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Thermal Infrared (TIR) drones are emerging as effective tools for wildlife ecology monitoring and 
are increasingly employed in primate surveys. However, systematic methods for assessing primate 
detectability are lacking. We present a comprehensive approach utilizing a novel Thermal Detection 
Index (TDI) to evaluate the potential of TIR drones for primate monitoring. We developed TDIs for 
389 primate species, considering activity patterns, locomotion types, body mass, densities, habitat 
utilization, and sleeping behaviors during diurnal and nocturnal surveys. Through the integration of 
TDIs with primates’ distribution and climatic variables (average annual temperature, precipitation, and 
wind speed), we established a Global TDI Suitability Score aimed at pinpointing species and regions 
most compatible with TIR drone-based monitoring. Atelidae, Cercopithecidae, and Indridae showed 
the highest TDI values, suggesting their suitability for TIR-drone surveys. We identified optimal regions 
in Africa, Asia and Latin America for primate monitoring with TIR drones, driven by favorable ecological 
conditions, habitat types, and high TDI species diversity. However, local ecological factors and 
regulatory frameworks also influence drone survey feasibility, necessitating careful consideration prior 
to implementation. Overall, our study provides a valuable framework for prioritizing primate species 
and regions for TIR drone-based monitoring, facilitating targeted conservation efforts and advancing 
primate monitoring research.

Drones have recently emerged as tools in wildlife ecology, facilitating studies in population estimates and 
behavioral ecology, while providing remote-sensing data at fine spatial and temporal scales1–4. The integration 
of thermal infrared (TIR) imaging and drone technology (hereafter TIR drones) in ecological studies holds great 
promise for effective species monitoring in conservation efforts5. TIR drones facilitate the detection of animals 
based of their body heat, allowing wildlife censuses and identification of species not visible to the naked eye or 
through red, green, blue (RGB) imagery (e.g., the detection of cryptic species or conducting nocturnal surveys)4.

The potential to detect and enumerate primate populations through TIR drone technology presents a 
promising avenue for resource and labor-efficient, non-invasive, long-term monitoring programs6–9. However, 
the effectiveness of employing thermal drones for primate monitoring varies across species, landscape and 
habitat types, influenced by various ecological traits and factors that affect the detection probability via TIR 
imagery. Activity patterns play a crucial role; nocturnal species might be challenging to detect during diurnal 
surveys as they could sleep in tree holes, while diurnal species might be difficult to detect during nocturnal 
surveys if they sleep in caves5,10. Locomotion patterns also contribute; with highly arboreal species effectively 
detected and counted in forested areas, and ground-dwelling species efficiently monitored in open terrain but 
remaining undetected under the tree canopy10–14. Ecological factors inherently linked to the level of arboreality 
or terrestriality of species, such as vegetation type, canopy density, canopy height, and terrain elevation, influence 
detection probabilities in TIR images5,15,16. Animal body size and group size also impact detection, with smaller 
species living solitary or in small groups more likely to be missed in aerial surveys7,17. Generally, TIR drone 
surveys are more suitable for surveying large-bodied species occurring in high densities or ranging over small 
areas11,12. Finally, behavioral responses to the drone, such as animals becoming startled or fleeing, compromise 
reliable detection and counting5,6,12,13. These ecological traits and behaviors necessitate a thorough assessment 
to determine which primate species can potentially be effectively monitored using TIR drones. Moreover, the 
widespread implementation of drones to study primate population habitat, abundance, and behavior, faces 
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limitations, such as flight range, regulatory frameworks (e.g., legislation and challenges and expenses to obtain 
permits), data-processing time, and the lack of methodological validation1,3,18. Therefore, researchers need 
preliminary knowledge to justify investing funds and effort in developing research projects incorporating this 
technology as an alternative to traditional survey techniques.

This paper aims to leverage existing primate species data to construct a Thermal Detection Index (TDI) that 
will assess species, genera, and families most amenable to monitoring via thermal drones. Survey methods such 
as flight height, flight speed and pattern, as well as gimbal angle, can impact TIR drone detection probabilities, 
influencing both detection resolution and animal response to the drone5,11,19–21. To simplify TDI implementation, 
we presume that each flight parameter is ‘optimal’ for each species following recommendations outlined in Burke 
et al. (2018)22 to maximize detection, providing the minimum resolution for animals to be visible and identified 
(e.g., according to drone TIR sensor pixel resolution, lens characteristics, and target species body size11) while 
minimizing disturbance7,13,23,24. Finally, TIR drone detections will also depend on the time of the survey, with 
nocturnal surveys more effective when there are larger temperature differences between targeted species and 
their surroundings13,21,25. While nocturnal detections generally yield higher success rates due to greater thermal 
contrast, it is essential to assess both nocturnal and diurnal scenarios to account for species’ activity patterns, 
resting sites, and for situations where nocturnal surveys are not feasible. Therefore, we aim to develop nocturnal 
and diurnal TDI values for various primate species (representing 78 genera) that will integrate species’ activity 
pattern, locomotion type, body mass, densities, habitat use, and sleeping behavior.

Beyond nocturnal and diurnal TDIs for primate species, TIR drone surveys are often constrained by 
weather conditions (e.g., ambient temperature, precipitation, wind speed, etc.). These weather-related factors 
not only impact the image quality and animal detection but also narrow the window of opportunity for aerial 
surveys or deploying drones on-demand22,26–29. To address these limitations and evaluate the reliability of TIR 
drone surveys, we aimed to develop a Global TDI Suitability Score, which integrates geospatial components to 
examine the relationship between primate species distribution, TDIs, and climatic variables that affect drone 
flights. Ultimately, our study aimed to identify areas more suitable for sustained TIR drone-based monitoring 
of primates by establishing methodological tools that enable researchers to find TDIs for their study species and 
assess the reliability of TIR drone use given climate, habitats, and ecological traits.

Methods
Data acquisition and processing
To construct a Thermal Detection Index (TDI), we extracted comprehensive information from the IUCN 
RedList of Threatened Species database (2024)30, encompassing species taxonomy (Family, Genus, Common 
Name, Scientific Name), along with conservation status, and habitat preferences across various ecosystems (e.g., 
Forest, Savannah, Shrubland, Grassland, Wetland, Rocky area, Desert, Artificial). We completed this dataset 
with some important ecological traits of the world’s primates, including diel activity (i.e. Nocturnal, Diurnal, 
Cathemeral), locomotion type (i.e. Arboreal, Terrestrial, Semi-terrestrial), body mass (kg), average home range 
size (km²), and mean number of individuals per group extracted from Galán-Acedo et al. (2019)31 database 
(N = 389 species). We assessed species mean population density based on mean number of individuals per group 
and average home range size (individuals per sq km). Additionally, we incorporated information on sleeping 
habits, considering nesting behaviors, caves, cavities, and tree hole usage by species32. The finalized database 
used for thermal detection index construction is available in Supplementary Material 1. To produce a Global 
TDI Suitability Score, we integrated TDI estimates from the current study with primate species distribution 
polygons, average annual temperature (°C), average annual wind speed (m.s−1), and annual precipitation (mm) 
across global regions33 (Table 1).

Thermal detection index (TDI) construction
The Thermal Detection Index (TDI) is separately calculated for Nocturnal and Diurnal surveys. It is derived 
as the cumulative score of three equally weighted traits, the Habitat Average (Habav.), Body Mass (BM), and 
population Density (Dens):

 TDI = Habav + BM +Dens

Data Description Rationales

TDI Estimates TDI for each species, established in the current paper We connect this data to the distribution data as a weighted score

IUCN Redlist primate distribution 
polygons30

Distribution polygons of all assessed primate species in the 
IUCN Redlist of Threatened Species database The maps provide a spatial area in which the primates occur

Average annual temperature (°C)33 Monthly temperatures averaged from 1970–2000, averaged 
into a single annual raster layer

Thermal imaging of mammals is most effective in colder environments as 
it enhances thermal contrast by capturing the difference in temperature 
between the target animal and the colder surroundings13,21,22,25

Average annual wind speed (m s-1)33 Monthly wind speed averages from 1970–2000, averaged into a 
single annual raster layer

Strong wind speed affects the ability to operate drones, but also decrease 
thermal contrast between animals and their background. The maximum 
wind speed resistance of small common drones is usually 10 m/s27,28

Annual precipitation – Bio12 (mm)33 Average annual precipitation from 1970–2000
Rainfall and humidity may prevent drone flights and functionality and 
distort the results of thermographic imaging. Increased frequency of 
rainfall raises the likelihood of disruptions to flight plans22,26,28

Table 1. Data source to construct the global thermal detection index (TDI) suitability score across primates’ 
natural range.
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We assume that each trait has an equivalent impact on detectability, with locomotor behavior being independent 
of body mass34.

To consider ecological influences on detectability, a habitat scoring system is designed to assess the likelihood 
of successful thermal detection across varied environments. It utilizes a five-point scale from 0 to 4, denoting 
progressively lower to higher probabilities of successful thermal detection (Table 2). In cases where species inhabit 
multiple habitats, we computed a mean score of these habitats (‘Habav.’). To obtain this score, we considered both 
diurnal and nocturnal detection scenarios (i.e., diurnal versus nocturnal surveys using a TIR drone), as well as 
primate species’ activity patterns and preferred habitats (i.e., the dominant substrate or environment they used). 
For example, consider species exhibiting diurnal activity patterns, detecting them during nocturnal surveys 
within sleeping trees is more feasible compared to daytime surveys due to elevated temperatures, increased 
scattering of groups, or individuals foraging on the ground. However, this does not apply if the species habitually 
rest in caves. Nocturnal species are more detectable during their active night-time period, as they tend to 
occupy tree holes and cavities during the day. Therefore, species found sleeping in caves or in cavities/tree holes 
receive a detection score of zero during diurnal thermal drone surveys. Species locomotion’s type served as a 
potential indicator of vertical forest use (e.g., use of emergent layer, understory, or ground strata), acting as a 
proxy for vertical TIR detection probability. For example, arboreal species (AR) are more readily detectable 
in tropical forested habitats compared to terrestrial (T) or semi-terrestrial (ST) species, which are more easily 
detected in savannah, grassland, and desert environments. Therefore, the detection score accounts for ecological, 
physiological, behavioral, and temporal variations that may influence primate detectability in a given habitat.

Thereafter, to obtain the factors Body Mass (‘BM’) and Density (‘Dens’), we categorized the data for each 
primate species into four categories based on the quartile summaries (scored as ‘1’, ‘2’, ‘3’, and ‘4’). These categories 
represent relative sizes and population densities that may increase detectability by TIR drone (i.e., larger animals 
with bigger groups are easier to detect than smaller, solitary animals). Lower scores correspond to species with 
lower body mass or low population density, implying reduced body surface temperature and more dispersed 
thermal detection. Conversely, higher scores indicate species with greater body mass and higher population 

Detection score Rationale

Noc. 
Survey Diu. Survey Detections during nocturnal surveys are higher as the contrast between external 

temperature, and consequently the substrate and the detected species is higher

Habitats Description AR-T-ST AR T-ST
Arboreal species are easier to detect in forested area, and terrestrial or semi-
terrestrial species easier to detect in more open habitats during the day. Nocturnal 
detections remain consistent for species sleeping in trees

Forest
Tropical wet forest, cloud 
forest, dry forest, montane 
forest, temperate forest and 
semi-deciduous forest

3 2 1
TIR drones can effectively detect primates in the canopy or emergent layers of 
forests. However, their visibility is limited for species dwelling in the understory or 
on the ground due to the dense vegetation15,16,35

Savannah Dry and moist savannah forest 
and savannah mosaics 4 2 3

Savannahs offer good vertical visibility for TIR drones to detect primates. The 
scattered trees and open grasslands facilitate monitoring, especially for more 
terrestrial species16,36

Shrubland
Tropical moist, dry, temperate, 
and high altitude ecosystems 
dominated by shrubs (i.e. 
shrubs, brush and bush)

3 2 2
TIR drones may face challenges in shrublands due to the moderate or low visibility, 
as well as lower canopy height. Detection of primates in these habitats may be 
limited in dense shrubby areas or the understory15,28

Grassland

Tropical dry and seasonally 
wet, tropical high altitude, and 
temperate ecosystems mainly 
composed of grasses and other 
herbaceous plants

4 3 3
TIR drones excel in grasslands, providing excellent visibility to detect primates. 
Monitoring in these open areas allows for efficient observation of primate 
movement and behavior16,28

Wetlands

Swamps, flooded forest, 
swampy forest, wetlands, 
mangroves, permanent or 
seasonal rivers, streams, or 
creeks

3 2 1
Wetlands present varying visibility, but TIR drones can be valuable for detecting 
primates in the open areas. Terrestrial species might have low visibility in wetland 
areas during the day16,36

Rocky 
Areas

Inland cliffs and mountain 
peaks 4 3 3 TIR drone surveys may face navigational challenges in rocky areas, but this habitat 

offers good visibility to detect primates in not too hot conditions

Desert Temperate ecosystems 4 0* 2
TIR drones may have good visibility in deserts, enabling the detection of primates. 
Some terrestrial species might be visible in desert habitats during the day16 (*no 
arboreal species occur in desert)

Artificial
Heavily degraded former forest, 
plantations, pastureland, arable 
lands, rural gardens, and urban 
areas

4 3 2
Artificial habitats typically feature more open landscapes than forested habitats and 
are often situated in flat terrain, enhancing primate detection. Additionally, urban 
or artificial settings might attract species, offering some visibility during the day, 
but visibility of terrestrial species will be reduced20,25,35

Table 2. The habitat scoring system (cf. Habav.) is classified into a five-point scale for primate species across 
different habitats for both Nocturnal (Noc.) And Diurnal (Diu.) Drone surveys using thermal infrared imagery. 
The habitat description includes all ecosystems in which primates occur. Scores assess the detectability of 
primate species during different survey types based on habitat characteristics and species locomotion type: 
arboreal (AR), terrestrial (T), semi-terrestrial (ST). Note. Nocturnal and cathemeral species were exclusively 
arboreal, while terrestrial and semi-terrestrial species were solely diurnal. If species are found sleeping in caves, 
cavities, or tree holes, then detection in all habitats during thermal drone surveys will be null, resulting in 
Habav = 0.
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density, suggesting an elevated likelihood of detection using thermal imagery via drone surveys. The dataset and 
R script employed to compute TDI are available in supplementary (Supplementary Material 2).

Global TDI suitability score
To generate a global Thermal Detection Index (TDI) layer, we employed a geospatial processing approach. First, 
we imported a multi-polygon shapefile containing all assessed primate distribution ranges from the IUCN Red 
List of Threatened Species using the sf package37. We then omitted the species for which we were not able to 
assess the TDI (N = 132 species). Next, we fused the subspecies data within the distribution shapefiles to the 
species level. Finally, we joined the TDI values with the shapefile object based on shared species name.

Subsequently, we used the raster package38 and implemented a loop function to rasterize individual species 
distribution polygons. This function assigned all cell values within each species’ distribution with its associated 
TDI values. The function iterated through each individual species’ range polygon, accumulating TDI values, 
averaging TDI values, and calculating standard deviations in overlapping cells (Fig. 2. a.) and then adding them 
to a collective raster at 0.5 arcmin resolution. The cumulative TDI tends to exaggerate the impact of species with 
extreme TDI values, leading to scores that may align more with species richness than thermal detection (Fig. 
2. b.). In contrast, averaging the values in each grid cell prevents species with extremely high or low TDI values 
from disproportionately influencing the overall Suitability score, while the standard deviation reflects variability 
in species’ TDI values in a given grid cell. We conducted this process separately for both Nocturnal and Diurnal 
scenarios. Consequently, we obtained individual raster layers representing the TDI values of all species (N = 389) 
for both Nocturnal and Diurnal surveys. Afterward, we computed the mean values derived from both Nocturnal 
and Diurnal TDI layers to generate an average TDI raster layer (cf. steps 1 to 4 in the R script provided in 
SupplementaryMaterial 3).

The average TDI layer (‘TDIav.’) was then weighted by average annual temperature (‘Temp’), wind 
speed (‘Wind’), and precipitation (‘Prec’) raster layers. As a first step, the input rasters were rescaled and 
standardized at a 0–1 scale. Subsequently, we assigned weights to each variable to denote their influence 
on the overall suitability score39. Specifically, average TDI received a weight of 1, while temperature, 
wind speed, and precipitation were assigned weights of -1, indicating an inverse relationship (i.e. higher 
values of environmental variables contributes to a lower average TDI score). Thereafter, the combined 
suitability score was computed as the weighted average of the rescaled variables40. This process involved 
summing the products of each rescaled variable and its corresponding weight, and then dividing this 
sum by the total sum of weights. Finally, to obtain the final TDI Suitability Score for each grid cell, we 
subtracted the combined score from 1 (cf. steps 5 to 7 in the R script provided in Supplementary Material 3): 
TDI Suitability Score = 1− (scaled TDIav × wTDIav + scaled Temp × wTemp + scaled wind × wWind+ scaled Prec × wPrec)

(wTDIav + wTemp + wWind + wPrec)

The resulting TDI Suitability Score represents the overall suitability of each grid cell for TIR drone monitoring 
of primates, taking into account both species-specific TDI values and environmental factors.

To refine the final TDI Suitability Score raster, we exclusively retained suitability scores in the last quartile 
(≥ 0.75), indicating areas with high suitability. We constructed a polygon from the resulting raster layer and 
intersected it with: (1) a world map to determine the countries associated with the highest suitability areas; 
(2) the species IUCN Redlist primate distribution polygons to quantify both the total number of species and 
the number of species we assessed for TDI occurring within each country’s highest suitability areas; and (3) 
the dominant ecoregions41 to identify habitat type associated with high suitable areas for sustained TIR drone 
surveys. Finally, we calculated the area (sq km) within each country to identify countries with the largest area 
of high TDI Suitability Scores and their correlation with the species contained therein (cf. steps 8 to 9 in the R 
script provided in Supplementary Material 3).

Results
Thermal detection indexes (TDIs)
We computed nocturnal and diurnal TDI for 389 primate species (database available in Supplementary Material 
4). The average nocturnal TDI was 8.1 ± 1.4 (TDImin = 5 for 14 species sleeping in holes, tangles, cavities and 
caves such as Aotus sp, Leontocebus sp., Papio sp., Sciurocheirus sp., and Trachypithecus sp.; TDImax = 12 for 
Theropithecus gelada). In contrast, the average diurnal TDI was lower with 6.6 ± 1.6 (TDImin = 2 for nine species 
with small body mass such as Aotus sp., Cheirogaleus sp., Leontopithecus sp., Microcebus sp., and Sciurocheirus 
sp.; TDImax = 11 for Theropithecus gelada). There was a statistically significant difference between the nocturnal 
and diurnal TDI values (Welch’s two-sample t-test; t = 12.78, df = 758.06, p-value < 0.001) (Fig. 1). For both 
nocturnal and diurnal surveys, the families Atelidae, Cercopithecidae, and Indridae comprised species with 
the highest suitability for monitoring with a TIR drone, processing TDI values higher than the third quartile 
(nocturnal TDI > 9 and diurnal TDI > 8). Conversely, species within the families Aotidea, Callitrichidae, 
Cebidae, Cheirogaleidae, Daubentoniidae, Galagidae, Lepilemuridae, Lorisidae, Pithecidae were deemed less 
suitable for thermal drone surveys, processing TDI values lower than the first quartile (nocturnal TDI < 7 
and diurnal TDI < 6) (Fig. 1). The differences between highest TDI (Nspp. = 58) and lowest TDI (Nspp. = 25) 
were predominantly driven by primate species body mass (BMav.HIGH = 7.2 ± 2.7 kg and BMav.LOW = 1.0 ± 0.8 
kg), population densities (Densav.HIGH = 67.7 ± 54.7 sq km and Densav.LOW = 11.4 ± 6.6 sq km), and species 
detectability score during diurnal survey within different habitats (diurnal TDIav.HIGH = 2.1 ± 0.4 and diurnal 
TDIav.LOW = 1.4 ± 0.9).

Global TDI suitability score
The regions exhibiting the highest cumulative TDI values within the global TDI layer were concentrated in 
central-west areas of Latin America, central-west regions in Africa, the east of Madagascar, Borneo, and the 
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eastern greater Mekong Sub-region (Fig. 2. b.). Subsequently, by applying normalization on the mean TDI 
values and normalized climatic data—specifically, average annual precipitation, annual average wind speeds, 
and annual average temperatures—to the global TDI layer (Fig. 2., c., d., e.), we generated a map illustrating the 
global TDI Suitability Score (Fig. 2. f.).

The highest suitability scores (0.75–1) were found in 34 countries (Table 3). Asia had the greatest proportion 
of suitable countries with highly suitable TDI areas relative to the total land area, averaging 20.53% (N = 14). 
This was followed by the Latin America, with an average of 5.89% per country (N = 10), and Africa, with an 
average of 4.94% per country (N = 10). Notably, 78% of Asian countries had moderate variability in TDI values, 
indicating more uniform species TDI values across the region, compared to 70% of African countries, which 
exhibited high variability, reflecting significant difference in species’ thermal detectability across the most 
suitable regions. Only India and Myanmar showed low TDI variability, suggesting minimal difference in species’ 
thermal detectability. In Africa, the highest species richness and the largest areas of high suitability were found 

Fig. 1. Stacked bars depict the proportion (0-100%) of diurnal (left panel) and nocturnal (right panel) TDI 
values among primate species, grouped by family. Each stacked bar represents the percentage of species within 
the family assigned a specific TDI value rounded to the nearest integer. Lower TDI values indicate species 
less likely to be detected using thermal drone surveys, while higher TDI values suggest an elevated likelihood 
of detection. The lower panel features half box, violin, and jitter plots, highlighting a statistically significant 
difference in TDI values between diurnal and nocturnal survey methods.
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in the Democratic Republic of Congo, which had the largest landmass available (Table 3). In Asia, Indonesia 
had the highest number of species assessed for TDI within suitable areas (NTDI spp. = 35), while China had the 
largest area of high suitability (1,390,435.9 km²), covering 14.83% of its total land area. However, Buthan had the 
highest percentage of highly suitable area relative to its total land area (68.76%). In Latin America, Brazil had the 
highest number of overlapping species (Ntot spp. = 105), covering 416,042.8 km² (4.91% of its total area), while 
Colombia had the largest relative suitable area (17.73%).

Fig. 2. The geospatial process of etablishing a Thermal Detection Index (TDI) Suitability Score for primates 
across their global distributions: a) shows an example of rasterized distribution range shapefiles with associated 
TDI values as the cells, along with the cumulative, mean, and standard deviation values where they overlap. 
This process was used to generate b) the global cumulative TDI layer (average of Nocturnal and Diurnal TDI 
values), which was then used to calculate mean TDI values per grid cell and normalized to a 0–1 scale along 
with c) average annual precipitation, d) annual average wind speeds, and (e) annual average temperatures. 
These climatic variables were processed as an inversely weighted relationship, where an increase of the three 
variables results in a decrease of the TDI value. The final outcome of this process is presented in (f) the global 
TDI Suitability Score.
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The largest area of ecoregions by continent41 within highly TDI Suitability areas were represented by central 
Congolian lowland forests (18.45%) and western and eastern Congolian swamp forests (7.15% combined) in 
Africa; Borneo lowland and montane rain forests (20.83% combined), Sumatran lowland and montane rain 
forests (7.27% combined), Southeast Tibet shrublands and meadows (3.29%), and Peninsular Malaysian rain 
forests (2.56%) in Asia; and Araucaria moist forests (2.51%) and Magdalena Valley montane forests (1.91%) in 
Latin America (Supplementary Material 5).

Countries with the highest TDI Suitability Scores had an average annual precipitaiton of 1,589.6 ± 805.4 
mm (range: 327.1–3,363.0 mm), average annual wind speeds of 1.9 ± 0.6 m/s (range 0.9–3.4 m/s), and average 
annual temperatures of 15.8 ± 6.9 °C (range: 3.2–25.2 °C) (Supplementary Material 6). African countries in the 
highest TDI suitability areas had the lowest average annual precipitaiton (1,217.1 ± 503.0 mm), wind speeds 
(1.8 ± 0.6 m/s), and temperatures (14.7 ± 6.1 °C). Asian countries showed medium average annual precipitaiton 
(1,739.6 ± 978.0 mm), wind speeds (1.9 ± 0.6 m/s), and temperatures (15.0 ± 8.4 °C). Latin American countries 

Country Ntot spp. NTDI spp. Suit. Area (km2) Tot. Area (km2) Relative Suit. Area Variability

Africa

Democratic Republic of the Congo 32 28 402,097.0 2,324,449.6 17.30 Moderate

Ethiopia 11 10 77,102.9 1,127,095.8 6.84 High

Kenya 17 10 22,129.5 592,189.9 3.74 High

Lesotho 2 2 2,968.6 29,991.1 9.9 High

Morocco 1 1 15,620.7 581,747.8 2.69 Moderate

Republic of Congo 26 18 432.3 345,334.0 0.13 High

Rwanda 16 14 1,696.7 25,272.6 6.71 High

South Africa 5 2 3,959.9 1,220,061.0 0.32 High

Tanzania 22 8 314.7 941,735.0 0.03 Moderate

Uganda 17 16 4,151.4 241,474.2 1.72 High

Asia

Afghanistan 2 2 93,952.1 641,833.1 14.64 Moderate

Bhutan 6 6 27,375.0 39,811.3 68.76 Moderate

Brunei Darussalam 8 8 510.9 5,647.2 9.05 Moderate

China 23 15 1,390,435.9 9,373,042.6 14.83 Moderate

India 20 15 123,433.3 3,148,249.8 3.92 Low

Indonesia 43 35 567,841.4 1,863,914.9 30.46 Moderate

Japan 2 2 60,670.2 370,274.6 16.39 Moderate

Malaysia 20 19 201,078.9 326,202.4 61.64 Moderate

Myanmar 19 11 12,308.6 660,975.3 1.86 Low

Nepal 4 4 46,428.7 146,977.0 31.59 Moderate

Pakistan 2 2 107,911.1 872,783.0 12.36 Moderate

Philippines 3 2 19,601.3 289,182.4 6.78 Moderate

Sri Lanka 4 4 9,596.9 65,763.6 14.59 High

Thailand 17 6 2,877.5 513,909.8 0.56 Moderate

Latin America

Argentina 6 6 141,258.5 2,782,471.6 5.08 High

Bolivia 28 2 3,322.5 1,086,628.6 0.31 Moderate

Brazil 105 27 416,042.8 8,467,129.4 4.91 High

Colombia 43 21 201,145.0 1,134,460.7 17.73 Moderate

Ecuador 18 14 37,468.0 254,528.7 14.72 High

Guatemala 4 2 303.9 108,101.8 0.28 Moderate

Paraguay 7 6 23,107.3 399,949.4 5.78 High

Peru 40 15 12,567.8 1,291,025.7 0.97 Moderate

Uruguay 1 1 10,420.7 177,467.5 5.87 Moderate

Venezuela 20 6 29,515.4 910,445.5 3.24 High

Table 3. Countries with highest Thermal Detection Index (TDI) suitability scores (0.75-1.0), the total number 
of species (Ntot spp.) overlapping in the country, and the number of species within the suitable area (NTDI spp.), 
the total area of high suitability within each country, the country’s total area, and the percentage of highly 
suitable area relative to the country’s total area (%). Standard Deviation (variability) scores were categorized 
into low (< 0.25), moderate (0.25–0.75), and high (> 0.75). Bold numbers indicate the highest value for each 
category per continent.
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presented the highest average annual precipitaiton (1,752.1 ± 645.8 mm), wind speeds (2.3 ± 0.6 m/s), and 
temperatures (18.1 ± 4.4 °C).

We found that 164 species occurred in the 34 highest TDI suitability areas, with 37 species in Africa, 57 in 
Latin America, and 70 in Asia. Specifically, species occurring in the largest landmasses with the highest TDI 
suitability scores included Cercopithecus mitis and Colobus guereza (family: Cercopithecidae) in Africa, Alouatta 
seniculus and A. caraya (family: Atelidae) in Latin America, and Macaca assamensis and M. mulatta (family: 
Cercopithecidae) in Asia. Latin American species in the highest TDI suitability areas exhibited relatively low 
average TDI values for arboreal species (TDINoc. = 7.5 ± 1.9; TDIDiu. = 6.3 ± 1.5), largely due to smaller body 
mass (i.e., BMav. = 2.9 kg, supplementary Table S5). In contrast, African species had medium average TDI values 
(TDINoc. = 8.2 ± 1.6; TDIDiu. = 6.6 ± 2.1), mainly due to the presence of large-bodied species such as apes and 
baboons (e.g., BMav. = 14.7 kg, supplementary Table S5). Finally, Asian species had relatively high average TDI 
values (TDINoc. = 8.8 ± 1.2; TDIDiu. = 7.5 ± 1.2), primarily driven by higher detection scores across habitats 
during both nocturnal and diurnal surveys due to fewer species sleeping in holes or cavities and favorable habitat 
types for TIR detections (e.g., Artificial) (supplementary Table S5). Overall, primates species with the higher 
TDI values within suitable areas included Alouatta arctoidea and A. caraya (family: Atelidae) in Latin America, 
Theropithecus gelada (family: Cercopithecidae) in Africa, and Semnopithecus vetulus and Trachypithecus germaini 
(family: Cercopithecidae) in Asia (Supplementary Material 7).

Discussion
Our study developed a Thermal Detection Index (TDI) to assess primate species and families with the highest 
suitability for monitoring with TIR drones based on species detectability during diurnal or nocturnal surveys 
and habitat types, as well as species-specific ecological, behavioral, and physiological traits. We identified that 
Atelidae, Cercopithecidae, and Indridae comprised species that were the most amenable to thermal drone 
monitoring, with species such as howler monkeys, geladas, and sifakas presenting the highest TDI values. 
These results are consistent with recent research that successfully used TIR drones to monitor forest-dwelling 
primates such as Alouatta paliatta, Ateles geoffroyi and Brachyteles arachnoides from the Atelidea family in Latin 
America7,13,42, and Macaca fascicularis, M. fuscata, M. leonina, Nasalis larvatus, Presbytis comata, Pygathrix 
cinerea, P. nigripes, Rhinopithecus roxellana, Trachypithecus auratus, T. delacouri, T. hatinhensis and T. margarita 
from the Cercopithecidae family in Asia6,11,12,16,43,44. To the best of our knowledge, only Propithecus tattersalli 
from the Indridea family in Madagascar has been successfully monitored via RGB drone, but authors strongly 
recommend the use of thermal camera for further censuses on the species45. The highest nocturnal and 
diurnal TDIs were predominantly driven by high body mass, population densities, and detectability during 
diurnal surveys based on habitat characteristics, as well as locomotion type and sleeping habits. While the TDI 
construction inherently integrates these parameters, the observed patterns underscore the practical implications 
of our scoring system in identifying primate species most amenable to thermal detection. However, lower TDIs 
do not imply that certain families cannot be monitored, as the effectiveness of TIR drone surveys is species- 
and site-specific. For instance, studies have successfully used TIR drones to detect Cebus imitator from the 
Cebidae family in Latin America21; Hylobathes moloch, Nomascus gabriellae, N. hainanus and N. nasutus from 
the Hylobatidae family6,8,9,16, and Pongo pygmaeus from the Hominidae family in Southeast Asia11. In a recent 
case study, we conducted manual and systematic nocturnal TIR drone surveys in southern Vietnam to assess the 
effectiveness of detecting and counting six diurnal, sympatric primate species at their sleeping sites12. Detection 
reliability was highest for large arboreal langurs (P. nigripes, T. margarita), followed by smaller-bodied, semi-
arboreal macaques (M. fascicularis), and then semi-terrestrial macaques (M. leonina), with the lowest detection 
reliability observed for less abundant gibbons (N. gabriellae). The reliability of TIR drone detection at a short 
scale was influenced by primate physiological factors (e.g., body-size), ecological factors (e.g., group size and 
home range size), and sleeping site behavior (e.g., sleeping position in the canopy strata). These findings align 
with our TDI values, further validating the scoring system in assessing species most suitable for monitoring via 
thermal drones (Supplementary Material 4).

By integrating primate species distribution, TDIs, and bioclimatic variables (i.e., average annual temperature, 
wind speed, and annual precipitation), we propose a Global TDI Suitability Score that identifies suitable areas 
for more feasible and sustained TIR drone-based monitoring of primates. The northern and southern extents 
of South America, the Himalayas, Sundas region, Central Africa, and smaller hotspots in North Africa and 
Japan encompass areas with at least 75% suitability (Fig. 2. f, Table 3). Our results suggest that a combination 
of geographic, environmental, and physiological factors enables and optimizes both detection and TIR drone 
operability (Fig. 2, Supplementary Materials 5, 6, & 7). High TDI suitability scores in Brazil, China, Democratic 
Republic of the Congo, and Indonesia, may be driven by the large number of species, diverse habitats, and 
expansive suitable land areas in these regions. In Bhutan and Malaysia, where over 60% of the area is suitable 
for sustained TIR drone monitoring, environmental factors appear highly conducive to thermal detection (Table 
3). Additionally, countries like Argentina and Ecuador, with high TDI variability, show fluctuating suitability, 
suggesting important environmental transitions for species adaptation. In contrast, India and Myanmar, with 
lower TDI variability, may have more stable thermal conditions that limit ecological niches46,47. Overall, in Latin 
America, the abundance of species in Araucaria and Montane forests41 likely contributes to the highest TDI 
suitability scores. In contrast, the most suitable areas in Africa are characterized by dense lowland and swamp 
forests that support a high number of large-bodied species and favorable environmental conditions. Lastly, the 
highest suitability areas in Asia are influenced by ecosystems that support a substantial number of medium-
bodied species sleeping in trees (Supplementary Materials 5, 6, & 7).

The occurrence of 164 primate species within the 34 highest TDI suitability areas highlights the significant 
biodiversity of these regions and their potential for effective TIR drone-based monitoring. The Atelidae and 
Cercopithecidae families contains species with the highest TDI values within the largest suitable areas, including 
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the highly arboreal Alouatta species in Latin America and Cercopithecus, Macaca, and Trachypithecus species, 
which exhibit a broader range of body sizes and ecological strategies across diverse environments in Africa and 
Asia. However, some countries or areas with low suitability scores for long-term TIR-drone monitoring could 
still be surveyed during more suitable climatic conditions in the short term (e.g., dry season in the tropics with 
low precipitation and cooler temperature)12. Finally, primate species with low TDI could still be good candidates 
for TIR drone monitoring if, for example, they are a single-ranging species in a relatively small study site.

Our new index and scoring system could assist further studies in identifying suitable primate species or 
countries for long-term monitoring with TIR drones. However, our results should be quantified depending 
on the context and goals of each study (e.g., long- or short-term monitoring). We recommend researcher to 
adapt the TDI and Global TDI suitability scores according to their study site and species-specific ecological 
traits (cf. R scripts in Supplementary Materials 2 & 3), as the metrics can be optimally localized based on 
existing knowledge of species body mass, local density, behavior, and habitat use. Furthermore, to improve 
the TDI, we could consider more specific ecological traits such as physical properties of the species’ fur, as 
the thickness and/or color significantly affect the temperature of the outer surface of the body, such as darker 
fur absorbing more heat, and lighter fur reflecting it26. However, the low resolution of TIR drone imagery is a 
major limitation that makes it challenging to differentiate between species with similar morphology or behavior 
based solely on thermal imagery12,13,22. For study sites encompassing diverse mammal community with risks 
of misidentification, it is often recommended conducting a combination of TIR and RGB drone surveys or 
confirmed TIR detections via diurnal ground-truthing surveys16. In multispecies studies, we could consider 
adding a variable encompassing primate morphological traits ‘complexity’ that could help identification via TIR 
imagery (pending systematic methodologies) to the TDI scoring system. For example, large species with a long 
tail, and/or specific morphological traits such as prominent belly in douc langurs or proboscis monkeys would 
that be easier to detect than small species with no tail more likely to be misidentified with other small mammals12. 
Additionally, we recommend future studies to directly test the TDI metric by comparing species detection rates 
via TIR drones with densities obtained from traditional ground-based survey methods, such as line transects or 
censuses. Researchers could also conduct meta-analyses of primate studies in the intended survey area to gather 
localized information on primate species densities, group sizes, and ranges. Such comparison could help refine 
the index’s accuracy at a localized scale and evaluate its consistency across different ecological contexts.

Similar improvements need to be considered for the Global TDI Suitability Score, as certain bioclimatic 
variables may not always be relevant depending on the study site or research objectives. For example, 
precipitations could serve as a positive factor by increasing the temperature difference between detected 
primate species and the surrounding vegetation. Additionally, while precipitation may limit the ability to fly 
drones, it can be minimal during certain seasons, allowing for short-term monitoring during dry periods 
in tropical countries. To develop a more accurate local TDI suitability scoring system, bioclimatic variables 
such as land-surface temperature, humidity, atmospheric pressure, and cloud cover could be considered, as 
these factors are known to strongly influence the absorption and emission of thermal infrared radiation by the 
atmosphere11,22,48. Furthermore, given the on-going rapid climate change, a global-scale assessment of primate 
vulnerability to climate change could be beneficial. For instance, Graham et al. (2016)39 identified hotspots of 
primate vulnerability to global warming (i.e., significant temperature and/or precipitation changes). They found 
that species in Central America, the Amazon, southeastern Brazil, and portions of East and Southeast Asia, may 
face increased vulnerability. This assessment could effectively target regions requiring immediate research and 
conservation actions or those necessitating long-term monitoring.

Strict national laws and regulations governing the use of drones pose significant challenges to implement 
TIR drone monitoring. We did not consider the legal framework governing drone flights in each country when 
assessing the suitability of TIR drone surveys, given the frequently changing nature of these regulations49. 
Instead, we urge readers to investigate the legal regulations governing drone flight in their study sites, regardless 
of the suitability of TDI scoring for primate species or countries (e.g., consult community collated information 
in https://www.droneregulations.info/ and https://drone-laws.com/50) and to read the drone regulations for each 
specific country which is often available through the civil aviation authority website. Additionally, nocturnal 
surveys are generally more favorable for primate species detections, but some countries do not allow night 
surveys49,51,52. Therefore, we recommend favoring a combination of TIR and RGB drone surveys during the 
day to assist species identification in sub-optimal conditions for TIR imagery detection12,16,21. Moreover, many 
countries’ regulations stipulate that flights should be conducted within visual or extended line of sight (i.e., 
500–750 m), which is often not feasible in dense tropical forest due to trees limiting visual line of sight and hence 
reduce the distance a drone can be flown5,12.

To conclude, our study provides comprehensive results and tools for improving research to identify optimal 
candidates for TIR drone monitoring in primatology. We synthesized our results, including average Thermal 
Detection Index (TDI) and Global TDI Suitability Score, for 389 primate species across their global distributions 
on the HTML flexdashboard and map Online (https://rpubs.com/Russell_Gray/GlobalPrimateTDI). Our 
findings have significant implications for both research and conservation efforts in the following ways: (1) 
Enhanced primate monitoring: our results facilitate targeted monitoring programs by prioritizing species based 
on detectability and habitat suitability, thereby improving resource allocation and monitoring efficiency. (2) 
Informed conservation strategies: identification of areas with high TDI suitability scores enables the planning and 
implementation of targeted conservation surveys, maximizing the impact on threatened primate populations. 
(3) Global monitoring initiatives: our study contributes to global efforts in systematic TIR drone surveys by 
providing tools to assess primate detectability. (4) Technological advancements: integration of TDI-based 
approaches expands the range of tools available for wildlife research and conservation, enhancing data collection 
accuracy and informing management decisions. Our study represents a critical step towards advancing primate 
monitoring and conservation efforts through the integration of TIR drone surveys.
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Data availability
The datasets generated and analysed during this study are included in this published article and its Supplementa-
ry Information files. All Supplementary Materials and data can be found in our OSF server (https://osf.io/j4hfw).
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