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1 Introduction

This document gathers supplementary information for the manuscript ”Control-based
nonlinear vibration testing”. Detailed descriptions of the experimental setups, namely
an electronic Duffing oscillator and a clamped plate, are given in Section 2 and 3,
respectively. The complete list of parameters used in the different methods are given
in Section 4. Section 5 discusses the implementation details of some methods. Finally,
Section 6 explains how Gaussian process regression has been performed on the
measured data.

2 Details about the electronic Duffing oscillator

The electronic Duffing oscillator used in this work follows the schematics given in
Figure 1, inspired from [1, 2]. The response x of this oscillator to an external excitation
f is theoretically governed by the following ordinary differential equation:

mẍ(t) + cẋ(t) + kx(t) + k3x
3(t) = f(t), (1)

where m, c, k and k3 are the mass, damping coefficient, linear stiffness and cubic
stiffness coefficient, respectively, and an overdot denotes a derivation with respect to
time t.

Assuming ideal operational amplifier and analog multiplier behaviors, and neglect-
ing the loading effects of the potentiometers on the summing amplifier, this circuit
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Fig. 1: Schematics of the electronic Duffing oscillator.

can be shown to be governed by the following ordinary differential equation:
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where Vin and Vx are the input and output voltages of the circuit, respectively, Rn

are resistances, Cn are capacitances, pn are voltage division ratios associated with
potentiometers, and gm is the analog multiplier’s gain. Identifying Vin and Vx to f
and x in Equation (1), Equation (2) is indeed verified to be of the form of Duffing’s
equation. The output of the first operational amplifier was also monitored, and is
related to the time derivative of Vx through

Vv = −C2R5V̇x, (3)

as Vv and Vx are the input and output of an integrator, respectively. The values of
all electrical parameters for this study are given in Table 1. More details about this
electronic circuit can be found in [3].

Table 1: Electri-
cal parameters of
the electronic Duff-
ing oscillator.

Parameter Value
R1 (kΩ) 100
R2 (kΩ) 10
R3 (kΩ) 1
R4 (kΩ) 100
R5 (kΩ) 1
R6 (kΩ) 10
R7 (kΩ) 10
C1 (µF) 1
C2 (µF) 1
gm (V−1) 0.1
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Measurements on the board allowed to determine the potentiometer parameters
as p1 = 0.1311, p2 = 0.1923 and p3 = 0.9887. Comparing Equations (1) and (2), the
parameters given in Table 2 were thus found for the Duffing oscillator. The parame-
ters were also computed with the frequency subspace nonlinear system identification
method [4] with data from one of the swept-sine tests. The main discrepancies with
the experimentally identified values are in line with the various uncertainties on the
capacitances (5%), as well as the inaccuracies due to the fact that the circuit does not
exactly respect the aforementioned idealizations.

Table 2: Theoretical and identified parame-
ters of the electronic Duffing oscillator.

Parameter Theoretical value Identified value
m (s2) 10−4 1.0461× 10−4

c (s) 1.3×10−4 1.4231×10−4

k (-) 1.923 1.8099
k3 (V −2) 0.9887 1.0077

3 Details about the clamped plate

Figure 2 schematizes the experimental clamped plate setup.
The 500 mm × 300 mm × 0.5 mm stainless steel plate was purchased from RS

(with reference 559-206). The clamping device is a Tecuro SKON3840600 38/40 × 600
mm × 2 mm Galvanised Steel C/U Profile. Seven holes (evenly spaced by 40 mm)
were drilled in each side (12.5 mm away from the edge) of the plate to fix it to the
clamping arms with M5 bolts and washers of 30 mm diameter. The lower edge of the
plate is 65 mm away higher than the optical table. The transverse stiffening bar (to
improve midplane stretching effects) was made of two L-shaped profiles of 300 mm
length with 40 mm sides of 2mm thickness, which are bolted to the cantilever arms
60 mm above the plate upper edge. The distance between the two clamping devices
(also corresponding to the clamped plate span) is 437 mm.

The plate was excited with an electrodynamic shaker (TIRA TV 51075) in current
mode, and the response of the plate was monitored with an impedance head (DYTRAN
5860B) as well as a laser vibrometer (Polytec NLV-2500-5). The laser measurement
point is located at 125 mm lengthwise and 20 mm widthwise from the top left corner,
whereas the impedance head is glued at 60 mm lengthwise and 60 mm widthwise from
the lower left corner.

4 Parameters

This section gathers all parameters used during the experiments.

4.1 Electronic Duffing oscillator

We start with the parameters for the primary and superharmonic resonances of the
Duffing oscillator. We note that for CBC methods, the gain kd is defined with the
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Fig. 2: Detailed schematics of the clamped plate setup (all dimensions are in mm).

feedback law using the velocity signal

Vin(t) = −kd(x∗(t)− Vv(t)), (4)

and, recalling with Equation (3) and Table 1 that Vv = −10−3Vx, an equivalent direct
velocity feedback coefficient would thus be 10−3kd.

4.1.1 Primary resonance

Table 3 gathers the parameters common to all tests of the primary resonance of the
electronic Duffing oscillator, whereas Tables 4, 5, 6, 7 and 8 contain the parameters
specific to the CBC-FD, SCBC, PLL, RCT and ACBC methods, respectively.
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Table 3: Common
parameters for the
primary resonance
of the electronic
Duffing oscillator.

Parameter Value
ts (s) 10−4

tsteady (s) 0.5
µ̄ (-) 0.5
h (-) 5

Table 4: Parame-
ters of the CBC-FD
method for the pri-
mary resonance of
the electronic Duffing
oscillator.

Parameter Value
kd (-) 10

∆|Vv|1 (V) 0.01
∆ω (rad s−1) 5

ρ (-) 0.05

Table 5: Parameters of the SCBC
method for the primary resonance of
the electronic Duffing oscillator.

Parameter Value
kd (-) 10

∆|Vv|1 (V) 0.01
∆ω (rad s−1) 5

ρ (-) 0.05 (Picard)
ρ (-) 0.01 (Adaptive filters)

Table 6: Parameters of
the PLL method for the
primary resonance of the
electronic Duffing oscilla-
tor.

Parameter Value
dθ∗/dt (rad s−1) -0.013

kp (s−1) 20
ki (s

−2) 10
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Table 7: Parameters of the
RCT method for the primary
resonance of the electronic Duff-
ing oscillator.

Parameter Value
∆|Vx|1 (V) 0.06

∆ω (rad s−1) 5
Number of periods (-) 5

Confidence Low
FRF error correction (%) 50

Max. control iter. (-) 10
Max. drive update (%) 20
Max. amplitude var. (%) 20

Delay (cycles) 0

Table 8: Parameters of
the ACBC method for the
primary resonance of the
electronic Duffing oscilla-
tor.

Parameter Value
kd (-) 10

∆|Vv|1 (V) 0.01
∆ω (rad s−1) 5

ρ (-) 0.01
σ (-) 0.5

kα (rad s−1 V−1) 10

4.1.2 3:1 superharmonic resonance

Table 9 gathers the parameters common to all tests of the 3:1 superharmonic reso-
nance of the electronic Duffing oscillator, whereas Tables 10, 11 and 12 contain the
parameters specific to the CBC-FD, PLL and ACBC methods, respectively.

Table 9: Common
parameters for the
3:1 superharmonic
resonance of the
electronic Duffing
oscillator.

Parameter Value
ts (s) 10−4

tsteady (s) 0.5
µ̄ (-) 0.25
h (-) 9
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Table 10: Parame-
ters of the CBC-FD
method for the 3:1
superharmonic reso-
nance of the elec-
tronic Duffing oscilla-
tor.

Parameter Value
kd (-) 50

∆|Vv|1 (V) 0.01
∆ω (rad s−1) 0.2

ρ (-) 0.01

Table 11: Parameters of
the PLL method for the
3:1 superharmonic reso-
nance of the electronic
Duffing oscillator.

Parameter Value
dθ∗/dt (rad s−1) -0.013

kp (s−1) 10
ki (s

−2) 5

Table 12: Parameters of
the ACBC method for the
3:1 superharmonic reso-
nance of the electronic
Duffing oscillator.

Parameter Value
kd (-) 50

∆|Vv|1 (V) 0.01
∆ω (rad s−1) 0.2

ρ (-) 0.01
σ (-) 0.5

kα (rad s−1 V−1) 10

4.2 Clamped plate

Details are now given about the parameters used for the clamped plate setup.
In addition to the repeatability issues mentioned in the article, the clamped plate

set-up also has a feature that makes it not completely reproducible. This is due to the
shaker amplifier gain knob that can continuously be varied. Between different tests,
it was moved as little as possible, but some operations made it mandatory to set the
knob gain to zero, and then back as close as possible to its previous position. From the
measured FRFs, a static gain of approximately 6.3 N/V and 0.72 A/V was identified
to correspond to this knob position.
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Table 13 gathers the parameters common to all tests of the clamped plate oscillator,
whereas Tables 14, 15 and 16 contain the parameters specific to the SCBC, PLL and
ACBCmethods, respectively. We also recall that a low-pass filter with transfer function

Hlp(p) =
1

p/(2πflp) + 1
(5)

was applied to the sensed signal (where p is Laplace’s variable and flp = 500 Hz is the
filter’s cut-off frequency).

Table 13: Com-
mon parameters
for the clamped
plate.

Parameter Value
ts (s) 10−4

tsteady (s) 0.5
µ̄ (-) 0.5
h (-) 15

Table 14: Param-
eters of the SCBC
method for the
clamped plate.

Parameter Value
kd (-) 2.5

∆|Vv|1 (V) 0.05
∆ω (rad s−1) 0.5

ρ (-) 0.01

Table 15: Parameters of
the PLL method for the
clamped plate.

Parameter Value
dθ∗/dt (rad s−1) –0.0164

kp (s−1) 20
ki (s

−2) 10
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Table 16: Parameters of the
ACBC method for the clamped
plate.

Parameter Value
kd (-) 2.5

∆|Vv|1 (V) 0.05
∆ω (rad s−1) 0.5 (Mode 2)
∆ω (rad s−1) 1 (Broadband)

ρ (-) 0.01
σ (-) 0.5

kα (rad s−1 V−1) 100

5 Implementation details

We give some details about the implementation of different methods, namely CBC-FD,
RCT, PLL for phase resonance tracking, and CBC fold bifurcation tracking.

5.1 CBC-FD

A fully online implementation of the CBC-FD method was used in this work. The
method works with a constant scaling of the variables based on ∆|Vv|1 and ∆ω for the
Fourier coefficients and frequency, respectively. In these scaled variables, the norm of
the prediction is equal to one.

A quasi-Newton-chord method was used for the corrections. The Jacobian is evalu-
ated with finite differences after a given number of successful prediction, and updated
with Broyden’s formula, similarly to, e.g., [5]. Corrections ∆x obtained from a pseudo-
arclength corrector are limited based on the unknowns vector x if they exceed a certain
fraction of the latter in norm, i.e., from ∆x the effective correction is (∆x)QN given by

(∆x)QN =

{
∆x if ||∆x|| ≤ γ||x||
γ||x||∆x/||∆x|| if ||∆x|| > γ||x|| . (6)

If the number of corrections exceeds a predefined threshold, the correction procedure
is stopped and the Jacobian is reevaluated with finite differences (it was however noted
that this procedure was triggered when the algorithm had convergence trouble, and
seldom helped to retrieve a convergent behavior). The parameters of the CBC-FD
method used in this work are gathered in Table 17.

Table 17: Parameters of the CBC-FD
method.

Parameter Value
Finite difference step (-) 0.05

γ (-) 0.2
Steps for Jacobian evaluation (-) 5
Max. number of corrections (-) 10

9



5.2 RCT

The nominal parameters for the RCT given in Table 7 were chosen heuristically. We
also tried to vary these nominal parameters in an attempt to suppress the instability
issues, as given in Table 18 (where parameters highlighted in red indicate the difference
with the nominal case). To avoid long tests, these parameters were tried out with a
target amplitude meeting the unstable zone when the frequency is varied with steps
of 1 Hz, namely a∗ = 0.5 V, with a relative tolerance of ρ = 0.01 on the amplitude.
Figure 3 shows the resulting harmonic amplitude spectrum; clearly, instabilities appear
for all the investigated cases.

Table 18: Parameters for the parametric study of the RCT method in TestLab.

Parameter Value 1 Value 2 Value 3 Value 4 Value 5 Value 6
Number of periods (-) 5 5 1 2 10 5

Confidence Medium High Low Low Low Low
FRF error correction (%) 50 50 50 50 50 50

Max. control iter. (-) 10 10 10 10 10 10
Max. drive update (%) 20 20 20 20 20 50
Max. amplitude var. (%) 20 20 20 20 20 20

Delay (cycles) 0 0 0 0 0 0

Parameter Value 7 Value 8 Value 9 Value 10 Value 11 Value 12
Number of periods (-) 5 5 5 5 5 5

Confidence Low Low Low Low Low Low
FRF error correction (%) 50 50 25 100 50 50

Max. control iter. (-) 10 10 10 10 5 20
Max. drive update (%) 20 50 20 20 20 20
Max. amplitude var. (%) 50 50 20 20 20 20

Delay (cycles) 0 0 0 0 0 0
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Fig. 3: Parametric study for the RCT: harmonic displacement amplitude with a∗ =
0.5 V. The thin colored lines represent the tests with the parameters of Tables 7
and 18, the thick dashed line is the target harmonic amplitude (a∗), and the thick full
lines are the loci of fold bifurcations.

10



5.3 PLL for phase resonance tracking

Table 19: Parameters
of the PLL method
for the 1:1 phase reso-
nance tracking.

Parameter Value
µ̄ (-) 0.5

θ1 (rad) −π/2
df/dt (V s−1) 10−3

Table 20: Parameters
of the PLL method for
the 2:1 phase resonance
tracking.

Parameter Value
µ̄ (-) 0.25

θ2 (rad) 0
df/dt (V s−1) 5×10−2

Table 21: Parameters
of the PLL method for
the 3:1 phase resonance
tracking.

Parameter Value
µ̄ (-) 0.16

θ3 (rad) −π/2
df/dt (V s−1) 2×10−2

The PLL allows for an easy implementation of phase resonance tracking, both
for primary [6, 7] and secondary [8] resonances. The main difference with the NFR
measurement is that θ is fixed, and f is varied. In addition, secondary resonances
consider the phase of the resonant harmonic (instead of that of the fundamental har-
monic), which can easily be deduced from the Fourier decomposition of the response.
Tables 19, 20 and 21 gather the parameters associated with the 1:1, 2:1 and 3:1 phase
resonance tracking procedures, respectively; the remaining parameters are identical to
those gathered in Tables 3 and 6.

5.4 CBC fold bifurcation tracking

The experimental fold bifurcation tracking procedure implemented in this work follows
the method explained in [9], which is based on finding an extremum of a fitted (a, f)
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curve for different values of ω. The implementation used in this work started from
an interval of width 2∆a, centered around an initial guess a0 of the amplitude of the
fold at the considered frequency. If the minimum was within 0.01∆a of the center of
the interval, that point was accepted as an estimate of the fold and the frequency
was changed by a step ∆ω. If the minimum was within 0.25∆a of the center of the
interval, the interval was recentered around the estimated location of the fold and
narrowed using ∆a → 0.5∆a. Finally, if neither of these conditions were met but
the fold was estimated to be inside the interval, this interval was recentered (without
narrowing) around the estimated value; the procedure was stopped otherwise. As in [9],
two sequential continuations were needed for the upper and lower fold branches. In
our implementation for the electronic Duffing oscillator, we used ∆a = 0.02 V and
∆ω = −2.5 rad/s. The remaining parameters of the method are given in Table 3.

6 Gaussian process regression

Gaussian process regression (GPR) is a powerful tool to solve probabilistic regres-
sion problems. It was thus expected to be useful to interpret the repeatability tests.
However, these processes consider that the observables can be expressed as the sum
of functions of some variables (predictors) and a Gaussian noise with constant vari-
ance. Clearly, this cannot be applied directly to folded curves with variable noise. This
section explains the step followed to apply GPR to our problem, inspired from [10].

6.1 Regression with cubic splines

A first step was to find adequate predictors for the point cloud resulting from a series
of repeatability tests. This point cloud can easily be interpreted as a noisy curve
by a human, but is harder to treat with a computer. To enable the use of GPR,
we fitted the point cloud with a smooth curve, in this case a piecewise-cubic spline
with ten segments. The number of segments was chosen heuristically, to provide a
sufficiently geometrically accurate description of the cloud point, all the while avoiding
overfitting. The control points of the spline were first graphically determined using
the ginput function from Matlab. They were then optimized using a nonlinear least-
squares optimizer (fminunc).

6.2 Gaussian process regression with local coordinates

Thanks to the backbone formed by the spline, it was possible to express each point
of the point cloud with a unique predictor (for a given spline). To do that, we pro-
jected each point orthogonally on the curve to find its tangential coordinate, giving an
abscissa for the GPR. The ordinate was then found as the signed distance to the curve
along its normal. These tangential and normal coordinates, hereafter called ”local
coordinates”, were finally used in the GPR. Since the spline has a piecewise polyno-
mial representation, it was possible to find these coordinates semi-analytically with
the roots function.

A first GPR was performed to compute the average of the point cloud along the
spline with the function fitrgp. By retransforming the local coordinates into global
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ones, it was thus possible to visualize the mean curve fitting the point cloud (which
generally was close to the spline but could capture smaller-scale features).

This GPR also provided a confidence interval, but this interval was seen to be
almost constant along the curve, giving little information about the spread of the point
cloud. To refine this information, a second GPR fitting the square of the difference
between the point cloud and its GPR (in local coordinates) was performed to capture
the variance of the process. By adding or subtracting the square root of this new GPR
times an adequate factor, a variable confidence interval was thus captured.
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