

Towards Small Language Model

Nelie MAKENNE, Prof. Ashwin ITTOO HEC Liège - ULiège November 14, 2024

HEC Liège - ULiège

Proposed Method

Short Bio

Past Academic Degree's:

- Master of Science in Computer Science and Mathematical Science, University of Dschang/ AIMS Cameroon, 2018-2020.
- Two years Research's Master, AIMS Rwanda, 2021-2023.

Ongoing Phd Journey

- Start: May 2023
- Duration: 4 Years
- Promotor: Prof. Ashwin ITTOO
- Industry Partner : Partenamut Insurance

About My Research

- **Goal**: Automate customer interaction via a virtual conversational agent
- Challenge & Constraints
 - Handling multiple languages
 - 2 Limited Resources
- SOTA in NLP By today: Large Language Model (LLM)
 - Trained on massive data from multiple sources in multiple languages (challenge 1 solved)
 - Ability to understand and generate human-like language
 - Multi-tasks: text generation, translation, question answering, summarization, and more.

(4 何) トイヨト イヨト

Proposed Method

Research Question

How to compress LLM without compromising performance?

Towards Small Language Model

HEC Liège - ULiège

November 14, 2024 4 / 22

э

Proposed Method

Experiment and Result

Overview of LLMs
 Literature Review
 Proposed Method
 Experiment and Result

・ロト ・四ト ・ヨト

contents

1 Overview of LLMs

3 Proposed Method

э

Evolution of NLP and Large Language Models

Early Rule-Based and Symbolic Systems (1960s-1980s)

- . 1967: Eliza One of the earliest NLP programs, designed to simulate conversation.
- 1970: SHRDLU A program that could execute commands in a "blocks world," demonstrating understanding of structured commands.
- 1980: XCALIBU A lesser-known system contributing to early AI advancements, possibly related to expert systems or knowledge representation.

Introduction of Neural Networks (1980s-1990s)

- 1988: RNN (Recurrent Neural Networks) Introduced sequential processing, enabling models to work with time-dependent data.
- 1997; LSTM (Long Short-Term Memory) A specialized RNN architecture designed to overcome issues with long-term dependencies in data, making it more effective for tasks like language modeling.

The Transformer Era and Breakthroughs (2017–2020)

- 2017: Transformers Revolutionized NLP by introducing self-attention, allowing models to process data in parallel and capture long-range dependencies.
- 2018: BERT, GPT BERT (Bidirectional Encoder Representations from Transformers) focused on understanding language context, while GPT (Generative Pretrained Transformer) focused on text generation.
- 2019: GPT-2, RoBERTa, XLNet Enhanced transformer models with better language generation and comprehension abilities.

Large-Scale Language Models and Fine-Tuning (2020–2022)

- 2020: GPT-3 Known for its massive scale and ability to perform few-shot learning, GPT-3 demonstrated the power of large language models in a wide range of tasks.
- 2021: GPT-3.5 An improved version of GPT-3 with better instruction-following capabilities.
- 2022: PaLM, InstructGPT, ChatGPT Focused on fine-tuning models for more effective conversational AI and instruction-following tasks.

State-of-the-Art and Specialized Models (2023)

 2023: LLaMA, GPT-4, Falcon, LIMA, PaLM 2, BARD, Dolly 2, Guanaco – The most recent models emphasizing scale, efficiency, and specialization for various NLP applications.

イロン イロン イヨン イヨン

contents

Overview of LLMs

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Architecture of Large Language Models

Limitations [2]

- High computational cost for training and inference ۲
- Potential biases in model outputs due to training data ۰
- Difficulty in interpreting and explaining model decisions •
- Requires large datasets for effective performance

э

Proposed Method

Experiment and Result

Limitations [1]

- LoRA: Freezing weights and adapting the model can limit its ability to fully capture new patterns, potentially impacting accuracy.
- **Pruning**: Aggressively removing weights can lead to significant information and accuracy loss.
- **Quantization**: Reducing parameter precision can result in computational overhead and may degrade model performance.

HEC CERPONED distillation: Training a small model from scratch to mimic a larger model can consume considerable energy.

contents

Overview of LLMs

э

Proposed Method for LLM Size Reduction

• Our Hypothesis

 Not all information's learned during training is necessary for specific tasks

• Our Approach

• Reduce model size by selecting only the most relevant features from the weights.

Methods

- Direct Truncate
- Singular Value Decomposition (SVD) [4]
- Auto-encoder [3]

Overview of LLMs

Literature Review

Proposed Method

Experiment and Result 00000000

Proposed Method for LLM Size Reduction

Towards Small Language Model

э

Truncated SVD for Matrix Size Reduction

 Only the top d_r largest singular values and their corresponding singular vectors are retaining:

$$W = U_{d_r} S_{d_r} V_{d_r}^T$$

• This truncation captures the most significant information, reducing the model size by approximating *W* with *W*.

- Large singular values capture the most significant patterns and variations in the data,
- The truncated matrix *W* reduces the the number of parameters and the computational cost.

contents

Overview of LLMs

э

Proposed Method

Model Baseline

- Model Source: Hugging Face
- Working Environment: CECI Lucia (60GB RAM, 1x NVIDIA A100 40GB)
- Model Name: LLaMA-3 (8 billion parameters)
- Number of parameters
 - Multi-head attention layers (MHA): 1,342,177,280
 - Feed-forward network (MLP) layers: 5,637,144,576
 - Transformer block (MHA+MLP) : 6,979,584,000
 - Model: 8,030,261,248

- Model configuration
 - Embedding size: 4096
 - Number of attention heads: 32
 - number of key/value heads: 8
 - number of hidden layers: 32
- LLM Component Size Reduction:

Multi-head Attention

- Query weight matrix dimension is (embedding dim, query dim)
- Value weight matrix dimension is (embedding dim, value dim)
- Key weight matrix dimension is (embedding dim, key dim)
- Output weight matrix dimension is (output dim, embedding dim)

Proposed Method

<u>Result</u>

 $d_r = \alpha d$ with $\alpha \in (0,1)$ and $W_r = SVD(W)$, with $d_r = 1024 = 4096 \times 0.25$ Original Model Architecture

```
LlamaModel(
(abed_tokens): Embedding(128256, 4096)
(layers): ModuleList(
(0-31): 32 x LlamaSchaktention(
(a_proj): Linaer(in_features=4096, out_features=4096, bias=False)
(k_proj): Linaer(in_features=4096, out_features=1024, bias=False)
(v_proj): Linaer(in_features=4096, out_features=1024, bias=False)
(o_proj): Linaer(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
```

Compressed Model Architecture

CustomLlamaForCausallM((model): CustomLlamaModel((embed_tokens): Embedding(128256, 4096) (layers): ModelList((0-31): 32 × CustomLlamaDecoderLayer((self_attn): LlamaSdpaAttention((q_proj): Linear(in_features=4096, out_features=1824, bias=False) (k_proj): Linear(in_features=4096, out_features=265, biass=False) (v_proj): Linear(in_features=4096, out_features=256, biass=False) (o_proj): Linear(in_features=1824, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding())

So, we retain 25% of the parameter features. Therefore, the total number of parameters MHA : $0.25 \times 1,342,177,280 = 335,544,320$.

Towards Small Language Model

	Proposed Method	Experiment and Result 000●0000

- **Fine-tune:** Multi-head attention Layer using LoRA methods (rank=8).
- **Training dataset**: A set of 818 customer service requests from users of an online selling app and the corresponding intentions behind each request from Kaggle.
- Evaluation metric: Accuracy, F1 Score, Human Evaluation
- Model Performance

Dataset size	200
Accuracy	43%
F1 Score	50,5%

Why Move Towards Smaller Models?

AI'S ENERGY FOOTPRINT

The power consumed by artificial intelligence (A) tools varies greatly depending on the task. An AI model that provides answers to queries is much less energy-intensive than one that generates images from tost prompts, for example. And the data show that even AI models of the same type can vary widely in energy consumption.

• For Society implication [5]

- Reduce infrastructure and operational costs.
- Accessibility for researchers and small organizations.

• For climate Change [6]

- Lower energy consumption.
- Carbon Footprint Efficiency

Proposed Method

Experiment and Result

Amazon EC2 G5 Instances Price

	Instance Size	GPU	GPU Memory (GiB)	vCPUs	Memory (GiB)	Storage (GB)	Network Bandwidth (Gbps)	EBS Bandwidth (Gbps)	On Demand Price/hr*	1-yr ISP Effective Hourly (Linux)	3-yr ISP Effective Hourly (Linux)
Single GPU VMs	g5.xlarge	1	24	4	16	1x250	Up to 10	Up to 3.5	\$1.006	\$0.604	\$0.402
	g5.2xlarge	1	24	8	32	1x450	Up to 10	Up to 3.5	\$1.212	\$0.727	\$0.485
	g5.4xlarge	1	24	16	64	1x600	Up to 25	8	\$1.624	\$0.974	\$0.650
	g5.8xlarge	1	24	32	128	1x900	25	16	\$2.448	\$1.469	\$0.979
	g5.16xlarge	1	24	64	256	1x1900	25	16	\$4.096	\$2.458	\$1.638
Multi GPU VMs	g5.12xlarge	4	96	48	192	1x3800	40	16	\$5.672	\$3.403	\$2.269
	g5.24xlarge	4	96	96	384	1x3800	50	19	\$8.144	\$4.886	\$3.258
	g5.48xlarge	8	192	192	768	2x3800	100	19	\$16.288	\$9.773	\$6.515

HEC. LIÈGE

イロト イポト イヨト イヨト

3

References

- Zhu, Xunyu and Li, Jian and Liu, Yong and Ma, Can and Wang, Weiping. A survey on model compression for large language models. arXiv preprint arXiv:2308.07633, 2023.
- [2] Vaswani, A. *Attention is all you need*. Advances in Neural Information Processing Systems, 2017.
- [3] Wang, Yasi and Yao, Hongxun and Zhao, Sicheng, *Auto-encoder based dimensionality reduction*, Neurocomputing, 2016.
- [4] Holmes, Michael and Gray, Alexander and Isbell, Charles, *Fast SVD for large-scale matrices*, Workshop on Efficient Machine Learning at NIPS,2007
- [5] https://medium.com/lohith_gn/cost-optimization-in-generative-ai-strategiesfor-llm-efficiency-74d2ea9dae77
- [6] https://www.nature.com/articles/d41586-024-02680-3

- THE END -Thank you for your attention!

If you have any questions, feel free to ask.

• • • • • • • • • •