
Automatic Abelian Complexities of

Parikh-Collinear Fixed Points

Michel Rigo ID , Manon Stipulanti ID , Markus A. Whiteland ID

Department of Mathematics, ULiège, Allée de la Découverte 12, Liège,
4000, Belgium.

Contributing authors: m.rigo@uliege.be; m.stipulanti@uliege.be;
mwhiteland@uliege.be;

Abstract

Parikh-collinear morphisms have the property that all the Parikh vectors of the
images of letters are collinear, i.e., the associated adjacency matrix has rank 1. In
the conference DLT-WORDS 2023 we showed that fixed points of Parikh-collinear
morphisms are automatic. We also showed that the abelian complexity function
of a binary fixed point of such a morphism is automatic under some assump-
tions. In this note, we fully generalize the latter result. Namely, we show that
the abelian complexity function of a fixed point of an arbitrary, possibly eras-
ing, Parikh-collinear morphism is automatic. Furthermore, a deterministic finite
automaton with output generating this abelian complexity function is provided
by an effective procedure. To that end, we discuss the constant of recognizability
of a morphism and the related cutting set.

Keywords: Parikh-collinear morphism, recognizable morphism, automatic sequence,
abelian complexity, substitution shift, automated theorem proving

MSC Classification: 68Q45 , 11B85 , 68V15

1 Introduction

This paper is an extension of the results in our previous work [1] that was presented
during the joint DLT-WORDS 2023 conference. The main objects of interest are fixed
points of Parikh-collinear morphisms which are defined as follows. It is assumed that
the alphabet A = {a1 < · · · < ak} is ordered and Ψ(w) denotes the abelianization or
Parikh vector (|w|a1

, . . . , |w|ak
) counting the number of different letters constituting

1

https://orcid.org/0000-0001-7463-8507
https://orcid.org/0000-0002-2805-2465
https://orcid.org/0000-0002-6006-9902

the word w ∈ A∗. A morphism f : A∗ → B∗ is Parikh-collinear if the Parikh vectors
Ψ(f(b)), b ∈ A, are collinear (or pairwise Z-linearly dependent).

Parikh-collinear morphisms have received some attention in recent years. The
authors of [2, Sec. 4] list a dozen of fixed points of Parikh-collinear morphisms appear-
ing in the OEIS [3], e.g., A285249. Cassaigne et al. characterized Parikh-collinear
morphisms as those morphisms that map all words to words with bounded abelian
complexity [4]. These morphisms also provide infinite words with interesting proper-
ties with respect to the so-called k-binomial equivalence ∼k. Two words u, v ∈ A∗ are
k-binomially equivalent if

(
u
x

)
=

(
v
x

)
, for all x ∈ A∗ with |x| ≤ k. Recall that a binomial

coefficient
(
u
x

)
counts the number of times x occurs as a subword of u. The k-binomial

complexity function of an infinite word x introduced in [5] is defined as b
(k)
x : N → N,

n 7→ #(Ln(x)/∼k), i.e., length-n factors in x are counted up to k-binomial equiva-

lence. (Here b
(1)
x is the usual abelian complexity function [6].) For a survey on abelian

properties of words, see [7]. In a recent work, we showed that a morphism is Parikh-
collinear if and only if it maps all words with bounded k-binomial complexity to words
with bounded (k + 1)-binomial complexity (for all k) [8]. Thus each fixed point of
a Parikh-collinear morphism has a bounded k-binomial complexity for all k (and in
particular a bounded abelian complexity).

Let us summarize the contributions from [1] connecting Parikh-collinear fixed
points to the notions of automaticity. A k-automatic sequence is the letter-to-letter
coding of an iterated fixed point of a k-uniform morphism (images of letters have
length k). Equivalently, a sequence x = a0a1a2 · · · ∈ AN, with an ∈ A, is k-automatic
if there is a deterministic finite automaton with output that, on input n represented in
base k, reaches a state with output an. For more on automatic sequences, see [9, 10].
For an arbitrary morphism σ : A∗ → A∗, we let Mσ ∈ NA×A denote its adjacency
matrix, where [Mσ]b,c = |σ(c)|b for all b, c ∈ A. A letter a ∈ A is called mortal if
σn(a) = ε for some n ≥ 1. If a is not mortal, we call it immortal.

Lemma 1. Let f : A∗ → A∗ be Parikh-collinear and a ∈ A be immortal. Then Ψ(f(a))
is a (right) eigenvector of Mf associated with the eigenvalue

∑
b∈A |f(b)|b. added

right

For a Parikh-collinear morphism f , we let eig(f) :=
∑

b∈A |f(b)|b and we call eig(f)
the eigenvalue f . This is justified as, the matrix Mf having rank 1, the only other
eigenvalue is 0 with multiplicity #A− 1.

Even though Parikh-collinear morphisms are generally non-uniform (images of
some letters have distinct lengths) we proved the following result.

Theorem 2 ([1, Thm. 5]). Let f : A∗ → A∗ be a Parikh-collinear morphism
prolongable on a letter a ∈ A. Then the fixed point fω(a) is eig(f)-automatic. Fur-
thermore, a coding together with an eig(f)-uniform morphism generating fω(a) can
be effectively computed.

The above theorem can be considered folklore: it can be seen as a consequence
of [2, Thm. 2.2 or 4.2], the former of which is itself a reformulation of a result of
Dekking [11] (we note however, that the statements speak of non-erasing morphisms).
For some perspective, it is well known that there exist infinite sequences that are
the fixed points of non-uniform morphisms, but not k-automatic for any k, and that

2

https://www.oeis.org/A285249

every k-automatic sequence is the image of a fixed point of a non-uniform morphism
[12]. A recent preprint [13] completely characterizes those uniformly recurrent (i.e.,
every factor occurs infinitely often and with bounded gaps) morphic words that are
automatic.

Next we proved in [1, Thm. 10] that under some mild assumptions (about the
automaticity of the cutting set that we will discuss in Section 3) the abelian complexity
of a binary fixed point of a Parikh-collinear morphism is automatic. We can therefore
use an automatic procedure to test whether or not this function is ultimately periodic,
for example. Answering a question raised by V. Salo and A. Sportiello independently
(personal communication), considering the abelian complexity of the fixed point w =
0100111001 · · · of the morphism f : {0, 1}∗ → {0, 1}∗ given by 0 7→ 010011, 1 7→ 1001,
we showed that its abelian complexity is aperiodic. To conclude, we gave a proof
sketch showing that the abelian complexity function of a fixed point of a non-erasing
Parikh-collinear morphism is automatic.

1.1 Our contributions

For this special edition we did not want to replicate the results of the proceedings [1].
Therefore our main contribution is to generalize [1, Thm. 10] to an arbitrary Parikh-
collinear morphism: meaning on an alphabet of arbitrary size and the morphism may
be erasing.

Theorem 3. Let f : A∗ → A∗ be a Parikh-collinear morphism prolongable on the
letter a. The the abelian complexity function ax of x := fω(a) is eig(f)-automatic.
Moreover, the automaton generating ax can be effectively computed given f and a.

Before proving this result in Section 4, we first need a computable bound on the
so-called recognizability constant. In Section 2, we have extracted from [14–16] and,
in particular [17], the relevant definitions and important results showing that, for our
study, such a constant exists. Expressed roughly, when we look at a sufficiently long
factor, there is a unique pre-image by the morphism f and there is only one way to
factorize this factor using blocks of the form f(b), where b is a letter.

On this basis, we define in Section 3 the notion of a cutting set. Since the infinite
word x = x0x1 · · · can be factorized as f(x0)f(x1) · · · , this set consists of the integers
|f(x0 · · ·xj)| for all j ≥ 0. Our main observation is that, for a Parikh-collinear mor-
phism f , this set is eig(f)-definable. We insist that this is a major element which then
enables us to apply a decision procedure about the abelian complexity of x = fω(a).
Such a procedure is described in Section 5. We consider the Parikh-collinear morphism
0 7→ 012, 1 7→ 112002, 2 7→ ε and prove with the help of Walnut that the fixed point
starting with 0 has an ultimately periodic abelian complexity 135(377)ω.

2 On the recognizability

For an arbitrary morphism σ : A∗ → A∗, we define

|σ| := max{|σ(b)| : b ∈ A} and ⟨σ⟩ := min{|σ(b)| : b ∈ A},

3

where, for a word w ∈ A∗, we let |w| denote its length.
A morphism g is prolongable on a letter a if g(a) = ax, where x is a word for which

gn(x) ̸= ε for all n ∈ N. In particular, the infinite word gω(a) := limn→∞ gn(a) exists
and is a fixed point of g. In what follows, f : A∗ → A∗ is a Parikh-collinear morphism
prolongable on the letter a ∈ A. For an arbitrary morphic word x, thanks to [18, 19],
one can decide whether x is ultimately periodic. In the case that x is generated by
a Parikh-collinear morphism, by Theorem 2, x is also eig(f)-automatic, and we can
therefore make use of the logical characterization of automatic sequences; in particular,
ultimate periodicity can be readily decided with Walnut [20] using a formula such as

¬(∃p > 0)(∃i ≥ 0)(∀n ≥ i)(x(n) = x(n+ p)). (1)

We will therefore assume in what follows that x is not ultimately periodic. Also, we
restrict the alphabet A to the letters appearing in fn(a) for some n. As an example,
for the Parikh-collinear morphism f : 1 7→ 12, 2 7→ 21, 3 7→ 12 prolongable on 1, we
consider the restriction to the alphabet {1, 2}.

In what follows, an arbitrary morphism σ is called primitive if Mn
σ only contains

positive entries for some n ∈ N.

Lemma 4. A non-erasing Parikh-collinear morphism is primitive.

Proof. Observe that all entries in the adjacency matrix are positive.

Remark 5. Note that for a non-erasing Parikh-collinear morphism g, we may apply
[15, Thm. 4] which directly provides a computable upper bound on the constant of
recognizability (see Definition 16) for the aperiodic word gω(a). added

what is
between
()Since f is Parikh-collinear and possibly erasing, there is a strong dichotomy among

the letters of the alphabet. Either they are immortal and their image by f contains
all letters, or their image by f is empty. Formally, for all b ∈ A, either Ψ(f(b)) = 0
or Ψ(f(b)) is a non-zero rational multiple of Ψ(f(a)). In the latter case, for all n ≥ 0,
Ψ(fn(b)) is therefore non-zero. So, the alphabet is partitioned as A = B ∪ C where

B := {b ∈ A | fn(b) ̸= ε, ∀n ≥ 0} and C := {b ∈ A | f(b) = ε}. (2)

Definition 6. We use notation from Eq. (2). Let κ : A∗ → B∗ be a morphism such
that κ(b) = b if b ∈ B and κ(c) = ε for all c ∈ C. Now we define a morphism
g : B∗ → B∗ such that g(b) = κ(f(b)) for all b ∈ B.

Roughly, the image by g of an immortal letter b of f is obtained by deleting the
mortal letters appearing in f(b).

The next statement is obvious.

Lemma 7. With the above notation, g = κ ◦ f is a non-erasing Parikh-collinear
morphism prolongable on a and satisfies f(gω(a)) = fω(a).

Consider f : 0 7→ 012, 1 7→ 112002; 2 7→ ε, we get g : {0, 1}∗ → {0, 1}∗ such that
g(0) = 01 and g(1) = 1100.

An infinite word is called recurrent if each of its factors appears infinitely often.

4

Definition 8. Let z be a recurrent infinite word and u be a factor of z. A return word
to u is a non-empty factor w of z such that wu contains exactly two occurrences of u
as a prefix and as a suffix of wu. The infinite word z is K-linearly recurrent if, for all
factors u, any return word w to u is such that |w| ≤ K|u|.

We recall a result from [14] and [15, Prop. 12]. It is important to note that the
given upper bound is computable.

Proposition 9. Let σ : A∗ → A∗ be a primitive morphism prolongable on a.
The infinite word σω(a) is Kσ-linearly recurrent and the constant Kσ is bounded by

|σ|4(#A)2 .

By the above result and Lemmas 4 and 7, there exists a constant Kg such that
y = gω(a) is Kg-linearly recurrent.

Corollary 10. The infinite word x = fω(a) = f(y) is Kf -linearly recurrent and the
constant Kf is bounded by Kg|f |/⟨f |B⟩.

Proof. Let u be a factor of x. There exists a factor v of y such that f(v) = pus for
some words p, s of minimal length and |v| ≤ |u|/⟨f |B⟩ (recall that the letters of B do
not vanish under f). Since y is linearly recurrent, any return word r to v has length
at most Kg|v|. Observe that f(r) contains a return word to u and has length bounded

above by Kg|v| |f | ≤ Kg
|f |

⟨f |B⟩ |u|. Now Lemma 7 allows us to conclude.

The constant of recognizability is usually presented in the framework of shift spaces
whose elements are biinfinite words, i.e., sequences indexed by Z. We recap some of
the main definitions and results1.added

footnote

Definition 11. The shift operator S : AZ → AZ is defined by z = (zn)n∈Z 7→ S(z) =
(zn+1)n∈Z. A shift space is a subset X ⊆ AZ that is shift-invariant, i.e., S(X) = X,
and topologically closed. The language of X is the set denoted by L(X) of factors of
the words in X. A shift space is aperiodic if all its elements are aperiodic. Recall that
z ∈ AZ is periodic if z = Sn(z) for some n ≥ 1.

Let σ : A∗ → A∗ be a morphism. We let

L(σ) =
⋃
n≥0

⋃
a∈A

Fac(σn(a))

and the so-called substitution shift associated with σ is

X(σ) = {x ∈ AZ : L(x) ⊂ L(σ)}.

From the definition, it is clear that L(X(σ)) ⊂ L(σ). A morphism σ is aperiodic if the
shift space X(σ) is aperiodic.

The notion of return words and linear recurrence naturally extends to shift spaces.

1We warn the reader about the existence of other definitions of (constant of) recognizability and direct
them to [?] for more on the topic.

5

Definition 12. Let X be a shift space and u ∈ L(X). A non-empty word w ∈ L(X)
is a return word to u in X if wu ∈ L(X) contains exactly two occurrences of u as a
prefix and as a suffix of wu. The shift space X is K-linearly recurrent if it is minimal
(for every closed stable subset Y of X, i.e., S(Y) ⊂ Y , one has Y = ∅ or Y = X)
and for all non-empty words u ∈ L(X), the length of every return word to u in X is
bounded by K|u|.

Merged
Prop 13
and 15Proposition 13. Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A

such that x = fω(a) is aperiodic. Then the shift space X(f) is Kf -linearly recurrent.
Consequently, it is also aperiodic.

Proof. Let X = X(f). We first show that X is Kf -linearly recurrent. To that aim, let
u ∈ L(X) and w be a return word to u in X. Observe that L(X) ⊂ L(f) = L(fω(a)).
Hence u,wu are factors of x which is Kf -linearly recurrent by Corollary 10. Since x is
aperiodic by assumption and X is minimal, X cannot contain a periodic point, hence
the conclusion.

We are now ready to first define the notion of recognizable morphism on X, then
to introduce recognizable morphism on X with some constant of recognizability.

Definition 14. Let X ⊂ AZ be a shift space. A morphism σ : A∗ → B∗ is recognizable
on X if, for all y ∈ σ(X), there exists exactly one pair (x, ℓ) ∈ X × N such that
0 ≤ ℓ < |σ(x0)| and y = Sℓ(σ(x)), where x0 is the first letter of x. added

bold +
def x0Béal, Perrin, and Restivo generalized Mossé’s theorem [17, Thm. 5.4].

Theorem 15. Every morphism σ : A∗ → A∗ is recognizable on the set of aperiodic
elements of X(σ). In particular, if σ is aperiodic, then it is recognizable on X(σ). changed

the
wordingLet X be a shift space and u, v be two finite words such that uv ∈ L(X). The

cylinder with basis (u, v) is defined as

[u · v]X = {z ∈ X : z[−|u|,|v|−1] = uv}.

In particular, if u = ε, we simply write [v]X = {z ∈ X : z[0,|v|−1] = v}.
Definition 16. Let σ : A∗ → B∗ be a morphism. Let X be a shift space on A and let
Y be the closure of σ(X) under the shift. A pair (u, v) of words such that uv ∈ L(Y)
is synchronizing if there is at most one pair (b, ℓ) with b ∈ A and 0 ≤ ℓ < |σ(b)| such
that [u · v]Y ∩ Sℓσ([b]X) ̸= ∅. The morphism σ is recognizable on X with constant n if
and only if every pair (u, v) ∈ Ln(Y)×Ln+1(Y) such that uv ∈ L(Y) is synchronizing.

Let X be an aperiodic shift space. The repetition index of X (also called critical
exponent in the case of an infinite word) denoted by rep(X) is the supremum of the
set of rational numbers e such that L(X) contains words of exponent e. Finally, we
invoke the following result from [21].

Theorem 17. The constant of recognizability on X(σ) of an aperiodic morphism σ is

bounded by 4 rep(X(σ)) ℓ2 |σ|(2ℓ+1)(2+|σ|(2
ℓ+1)ℓ) where ℓ = #A.

put the
content
of old
Prop 11
within
text

6

In [16, Thm. 24], it is shown that a k-linearly recurrent aperiodic word is (k + 1)-
power-free (recall that an infinite word is k-power-free if it does not contain a factor
of the form uk with u non-empty). This result extends to shift spaces: Let X be an
aperiodic shift space and suppose that it is K-linearly recurrent, then the repetition
index is bounded by rep(X) < K + 1; see [14] and also [16]. Now an immediate
application of Propositions 9 and 13 together with Theorem 17 leads to the following
result.

Corollary 18. Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A
such that fω(a) is aperiodic. The constant of recognizability on X(f) of the aperiodic

morphism f is bounded by 4(|f |4ℓ2 + 1) ℓ2 |f |(2ℓ+1)(2+|f |(2
ℓ+1)ℓ) where ℓ = #A.

Now consider the right-infinite word x = fω(a). It appears as a factor of a ele-
ment in X(f). Indeed, since f is Parikh-collinear, there exists some j ≥ 1 such that
f j(a) = auav (one can take j = 2). Take the sequence (fn(au) · fn(a)fn(v))n≥0. By
compactness, we can extract a subsequence converging to some biinfinite word z·fω(a)
belonging to X(f).added

bold
to z We have done all this to ensure that there is a computable bound C guaranteeing

that the word x is recognizable: there is a window size bounded by C such that any
factor within such a window is uniquely “desubstituted”. More precisely, this will
permit us to uniquely detect elements of the cutting set.

3 The cutting set

Let k ≥ 2 be an integer and consider the structure ⟨N,+, Vk⟩, where Vk(0) := 1 and,
for all n ≥ 1, Vk(n) is the largest power of k dividing n. A set X ⊆ Nd is k-definable
if it can be defined by a first-order formula with d free variables within ⟨N,+, Vk⟩.
As a consequence of a theorem of Büchi [22], an infinite word x is k-automatic if and
only if for every letter a, the set of positions where a occurs in x is k-definable. For
a function F : N → Nd, the sequence (F (n))n≥0 is called k-synchronized if the set
{(n, F (n)) : n ∈ N} is k-definable. For a reference on the logical approach to automatic
sequences, see [9, 10].

Let σ be a morphism prolongable on a and write x = σω(a). For all n ≥ 0, we let
prefn(x) be the length-n prefix of x. The corresponding cutting set is defined by

CSσ,a := {|σ(prefn(x))| : n ≥ 0} . (3)

This set simply provides the indices where blocks σ(b), with b ∈ A, start in a factoriza-
tion of x of the form σ(x0)σ(x1)σ(x2) · · · . For example, applied to the Parikh-collinear
morphism f : 0 7→ 012, 1 7→ 112002, 2 7→ ε considered before, we get

x = |012|112002|112002|112002|012|012| · · · and CSf,0 = {0, 3, 9, 15, 21, 24, 27, . . .}.

The unary predicate CSσ,a(n) holds true whenever n ∈ CSσ,a. Making use of the
theory of recognizability presented in Section 2, we show that, in our usual setting,
the cutting set is definable.added

this
sentence

7

Proposition 19. Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A
such that x = fω(a) is aperiodic. The cutting set CSf,a is a eig(f)-definable unary
predicate.

Proof. By Corollary 18, there exists a constant of recognizability C on X(f) with the
following property. By Definition 16, each factor w = ucv of x = fω(a) of length 2C+1
(here |u| = |v| = C and c ∈ A) gives rise to a synchronizing pair, i.e., there exists a
unique pair (b, ℓ) where b ∈ A, 0 ≤ ℓ < |f(b)| such that [u · cv]X(f) ∩ Sℓf([b]X(f)) ̸= ∅.
If ℓ = 0, we have detected an element of the cutting set starting at the “center” c of
the factor w. So with each factor w of length 2C + 1, we associate a Boolean T (w)
stating whether or not the center of w belongs to the cutting set.

Since x is eig(f)-automatic (see Theorem 2), for every factor w of length 2C + 1
and all n ≥ C, the unary formula φw(n) ≡ x[n − C, n + C] = w tells whether or not
w occurs in x as a factor centered at position n (in other words, whether the position
n is the center of w in x). If n ≥ C, the formula∨

w∈L2C+1(x)

φw(n) ∧ T (w)

holds true whenever n belongs to the cutting set. For n < C, this can be defined by
direct inspection: there is a finite number of elements in CSf,a ∩ {0, . . . , C − 1} to
encode manually into the final formula.

Now we have to effectively list all factors of length 2C+1 occurring in x. Again by
Theorem 2 we can effectively get a eig(f)-uniform morphism g and a coding τ such that
x is of the form τ(gω(e)) for some letter e. We can first list all length-2 factors occurring
in gω(e) = y. For instance, we can use a formula such as (∃n)(y(n) = b∧y(n+1) = c)
to test whether or not bc occurs in y. Second, every factor of length 2C + 1 of y
appears in gj(bc) for some letters b, c and j = ⌈logeig(f)(2C + 1)⌉. So scanning these

words gj(bc) with a window of size 2C + 1, we get all desired factors and we apply τ
to them to get all factors of length 2C + 1 occurring in x.

Let us observe that the above proposition can be given in a different framework
where we focus on the recognizability of a single infinite word with respect to the
considered morphism. We take the following definition from [15] adapted to (right)
infinite words.

Definition 20. Let x = x0x1 · · · be a fixed point of a prolongable morphism σ. We
say that σ is recognizable on x if there exists a constant C > 0 such that for all n ≥ 0
and all i such that |σ(x0 · · ·xi−1)| ≥ C, we have

x[n− C, n+ C] = x[|σ(x0 · · ·xi−1)| − C, |σ(x0 · · ·xi−1)|+ C]

⇒ (∃j)(n = |σ(x0 · · ·xj−1)| ∧ xi = xj).

The least C with the above property is then called the constant of recognizability of
σ on x.

We remark that, while we are heavily using the fact that ... The reader may readily add
some
more
text
to this
part...
Or
maybe
change
it into a
remark

8

adapt the proof of Proposition 19 to the following situation. Note the weaker version
presented in Proposition 19 will be used in the next section, but Theorem 21 gives an
interesting result on its own.added

this
sentence Theorem 21. Let x = σω(a) be a fixed point of a prolongable morphism σ. If σ is

recognizable on x with computable recognizability constant C and if x is k-automatic
for some k ≥ 1 , then the cutting set CSσ,a is a k-definable unary predicate.added

for
some k Given an integer i, we look for two consecutive integers around i, the next and

previous elements found in C. The next lemma is obvious (a proof can be found in [1]).

Lemma 22. Let C = {0 = c0 < c1 < c2 < · · · } be an infinite k-definable subset of
N for some k ≥ 1 . The functions ne : N → N mapping i to the least element in Cadded

for
some k greater than or equal to i and pr : N → N mapping i to the greatest element in C less

than i, are k-definable. (We set pr(0) = 0.)

4 Proof of Theorem 3

We are now in the position to prove the main theorem. The following theorem of Shallit
is crucial in the final step. A numeration system is addable if addition is recognizableadded

the part
about
num sys

by some finite automaton.

Theorem 23 ([23]). Let x be an automatic sequence in some addable numeration
system S, and assume that

1. the sequence (Ψ(prefn(x))n≥0 is synchronized (w.r.t. S); andadded
this

2. the abelian complexity function ax : N → N is bounded above by a constant.

Then (ax(n))n≥0 is an automatic sequence (w.r.t. S) and the deterministic finiteadded
this

automaton with output computing it is effectively computable.
Furthermore, if Condition 1 holds, then Condition 2 is decidable.

Lemma 24. Let f : A∗ → A∗ be a Parikh-collinear morphism prolongable on a and
write x = fω(a). For all b ∈ A, the sequence (|prefn(x)|b)n≥0 is eig(f)-synchronized.added

x = ...

Proof. Let b ∈ A. Since f is Parikh-collinear, for each immortal letter c, the ratio
|f(c)|b/|f(c)| is constant and depends only on b. Thus write |f(a)|b/|f(a)| = r/q.

Consider a prefix of x of the form prefn(x) = f(xn)tn where xn is a prefix of x
such that pr(n) = |f(xn)|. Since |f(xn)|b = r

q |f(xn)|, we get q|prefn(x)|b = r|f(xn)|+
q|tn|b. Define the function F (n) = |prefn(x)|b for all n ≥ 0. Then

y = F (n) ≡ ∃m, z : (pr(n) = m) ∧ (q · (y − z) = r ·m) ∧ (|x[m...n− 1]|b = z).

Since |x[pr(n)...n− 1]| attains finitely many values (recall that x has bounded abelian
complexity [4]), the last check (|x[m...n − 1]|b = z) can be expressed by a first-order
logical formula with indexing into x. The formula y = F (n) has two free variables,
indexes into the eig(f)-automatic sequence x, and involves only eig(f)-definable sets
and functions by Proposition 19 and Lemma 22, hence [10, Thm. 10.2.3] asserts thatchanged

back +
changed
k to
eig(f) +
added
that x is
eig(f)-
aut +
added
eig(f)-
definable
sets and
func-
tions

there is a deterministic finite automaton recognizing the language {(n, F (n))eig(f) :
n ≥ 0}, and is thus eig(f)-synchronized.

9

Proof of Theorem 3. A fixed point of a Parikh-collinear morphism is ef -automatic
by Theorem 2. As a corollary of [4, Thm. 11], its abelian complexity function is
bounded by a constant, so Condition 2 in Theorem 23 is satisfied. Since Condition 1
is equivalent to the property that for each b ∈ A, the sequence (|prefn(x)|b)n≥0 is
synchronized, the above lemma allows to conclude with the proof.

5 A detailed discussion of the procedure

Throughout this section, we let f be defined by 0 7→ 012, 1 7→ 1120022 7→ ε, and
fω(0) = x = x0x1 · · · . Our aim is to prove the following.

Proposition 25. The fixed point x = 012112002112002 · · · of the Parikh-collinear
morphism f : 0 7→ 012, 1 7→ 112002, 2 7→ ε has abelian complexity equal to 135(377)ω.

Computing ef =
∑2

a=0 |f(a)|a = 3, we know that x is 3-automatic. In [1] added
efwith Theorem 2, we give an effective procedure to compute an equivalent morphic

representation; the procedure produces the coding τ defined by

0̂1, 1̂4, 1̂5 7→ 0; 0̂2, 1̂1, 1̂2 7→ 1; 0̂3, 1̂3, 1̂6 7→ 2

and the 3-uniform morphism g defined by

0̂1, 1̂5, 1̂6 7→ 0̂10̂20̂3; 0̂2, 1̂1, 1̂3 7→ 1̂11̂21̂3; 0̂3, 1̂2, 1̂4 7→ 1̂41̂51̂6,

so that τ(gω(0̂1)) = x.
One notes that there are redundant letters (i.e., they have equal images under both

τ and g ◦ τ). We thus find a simpler morphism h by identifying them:

0 7→ 012; 1 7→ 134; 2 7→ 506; 3 7→ 506; 4 7→ 134; 5 7→ 506; 6 7→ 012,

with which τ ′(hω(0)) = x, where τ ′ is defined by 0, 5 7→ 0; 1, 3 7→ 1; 2, 4, 6 7→ 2.
We may introduce the 3-automatic word x to Walnut as follows:

morphism h "0->012 1->134 2->506 3->506 4->134 5->506 6->012";

morphism tau "0->0 1->1 2->2 3->1 4->2 5 ->0 6->2";

promote H h;

image X tau H;

Walnut now knows the infinite word as X, and it is now easy to verify that x is
aperiodic. Indeed, Eq. (1) translates to:

eval isaperiodic "?msd_3 ~(Ep,i p>0 & (An n>i => (X[n]=X[n+p])))";

and Walnut produces True.
Following the procedure, we next wish to compute (or bound) the constant of

recognizability. The bound given in Corollary 18 is (636 + 1) · 67·(2+627)+2, which
is unmanageable in practice. At this point, we compute the actual constant of
recognizability (with the help of Walnut) to proceed with the illustration.

Lemma 26. Given f : 0 7→ 012, 1 7→ 1120022 7→ ε, its constant of recognizability is 2.

10

Proof. We observe that the factor 120 appears both in f(00) = 012012 and f(1) =
112002, so the pair (1, 20) is not synchronizing. This observation bounds the constant
of recognizability from below by 2.

We observe that each factor of length 5 contains at least one occurrence of 2; this
is because 2 appears at the position n if and only if n ≡ 2 mod 3, a fact that can be
verified using Walnut:

eval appearance2 "?msd_3 An X[n]=@2 <=> Em n=3*m+2";

Let w = uv be a factor of x with |u| = 2 and |v| = 3. From the above we deduce
that v contains an occurrence of 2.

Since any cutting point is either 0 or appears just after an occurrence of 2 (both
f(0) and f(1) end with 2), it suffices to inspect the two letters appearing just before
a 2 in v. Indeed, the return words to 2 in x are 201, 200, and 211; if the two preceding
letters are 00 or 01, then the position after 2 is a cutting point. Otherwise it is not.
Thus the constant of recognizability is bounded above by 2.

We next proceed to define the cutting sequence of x in Walnut as follows; the index
n is a cutting point if n = 0 or n ≥ 3 and xn−1 = 2 and xn−3 ̸= 1 (this can be deduced
from the proof of Lemma 26).

def cut "?msd_3 n=0 | (n>=3 & X[n-1]=@2 & ~(X[n-3]=@1))";

Using the cut set, we define the pairs (n, x) such that x is the largest cut point
that is at most n. The following predicate prev recognizes exactly these pairs (see
Lemma 22).

def prev "?msd_3 x<=n & $cut(x) & (Ay (y>x & y<=n)=>~$cut(y))";

Next, we define the synchronized sequence of the number of 0’s (resp., 1’s, 2’s) in the
prefix of length n+ 1, n ≥ 0.

def prefn0 "?msd_3 (n<=2 & y=1) | (3<=n & Em,z ($prev(n,m) & 3*y=m+3*z

& ((X[m]=@0 & z=1) |

(X[m]=@1 & ((n<m+3 & z=0) | (n=m+3 & z=1) | (n>=m+4 & z=2))))))";

Here prefn0(n,y) is true if y is the number of 0’s appearing in the prefix of length
n + 1 of x, with n ≥ 0. We note that if |f(w)| = ℓ, then |f(w)|0 = ℓ/3. Hence for a
prefix f(w)z, where z is a prefix of the image of a letter, we have |f(w)z|0 = ℓ/3+ |z|0.
If z begins with 0, then we know that z is a prefix of f(0), so that |z|0 = 1 as long as
z ̸= ε. Otherwise z is a prefix of f(1), and |z|0 = 0 if |z| ≤ 3; |z|0 = 1 if |z| = 4; and
|z|0 = 2 otherwise.

With similar arguments one can see that the following predicates define the pairs
(n, |prefn+1(x)|a), for a ∈ {1, 2}.

def prefn1 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z &

((X[m]=@0 & ((m=n & z=0) | (n>=m+1 & z=1))) |

(X[m]=@1 & ((m=n & z=1) | (n>=m+1 & z=2))))";

def prefn2 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z &

11

((X[m]=@0 & ((n<m+2 & z=0) | (m+2=n & z=1))) | (X[m]=@1 &

((n<m+2 & z=0) | (n>=m+2 & n<m+5 & z=1) | (n=m+5 & z=2))))";

From this point onward we may proceed as outlined by Shallit in [23] to find the
abelian complexity function of x as a 3-automatic sequence.

Remark 27. We could now find the sequence (Ψ(prefn(x)))n≥0 as a synchronized
sequence (n,Ψ(prefn(xn)))n≥0 with the following command:

def PrefParikhSync "?msd_3 (n=0 & x=0 & y=0 & z=0) |

(n>=1 & $prefn0(n-1,x) & $prefn1(n-1,y) & $prefn2(n-1,z))";

However, the automaton seems to be too complex to work with in a practical way.

We shall opt to proceed with the approach of [23] presented for the Tribonacci
word. In particular, we work with the synchronized sequences (n, |prefn(x)|a)n≥0,
a ∈ {0, 1, 2}, separately instead:

def pref0 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn0(n-1,y))";

def pref1 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn1(n-1,y))";

def pref2 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn2(n-1,y))";

Next we define the automata accepting the triples (i, n, |xi · · ·xi+n−1|a), for a ∈
{0, 1, 2}:
def syncin0 "?msd_3 Ax,y ($pref0(i,x) & $pref0(i+n,y)) => (z + x = y)";

def syncin1 "?msd_3 Ax,y ($pref1(i,x) & $pref1(i+n,y)) => (z + x = y)";

def syncin2 "?msd_3 Ax,y ($pref2(i,x) & $pref2(i+n,y)) => (z + x = y)";

For each a ∈ {0, 1, 2}, we inspect the possible differences |v| − |prefn(x)|a, where
v ranges over the factors of x of length n. Since x is guaranteed to have bounded
abelian complexity, there are only finitely many such possible values; here we may
inspect the possible values of the differences as follows. The first predicate accepts
the non-negative values of k such that k = |v|0 − |prefn(x)|; the second accepts the
non-negative values of k such that −k = |v|0 − | prefn(x)|0:
def diffs0pos "?msd_3 En,i,x,z $syncin0(i,n,x) & $pref0(n,z) & x=k+z";

def diffs0neg "?msd_3 En,i,x,z $syncin0(i,n,x) & $pref0(n,z) & x+k=z";

Inspecting the automata obtained, the possible values in both cases are k = 0, 1, 2.
This implies that ||v|0 − | prefn(x)|0| ≤ 2, and all possible values are attained. With
similar inspections for the other letters, we find that

−3 ≤ |v|1 − | prefn(x)|1 ≤ 2 and 0 ≤ |v|2 − | prefn(x)|2 ≤ 1,

and all possible values are attained. We thus have that

Ψ(v)−Ψ(prefn(x)) ∈ {−2, . . . , 2} × {−3, . . . , 2} × {0, 1} (4)

for any factor v of length n. (Note that this in particular shows that x has bounded
abelian complexity.)

12

0

[0,0,0]
1

[1,0,0]

2
[0,1,0]

3

[2,2,1]

[1,1,0], [0,2,0], [1,0,1], [0,1,1]

[2,0,0], [1,1,0], [0,2,0], [1,0,1], [0,1,1]

Fig. 1 The automaton accepting base-3 representations of triples of the form Ψ(v)−Ψ(prefn(x))+
(2, 3, 0), where v ranges through the factors of length n, and n ranges through the natural numbers.

If S is the set of possible triples in Eq. (4), we note that the triples S + (2, 3, 0)
will be non-negative. To get all the possible triples (s, t, u), we inspect the automaton
constructed by Walnut with the command

def validtriples "?msd_3 Ei,n,a,b,c,d,e,f

$syncin0(i,n,a) & $pref0(n,b) & s+b = a+2 &

$syncin1(i,n,c) & $pref1(n,d) & t+d = c+3 &

$syncin2(i,n,e) & $pref2(n,f) & u+f = e";

We obtain the automaton in Fig. 1. Inspecting it, we see that from the set appearing
in Eq. (4), all ten vectors with the property that the entries sum to 0 are attainable
(we are comparing Parikh vectors of two words of the same length n); they are

{(−2, 2, 0), (−2, 1, 1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1),

(0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−3, 1), (2,−2, 0)}.

Since (0, 0, 0) is attained for any length n, we have 29 possible sets of difference vectors
to consider. For each such difference vector, we may provide a predicate recognizing
those i and n for which the vector is attained. For example, the vector (−2, 2, 0) is
defined with the command

def vecn220 "?msd_3 Ea,b,c,d,e,f

$syncin0(i,n,a) & $pref0(n,b) & a+2=b &

$syncin1(i,n,c) & $pref1(n,d) & c=d+2 &

$syncin2(i,n,e) & $pref2(n,f) & e=f";

In principle, one could then consider all 29 possible combinations of possible dif-
ference vectors for a given length n. However, computations suggest that the possible
sets of vectors are the following:

S1 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0)},
S2 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)},
S3 = {(−1, 1, 0), (0, 0, 0), (1,−1, 0)},
S4 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−2, 0)},
S5 = {(−1, 0, 1), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−3, 1), (2,−2, 0)},
S6 = {(0, 0, 0), (1,−1, 0), (2,−2, 0)},
S7 = {(−2, 1, 1), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0)},

13

S8 = {(−2, 1, 1), (−2, 2, 0), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)}.

Let us define, for each i, the lengths n for which the set Si is attained. For example,
the lengths corresponding to S1, S2, S3, and S6 would be defined as
def S1 "?msd_3 Ai ($vecn101(i,n) | $vecn110(i,n) | $vec000(i,n))

& (Ej,k $vecn101(j,n) & $vecn110(k,n))";

def S2 "?msd_3 Ai ($vecn101(i,n) | $vecn110(i,n) | $vec0n11(i,n)

| $vec000(i,n) | $vec1n10(i,n)) &

Ej,k,l,m ($vecn101(j,n) & $vecn110(k,n) & $vec0n11(l,n)

& $vec1n10(m,n))";

def S3 "?msd_3 (Ai $vecn110(i,n) | $vec000(i,n) | $vec1n10(i,n)) &

(Ej,k $vecn110(j,n) & $vec1n10(k,n))";

def S6 "?msd_3 (Ai $vec000(i,n) | $vec1n10(i,n) | $vec2n20(i,n)) &

(Ej,k $vec1n10(j,n) & $vec2n20(k,n))";

To avoid memory issues, we split the definitions of S4, S5, S7, and S8 into several
parts:
def S4a "?msd_3 Ai $vecn101(i,n) | $vecn110(i,n) | $vec0n11(i,n) |

$vec000(i,n) | $vec1n21(i,n) | $vec1n10(i,n) | $vec2n20(i,n)";

def S4b "?msd_3 $S4a(n) & Ei $vecn101(i,n)";

def S4c "?msd_3 $S4b(n) & Ei $vecn110(i,n)";

def S4d "?msd_3 $S4c(n) & Ei $vec0n11(i,n)";

def S4e "?msd_3 $S4d(n) & Ei $vec1n21(i,n)";

def S4f "?msd_3 $S4e(n) & Ei $vec1n10(i,n)";

def S4 "?msd_3 $S4f(n) & Ei $vec2n20(i,n)";

def S5a "?msd_3 Ai ($vecn101(i,n) | $vec0n11(i,n) | $vec000(i,n) |

$vec1n21(i,n) | $vec1n10(i,n) | $vec2n31(i,n) | $vec2n20(i,n))";

def S5b "?msd_3 $S5a(n) & Ei $vecn101(i,n)";

def S5c "?msd_3 $S5b(n) & Ei $vec0n11(i,n)";

def S5d "?msd_3 $S5c(n) & Ei $vec1n21(i,n)";

def S5e "?msd_3 $S5d(n) & Ei $vec1n10(i,n)";

def S5f "?msd_3 $S5e(n) & Ei $vec2n31(i,n)";

def S5 "?msd_3 $S5f(n) & Ei $vec2n20(i,n)";

def S7a "?msd_3 Ai $vecn211(i,n) | $vecn101(i,n) | $vecn110(i,n) |

$vec0n11(i,n) | $vec000(i,n) | $vec1n21(i,n) | $vec1n10(i,n)";

def S7b "?msd_3 $S7a(n) & Ei $vecn211(i,n)";

def S7c "?msd_3 $S7b(n) & Ei $vecn101(i,n)";

def S7d "?msd_3 $S7c(n) & Ei $vecn110(i,n)";

def S7e "?msd_3 $S7d(n) & Ei $vec0n11(i,n)";

def S7f "?msd_3 $S7e(n) & Ei $vec1n21(i,n)";

def S7 "?msd_3 $S7f(n) & Ei $vec1n10(i,n)";

def S8a "?msd_3 Ai $vecn211(i,n) | $vecn220(i,n) | $vecn101(i,n) |

$vecn110(i,n) | $vec0n11(i,n) | $vec000(i,n) | $vec1n10(i,n)";

def S8b "?msd_3 $S8a(n) & Ei $vecn211(i,n)";

14

Fig. 2 The abelian complexity function of the fixed point x = 012112002112002 · · · of the Parikh-
collinear morphism f : 0 7→ 012, 1 7→ 112002, 2 7→ ε as a 3-automatic sequence.

def S8c "?msd_3 $S8b(n) & Ei $vecn220(i,n)";

def S8d "?msd_3 $S8c(n) & Ei $vecn101(i,n)";

def S8e "?msd_3 $S8d(n) & Ei $vecn110(i,n)";

def S8f "?msd_3 $S8e(n) & Ei $vec0n11(i,n)";

def S8 "?msd_3 $S8f(n) & Ei $vec1n10(i,n)";

To obtain the abelian complexity function as an automatic sequence, we finally
perform the following commands:
def abcomp1 "?msd_3 n=0";

def abcomp3 "?msd_3 $S1(n) | $S3(n) | $S6(n)";

def abcomp5 "?msd_3 $S2(n)";

def abcomp7 "?msd_3 $S4(n) | $S5(n) | $S7(n) | $S8(n)";

combine abcomp abcomp1=1 abcomp5=5 abcomp3=3 abcomp7=7;

The first four automata recognize those lengths n for which the abelian complexity
equals 1, 3, 5, and 7, respectively. The last combines these automata to form an
automatic sequence over the alphabet {1, 3, 5, 7}. The automaton obtained is depicted
in Fig. 2. Inspecting the automaton, we see that the abelian complexity function of x
equals 135(377)ω, as desired.

6 Concluding remarks

We may address similar questions. In the same vein as Sportiello and Salo’s question,
we may ask: Is the abelian complexity of the fixed point of any Parikh-constant mor-
phism, i.e., all images of letters have the same Parikh vector [5], always ultimately
periodic? We know with [1] that this is not the case for an arbitrary Parikh-collinear
morphism, but Parikh-constant morphisms are more restrictive: all columns of Mf are
the same.

In Theorem 21, there is an assumption about recognizability. Nevertheless, there
are situations where recognizability does not hold and still, the cutting set is definable.
As an example, consider the non-uniform morphism f : a 7→ ab, b 7→ b′c′, b′ 7→ b,
c′ 7→ ccc and c 7→ cc. Its fixed point starting with a is also 2-automatic and generated
by the morphism a 7→ ab, b 7→ b′c′, b′ 7→ bc, c′ 7→ cc, c 7→ cc (a slight modification of
the morphism used to generate the characteristic sequence of powers of 2). Because
of the arbitrarily long blocks of c’s appearing in fω(a), f is not recognizable on this
infinite word. Nevertheless, the cutting set CSf,a = {0, 2, 4, 5, 8, 10, . . .} is 2-definable
because it is easy to see that it is of the form (2N\{4n+2 | n > 0})∪{4n+1 | n > 0}.

15

So the conclusion of Theorem 21 may hold for a larger class of morphic words (being
simultaneously k-automatic for some k).

Acknowledgments. We thank J. Leroy for fruitful discussions on morphic words
and pointing out useful references. We thank A. Sportiello and V. Salo for asking the
question leading to this paper. We warmly thank M.-P. Béal, F. Durand, and D. Perrin
for sharing a draft of their book [21]. We also thank the reviewers of [1] for their
suggestions. We wthank the anonymous reviewers for their suggestions which greatly
improved the readability of the text.

Declarations

• Funding
M. Rigo is supported by the FNRS Research grant T.0196.23 (PDR). M. Stipu-
lanti is an FNRS Research Associate supported by the Research grant 1.C.104.24F.
M. Whiteland is supported by the FNRS Research grant 1.B.466.21F.

• Conflict of interest/Competing interests
The authors have no relevant interests to disclose.

• Ethics approval and consent to participate
Not applicable

• Consent for publication
Not applicable

• Data, materials, and code availability
Not applicable

• Author contribution
All authors equally contributed to the main content.

References

[1] Rigo, M., Stipulanti, M., Whiteland, M.A.: Automaticity and Parikh-collinear
morphisms. In: Combinatorics on Words. Lecture Notes in Comput. Sci.,
vol. 13899, pp. 247–260. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-33180-0 19

[2] Allouche, J.-P., Dekking, M., Queffélec, M.: Hidden automatic sequences. Comb.
Theory 1(#20) (2021) https://doi.org/10.5070/C61055386

[3] Sloane, N.J.A., al.: The On-Line Encyclopedia of Integer Sequences. https://oeis.
org

[4] Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers
in binary words with bounded Abelian complexity. Int. J. Found. Comput. S.
22(4), 905–920 (2011) https://doi.org/10.1142/S0129054111008489

[5] Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial
complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015) https://doi.
org/10.1016/j.tcs.2015.07.025

16

https://doi.org/10.1007/978-3-031-33180-0_19
https://doi.org/10.1007/978-3-031-33180-0_19
https://doi.org/10.5070/C61055386
https://oeis.org
https://oeis.org
https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1016/j.tcs.2015.07.025
https://doi.org/10.1016/j.tcs.2015.07.025

[6] Erdős, P.: Some unsolved problems. Michigan Math. J. 4, 291–300 (1958)

[7] Fici, G., Puzynina, S.: Abelian combinatorics on words: A survey. Comput. Sci.
Rev. 47, 100532 (2023) https://doi.org/10.1016/j.cosrev.2022.100532

[8] Rigo, M., Stipulanti, M., Whiteland, M.A.: Characterizations of families of mor-
phisms and words via binomial complexities. European J. Combin. 118, 103932
(2024) https://doi.org/10.1016/j.ejc.2024.103932

[9] Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Gener-
alizations. Cambridge University Press, Cambridge (2003). https://doi.org/10.
1017/CBO9780511546563

[10] Shallit, J.: The Logical Approach to Automatic Sequences: Exploring Combi-
natorics on Words with Walnut. London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/
9781108775267

[11] Dekking, F.M.: The spectrum of dynamical systems arising from substitutions
of constant length. Z. Wahrscheinlichkeitstheor. Verw. Geb. 41, 221–239 (1978)
https://doi.org/10.1007/BF00534241

[12] Allouche, J.-P., Shallit, J.: Automatic sequences are also non-uniformly morphic.
In: Discrete Mathematics and Applications. Springer Optim. Appl., vol. 165, pp.
1–6. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55857-4 1

[13] Krawczyk, E., Müllner, C.: Automaticity of uniformly recurrent substitutive
sequences (2023). https://doi.org/10.48550/arXiv.2111.13134

[14] Durand, F.: A characterization of substitutive sequences using return words.
Discrete Math. 179(1-3), 89–101 (1998) https://doi.org/10.1016/S0012-365X(97)
00029-0

[15] Durand, F., Leroy, J.: The constant of recognizability is computable for primitive
morphisms. J. Integer Seq. 20(4), 17–4515 (2017)

[16] Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli dia-
grams and dimension groups. Ergodic Theory Dynam. Systems 19(4), 953–993
(1999) https://doi.org/10.1017/S0143385799133947

[17] Béal, M.-P., Perrin, D., Restivo, A.: Recognizability of morphisms. Ergodic
Theory and Dynamical Systems, 1–25 (2023) https://doi.org/10.1017/etds.2022.
109

[18] Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO
Theor. Inform. Appl. 47(2), 201–214 (2013) https://doi.org/10.1051/ita/2013035

[19] Mitrofanov, I.: A proof for the decidability of HD0L ultimate periodicity. arXiv

17

https://doi.org/10.1016/j.cosrev.2022.100532
https://doi.org/10.1016/j.ejc.2024.103932
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/9781108775267
https://doi.org/10.1017/9781108775267
https://doi.org/10.1007/BF00534241
https://doi.org/10.1007/978-3-030-55857-4_1
https://doi.org/10.48550/arXiv.2111.13134
https://doi.org/10.1016/S0012-365X(97)00029-0
https://doi.org/10.1016/S0012-365X(97)00029-0
https://doi.org/10.1017/S0143385799133947
https://doi.org/10.1017/etds.2022.109
https://doi.org/10.1017/etds.2022.109
https://doi.org/10.1051/ita/2013035

(2011). https://doi.org/0.48550/arXiv.1110.4780

[20] Mousavi, H.: Automatic Theorem Proving in Walnut. arXiv (2016). https://doi.
org/10.48550/arXiv.1603.06017

[21] Béal, M.-P., Durand, F., Perrin, D.: Substitution shifts. manuscript, 2024

[22] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960) https://doi.org/10.1002/malq.19600060105

[23] Shallit, J.: Abelian complexity and synchronization. INTEGERS: Electronic
Journal of Combinatorial Number Theory 21(#A.36) (2021)

18

https://doi.org/0.48550/arXiv.1110.4780
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.1002/malq.19600060105

	Introduction
	Our contributions

	On the recognizability
	The cutting set
	Proof of Theorem 3
	A detailed discussion of the procedure
	Concluding remarks
	Acknowledgments

