
PyPk - Collection of p-k methods

Theory manual and quick reference guide

Adrien Crovato

Department of Aerospace & Mechanical Engineering
©University of Liège

Abstract

This document provides the mathematical formulation of the main equations implemented in

PyPk 1, version 1.1.0, December 2024. More details about the mathematical foundation can

be found in the articles by Rodden [1] and van Zyl [2].

This theory manual and quick reference guide is organized as follows. Section 1 presents the

mathematical formulation of the flutter problem and two variants of the p-k method implemented

to solve it. Finally, section 2 gives an overview of the available API as well as its configuration

parameters.

1https://gitlab.uliege.be/am-dept/pypk, Accessed November 2024.

i

https://gitlab.uliege.be/am-dept/pypk

Contents

Abstract i

Contents ii

1 Flutter solution methodology 1

1.1 Flutter equation . 1

1.2 Frequency matching methods . 2

1.3 Mode tracking . 4

1.4 Calculation of the gradients . 4

2 Quick reference guide 6

Bibliography 7

ii

1 Flutter solution methodology

1 Flutter solution methodology

1.1 Flutter equation

Neglecting internal damping, the equilibrium equations of a solid are obtained by balancing

the inertial and internal forces in the solid with the external forces applied to it. The structural

equations can be written as

ρsüs −∇ ·σσσs = fs, (1.1)

where ρs is the solid density, σσσs is the stress tensor, fs are the external forces and us are the

displacements. The stresses in the solid can be related to the strains and to the displacements.

Equation 1.1 can then be discretized using finite elements and written in matrix form as

Msüs +Ksus − Fs = 0, (1.2)

where Ms and Ks are the mass and stiffness matrices and Fs is the force vector. The displace-

ments of the solid can be expressed in the modal space by splitting them in a spatial and a

time-dependent term,

us = ϕϕϕs(x, y, z) exp(iωt), (1.3)

where ϕϕϕr are the mode shapes of the solid depending solely on the space coordinates x, y,

z, and ω is a frequency of vibration and t is the time. Noting that the energy related to the

displacements is usually contained in the lowest frequency modes, which further allows to

work with a reduced set of modal coordinates qr, defined such that

qr = ΦT
r us, (1.4)

where Φr is the modal matrix, containing the first mode shapes of the solid. Injecting the modal

decomposition (1.4) into equation (1.2), pre-multiplying by ΦT
r and taking the Laplace transform

yields

ω2Mrqr +Krqr − Fr = 0, (1.5)

where the reduced mass and stiffness matrices and the reduced force vector are given by

Mr = ΦT
r MsΦr,

Kr = ΦT
r KsΦr,

Fr = ΦT
r Fs.

(1.6)

Assuming linear aerodynamics, the reduced force vector can be expressed as

Fr =
1

2
ρ∞U2

∞Qrqr, (1.7)

1

1 Flutter solution methodology 1.2 Frequency matching methods

where Qr is the generalized aerodynamic forces matrix. The flutter equation is finally obtained

by injecting the expressions (1.6) and (1.7) into equation (1.5)(
U2
∞

l2ref
p2Mr +Kr −

1

2
ρ∞U2

∞Qr(p)qr

)
qr = 0, (1.8)

where lref is a reference length, and where p = gk + ik, g being the damping and k = ω lref
U∞

being the reduced frequency. Since the generalized aerodynamic forces matrix depends on

the reduced frequency, equation (1.8) is a nonlinear eigenvalue problem. In the present work,

structural damping is approximated using the complex proportional stiffness method. The flutter

equation becomes (
U2
∞

l2ref
p2Mr + gisKr −

1

2
ρ∞U2

∞Qr(p)qr

)
qr = 0, (1.9)

where gis = (1 + igs), gs being the estimated structural damping.

1.2 Frequency matching methods

The flutter equation (1.9) can be solved by frequency matching methods, one of the most fa-

mous being the p-k method [1]. This technique consists in iteratively solving the flutter equation

by updating the reduced frequency k using the eigenvalue solution p. The algorithm of the

original p-k method is given in algorithm table 1.

Algorithm 1 p-k method

for all freestream airspeed, U∞,i do
for all modes, j do

guess the reduced frequency k ← kinitial
while ℑ(p) ̸= k do

compute the generalized aerodynamic forces matrix Qr(k)
solve the eigenvalue problem for p
sort the eigenvalues p in ascending order of imaginary part
keep the jth eigenvalue p← pj
compute the new reduced frequency associated to mode j, k ← ℑ(p)

end while
compute the frequency at velocity U∞,i for mode j, ω ← U∞

lref
ℑ(p)

compute the damping at velocity U∞,i for mode j, g ← ℜ(p)
ℑ(p)

end for
end for

The p-k method may experience convergence issues, as described by Jonnson [3], which may

in turn impair a gradient-based optimization process. In order to mitigate these issues, a non-

iterative variant of the p-k method, originally proposed by van Zyl [2] is implemented in SDPM.

In the non-iterative version, the generalized aerodynamic forces matrix is first computed at

different chosen reduced frequencies kref , and the eigenvalue problem is solved at each of

these frequencies. Then, for each mode, the reduced frequency which is an actual solution of

the eigenvalue problem is determined by linear interpolation. The algorithm of the non-iterative

2

1 Flutter solution methodology 1.2 Frequency matching methods

p-k methods is given in algorithm table 2.

Algorithm 2 Non-iterative p-k method

choose a set of reduced frequencies kref
compute the generalized aerodynamic forces matrix Qr(k)
for all freestream airspeed, U∞,i do

for all frequencies, kj do
solve the eigenvalue problem for p
sort the eigenvalues p in ascending order of imaginary part

end for
for all modes, l do

keep the lth eigenvalue p← pl
find the frequencies k0 and k1 between which ℑ(p)− k changes sign
interpolate p linearly between p0 and p1
compute the frequency at velocity U∞,i for mode l, ω ← U∞

lref
ℑ(p)

compute the damping at velocity U∞,i for mode l, g ← ℜ(p)
ℑ(p)

end for
end for

The non-iterative p-k method requires to solve the flutter equation (1.9) for a set of reduced

frequencies kref , which yields one eigenvalue solution p per mode, per reduced frequency and

per airspeed. Several interpolation techniques can be used in order to find the eigenvalue that

actually solves equation (1.9). In the present work, the two frequencies k0 and k1 between

which the difference ∆ = ℑ(p) − k changes sign are first found. Then, the imaginary part of p

is interpolated linearly as

ℑ(p) = k0 −
k1 − k0
∆1 −∆0

∆0. (1.10)

Similarly, the real part of p is interpolated as

ℜ(p) = ℜ(p0)−
ℜ(p1)−ℜ(p0)

k1 − k0
(ℑ(p)− k0) . (1.11)

The frequency and the damping are then given by

f =
U∞
2πlref

ℑ(p), (1.12)

and by

g =
ℜ(p)
ℑ(p)

. (1.13)

This yields one value for the frequency and the damping per mode and per airspeed. In the

context of optimization, flutter can be prevented by requiring all the damping values to remain

below a bounding curve. Following the works of Ringertz [4] and Stanford [5], the flutter con-

straint is formulated as

g ≤

 g⋆(3U2U⋆ − 2U3)/(U⋆)3 0 ≤ U < U⋆,

β(U − U⋆)2 + g⋆ U ≥ U⋆,
(1.14)

3

1 Flutter solution methodology 1.3 Mode tracking

where g⋆, U⋆ and β are user-defined parameters. In order to efficiently drive a gradient-based

optimization problem formulated using the adjoint method, the number of constraints should be

limited. Therefore, the damping values are aggregated by applying a modified Kreisselmeier-

Stainhauser (KS) function [6, 7] twice, firstly over the modes j, then over the airspeed i,

gi = KSmode(gij) = max
j

gij +
1

ρKS
ln

∑
j

exp

(
ρKS

(
gij −max

j
gij

)) ,

gKS = KSairspeed(gi) = max
i

gi +
1

ρKS
ln

(∑
i

exp

(
ρKS

(
gi −max

i
gi

)))
,

(1.15)

where ρKS is a parameter controlling the aggregation: the larger the parameter, the more the

function approaches the true maximum, though too large values can cause sharp changes in

gradients, as noted by Jonsson et al. [3]. Note that the induced aggregation functions developed

by Kennedy et al. [8] can also be used to aggregate the damping values.

1.3 Mode tracking

Since the actual solution of the flutter equation is determined by interpolating trial solutions at

given reduced frequencies, it is of paramount importance that the modes are identified cor-

rectly. However, as the dynamic pressure changes, the modes may cross or coalesce. A mode

tracking algorithm, initially proposed by van Zyl [9], has been implemented to alleviate this is-

sue. The algorithm consists in comparing the eigenvectors at a given dynamic pressure to the

eigenvectors obtained at the previous dynamic pressure. More specifically, a correlation matrix

MAC(qr) is computed as

MACij(qr) = qn−1
r,i ·qn

r,j , (1.16)

where qn
r,j is the new eigenvector solution of mode j and qn−1

r,i is the old eigenvector solution

of mode i. Each matrix column is then searched for the largest entry, hence determining a

corresponding row. The new modes, associated to the searched columns, are then sorted

against the old ones, associated to the matching rows.

1.4 Calculation of the gradients

The gradients of equations (1.9), (1.10), (1.11), (1.13) and (1.15) are required to perform

gradient-based optimization. Since these equations consist of simple analytical formula, they

are hand-differentiated analytically in the present work. Differentiating the generalized eigen-

value flutter problem (1.9) with respect to a parameter x yieldsU2
∞

l2ref
2pMrqr

U2
∞

l2ref
p2Mr + gisKr − 1

2ρ∞U2
∞Qr

0 qT
r W

[∂xp
∂xqr

]
=

(U2
∞

l2ref
p2∂xMr + gis∂xKr − 1

2ρ∞U2
∞∂xQr

)
qr

−1
2q

T
r ∂xWqr

 ,

(1.17)

where W is the matrix used to normalize the mode, which reduces to the identity matrix in the

simplest case. Note that there is no dependence of Qr on p, since the eigenvalue problem is

4

1 Flutter solution methodology 1.4 Calculation of the gradients

solved using a non-iterative method. Differentiating equations (1.10) and (1.11) with respect to

a parameter x yields

∂xℑ(p) =
k1 − k0

(∆1 −∆0)2
(∂xℑ(p1)− ∂xℑ(p0))∆0 −

k1 − k0
∆1 −∆0

∂xℑ(p0), (1.18)

and

∂xℜ(p) = ∂xℜ(p0) +
∂xℜ(p1)− ∂xℜ(p0)

k1 − k0
(ℑ(p)− k0) +

ℜ(p1)−ℜ(p0)
k1 − k0

∂xℑ(p). (1.19)

The derivative of the damping (1.13) with respect to a parameter x is given by

∂xg =
∂xℜ(p)ℑ(p)−ℜ(p)∂xℑ(p)

ℑ(p)2
. (1.20)

Finally, the derivative of the two-stage KS aggregation with respect to a parameter x is given by

∂xgi =

∑
j exp (ρKS (gij −maxj gij)) ∂xgij∑

j exp (ρKS (gij −maxj gij))
,

∂xgKS =

∑
i exp (ρKS (gi −maxi gi)) ∂xgi∑

i exp (ρKS (gi −maxi gi))
.

(1.21)

Note that the parameter x typically represents the entries of the matrices Mr, Kr and Qr.

5

2 Quick reference guide

2 Quick reference guide

PyPk is configured and accessed using an Application Programming Interface (API). The com-

plete documentation is available at https://gitlab.uliege.be/am-dept/pypk/-/wikis/

home, accessed November 2024.

The list of parameters required to configure PyPk is provided below:

1 c fg = {
2 ’ k_ re f ’ : a r ray [f l o a t] , # re ference reduced f requenc ies
3 ’ l _ r e f ’ : f l o a t , # re ference leng th (usua l l y h a l f r oo t chord)
4 ’mach ’ : f l o a t , # f reest ream Mach number
5 ’ n_modes ’ : i n t , # number o f modes
6 ’ g_s t r uc t ’ : f l o a t , # s t r u c t u r a l damping (complex p r o p o r t i o n a l s t i f f n e s s)
7 ’ rho_ks ’ : f l o a t , # aggregat ion parameter f o r KS f u n c t i o n
8 ’ method ’ : s t r , # method type (’ pk ’ or ’ n ipk ’)
9 ’ vrb ’ : i n t # v e r b o s i t y l e v e l

10 ’ f l u i d ’ : s t r , # f l u i d type (’ unmatched ’ or ’ matched_isa ’)
11 # IF ’ f l u i d ’ i s ’ unmatched ’
12 ’ r h o _ i n f ’ : f l o a t , # freesteam dens i t y
13 ’ u_idx ’ : a r ray [f l o a t] , # v e l o c i t y index range
14 ’mu ’ : f l o a t , # mass r a t i o
15 ’ f _ r e f ’ : f l o a t , # re ference frequency
16 # IF ’ f l u i d ’ i s ’ mached_isa ’
17 ’ a l t ’ : a r ray [f l o a t] , # a l t i t u d e s range
18 }

PyPk can then be initialized and used using:

1 from pypk impor t i n i t _ p y p k
2 so l ve r = i n i t _ p y p k (c fg)
3 so l ve r . se t_mat r ices (m, k , q)
4 # Compute f l u t t e r s o l u t i o n
5 so l ve r . compute ()
6 so l ve r . f i n d _ f l u t t e r ()
7 so l ve r . save (case_name)
8 so l ve r . p l o t (case_name , show=True , format=fmt)
9 # Compute grad ien ts (on ly a v a i l a b l e f o r NIPK)

10 so l ve r . compute_gradients ()

where m, k and q are the structural mass, structural stiffness and generalized aerodynamic

force matrices. The solution and the gradients are stored as public attributes of the solver

object. For example, the aggregated damping can be accessed as: solver.damp_agg.

6

https://gitlab.uliege.be/am-dept/pypk/-/wikis/home
https://gitlab.uliege.be/am-dept/pypk/-/wikis/home

References References

References

[1] W. P. Rodden and E. D. Bellinger. Aerodynamic lag functions, divergence, and the british

flutter method. Journal of Aircraft, 19(7):596–598, 1982.

[2] Louw H. van Zyl. Aeroelastic Divergence and Aerodynamic Lag roots. Journal of Aircraft,

38(3):586–588, 2000.

[3] E. Jonsson, C.A. Mader, J.R.R.A Martins, and G.J. Kennedy. Computational Modeling of

Flutter Constraint for High-Fidelity Aerostructural Optimization. In AIAA SciTech Forum,

San Diego, CA, USA, 2019. AIAA.

[4] U. Ringertz. On structural optimization with aeroelastic constraints. Structural optimization,

8(1):16–23, 1994.

[5] B.K. Stanford. Role of Unsteady Aerodynamics During Aeroelastic Optimization. AIAA

Journal, 53(12):3826–3831, 9 2015.

[6] G. Kreisselmeier and R. Steinhauser. Systematische Auslegung von Reglern durch Op-

timierung eines vektoriellen Gütekriteriums. Automatisierungstechnik, 27(1-12):76–79,

1979.

[7] N.M.K. Poon and J.R.R.A. Martins. An Adaptive Approach to Constraint Aggregation Us-

ing Adjoint Sensitivity Analysis. Structural and Multidisciplinary Optimization, 34(1):61–73,

2007.

[8] Graeme J. Kennedy and Jason E. Hicken. Improved constraint-aggregation methods. Com-

puter Methods in Applied Mechanics and Engineering, 289:332–354, 2015.

[9] Louw H. van Zyl. Use of eigenvectors in the solution of the flutter equation. Journal of

Aircraft, 30(4):553–554, 1993.

7

	Abstract
	Contents
	Flutter solution methodology
	Flutter equation
	Frequency matching methods
	Mode tracking
	Calculation of the gradients

	Quick reference guide
	Bibliography

