rule generates a transition of one of the two
following forms. The first case is that the generated transition is labeled by a set
of states of cardinality strictly greater than j. In that case, this transition can

11

clearly only be involved in a rule at a later Step j+ k for some k ≥ 1. The other
possibility is to have a transition labeled by a set of cardinality of size exactly
equal to j. In that case, using this transition to apply another rule in Aj (this
time not only based on transitions in Aj−1, but also transitions generated at
Step j itself) would only generate new transitions that are redundant w.r.t. the
existence of open R-paths in Aj . ⊓⊔

4.4 Example

We now give a short example to illustrate our algorithm, and more specifically the
construction of the automata A0, . . . ,AM . Consider the automaton A depicted
in Figure 5. The automaton A0 is shown in Figure 6, and does not contain
any transition. Since no limit transition involves a set of cardinality 1 or 2, we
have A2 = A1 = A0. In the automaton A3 given in Figure 7, the transition
(q4, {q3, q4, q5}, q3) (resp. (q5, {q3, q4, q5}, q3)) results from the application of the
shuffle rule on the set {q3, q4, q5}, with qI = q4 (resp. qI = q5) and qF = q3. For
the same reason as before, we haveA4 = A3. The last automatonA5 is illustrated
in Figure 8. The new transitions result from the application of the shuffle rule
on the set {q1, q2, q3, q4, q5}, for every qI ∈ {q1, q4, q5} and qF ∈ {q2, q3}.

4.5 Complexity

The algorithm described in Section 4.2 runs in polynomial time w.r.t. the size
of A, i.e. |Q|+ |∆s|+ |∆ℓ|. More precisely, we have the following result.

Proposition 1. The automaton AM can be computed in polynomial time in the
size of A.

Proof sketch. A first argument is that for all j ∈ [0,M], each rule is called only
polynomially many times during the construction of the automaton Aj . Indeed,
the shuffle rule is only considered for every combination of two limit transitions in
A, and the (reverse) infinite repetition is only considered for every combination
of a limit transition in A with one state of A.

q1 q3

q4

q5

q2

q4, q5 → {q3, q4, q5} → q3
q1, q4, q5 → {q1, q2, q3, q4, q5} → q2, q3

a

a

b

Fig. 5: The input automaton A.

12

q1 q3

q4

q5

q2

Fig. 6: The finite-word automata A0, A1, and A2.

q1 q3

q4

q5

q2

{q3, q4, q5}

{q3, q4, q5}

Fig. 7: The finite-word automata A3 and A4.

It remains to show that each rule can be applied in polynomial time. The case
of the simple shuffle rule is immediate. The other rules require to either be able to
check the existence of an open R-path labeled by a given set of states P (to deal
with the infinite and reverse infinite repetition rules), and to be able to check
the existence of a set of closed R-paths and successor transitions such that their
combined labels and visited states are equal to P (to deal with the shuffle rule).
To perform these two operations in polynomial time, in this specific context, we
rely on a polynomial procedure that, given a set of states P , two states q, q′ ∈ P ,
and the automaton Aj , computes the union of the labels of every possible (open
or closed) R-path in Aj from q to q′ labeled by a subset of P . More precisely,
this procedure computes the set Sopen(Aj , P, q, q

′) = {r ∈ P | Aj admits an
open R-path from q to q′, of label R ⊆ P , s.t. r ∈ R}, or analogously the set
Sclosed(Aj , P, q, q

′) that deals with closed R-paths. Let δ→P,j,q ⊆ ∆j (resp. δ←P,j,q′)
be the set of transitions occurring in (open or closed) R-paths of Aj starting
in q (resp. ending in q′), and labeled by a subset of P . The sets δ→P,j,q and
δ←P,j,q′ can be computed in polynomial time by performing a (reverse) traversal
of the automaton Aj that respects the structure of R-paths, i.e., alternating
between transitions in ∆j and transitions in ∆s. The set Sopen(Aj , P, q, q

′) (resp.
Sclosed(Aj , P, q, q

′)) is then obtained by taking the union of the labels of the
transitions in δ→P,j,q ∩ δ←P,j,q′ .

Thanks to the (reverse) infinite repetition rule, given a set of states P and two
states p, p′ ∈ P such that Sopen(Aj , P, p, p

′) = P , there exists an open R-path
from p to p′ in Aj labeled by P . Such a path can be constructed by first choosing,
for each q ∈ P , an open R-path rq labeled by R ⊆ P such that q ∈ R, and then
concatenating these paths by means of transitions of the form (p′, α, p) ∈ ∆s,
which must exist for the infinite repetition rule to be applicable.

Now, regarding the shuffle rule, consider two set of states P, S such that S ⊆
P . We define LP = {p ∈ P | P → p ∈ ∆ℓ}, and RP = {p ∈ P | p → P ∈ ∆ℓ}.

13

q1 q3

q4

q5

q2

P3, P5

P3, P5

with P5 = {q1, q2, q3, q4, q5}, and P3 = {q3, q4, q5}.

P5

P5

P5

P5

Fig. 8: The finite-word automaton A5.

Using a similar argument as before, one shows that checking the existence of a
set of closed R-paths r1, . . . , rn, each labeled by Qi, starting from a state in LP ,
and ending in a state in RP , such that (P \S) ⊆

⋃
i∈[1,n] Qi, reduces to checking

that the inclusion (P \ S) ⊆
⋃

(q,q′)∈LP×RP
Sclosed(Aj , P, q, q

′) holds. ⊓⊔

5 Reachability over the Rationals

The algorithm introduced in Section 4.2 can be adapted to solve reachability
over Q. The incompleteness of Q requires the rules to be modified, in order to
account for the presence of gaps.

We first define a notion of valid path over Q, analogous to the notion of
R-path. A Q-path from q1 to q′n in Aj of label P = P1 ∪ · · · ∪ Pn is a finite
sequence of transitions (q1, P1, q

′
1), . . . , (qn, Pn, q

′
n) ∈ ∆j such that for each i ∈

[1, n−1], either q′i = qi+1, or there exists a successor transition (q′i, αi, qi+1) ∈ ∆s.
Intuitively, such a path corresponds to a finite concatenation of open intervals
of Q (corresponding to transitions in Aj) connected either by single elements
(corresponding to successor transitions in A, if the shared bound between the
two consecutive interval belongs to Q), or by gaps (if the shared bound belongs
to R \ Q). For a given set of states P appearing in a limit transition, both the
simple and Cantor shuffle rules additionally require a non-empty set of states
(g1, . . . , gk) such that gi → P → gi, for all i ∈ [1, k]. Finally, the left and right
infinite repetition rules are modified to allow for the required Q-path to be cyclic,
i.e., q′n = q1.

References

1. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words
indexed by linear orderings. Theory of Computing Systems 46, 737–760 (2010)

2. Bès, A., Carton, O.: A Kleene theorem for languages of words indexed by linear
orderings. International Journal of Foundations of Computer Science 17(03), 519–
541 (2006)

3. Bruyère, V., Carton, O.: Automata on linear orderings. Journal of Computer and
System Sciences 73(1), 1–24 (2007)

14

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Intl. Congress on Logic, Methodology and Philosophy of Science, 1960 (1962)

5. Büchi, J.R.: Transfinite automata recursions and weak second order theory of or-
dinals. In: Proc. Intl. Congress on Logic, Methodology, and Philosophy of Science,
1965 (1965)

6. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre
Dame Journal of Formal Logic 26(2), 115–128 (1985)

7. Cantor, G.: Über unendliche, lineare Punktmannichfaltigkeiten. Mathematische
Annalen 20(1), 113–121 (1882)

8. Cantor, G.: Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische
Annalen 46, 481–512 (1895)

9. Carton, O.: Accessibility in automata on scattered linear orderings. In: Proc. Intl.
Symp. on Mathematical Foundations of Computer Science. pp. 155–164. Springer
(2002)

10. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-
tapes. Journal of Computer and System Sciences 17(1), 81–97 (1978)

11. Cristau, J.: Automata and temporal logic over arbitrary linear time. In: Proc. Intl.
Conf. on Foundations of Software Technology and Theoretical Computer Science.
LIPIcs, vol. 4, pp. 133–144 (2009)

12. DiBenedetto, E.: Real analysis. Springer (2002)
13. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta

Mathematicae 59(1), 109–116 (1966)
14. Muller, D.E.: Infinite sequences and finite machines. In: Proc. Annual Symp. on

Switching Circuit Theory and Logical Design. pp. 3–16. IEEE Computer Society
(1963)

15. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

16. Rabinovich, A.: Temporal logics over linear time domains are in PSPACE. Infor-
mation and Computation 210, 40–67 (2012)

17. Reynolds, M.: The complexity of temporal logic over the reals. Annals of Pure and
Applied Logic 161(8), 1063–1096 (2010)

18. Rosenstein, J.G.: Linear orderings. Academic press (1982)
19. Shelah, S.: The monadic theory of order. Annals of Mathematics 102(3), 379–419

(1975)

15

