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ABSTRACT

We present a new phase mask coronagraph consisting in an optical vortex induced by a space-variant sur-
face relief subwavelength grating. Phase mask coronagraphy is a recent technique aiming at accommodating both
high dynamic and high angular resolution imaging of faint sources around bright objects such as exoplanets orbiting
their parent stars or host galaxies of active galactic nuclei. Subwavelength gratings are known to be artificially bire-
fringent. Their unique dispersive characteristics can be controlled through the grating geometry in order to synthe-
size achromatic phase shifters. We show that implementing them in a ring-shaped way produces a fully symmetric
and achromatic coronagraph without any gap or ‘‘dead zone.’’ The practical manufacturing of the device is also
discussed.

Subject headings: circumstellar matter — planetary systems — techniques: high angular resolution

1. INTRODUCTION

Direct detection of faint sources around bright astrophysical
objects such as stars or active galactic nuclei (AGN) is very dif-
ficult due to the large flux ratio between them. For example, an
Earth-like exoplanet is typically 6 ;109 times fainter than its host
star in the visible and 7 ;106 times fainter in the thermal infrared,
while the contrast of already known debris disks around main-
sequence stars is generally larger than 1000 in the visible (e.g., !
Pictoris’s disk; see Smith & Terrile 1984). The circumnuclear
structures of AGNs (obscuring torus, jet-induced structures,
etc.) are at least 100 times less luminous than the central engine
at visible and near-IR wavelengths (e.g., NGC 1068; see Rouan
et al. 2004, for instance). The study of such objects therefore re-
quires dedicated instruments such as coronagraphs. Current co-
ronagraph designs are either pure amplitude masks (Lyot 1939)
or pure phasemasks (Roddier&Roddier 1997; Rouan et al. 2000;
Soummer et al. 2003). Let us mention the special case of the
achromatic interferocoronagraph (AIC; Gay & Rabbia 1996),
which consists of a single-pupil achromatic nulling interferom-
eter and also the so-called vortex spatial filter, which is a mono-
chromatic pupil plane mask (Swartzlander 2001). The phase
mask coronagraphs have been designed as alternative solutions
to the amplitude coronagraphs to correct their inherent weak-
ness: the physical extension of the opaque zone occults quite a
significant fraction of the central field and thus all sources lo-
cated behind it, i.e., near the bright object.

The four-quadrant phase mask coronagraph (FQ-PM) pro-
posed by Rouan et al. (2000) is a very well performing design.
The principle is to divide the focal plane into four equal areas
centered on the optical axis, with two of them on a diagonal
providing a " phase shift. This causes destructive interference
(‘‘nulling’’) to occur inside the geometric pupil area. The FQ-PM
coronagraph has been validated on a laboratory bench in mono-
chromatic light (Riaud et al. 2003) and installed on the NAOS-
CONICA adaptive optics instrument (Boccaletti et al. 2004) at
the ESO’s Very Large Telescope (VLT). It has given promising

preliminary scientific results (Gratadour et al. 2005) and per-
spectives for future instruments such as the European Mid-IR
Instrument for NASA’s James Webb Space Telescope (Baudoz
et al. 2005) or the VLT Planet Finder, a second-generation in-
strument for the VLT (Mouillet et al. 2003). Unfortunately, the
FQ-PM still possesses two drawbacks. First, the " phase shift is
difficult to achieve in practice without or with a low chromatic-
ity. Several solutions have nevertheless been studied; a very
promising one we have recently proposed uses the unique dis-
persive characteristics of subwavelength gratings (Mawet et al.
2005). Second, the four phase transitions between adjacent quad-
rants create four k /D-large ‘‘dead zones,’’ where the potential
circumstellar signal or companion is attenuated by up to 4 mag
(Riaud et al. 2001).

In this paper, we propose a new design of a phase mask
coronagraph derived from the FQ-PM that inherently allows
the reduction of the chromaticity issues down to an acceptable
level and totally suppresses the annoying dead zones of the lat-
ter. This new coronagraph is referred to as the annular groove
phase mask (AGPM) coronagraph, since it is made up of a con-
centric circular subwavelength grating (see Fig. 1). The paper
is organized as follows. In x 2 we present the principles of the
AGPM coronagraph by introducing the subwavelength grat-
ings, describing their so-called space-variant implementation,
and finally discussing the chosen design. Section 3 is devoted to
the realistic numerical simulations of the AGPM performance
based on a three-stage modeling. In x 4 we briefly provide some
manufacturing hints. Finally, we conclude by giving some per-
spectives on future applications in x 5. Some results and math-
ematical developments are detailed in the appendices.

2. PRINCIPLES OF THE AGPM CORONAGRAPH

The AGPM coronagraph is a focal plane microcomponent con-
sisting of a concentric circular surface-relief grating with rectan-
gular grooves of depth h equally separated by the period ! (see
Fig. 1). This coronagraph, working in natural light, is a pure vec-
torial phase mask, i.e., it induces a differential phase shift be-
tween the local polarization components of the incident natural
(or polarized) light. As for every other coronagraph, the AGPM
coronagraph is complemented by a well-dimensioned diaphragm
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in the relayed pupil plane (Lyot stop) to suppress the diffracted
starlight (for the optical implementation, see Fig. 2).

2.1. Subwavelength Gratings

When the period ! of the grating is smaller than the wave-
length of the incident light, it does not diffract as a classical
spectroscopic grating. All the incident energy is forced to prop-
agate only in the zeroth order, leaving incident wave fronts free
from any further aberrations. The subwavelength gratings are
therefore often called zeroth-order gratings (ZOGs). Whether a
diffraction order propagates or not is determined by the well-
known grating equation, from which a ‘‘ZOG condition’’ on the
grating period to wavelength ratio can be derived,

!

k
! 1

nI sin #þmax (nI; nIII)
; ð1Þ

where # is the angle of incidence and nI and nIII are the re-
fractive indices of the incident (superstrate) and transmitting
(substrate) media, respectively (see Fig. 3). This type of grating
behaves like homogeneous media with unique characteristics,
which can be used to synthesize artificial birefringent achro-
matic wave plates (Kikuta et al. 1997; Nordin & Deguzman
1999) or monolithic antireflective structures (see, e.g., Karlsson
& Nikolajeff 2003). Quarter-wave or half-wave plates are ex-
tensively used in astrophysics for polarimetric studies. Subwave-
length gratings constitute an elegant and flexible solution to
produce these plates.

The key point is that by carefully controlling the geometry of
the grating structure (via the grating parameters: the period !, the

depth h, and the width of the grating ridgesF!, where F is the fill-
ing factor), one can finely adjust the so-called form birefringence

"nTE%TM(k) ¼ nTE(k)% nTM(k); ð2Þ

where nTE and nTM are the two effective indices associated with
the subwavelength structure, one for each polarization state:TE
(transverse electric, see Fig. 3) and TM (transverse magnetic).
Intuitively, one can understand this artificial anisotropy and the
existence of two distinct effective indices: the incident light sees
two different media as its vectorial components vibrate parallel
or orthogonal to the grating lines. The goal is to make the form
birefringence proportional to the wavelength in order to com-
pensate for the hyperbolic dependence of the subsequent dif-
ferential phase shift between the two polarization components
TE and TM and thus achromatize it at the required value of ",

"$TE%TM(k)¼
2"

k
h"nTE%TM(k) ' "; ð3Þ

where h is the optical path through the birefringent medium.

2.2. Space-variant ZOGs

The concentric circular grooves of the AGPM coronagraph
are in fact what is called a ‘‘space-variant’’ ZOG: when the local
characteristics (period, orientation of the grating lines, etc.) of
the structure vary from point to point, it is said to be space var-
iant. Such components were recently extensively studied as po-
larization control elements (Niv et al. 2003; Biener et al. 2002;

Fig. 1.—AGPM coronagraph scheme. The AGPM consists of a concentric
circular surface-relief subwavelength grating with rectangular grooves of depth
h and a periodicity !.

Fig. 2.—Basic AGPM coronagraphic optical bench scheme. L1, L2, and L3 are three lenses in the optical system. L1 provides a large (to minimize spatial defects)
F/d ratio on the AGPM, L2 images the pupil in the second plane, the Lyot stop (L-S) suppresses the diffracted starlight, and finally L3 forms the coronagraphic image
on the detector D.

Fig. 3.—ZOG scheme presenting the main grating parameters: the grating
vector jKj ¼ 2"/!, perpendicular to the grating lines, where ! is the period; the
grating depth h; and the so-called filling factor F, such that F! is the width of
the grating ridges. The vectors TE and TM are the vectorial orthogonal po-
larization components of the #-incident light. Here nI and nIII are the refractive
indices of the incident and transmitting media, respectively. The parameters n1
and n2 are the refractive indices of the grating itself (in our case, n1 ¼ nI and
n2 ¼ nIII). Finally,TE is the transverse electric vibration, where the electric field
vector is perpendicular to the plane of incidence (the plane of incidence is
defined by the grating normal and the direction of the incoming light, in our case
by the grating normal and the grating vector), andTM is the transverse magnetic
one (the electric field vector lies in the plane of incidence).
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Bomzon et al. 2002; Levy et al. 2004). Applications are numer-
ous: for example, polarimetry, laser-beam shaping, laser machin-
ing, tight focusing, particle acceleration, and atom trapping.
Space-variant ZOGs are typically described by a function rep-
resenting the grating vector spatial variation,

K(s; p)¼ K0(s; p) cos %(s; p)sþ sin %(s; p)p½ ); ð4Þ

where s and p are the Cartesian unit vectors and K0(s; p) ¼
2"/!(s; p) is the grating vector modulus corresponding to the lo-
cal period !(s, p). Here %(s, p) is the local direction of the grat-
ing vector with respect to s, the space-variant grating vector
always being perpendicular to the local grating lines (see Fig. 4).
In polar coordinates, we have

K(r; !)¼ K0(r; !) cos %
0(r; !)rþ sin %0(r; !)w½ ); ð5Þ

where r andw are the polar coordinate unit vectors. Here % 0(!, r)
is the local direction of the grating vector with respect to r (see
Fig. 4). Let us now consider the general case of the spiral geo-
metric phase space-variant ZOGs. The grating groove direction
in this case is given by %(s; p) ¼ lp!/2 or %0(r; !) ¼ (lp/2% 1)!,
where lp is the so-called topological Pancharatnam charge (a
nonsigned integer; see Appendix B). The grating vector there-
fore becomes

K(r; !)¼ K0(r; !) cos (lp=2% 1)!
! "

rþ sin (lp=2% 1)!
! "

w
# $

:

ð6Þ

The continuity of the grating grooves is ensured by imposing
: < K ¼ 0, which also implies that the grating vector derives

from a grating function # (K ¼ :#). Integration over an arbi-
trary path yields

#(r; !) ¼
2"

r0
!0

r0
r

% &lp=2%1 cos (lp=2% 1)!

(lp=2% 1)
; lp 6¼ 2;

2"
r0
!0

f (r); lp ¼ 2:

8
>><

>>:
ð7Þ

This function describes a family of binary gratings depend-
ing on the topological charge lp (Fig. 5). Let us remark that
the continuity criterion has been introduced for manufacturing
convenience. In the lp ¼ 2 case, the circular symmetry allows the
choice of any pure radial function. The AGPM corresponds to

#AGPM(r; !) ¼ 2"
r

!0
; lp ¼ 2: ð8Þ

The family of spiral phase space-variant ZOGs creates an
‘‘optical vortex.’’ Indeed, at the center of these components, the
phase possesses a screw dislocation inducing a phase singular-
ity, i.e., an optical vortex. The central singularity forces the in-
tensity to vanish by a total destructive interference, creating a
dark core. This dark core propagates and is conserved along the
optical axis. Whether a dark core is created in the pupil or focal
plane of a telescope will determine the way it further evolves.
Swartzlander (2001) proposed to create an optical vortex in the
pupil plane to peer at the faint monochromatic signal in the re-
layed focal plane with appropriate filtering. In this paper, we
propose to do the inverse, i.e., to create an optical vortex in the
focal plane, filter in the relayed pupil plane, and make the detec-
tion in a final image plane. This solution is theoretically much
more attractive, as we will see. Furthermore, the ZOG’s unique
properties permit an efficient broadband use.

2.3. AGPM Coronagraph

The AGPM coronagraph corresponds to the spiral phase
of topological charge lp ¼ 2, implying that the Pancharatnam
phase (see Appendix B) undergoes two 2" phase jumps within
one revolution around the optical axis (see Fig. 6). This phase
modification results solely from the polarization manipulation
and is purely geometrical in nature. In the lp ¼ 2 case, a given
polarization state repeats itself 2lp ¼ 4 times. This point is ar-
gued for the linear polarization case in x A1 (a full analytical
treatment of the polarization using space-variant Jones matrices
is presented in Appendix A). We also show in x A2 that the

Fig. 4.—Space-variant ZOG vectorial analysis. Here s and p are the unit
vectors of the chosen Cartesian basis, whereas w and r are the polar coordinate
unit vectors. In addition, TE (transverse electric) and TM (transverse magnetic)
are the polarization unit vectors according to the local grating line orientations.
By definition, in normal incidence, the TE (TM ) components are orthogonal
( parallel) to the local grating vector K(s, p) [¼ K(!; r)], spanning angles %(s, p)
and % 0(!, r) with respect to s and r, respectively. Finally,!(s, p) [ =!(!, r)] is the
grating period.

Fig. 5.—Binary grating geometry for topological charges lp ranging from 1 to
6. Only the lp ¼ 2 geometry possesses the required circular symmetry for use
with constant ZOG parameters, which permit achromatization. The component
centers have been occulted for presentation purposes.
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Jones vector for the output components can also be described in
a helical polarization basis, with right-handed (R@) and left-
handed (L’) circularly polarized input fields. In this particular
case and under ideal conditions, we obtain at the output

R@ ¼
0

ei(2!%"=2)

' (
; L’ ¼ e%i(2!þ"=2)

0

" #
: ð9Þ

The Pancharatnam phase clearly appears as the argument of
the exponential, $p ¼ 2!. Therefore, within one revolution,
i.e., ! ¼ 2", one easily confirms that $p ¼ 2(2"). In addition,
the helical basis allows us to decouple the output polarization
components. This facilitates the forthcoming Fourier analysis.

We demonstrate in Appendix C, thanks to Sonine’s integral
(Sneddon 1951, p. 55), that in the lp ¼ 2 configuration the vortex
propagation up to the relayed pupil plane evolves into a perfect
destructive interference, totally rejecting the starlight outside
the geometric pupil area (we also analytically demonstrate that
the perfect attenuation holds true for even values of lp). Like the
FQ-PM, the theoretical attenuation of the AGPM is therefore
infinite in the perfect achromatic and circular filled pupil case
(Riaud et al. 2001). We have also chosen the lp ¼ 2 case for the
following reason: in order to be achromatic, the space-variant
ZOG local characteristics (grating period, depth, and filling fac-
tor) are well defined and do not tolerate any departure from op-
timal values within the tolerances (see x 4). We note in Figure 5
that only the lp ¼ 2 case affords the required symmetry to ful-
fill this constraint. The other configurations (lp 6¼ 2) all imply a
variation of the grating period that would destroy the achromatic
characteristics of the phase shift. Moreover, such a variation of
the period could lead the grating to exit the subwavelength
domain with dramatic consequences: higher diffraction orders
would show up.

The AGPM implementation of the space-variant ZOG is
thus totally circularly symmetric. The grating vector is constant in
modulus and aligned with the radius. In other words, the AGPM
coronagraph can be seen as a FQ-PM coronagraph in polariza-
tion. Indeed, if we consider the four cardinal points on the AGPM,
the resulting phase shift distribution is analogous to the FQ-PM for
each parallel potentially interfering polarization state (see Fig. 7).
This argument holds true for each azimuth angle and for each ra-
dius, and thus for the whole focal plane.

3. NUMERICAL RESULTS IN A REALISTIC CASE

We have performed realistic numerical simulations that rely
on a three-stage modeling:

1. A ‘‘rigorous coupled wave analysis’’ stage, where the
form birefringence of the local grating is optimized, leading to
the space-variant ZOG Jones matrix JZOG(s, p). At this stage,
the final performance of the coronagraph can already be quan-
tified by the null depth.
2. The analytical polarization treatment based on Jones cal-

culus, which gives the spatial distribution of the linear/helical
polarization components of the incident light. We use for this
step the results obtained in Appendix A.
3. A scalar far-field Fourier propagation coronagraphic code

for each polarization state.

To simulate the grating response and calculate the form bire-
fringence "nform ¼ "nTE%TM in the subwavelength and reso-
nant domain (! ' k), scalar theories of diffraction dramatically
fail. The vectorial nature of light must be taken into account,
implying a resolution of theMaxwell equations by the so-called
rigorous coupled wave analysis (RCWA; Moharam & Gaylord
1981). RCWA gives the full diffractive characteristics of the
simulated structure.
The ZOG form birefringence optimization has already been ex-

tensively presented in Mawet et al. (2005) in the context of the
FQ-PM achromatization for theH,K, andN bands (4QZOG).We
focus here on the mostly used K band, but the conclusions are
applicable to other band filters. In Figure 8 we present the RCWA
results for a subwavelength surface-relief grating engraved on
the surface of a diamond (C) or ZnSe substrate and covered by a
'k/4 antireflective (AR) layer of YF3. The latter settles at the
bottom of the grooves and on top of the grating ridges. The null
depth, which characterizes the darkness of the destructive inter-
ference taking place in the relayed pupil plane of the telescope,
takes into account the phase errors with respect to ", &(k) ¼
"$TE%TM(k)% ", and amplitude mismatches q(k) ¼ 'TE(k)/
'TM(k) in the following way:

N (k)¼
1%

ffiffiffiffiffiffiffiffi
q(k)

p! "2 þ &(k)2
ffiffiffiffiffiffiffiffi
q(k)

p

1þ
ffiffiffiffiffiffiffiffi
q(k)

p! "2 : ð10Þ

Fig. 6.—Pancharatnam phase ramp of the AGPM coronagraph: $p ¼ 2!.
The associated topological charge is lp ¼ 2. Within one revolution around the
optical axis, i.e., ! ¼ 2", one easily confirms that $p ¼ 2(2").

Fig. 7.—AGPM scheme and analogy with the FQ-PM coronagraph. The
AGPM can be seen as a polarization FQ-PM. The parallel potentially interfering
polarization states are out of phase according to the FQ-PM focal plane phase
shift distribution. Here $TE and $TM are the output phases of the polarization
components TE and TM such that "$TE%TM ¼ j$TE % $TMj ¼ ".
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We can notice in Figure 7 the efficiency of the ZOG solution in
solving the chromaticity problem for the K band with a mean
null depth ( ' 1:7 ;10%5. As said before, deep nulls can also be
achieved for other usual band filters (see Table 1). It must be
noted that the optical throughput efficiency of the optimized
ZOG is >90%. For the sake of clarity, the third stage of the AGPM
simulations (Fourier propagation) has been performed for the
K band only.We have used an IDL code for Fraunhofer diffraction
analysis (Riaud et al. 2001). To minimize the aliasing effect of
the fast Fourier transform, we have used large arrays (up to
2048 ; 2048) for the calculation. The intrinsic performance of the
coronagraph will be limited by the phase residuals with respect
to " and the transmittance mismatches between the two polar-
ization states TE and TM, as well. We have also assumed wave
front qualities of k0/250 rms, where k0 is the central wavelength
of the considered filter. In our case (K band: k0 ¼ 2:2 (m), this
hypothesis leads therefore to wave front qualities of'k /70 rms,
with k ¼ 632:8 nm. This is quite a severe but somewhat realis-

tic figure. Indeed, the Virgo team (Mackowski et al. 1999; Brillet
et al. 2003) has demonstrated state-of-the-art mirror quality with
an excellent polishing realization (k/226 rms at 632.8 nm) within
the framework of gravitational wave detection. This technology is
directly applicable to our case.

The final results of our three-stage calculation are excellent
(see Fig. 9). As demonstrated in Appendix C in an analytical
way, the starlight is rejected outside the geometric pupil area in
a fully symmetric annular shape. The smoothness of the phase
shift occurring in the focal plane ensures the absence of the dead
zones induced by the FQ-PM/4QZOG quadrant transitions. The
final K-band polychromatic image reveals the simulated compan-
ion 15 mag fainter. The coronagraphic profile functions of the
angular separation in k/d (d is the telescope diameter) showapeak-
to-peak attenuation of about 10%5 (Fig. 10). The speckle level
of '10%7 is quickly reached at a few k/d. The AGPM corona-
graphic behavior is very similar to the achromatic 4QZOG coro-
nagraph (Mawet et al. 2005), but with a total symmetry.

Figure 11 presents the attenuation of the off-axis simulated
companion, which is also quite similar to the FQ-PM/4QZOG
in its best configuration, i.e., only along the two diagonals. Indeed,
as mentioned in the introduction, the FQ-PM/4QZOG quadrant
transitions induce a nonnegligible attenuation of the superim-
posed circumstellar features lying on them. These dead zones
represent quite a significant portion of the focal plane (about
10% at 6k /d). Thanks to the perfect AGPM circular symmetry,
this problem does not exist anymore. We also note that the in-
ner working angle of the AGPM is very good, peering well under
k/d. As far as stellar leakage is concerned, numerical simulations
show that it increases as %2k/d close to the optical axis, just as the
FQ-PM/4QZOG (where %k /d is the angle from the optical axis).
In fact, calculations show that for a vortex of topological charge
lp, the stellar leakage grows as %

lp
k/d .

4. MANUFACTURING

In the K-band diamond AGPM case, for instance, the local
ZOG optimal parameters are

1. period, ! ¼ 740 nm;
2. filling factor, F ¼ 70%;
3. total depth, h ¼ 3:240 (m; and
4. AR layer thickness, 420 nm.

The fabrication of the AGPM coronagraph implies no devel-
opments other than those for the 4QZOG (Mawet et al. 2005),
which is currently under assessment in diamond by Uppsala
University’s Angström Laboratory ‘‘Adamantis AB’’ (Karlsson

TABLE 1

AGPM Achromatization (Null Depth) for Various Band Filters: Visible, Near-IR and Mid-IR

Filter

Parameter V (Rk ¼ 5:5) I (Rk ¼ 3:75) J (Rk ¼ 4:16) H (Rk ¼ 4:7)

Null depth (on-axis)..................... 2; 10%5 1:35 ;10%4 6:5 ; 10%5 3:5 ; 10%5

Expected contrast (at 3k /d )......... 1:66; 10%7 1:12 ;10%6 5:42; 10%7 2:92; 10%7

Grating period (nm)..................... 280 (n-LAF32) 305 (C) 400 (C) 525 (C)

K (Rk ¼ 5:5) L0 (Rk ¼ 6:3) M (Rk ¼ 16:6) N (Rk ¼ 4:86)

Null depth (on-axis)..................... 1:7 ; 10%5 8:4 ;10%6 5 ;10%7 4 ; 10%5

Expected contrast (at 3k /d )......... 1:42; 10%7 7 ; 10%8 4:2 ; 10%9 3:3 ; 10%7

Grating period ((m) .................... 0.740 (C) 1.28 (C) 1.7194 (C) 3.29 (C)

Notes.—Here Rk ¼ k/"k is the spectral resolution. C stands for CVD diamond, while n-LAF32 refers to a high-
index Schott glass.

Fig. 8.—K-band AGPM coronagraph null depth vs. wavelength. The solid
curve is for the diamond YF3 AR coated ZOG. The dot-dashed curve is for
the ZnSe YF3 AR coated one. The mean null depth over the whole K band is
( ' 1:7 ;10%5.
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Fig. 9.—Numerical simulation illustrating the diffractive behavior of the AGPM coronagraph. (a) Airy pattern provided by a perfect telescope without central
obscuration. We have also added a companion 15 mag fainter located 2k /d (k ¼ 2:2 (m) away from the star. (b) Complex amplitude of the star phase shifted by the
mask. We note that the phase mask effect is close to that obtained for the FQ-PM coronagraph, but without any discontinuity left. (c) Picture showing the starlight
rejection in the relayed pupil plane. The diffraction pattern is annular and symmetric in this configuration. (d ) Resulting coronagraphic image for the full K band,
where the fainter companion is clearly visible. All images are displayed with a nonlinear scale.

Fig. 10.—Theoretical radial profiles obtained with the K-band AGPM. The
solid line shows the coronagraphic profile. The residual central peak is due to
the effect of the phase errors (residual chromatism) around the " phase shift. In
this case, a starlight speckle level of 10%7 is reached at 3k/d. The dashed line
shows the polychromatic Airy pattern for the full K band. The diaphragm (Lyot
stop) is open at 80%.

Fig. 11.—Degradation of the coronagraphic performance function of angular
separation. This figure compares the companion attenuation for the AGPM vs.
the classical 4QZOG in its best configuration, i.e., at least 1k /d away from a
quadrant transition. This degradation is measured on the total energy. The solid
line shows the exponential fit on the simulated data (open diamonds) for the
AGPM coronagraph. The dashed line shows the exponential fit on the simulated
data (plus signs) for the FQ-PM/4QZOG coronagraph.



& Nikolajeff 2003; Karlsson et al. 2001). The manufacturing is
based on microelectronic technologies. The first step consists in
the definition of the lithographic mask: one has to imprint the
concentric annular pattern in a resin coated on the chosen sub-
strate material. It can be realized by laser direct writing or e-beam
lithography. The precision of this step is critical, because it defines
once and for all the lateral dimensions of the ZOG, i.e., the fill-
ing factor (F ). The latter is the determinant parameter of the
grating structure and the most difficult to control during the fab-
rication process. A complete study of the design sensitivity to
the parameters has been presented in Mawet et al. (2005). The
conclusion was that the tolerance on the filling factor was at the
1% level but also that if the manufacturing process was inter-
actively conducted, then errors on the filling factor definition
could be compensated a posteriori. The next fabrication steps
consist in transferring the mask pattern into the substrate by an
appropriate reactive plasma beam etching down to the desired
depth, followed by the k/4 AR layer deposition. Assuming a
classical realistic resolution of 10 nm in thickness (2%) for the
AR layer sputtering, we can ensure a grating etching depth
tolerance of about 20 nm at the null depth level of 10%5. This
value is well within reach with current technologies, especially if
in situ real-time monitoring of the grating parameters is imple-
mented during the fabrication process (Lalanne et al. 1999).

5. DISCUSSION

In this paper, we have presented a new phase mask corona-
graph that is free from any ‘‘dead zone,’’ thanks to its perfect
circular symmetry, and inherently quasi-achromatic. The AGPM
coronagraph consists in an optical vortex induced by a space-

variant subwavelength grating. The potential performance of the
AGPM coronagraph is very good, ensuring, for instance, a the-
oretical contrast of 1:4 ;10%7 at 3k /d over the whole K band
with inherent perfect symmetry. The inner working angle of the
mask is'k /d, still with a good contrast of'10%5. Thanks to the
ZOG design flexibility, the AGPM coronagraph can accommodate
a large variety of materials and wavelength bands (see Table 1),
thus making it an attractive solution for future ambitious high-
resolution/high-contrast space- or ground-based imaging facili-
ties. For instance, the AGPM coronagraph could be used alone
on a single-pupil telescope either in space or on the ground (with
an adaptive optics system) to dramatically enhance the dynamics.
It could also be used at the Fizeau or densified focus of an in-
terferometer (Labeyrie 1996; Boccaletti et al. 2000; Riaud et al.
2002) to take advantage of the increased resolution. However, in
the Fizeau configuration, phase coronagraphs are limited by the
cross-talk between the different interferometer subpupils, whereas
in the densified one, the limitation comes from diffraction effects
induced by residual gaps between the joined subpupils (P. Riaud
et al., in preparation). Nevertheless, theAGPMshould be seriously
regarded as an integrated high-contrast solution to be imple-
mented in NASA’s Terrestrial Planet Finder and/or ESA’s in-
frared space interferometer, DARWIN, missions.
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APPENDIX A

POLARIZATION TREATMENTS

Let us perform a full space-variant polarization and phase analysis of the component, assuming first that it induces an optical vortex
of lpth order. Representing it by a space-variant Jones matrix, one can find the resulting wave front for any incident polarization,

Jvortex(s; p) ¼ M %(s; p)½ )JZOG(s; p)M %(s; p)½ )%1: ðA1Þ

Here JZOG(s, p) actually describes the effects of the local ZOG form birefringence that transforms the phase (TE % TM vectorial
phase shift "$TE%TM) and amplitude (TE% TM differential Fresnel parasitic reflection) of the outgoing beam,

JZOG(s; p)¼
'TE 0

0 'TMe
i"$TE%TM

' (
; ðA2Þ

where 'TE and 'TM are the local grating transmittances along the TE and TM directions of polarization, respectively (the trans-
mittances can be assimilated to diffraction efficiencies). These transmittances are different because of the different Fresnel reflection
coefficients resulting from the existence of the two effective indices that give birth to the form birefringence (see eq. [2]). For the sake
of simplicity, we write "$ ¼ "$TE%TM. The parameter M [%(s, p)] is the %-dependent rotation matrix

M %(s; p)½ )¼
cos % %sin %

sin % cos %

' (
; ðA3Þ

where %(s, p) is the grating vector angle that defines the local grating line orientations. Thus, we have

Jvortex(s; p)¼
'TE cos

2%þ 'TM sin2%ei"$ sin % cos % 'TE % 'TMe
i"$

* +

sin % cos % 'TE % 'TMe
i"$

* +
'TM sin2%þ 'TE cos

2%ei"$

" #
: ðA4Þ

In order to carry out the analysis of the component with the scalar Fourier coronagraphic propagation code, we have to chose a
basis to project the incident polarization (natural or not).
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A1. LINEAR BASIS

We can decompose the problem by projecting the incident polarization on the orthogonal linear (s, p) basis. Therefore, we have the
following Jones vectors as linear polarization inputs:

Ep ¼
1

0

' (
; ðA5Þ

Es ¼
0

1

' (
: ðA6Þ

Multiplying them both by the vortex Jones matrix Jvortex(s, p), we obtain

Ep ¼
'TE cos

2%þ 'TM sin2%ei"$

sin % cos % 'TE % 'TMe
i"$

* +
" #

; ðA7Þ

Es ¼
sin % cos % 'TE % 'TMe

i"$
* +

'TM sin2%þ 'TE cos
2%ei"$

" #
; ðA8Þ

respectively, corresponding to the output polarization states to be injected in a subsequent coronagraphic code. In the perfect case
(exact " phase shift, i.e., "$TE%TM ¼ " and unitary matched efficiencies 'TE ¼ 'TM ¼ 1) for the AGPM configuration (lp ¼ 2 and
thus % ¼ lp!/2 ¼ !, where ! is the azimuthal polar coordinate), we have

Ep ¼
cos 2!

sin 2!

' (
; ðA9Þ

Es ¼
sin 2!

%cos 2!

' (
: ðA10Þ

This implies that in the AGPM case (lp ¼ 2) an input linear polarization, which is horizontal, for example, will locally rotate by
twice the azimuthal angle !, as shown in Figure 12, where the corresponding output vectorial field and intensity response to linear
polarization are displayed.

A2. HELICAL BASIS

The analysis can be decoupled by projecting the incident vectorial field on a helical basis, i.e., with right- and left-handed circular
polarization unit vectors

R@ ¼
1

0

' (
; ðA11Þ

Fig. 12.—AGPM response to linear polarization. Left: Intensity map for an input linear horizontal polarization seen by a horizontal analyzer. Right: Same, but for
an input linear vertical polarization. Arrows show the corresponding vectorial polarization field that has been submitted to the rotation given by eqs. (A9) and (A10).
We clearly notice that a given polarization state repeats itself four times.
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L’ ¼
0

1

' (
: ðA12Þ

In such a case, the vortex component Jones matrix must be transformed by

J
@’
vortex(s; p)¼UJvortex(s; p)U

%1; ðA13Þ

with the helical-basis transformation matrix

U ¼ 1ffiffiffi
2

p
1 i

1 %i

' (
: ðA14Þ

Finally, we have

J
@’
vortex(s; p)¼

1

2
'TE þ 'TMe

i"$
* + 1 0

0 1

' (
þ 1

2
'TE % 'TMe

i"$
* + 0 ei2%

e%i2% 1

" #
: ðA15Þ

In the perfect case where 'TE ¼ 'TM ¼ 1 and "$ ¼ ", and in the AGPM configuration case where lp ¼ 2 and thus % ¼ lp!/2 ¼ !,
where ! is the azimuthal polar coordinate, we obtain as output

R@ ¼
0

ei(2!%"=2)

' (
; ðA16Þ

L’ ¼ e%i(2!þ"=2)

0

" #
: ðA17Þ

Therefore, the two output polarization beams are orthogonal and decoupled in the helical basis.

APPENDIX B

PANCHARATNAM TOPOLOGICAL CHARGE

The so-called Pancharatnam phase has been introduced to measure the comparison of the phases of two light beams in different
states of polarization. It is defined as the argument of the inner product of the two Jones vectors describing the two light beams to be
phase compared,

$p ¼ arg hE(!; r);E(0; r)i: ðB1Þ

We can also define the associated topological charge of the beam, which is a nonsigned integer giving the number of times that the
azimuthal angle rotates about the phase disclination (topological defect),

lp ¼
1

2"

I
:$p ds: ðB2Þ

In the AGPM case, $p ¼ 2! (lp ¼ 2), which implies that the polarization state repeats itself 2lp ¼ 4 times (see Fig. 12).

APPENDIX C

PERFECT REJECTION PROOF

Let us now analytically compute the pupil plane intensity distribution. The latter can be expressed as the Fourier transform of the
product of the Airy disk function (a filled circular pupil is assumed) and the mask phase ramp. We have seen in x A2 that the mask
phase in the helical basis takes the simple decoupled form ei(lp!%"/2). Therefore, in the Fourier-plane polar coordinates (),  ) we have

Apup();  ; lp) ¼ FT
2J1(2"Rtelr)

2"Rtelr
ei(lp!%"=2)

' (
();  ): ðC1Þ

Explicitly,

Apup();  ; lp) ¼ %i

Z 1

0

Z 2"

0

2J1(2"Rtelr)

2"Rtelr
ei(lp!)e%2i)r cos(!% )r dr d!; ðC2Þ
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where we recognize the nth order Bessel function Jn. Indeed, various integrals can be expressed in terms of Bessel functions,

Jn(z) ¼
1

2"i%n

Z 2"

0

eiz cos $ein$ d$; ðC3Þ

and thus we have

Apup();  ; lp) ¼ %i l p%1 2e
ilp 

Rtel

Z 1

0

J1(2"Rtelr)Jlp (2")r) dr: ðC4Þ

C1. AGPM CORONAGRAPH: lp ¼ 2

The previous result in the lp ¼ 2 case is the so-called Sonine’s integral (Sneddon 1951, p. 55),

S ¼
Z 1

0

y1þ(%kJk(ay)J((by) dy ¼
0; 0 < a < b;

b((a2 % b2)k%(%1

2k%(%1ak$(k% ()
; 0 < b < a:

8
<

: ðC5Þ

Thus, taking lp ¼ 2, we have

Apup();  ; lp ¼ 2) ¼
0; 0 < ) < Rtel;

ei2 

")2
; 0 < Rtel < ):

8
<

: ðC6Þ

We have demonstrated that in the perfect case for lp ¼ 2 (AGPM), the light is entirely rejected outside the geometric pupil area.

C2. GENERALIZATION TO lpTH-ORDER VORTICES

Equation (C4) corresponds to the so-called Hankel transform of lPth order of the Bessel J1 function. This transform has an analytical
solution (Abramowitz & Stegun 1972, p. 487),

Apup();  ; lp) ¼ %i1%lp
2eilp 

Rtel

(2"))lp (2"Rtel)
%lp%1 $(1þ lp=2)

$(lp þ 1)$(1% lp=2)
2 F1

lp þ 1

2
;
lp

2
; lp þ 1;

)2

R2
tel

% &
; 0 < ) < Rtel;

(2"))%2(2"Rtel)
$(1þ lp=2)

$(2)$(lp=2)
2 F1

lp þ 1

2
;
2% lp

2
; 2;

)2

R2
tel

% &
; ) > Rtel;

8
>>><

>>>:
ðC7Þ

where we recognize the gamma $ and hypergeometric 2F1 functions. This function shows perfect attenuation for even lp values only,

Apup();  ; lp) ¼ 0; ) < Rtel and lp ¼ 2; 4; 6; : : : : ðC8Þ
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