
Platonic dynamical decoupling sequences for qudits
Colin Read, Eduardo Serrano-Ensástiga, and John Martin
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In the NISQ era, where quantum informa-
tion processing is hindered by the decoher-
ence and dissipation of elementary quantum
systems, developing new protocols to extend
the lifetime of quantum states is of consider-
able practical and theoretical importance. A
prominent method, called dynamical decou-
pling, uses a carefully designed sequence of
pulses applied to a quantum system, such as
a qudit (a d-level quantum system), to sup-
press the coupling Hamiltonian between the
system and its environment, thereby mitigat-
ing dissipation. While dynamical decoupling
of qubit systems has been widely studied, the
decoupling of qudit systems has been far less
explored and often involves complex sequences
and operations. In this work, we design effi-
cient decoupling sequences composed solely of
SU(2) rotations and based on tetrahedral, oc-
tahedral, and icosahedral point groups, which
we call Platonic sequences. We use a gener-
alization of the Majorana representation for
Hamiltonians to develop a simple framework
that establishes the decoupling properties of
each Platonic sequence and show its efficiency
on many examples. These sequences are uni-
versal in their ability to cancel any type of in-
teraction with the environment for single qu-
dits with up to 6 levels, and they are capable of
decoupling up to 5-body interactions in an en-
semble of interacting qubits with only global
pulses, provided that the interaction Hamil-
tonian has no isotropic component, with the
exception of the global identity. We also dis-
cuss their inherent robustness to finite pulse
duration and a wide range of pulse errors, as
well as their potential application as building
blocks for dynamically corrected gates.

1 Introduction
Many quantum hardware devices are limited by the
coherence time of their noisy constituents due to un-
desirable interactions among them or with their envi-
ronment. These interactions lead to decoherence and
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dissipation and, consequently, to a deterioration of
the overall quantum state, which contains the useful
information to be processed, stored, and extracted.
In a world where quantum error correction is not yet
available to correct this loss of information, the de-
velopment of protocols to mitigate undesirable inter-
actions is of major practical interest [1, 2], but also
of fundamental theoretical importance. In particular,
such protocols can be useful in emergent quantum
technologies or for revealing minute physical effects
masked by surrounding noise [1].

A well-known technique for mitigating decoherence
is called dynamical decoupling (DD) and consists of
applying a periodic sequence of pulses to the system
of interest in order to average out its unwanted in-
teraction with the environment. Since Viola’s semi-
nal work [3], numerous DD sequences have been con-
structed and optimised, firstly for a single qubit [4–7]
and then for multiqubit systems [8–11]. They have
been successfully implemented on a variety of phys-
ical platforms, such as NV centers in diamond [12],
trapped ions [6] or superconducting flux qubits [13].
They are routinely used in experiments such as NMR
and electron spin resonance to reduce decoherence,
but also to measure transverse relaxation times more
accurately [14] or to finely probe the local spin envi-
ronment in systems of interacting spins [15].

Dynamical decoupling of qudit ensemble has been
much less explored. A universal DD sequence for
a single qudit based on the Heisenberg-Weyl group
was recently constructed and experimentally imple-
mented [16]. Some sequences were constructed from
orthogonal arrays which were shown to decouple an
ensemble of interacting qudits, assuming that individ-
ual control over each qudit is possible [17–20]. How-
ever, the complexity of these protocols increases dras-
tically with the number of qudits in the ensemble;
more recent work has relied on numerical approaches
to solve this issue [21,22].

In this work, we demonstrate the decoupling prop-
erties of three sequences based on exceptional point
groups, namely the Tetrahedral, Octahedral and
Icosahedral point groups. They correspond to the
Eulerian sequences derived from the Cayley graphs
of these groups [4, 23]. These novel sequences,
which we call Platonic DD sequences, decouple sev-
eral types of interactions in multiqudit systems, de-
pending on the SU(2) irreducible representations (ir-
reps) of the unwanted system-environment Hamilto-
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nian. We use Majorana representation of (Hermitian)
operators [24,25] to systematically calculate the possi-
ble point groups of a general interaction Hamiltonian
for qudits with different numbers of levels. Once we
generalize this representation to arbitrary operators,
we can deduce the interactions that each Platonic se-
quence can decouple.

Throughout this work, we use the equivalence be-
tween an arbitrary d-level quantum system (qudit)
and a spin-j with spin quantum number j = (d−1)/2,
for which the structure of irreps of SU(2) emerges nat-
urally. But we emphasise that our results apply to any
multipartite quantum system as long as there are fea-
sible unitary operations corresponding to SU(2) trans-
formations acting globally, i.e., the same operation is
applied to each constituent of the system. The most
common experimental implementation of the SU(2)
group is through physical rotations that can be in-
duced, for example, by applying a magnetic field to a
spin, whether electronic or nuclear, as in NMR [26].
However, there are different SU(2) implementations
in other physical platforms such as multiphoton sys-
tems [27,28] or two-component Bose-Einstein conden-
sates [29].

This paper is organized as follows. In Sec. 2, we
describe the necessary mathematical tools, introduc-
ing the different point groups and the decomposi-
tion of Hilbert spaces into SU(2) irreps1. In Sec. 3,
we introduce the Majorana representation of Hermi-
tian and non-Hermitian operators and systematically
study their possible point groups. In particular, we
define and list the set of largest point groups for differ-
ent types of Hamiltonians corresponding to different
irreps. In Sec. 4, we recall the necessary notions of dy-
namical decoupling. Then, using the results of Sec. 3,
we develop a framework for selecting the relevant de-
coupling groups for a single spin-j system (Sec. 5) and
a multispin system (Sec. 6), focusing on the Platonic
DD sequences. We study the robustness of these se-
quences with respect to various pulse errors in Sec. 7.
Finally, we discuss their potential application for dy-
namically corrected gates in Sec. 8 and conclude with
a summary and outlook in Sec. 9.

2 Mathematical tools

In this section, we present some general reminders
about point groups and representation theory of
Hilbert spaces which are useful for this work.

1We use the usual convention of calling SU(2) j-irrep both
the respective set of (2j + 1) × (2j + 1) matrices defining the
action of the group elements, and the (2j + 1)-dimensional vec-
tor space where the action of the group is defined through the
same matrices.

2.1 Point groups
Point groups in three dimensions are clas-
sified into different families denoted in the
Schönflies notation [30, 31] as: the axial groups
Cn, S2n,Cnh,Cnv,Dn,Dnd,Dnh and the polyhedral
groups T,Td,Th,O,Oh, I, Ih. In this work, we
only consider proper point groups, i.e., those not
containing reflections. Any of these point groups
can be generated by only two rotations, also called
abstractly generators (see Appendix A for more
details). We denote by Ckn a 2πk/n rotation about
an axis. We now describe briefly every proper point
group:

i) Cyclic groups Cn: such groups have n elements
consisting of 2πq/n rotations along the same axis of
rotation, where q = 0, 1, . . . , n− 1. Regular polygons
on the sphere that do not lie in a great circle2 have
this symmetry. In addition, there is one group of in-
finite order, denoted C∞, consisting of the subgroup
of rotations about a fixed axis by any angle (the sym-
metry of a point on the sphere). Each Cn has only
one generator Cn.

ii) Dihedral groups Dn : For n ⩾ 2, they contain 2n
elements: n rotations Cn over the principal axis, and
n additional C2 rotations about axes perpendicular to
the principal axis. This is the proper point group of
a regular prism with n > 2 sides, antiprisms3 (with
n > 3) and regular n-gons on a great circle of the
sphere for n > 2. The group D∞ has as subgroup C∞
on a principal axis of rotation, as well as any rotation
of π about an axis perpendicular to it. It is equivalent
to the point group associated with a pair of antipodal
points. Each Dn has two generators: C2 and Cn.

iii) Tetrahedral group T: It consists of 12 elements
T = {E, 8C3, 3C2} corresponding to the rotations
which leave a regular tetrahedron invariant. A possi-
ble set of generators of T consists of two C3 rotations
about different axes.

iv) Octahedral group O: It consists of 24 elements
O = {E, 8C3, 9C2, 6C4} which transform a regular
octahedron (or cube) into itself. It can be generated
by a C3 and a C4 rotation.

v) Icosahedral group I: It consists of 60 elements
{E, 12C5, 12C2

5 , 20C3, 15C2} and is equivalent to the
symmetry point group of a regular icosahedron (or
dodecahedron). It has two generators: C3 and C5.

The point group notation is abstract in the sense
that it does not specify the orientation of the axes.
A procedure for constructing the three exceptional
groups (T, O and I) from their generators is presented
in Appendix A. The corresponding Cayley graphs are
presented in Appendix B.

2The circles on the sphere whose center coincides with the
center of the sphere are called great circles.

3An antiprism with n sides has a point group Dn unless it
is a tetrahedron or octahedron (Platonic solids for n = 2, 3),
respectively.
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2.2 Representation theory of Hilbert spaces
Let us consider a general quantum state |Ψ⟩ ∈ H in
a finite-dimensional Hilbert space H where the ele-
ments of the rotation group R ∈ SO(3) are repre-
sented by the unitary operators R(n, θ) = e−iθ n·J,
with n = (nx, ny, nz) and θ the axis-angle param-
eters, and J = (Jx, Jy, Jz) the angular momentum
operator of the quantum system. From representa-
tion theory, the Hilbert space H has a decomposition
into subspaces which transform independently under
a SU(2) transformation as one of its irreps, i.e.,

H =
⊕

(j,αj)

H(j,αj) (1)

where the superindex (j, αj) is used to label spin-j ir-
reps of dimension 2j+1, with αj an additional integer
index used to distinguish between different subspaces
of the same dimension. For example, for a two-qubit
system, we have H = H(0) ⊕ H(1) because there is no
degenerate irrep, whereas for a three-qubit system, we
have H = H(1/2,1) ⊕ H(1/2,2) ⊕ H(3/2). In the follow-
ing, we explain our method for a single spin-j system
with H = H(j).
Similarly, the space of Hilbert–Schmidt operators4

B(H(j)) can be decomposed into subspaces that trans-
form as SU(2) irreps,

B(H(j)) =
2j⊕
L=0

B(L), (2)

where each spin-L irrep B(L), or simply L-irrep, ap-
pears only once. Each L-irrep is spanned by multi-
polar operators, B(L) = span({TLM}LM=−L) [32, 33].
The complete set {TLM : L = 0, . . . , 2j;M =
−L, . . . , L} forms an orthonormal basis of B(H(j))
with respect to the Hilbert–Schmidt inner product.
By definition, multipolar operators transform accord-
ing to the spin-L irrep under rotations R ∈ SO(3),
i.e.,

D(j)(R)TLM D(j)†(R) =
L∑

M ′=−L
D

(L)
M ′M (R)TLM ′ , (3)

where D
(L)
M ′M (R) are the entries of the rotation matrix

in the L-irrep, also called Wigner-D matrix. They
also fulfill T †

LM = (−1)MTL−M . In terms of angu-
lar momentum operators Ja (a = x, y, z), TLM ’s are
expressed as a sum of monomials of Ja up to degree
L [33]. For example,

T10 ∝ Jz, T1±1 ∝ ±J±, T20 ∝ 3J2
z − J2. (4)

3 Point groups of operators
In this section, we first review the Majorana represen-
tation of Hermitian operators presented in Ref. [25]

4B(H) is the space of bounded operators A : H → H with
finite Hilbert–Schmidt norm.

and explain how it can be used to associate a point
group to a Hermitian operator according to its sym-
metries. We then generalize our approach to arbitrary
non-Hermitian operators.

3.1 Majorana representation of Hermitian op-
erators
The Majorana representation was originally intro-
duced for pure spin states [24] (see Appendix C). It
has recently been generalised to Hermitian operators
in [25]. The following presentation is rather different
from that of Ref. [25] but more appropriate to this
work.
We start with the expansion of a general Hamilto-

nian in the multipolar basis,

H =
2j∑
L=0

L∑
M=−L

hLMTLM (5)

with hLM = Tr(T †
LMH) the multipolar components

of H. It can be rewritten as

H =
2j∑
L=0

hL · TL =
2j∑
L=0

hLĥL · TL, (6)

where we gathered components with the same L
into vectors hL = (hLL, . . . , hL−L) with Euclidean
norm hL = ∥hL∥2 and corresponding unitary vec-

tor ĥL = hL/hL. TL = (TLL, . . . , TL−L) is a vec-
tor whose entries are multipolar operators, and the
dot product in hL · TL is the shorthand notation for∑L
M=−L hLMTLM . The properties of TLM imply that

h∗
LM = (−1)MhL−M and that each vector hL trans-

forms as a L-spinor under SU(2) rotations5. Ref-
erence [25] describes how to use these properties to
uniquely characterize any Hermitian operator H by

1. The Majorana representation of each constituent
spinor hL, denoted CL(H) or simply CL, which
consists of a geometrical object of 2L points on
the sphere, called a constellation of stars, with
antipodal symmetry [25] (see also Appendix C).
When hL = 0, there is no associated constella-
tion.

2. An equivalence class [CL] of star colorings (with
two different colors available, for example black

5More precisely, we have from Eqs. (3) and (6)

D(j)(R) H D(j)†(R) =
2j∑
L=0

h̃L · TL

with h̃L = (h̃LL, . . . , h̃L−L) where

h̃LM =
L∑

M′=−L

D
(L)
MM′ (R) hLM′

3



L G Invariant operator
1 C∞ T10

2 D∞ T20

3

 C∞
D3
T

T30
T33 − T3−3
T32 + T3−2

4
{

D∞
O

T40

T44 + T4−4 +
√

14
5 T40

5
{

C∞
D5

T50
T55 − T5−5

6

 D∞
O
I

T60

T64 + T6−4 −
√

2
7 T60

T65 − T6−5 +
√

11
7 T60

7

 C∞
D7
T

T70
T77 − T7−7

T76 − T7−6 +
√

13
11 (T72 − T7−2)

Table 1: Examples of Hermitian operators in B(L) exhibiting
the symmetries of some point groups G for L = 1, . . . , 7. For
each L, all the indicated point groups form a set denoted
Fmax

(
B(L)). For example, Fmax

(
B(4)) = {D∞, O}. Any

operator in B(L) necessarily has a point group equal to a
subgroup of an element of Fmax

(
B(L)).

and red) of CL such that each pair of antipodal
stars is made up of stars of different colors. We
say that two colorings belong to the same equiv-
alence class if they differ by an even number of
color exchanges in their antipodal pairs. There-
fore, independently of the number and configu-
ration of the stars, there can be only two equiv-
alence classes for each constellation.

3. The norms hL associated with each hL, which
can be considered as the radii of the spheres of
each constellation. Note that for L = 0, h0 =
Tr(H)/

√
2j + 1.

In summary, {h0, h1, [C1], . . . , h2j , [C2j ]} is the set
of parameters required to completely and bijectively
characterize a Hermitian operator (6), where CL has
2L stars.

3.2 Point groups of Hermitian operators via
Shubnikov groups
The bijection provided by Majorana representation
implies that the symmetry point group GH of a Her-
mitian operator H6 is equal to the intersection of all

6We should formally consider the symmetry subgroups of
SU(2), the double cover of SO(3). However, the two trans-
formations ±U ∈ SU(2) that are mapped to the same rota-
tion have the same action on any operator as (±U)H(±U†) =
UHU†. We can therefore restrict ourselves to groups of SO(3).

the point groups G[CL]:

GH =
2j⋂
L=1

G[CL], (7)

where G[CL] = SO(3) if hL = 0. The possible constel-
lations of Hermitian operators and their correspond-
ing point groups can be studied for each subspace
B(L) separately (see Eq. (2)).
Let us now explain a systematic method to obtain

the point group of an arbitrary Hermitian operator,
and how to identify the largest point groups that can
appear in each subspace B(L). We begin by introduc-
ing Shubnikov groups [34] following the presentation
given in [31]. Consider a set of N points on the sphere
with an additional coordinate taking two possible val-
ues, for example, a color (black or red) as in our case.
We now consider, besides to the usual action of SO(3)
on the sphere, an abstract operation I acting on the
additional coordinate such that: i) I commutes with
all elements of SO(3), Ig = gI for g ∈ SO(3), and
ii) I2 = E. All products of SO(3) elements and I,
⟨SO(3), I⟩, define a group M which, by the properties
of I, reduces to [34]

M = SO(3) ∪ I(SO(3)), (8)

with I(SO(3)) = {Ig|g ∈ SO(3)}. In particular,
we can choose I as the operation that switches from
one equivalence class [CL] to the other, i.e., that ex-
changes the colors of the stars in one antipodal pair.
At the level of operators, the action of I on H ∈ B(L)

would yield −H [25]. Aleksĕı V. Shubnikov [34]
has classified abstractly all the possible symmetry
groups that a set of N points with an additional two-
valued coordinate can have, which are called Shub-
nikov groups or magnetic point groups. Each equiva-
lence class [CL] has its corresponding Shubnikov group
and proper point group, which can be calculated sys-
tematically as follows:

1. First, we consider the Majorana’s constellation
CL as a geometric object, without coloring, and
determine its corresponding point group, denoted
by GCL

.

2. Then, we act with an element g ∈ GCL
on [CL].

If the equivalence class has not changed, g is a
symmetry. If it has changed, g is no longer a
symmetry, but Ig is. By repeating this procedure
on each element of GCL

, and adding I whenever
necessary to obtain a symmetry operation, we get
a set of elements that leave [CL] invariant and
form the Shubnikov point group of [CL] denoted
by M[CL] ⊆ M.

3. Finally, the point group G[CL] is the subgroup of
M[CL] lying in SO(3), G[CL] = M[CL] ∩ GCL

.

At the end of the procedure, we find a group
G[C] ⊆ GC which is independent of the equivalence

4



j 1/2 1 3/2 2 5/2 j ⩾ 3
Fmax

{
C∞
} {

D∞
} {

D∞,T
} {

D∞,O
} {

D∞,O
} {

D∞,O, I
}

Table 2: Minimal sets of largest point groups Fmax
(
B
(
H(j))) for all possible values of the spin quantum number j. These

sets are valid for both Hermitian and non-Hermitian operators.

class, G[C] = G[C]′ . Let us look at some examples. For
the point group of a regular 2n-gon on a great cir-
cle, G[C] = Dn. For an octahedron, G[C] = T. For a
cube, G[C] = O. For a dodecahedron or icosahedron,
G[C] = I. Lastly, for a pair of n coincident points in
antipodal directions, G[C] = C∞ or D∞ for n odd or
even, respectively.

We list in Table 1 examples of Hermitian oper-
ators in B(L) having the largest point groups for
L = 1, . . . , 7. The same Table also shows the small-
est L required for an operator to exhibit some point
group symmetry.

3.3 Point groups of non-Hermitian operators
All the developments so far are valid only for Hermi-
tian operators. However, they can be generalized to
any operator S using its decomposition into a Hermi-
tian and an anti-Hermitian component

S = SH + iSA, (9)

where both operators SH = (S + S†)/2 and SA =
(S − S†)/2i are Hermitian. The decomposition is
unique, and any unitary transformation applied to S
preserves it by linearity. Thus, the Majorana repre-
sentation of a generic operator S consists of the Ma-
jorana representation of the two parts SH and SA,
which is again a bijective characterisation of the op-
erator. In particular, its point group GS = GSH

∩ GSA

can be calculated by using the techniques mentioned
previously. A direct consequence is that the only ad-
missible point groups of an arbitrary operator are the
same point groups as for Hermitian operators or some
of their subgroups. Thus, the results mentioned in
Table 1 also hold for non-Hermitian operators.

3.4 Set of largest point groups and examples
Let F(V ) be the set of point groups that can appear
as the symmetry group of any element in the operator
space V , excluding multiples of the identity operator.
Additionally, let Fmax(V ) be the minimal subset of
F(V ), such that each element of F(V ) is a subgroup7

of an element of Fmax(V )8.

7Here, we use the usual convention that a set (group) is a
subset (subgroup) of itself.

8The set Fmax(V ) can be understood as a generalization, to
sets, of the concept of maximal subgroups. A proper subgroup
G′ of a group G is called maximal if there is no other subgroup
of G that contains G′ strictly.

The point groups listed in Table 1 correspond to
Fmax(B(L)) for L ⩽ 7. By using Eq. (7), we can
now obtain Fmax(B(H(j))) for any spin value. These
sets are listed in Table 2. Since any proper point
group (excluding SO(3)) is a subgroup of at least one
of the groups D∞, O, I, we have Fmax(B(H(j))) =
Fmax(B(H(3))) for j ⩾ 3. Note that the results sum-
marized in Tables 1 and 2 are valid for both Hermitian
and non-Hermitian operators. They will prove useful
for the design of DD sequences.
For clarity, we show how to obtain the sets F and

Fmax of V = B(L) for L = 1 and 2. We consider
first L = 1 with a generic Hamiltonian of the form
H1 = γ J ·n, where we can assume γ > 0 without loss
of generality. The decomposition (6) of H1 gives h0 =
0 and h1 = γ

√
j(j + 1), with only one constellation

class [C1] constituted by a pair of antipodal black and
red stars (see Fig. 1, left sphere). The black (or red)
star points to ±n, where the sign is associated with
the coloring of the pair, or, in other words, with the
equivalence class. It is now easy to see that F(H1) =
Fmax(H1) = {C∞}.

We now turn to L = 2 with a generic Hamiltonian
of the form H2 = h2 ·T2. The operators of B(2) have
constellation classes [C2] made up of two pairs of an-
tipodal black and red stars (see Fig. 1, right sphere).
We can identify the two black stars by the unit vec-
tors {n1, n2}. The equivalence class [C2] has two
elements corresponding to constellations with black
stars pointing to {n1, n2} and {−n1, −n2}. All pos-
sible constellations can be parametrized by an angle
δ ∈ [0, π/2]. As an example of the procedure ex-
plained in Subsection 3.2, we consider the case where
[C2] forms a square on the equator (δ = π/4). We
list in Table 3 the point group of a square, which con-
tains 8 elements. We can now determine the group
M[C2] as explained in subsection 3.2 and shown in the
second row of Table 3. From this we conclude that
G[C2] = D2. We can obtain all possible point groups

for the Hermitian operators H ∈ B(L) by inspecting
all possible constellations [C2], which yields

G[C2] =
{

D∞ for δ = 0 and π/2

D2 for δ ∈ (0, π/2)
. (10)

Now, the possible point groups of non-Hermitian op-
erators S = SH + iSA ∈ B(2), as explained in the
previous subsection, are defined by the intersection of
the two points groups GSH

∩GSA
. The axes of symme-

try of the groups may coincide or not. In particular, if
GSH

= GSA
= D2 and if only one axis of symmetry of

each of these groups coincides, then GSH
∩ GSA

= C2.

5



Figure 1: The constellation classes [C1] (left yellow sphere)
and [C2] (right gray sphere) of a Hermitian operator H ∈
B(L) with L = 1, 2. [C2] is oriented so that the constellation
lies in the xy-plane.

On the other hand, if they do not share any sym-
metry axis, then GSH

∩ GSA
= E. Thus, the set

of point groups for generic operators (Hermitian and
non-Hermitian) is F(B(2)) = {E,C2,D2,D∞}, and
Fmax(B(2)) = {D∞}.

4 Dynamical decoupling
In this section, we recall the useful notions of dynam-
ical decoupling at 1st order of the Magnus series.
Consider a quantum system (S) suffering from de-

coherence arising from unwanted interaction with an
environment (bath B). The ”system–bath” interac-
tion Hamiltonian is written in Schmidt decomposition
as

HSB =
∑
α

Sα ⊗Bα, (11)

where Sα (resp. Bα) are operators, not necessarily
Hermitian, acting on the Hilbert space of the system
(resp. of the bath). The free evolution from t0 to t
under such Hamiltonian leads to unwanted dynamics
through the propagator USB(t, t0) = exp(−iΦ) where
Φ ≡ (t − t0)HSB is called the error phase operator
(EPO) [35].
To reduce this error, we can send a dynamical de-

coupling sequence (—P1—P2 . . .—PN ) that acts only
on the system, which is made up of N infinitely short
and strong pulses, where Pk is the unitary opera-
tor corresponding to the action of the kth pulse, and
where each dash (—) corresponds to a free evolution
of duration τ0, the time interval between two succes-
sive pulses. When subjected to this DD sequence, the
error phase operator Φ = τ0HSB can be considered
as undergoing the following series of unitary transfor-
mations [3, 35] in the toggling frame with respect to
the DD pulses9,

Φ −−−→
—P1

P †
1 ΦP1 −−−→

—P2
P †

1P
†
2 ΦP2P1 −−−→

—P3
. . . (12)

9The toggling frame corresponds here to the interaction pic-
ture with respect to the Hamiltonian implementing the pulse
sequence.

where the last pulse PN transforms the EPO back to
its initial form. An average EPO over the whole se-
quence can then be calculated by performing a Mag-
nus expansion in the toggling frame. This leads to

Φav =
∑∞
n=1 Φ[n]

av with Φ[n]
av the nth-order term of the

Magnus series, scaling as10
∥∥∥Φ[n]

av

∥∥∥ ∝ (T∥HSB∥)n with

T ≡ Nτ0 the total duration of the sequence [7]. If de-
coherence is small enough (i.e., T∥HSB∥ ≪ 1), the
average EPO is well approximated by its first-order
term,

Φav ≈ Φ[1]
av =

N∑
k=1

(g†
k ⊗ 1B)Φ(gk ⊗ 1B), (13)

where we defined the propagator acting on S at each
step k of the sequence as

g1 ≡ 1S , gk ≡
k−1∏
i=1

Pi (for 1 < k ≤ N). (14)

The products of unitary operators Pi in (14) are to
be understood as being ordered chronologically, such
that Pi stands to the right of Pi+1. Using the Schmidt
decomposition (11) for Φ, we see that the DD se-
quence implements the following symmetrization op-
eration on each system operator Sα [3, 36]

ΠG : B(HS) → B(HS) : S 7→ ΠG(S) = 1
N

N∑
k=1

g†
kSgk

(15)
where G = {gk}Nk=1 denotes the set of propagators
defined in Eq. (14). In the case where the set G
forms a group, the operator ΠG(S) is G-invariant for
any S. A similar result holds for the vector sub-
space spanned by the system operators {Sα} appear-
ing in (11), IS ≡ span({Sα}) ⊆ B(HS), also called
the interaction subspace. By linearity, ΠG(IS), nat-
urally defined as the set of images of ΠG on every
element of IS , is a vector subspace that contains only
G-invariant operators. By choosing a group G such
that ΠG(IS) = span({1S}), called a decoupling group
of IS [4, 37], we ensure that

Φ[1]
av ∝ 1S ⊗B, (16)

where B is some operator acting on the bath Hilbert
space. Thereby, the undesirable dynamics caused
by the interaction with the bath is eliminated at
the dominant order of the Magnus series. Any de-
coupling group G has its corresponding correctable
subspace CG ⊆ B(HS) [37], defined as the subspace
that contains all the operators in B(HS) for which
their image of ΠG are proportional to the identity11.

10∥A∥ denotes here the supremum operator norm of A defined
as ∥A∥ = sup|ψ⟩∈HS

∥A|ψ⟩∥
∥|ψ⟩∥ .

11Formally speaking, the correctable subspace is defined as
the pre-image CG = Π−1

G (span ({1S})), which is a vector space.
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GC2 E R(z, π/2) R(z, π) R(z, 3π/2) R(x, π) R(y, π) R(n1, π) R(n2, π)
M[C2] E IR(z, π/2) R(z, π) IR(z, 3π/2) R(x, π) R(y, π) IR(n1, π) IR(n2, π) ,

Table 3: Elements of the groups associated with the constellation C2 shown in Fig. 1 (right sphere) with δ = π/4. The
elements of GC2 leave the constellation invariant if we ignore the color of the stars, whereas the elements of M[C2] leave the
constellation invariant when we take the color of the stars into account. The point group of the equivalence class [C2] is the
intersection of the two sets, i.e., G[C2] = {E, R(z, π), R(x, π), R(y, π)} = D2.

In particular, we call a group Guni a universal de-
coupling group if its correctable subspace contains
the entire Hilbert-Schmidt space of system operators,
i.e., CGuni = B(HS).
Thus, to achieve first-order decoupling for a given

Hamiltonian (11), we should choose G such that IS ⊆
CG . From this decoupling group G, it is then possible
to systematically construct a pulse sequence satisfying
Eq. (14) by choosing a generating set Γ ⊆ G, drawing
the Cayley graph with respect to this set of gener-
ators and finally finding a cycle on the graph that
visits each vertex the same number of times [4, 38].
Different paths can lead to different decoupling prop-
erties; in particular, a Hamiltonian path (which visits
each vertex exactly once) corresponds to the small-
est sequence of pulses that implements the decoupling
operation, while an Eulerian path (which visits each
edge exactly once) naturally possesses a certain ro-
bustness to finite-duration errors [4]. Adding further
edges and loops to the path on the graph, correspond-
ing to additional accessible pulses, can also enable the
construction of more efficient sequences [7]. More in-
formation on Cayley graphs in the context of dynam-
ical decoupling can be found in Appendix B.
In this work, we focus on decoupling groups as-

sociated with proper point groups, i.e., decoupling
groups constructed solely from SU(2) operations. Us-
ing the formalism described in Sec. 3, we can find
out, for a given system-bath interaction Hamiltonian
and its respective interaction subspace IS , the rota-
tion symmetries that are impossible for any operator
S ∈ IS\span({1S}). The corresponding inaccessi-
ble point groups are then decoupling groups, as we
explain below. Using this strategy, we identify and
study decoupling groups for a wide range of individ-
ual and multipartite quantum systems.

5 Decoupling groups for single spins
In this section, we develop a general framework for
selecting decoupling groups of a single spin-j accord-
ing to its interaction subspace. The general theory
is summarized in Proposition 1 and Table 4 and is
applied to several systems.

5.1 General theory
Consider a single spin-j system, with Hilbert space
HS = H(j), interacting with its environment via the

interaction Hamiltonian (11), leading to the interac-
tion subspace IS = span({Sα}). The subspace IS ,
which may not be closed under SU(2) operations, is
contained in a direct sum of irreps

IS ⊆
Lmax⊕
L=0

B(L) ⊆ B(HS) (17)

where Lmax ≤ 2j is the smallest L value for which
the first inclusion is valid, and where the irrep B(0)

(0-irrep) contains only operators proportional to the
identity 1S . For any point group G, the symmetriza-
tion operation ΠG defined in Eq. (15) maps any ele-
ment of an L-irrep B(L) to a G-invariant element of
the same irrep. Thus, IS remains, after symmetriza-
tion, contained in the same direct sum of irreps

ΠG(IS) ⊆
Lmax⊕
L=0

B(L). (18)

This latter result combined with (7) and (9) implies
that the symmetry groups of the operators in IS (ex-
cept the identity) after symmetrization fulfill

F (ΠG(IS)) ⊆ F

(
Lmax⊕
L=0

B(L)

)
, (19)

where the set on the r.h.s. of (19) can be deter-
mined based only on the Tables 1 and 4. In par-

ticular, if a group G′ /∈ Fmax

(⊕Lmax
L=0 B(L)

)
, then

G′ /∈ Fmax(ΠG(IS)), which means that ΠG′(IS) =
span({1S}) because (i) ΠG′(IS) has no G′-invariant
operator but those proportional to the identity and
(ii) ΠG′(IS) is a G′-invariant subspace. In other
words, G′ is a decoupling group for IS . We merge
all these observations into the following proposition.

Proposition 1. Consider a single quantum system of
spin j interacting with its environment, whose inter-
action subspace IS ⊆

⊕Lmax
L=0 B(L) for some integer

Lmax ≥ 1. Any point group that is not a subgroup
of an element of Fmax

(⊕Lmax
L=0 B(L)

)
is a decoupling

group of IS. For Lmax = 2j, this is a universal de-
coupling group.

Note that Proposition 1 refers to a subgroup (not
a proper subgroup), which may be the group itself.
The smallest decoupling groups for the first values
of Lmax are listed in Table 4, derived from the results
contained in Tables 1 and 2. The following corollaries
follow.
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Lmax G |G|

1 2-Dihedral (D2) 4
2 Tetrahedral (T) 12
3 Octahedral (O) 24

4 or 5 Icosahedral (I) 60

Table 4: Smallest decoupling point groups for any interaction
subspace IS ⊆

⊕Lmax
L=0 B(L) for different values of Lmax,

and their cardinality. For Lmax ≥ 6, there is no decoupling
group composed solely of rotations. The point groups listed
are universal decoupling groups for single spin systems with
spin quantum number j ≤ Lmax/2.

Corollary 1. There is no universal decoupling group
based solely on rotations when j ≥ 3.

Corollary 2. If the interaction subspace contains an
entire irrep with L ≥ 6, then there is no decoupling
group based solely on rotations.

5.2 Applications
We are now in a position to construct a sequence of
pulses for each decoupling group of Table 4 by choos-
ing an Eulerian path on the corresponding Cayley
graph. In particular, each group appearing in Ta-
ble 4 , and thus its corresponding Cayley graph, has
two generators (a, b). The exact form of the result-
ing sequences and details of their construction can be
found in Appendix B, but the results are summarized
in Table 5. For the most elementary system, the qubit
(spin-1/2), the smallest universal decoupling group is
D2. The corresponding Eulerian sequence has already
been used in the literature and has been called Eule-
rian Dynamical Decoupling (EDD) [4]. The novelty
here lies in the three other exceptional groups appear-
ing in Table 4. We call their Eulerian sequences Pla-
tonic DD sequences because their respective symme-
tries are the same as those of Platonic solids. We
denote them by XEDD, with X ∈ {T,O, I}.
A direct application of our framework is the con-

struction of universal decoupling groups for a single
spin j (using Proposition 1 with Lmax = 2j). For
spins with j < 3, it is possible to find a universal de-
coupling group in Table 4 since it suffices to choose
any of the decoupling groups with Lmax ⩾ 2j. For ex-
ample, the octahedral group is a universal decoupling
group for spins 1/2, 1 and 3/2.
To demonstrate and validate the decoupling prop-

erties of the Platonic sequences, we use the DD per-
formance quantifier introduced in Ref. [7] and defined
as

D(1S , US) =

√
1 − |Tr[US ]|

2j + 1 . (20)

This quantifier D was derived in Ref. [39] and is a dis-
tance measure between the identity operator 1S (the

Figure 2: Average distance D between the identity propaga-
tor and the noisy propagator for a single spin-j system (where
j ranges from 1 to 7/2), with and without DD sequence. D
is plotted as a function of τ∥Herr∥ for the TEDD (purple),
OEDD (red) and IEDD (green) sequences and for the free
evolution (noDD, blue). Herr is a Hermitian error Hamilto-
nian and τ is the total time of the free propagation (and also
the duration of the TEDD sequence, see main text).

desired free evolution operator) and a noisy propaga-
tor US . The smaller D is, the more freely the sys-
tem evolves without perturbation, and the better the
DD sequence. Here, we consider a noisy propaga-
tor US = exp(−iHerrτ) generated by a random error
Hamiltonian Herr drawn from the Gaussian ensemble
of random (2j + 1) × (2j + 1) Hermitian matrices.
Figure 2 shows the average distance D(1S , US) as a
function of τ∥Herr∥ in log-log scale for the free evo-
lution (i.e., without the DD sequence) and with the
application of each of the Platonic sequences. The
average was computed over 5000 random Hamiltoni-
ans. The time τ is the duration of both the total free
evolution and the shortest sequence (TEDD in this
case). To enable a fair comparison of performance
between the different sequences, the time interval be-
tween successive pulses was chosen to be identical for
each sequence.

When there is no first-order decoupling, the average
distance D should scale as D ∝ τ∥Herr∥, according to
the Magnus expansion. This is indeed the behavior
we observe, for any spin, in the log-log plot in Fig. 2
in the absence of DD sequence (dashed blue curves
with a slope of 1) and for certain DD sequences. In
this plot, a slope that is twice as steep indicates first-
order decoupling, i.e., D ∝ (τ∥Herr∥)2

[7]. It can also
be seen that when several sequences achieve decou-
pling, those with a smaller decoupling group result in
a smaller distance and therefore better performance.
This can be understood by the fact that the time re-
quired to implement a DD sequence is proportional to
the order of the decoupling group.

Although platonic sequences do not achieve full de-
coupling for j ≥ 3, they can nevertheless be of great
practical interest for dynamical decoupling of large
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Decoupling group Platonic Generators # pulses Sequencesequence a b

2-Dihedral (D2) EDD ((1, 0, 0), π) ((0, 1, 0), π) 8 abab2aba

Tetrahedral (T) TEDD
(
(0, 0, 1), 2π

3
) ((√

2
3 ,
√

2
3 ,

1
3

)
, 2π

3

)
24 aba2bab3a2bab3a2bab2a2

Octahedral (O) OEDD
(
(0, 0, 1), 2π

4
) (

1√
3 (1, 1, 1), 2π

3

)
48 see Appendix B, Eq. (68)

Icosahedral (I) IEDD
(

(0,−1,ϕ)√
ϕ+2

, 2π
5

) (
(1−ϕ,0,ϕ)√

3 , 2π
3

)
120 see Appendix B, Eq. (69)

Table 5: Summary of the Platonic DD sequences constructed from the point groups T, O and I. The generators are specified
in the axis-angle notation and correspond to the two types of pulses required to implement each sequence. The two shortest
sequences are given in their condensed notation and we refer to Appendix B for the two longest sequences. In the IEDD
sequence generators, ϕ =

√
5+1
2 is the golden ratio.

spins [40, 41]. Indeed, the TEDD sequence is capable
of decoupling any Hamiltonian with IS ⊆ ⊕2

L=1B
(L),

regardless the spin j of the system. In this case,
IS consists of linear combinations of operators that
are linear or quadratic with respect to the angular
momentum operators. The EDD sequence, in con-
trast, only handles terms linear in the spin operators.
As an example, we compare the performance of the
EDD and TEDD sequences for a spin-1 on random
error Hamiltonians of the form H(1) =

∑2
L=0 hL ·TL.

The average distance D is shown in the (τh1, τh2)
parameter space in Fig. 3; when h1/h2 ≪ 1 (resp.
h1/h2 ≫ 1), the distance scales as D ∝ (τh2)r (resp.
D ∝ (τh1)r) with r = 1 when there is no decoupling
and r = 2 when first-order decoupling is achieved.
As expected, we observe that the TEDD sequence
outperforms the EDD sequence in cases where the
quadratic components h2 are not negligible compared
to the linear components (r = 2 for TEDD and r = 1
for EDD in the regime h1/h2 ≪ 1). A similar advan-
tage of the OEDD sequence over the TEDD sequence
is observed in Fig. 4 for random spin-3/2 Hamilto-

nians of the form H(3/2) =
∑3
L=2 hL · TL, where

we show the average distance in the parameter space
(τh2, τh3). Here we set h0 and h1 equal to zero for
convenience. To close this section on individual spins,
it should be noted that similar results can be obtained
for any spin, since the decoupling properties of the se-
quences depend only on Lmax and not on j.

6 Decoupling spin-spin interactions
with global rotations
We will now extend the framework of Sec. 5 to mul-
tispin systems where we seek to decouple the envi-
ronment and/or some spin-spin interactions by us-
ing pulses composed only of global SU(2) transfor-
mations, i.e., the same SU(2) operation is applied to
each spin. Our main theoretical results are summa-
rized in Proposition 2 and in Table 6, then applied
to several systems. As explained below, some spin in-
teractions cannot be decoupled using only global ro-

Figure 3: Average distance D between the identity propa-
gator and the noisy propagator in the (τh1, τh2) parameter
space for a single spin-1 system, for the free evolution (blue)
and the EDD (gray) and TEDD (pink) sequences. The aver-
ages were performed over 1000 randomly generated Hamil-
tonians.

Figure 4: Same as in Fig. 3 but in the (τh2, τh3) parame-
ter space of a single spin-3/2 system, for the free evolution
(blue) and the TEDD (pink) and OEDD (purple) sequences.
The averages were performed over 1000 randomly generated
Hamiltonians.

tations; these are identified and listed in Appendix E
for the first nontrivial systems.
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6.1 General theory
Consider an ensemble of N interacting spins (system
S), of spin quantum numbers jk (k = 1, . . . , N), cou-
pled to an environment (bath B). Depending on the
interactions we want to decouple, the Hamiltonian H
will include interactions between the system and the
bath, interactions between the spins, or both. The
Schmidt decomposition of H with respect to the bi-
partition of spin k and its complement is as follows

H =
∑
α

Skα ⊗ Ckα (21)

where the Ckα are operators acting on the Hilbert
space of the spins and/or the bath, depending on the
case. The interaction subspace for spin k is thus given
by IkS = span({Skα}α). We can now define the interac-
tion subspace of the system, IS , as the tensor product
of the individual interaction subspaces

IS =
N⊗
k=1

IkS , with IkS ⊆
Lk

max⊕
Lk=0

B
(Lk)
jk

. (22)

From Eq. (22), we have that IS is contained in a direct
sum of irreps

IS ⊆
N⊗
k=1

Lk
max⊕

Lk=0
B

(Lk)
jk

 =
L1

max⊕
L1=0

· · ·
LN

max⊕
LN =0

(
N⊗
k=1

B
(Lk)
jk

)

=
⊕

L

(
N⊗
k=1

B
(Lk)
jk

)
,

(23)
with L ≡ (L1, . . . , LN ) a vector-index, where Lk runs
from 0 to Lkmax ⩽ 2jk. The possible interaction oper-
ators of IS can be grouped into K-body terms (with
K = 0, . . . , N12) according to the number of zero
components in each index L of the direct sum. More
specifically, when L has exactly N − K zero compo-

nents, an operator in
⊗N

k=1 B
(Lk)
jk

has only K-body
terms. Note that 1-body terms correspond to 1-local
Hamiltonians and 0-body terms to operators propor-
tional to the global identity. For each L, the corre-
sponding subspace decomposes entirely into irreps as
follows

N⊗
k=1

B
(Lk)
jk

=
⊕

(L̃,α)

B̃(L̃,α), (24)

where L̃ ∈
{
L̃min, L̃min + 1, . . . , L̃max

}
, with

L̃min = minn∈{0,1}N

(∣∣∣∑N
k=1(−1)nkLk

∣∣∣) and L̃max =∑N
k=1 Lk according to the angular momenta coupling

rules [33,42]. Different subspaces with the same value
of L̃ may appear, hence the use of the subscript α
to distinguish them. The irreps decomposition for

12When K ≥ 2, we call the K-body terms also K-body in-
teractions.

each L with K-body terms is independent and none
of them contains the global identity, except for L = 0
(K = 0). The interaction subspace IS can thus be
contained in a minimal direct sum of irreps

IS ⊆
⊕

L

⊕
(L̃L,αL)

B̃(L̃L,αL) (25)

Crucially, for a group G composed of global ro-
tations, the symmetrization operation (15) does not
couple different irreps, so again we have

ΠG(IS) ⊆
⊕

L

⊕
(L̃L,αL)

B̃(L̃L,αL) (26)

and

F(ΠG(IS)) ⊆ F

⊕
L

⊕
(L̃L,αL)

B̃(L̃L,αL)

. (27)

The largest irrep appearing in the decomposition (25)
has an effective angular momentum jeff equal to half
the sum of the K largest Lkmax’s. Thus, the set of
decoupling groups of N interacting spins with up to
K-body terms is the same set as for a single spin jeff ;
a case already examined in the previous section. Con-
sequently, we can use the results presented in Tables 1
and 2 to find decoupling groups for different types of
spin interactions. However, it is essential to note that
the r.h.s. of Eq. (25) may have 0-irreps for L ̸= 0
which do not correspond to the global identity oper-
ator. Instead, they correspond to other SU(2) invari-
ant subspaces whose operators cannot be averaged to
zero by global SU(2) operations. In particular, they
are insensitive to the DD sequences studied in this
work. Some examples of such isotropic operators are
J1 ·J2 and J1 ·

(
J2 × J3). The conditions that guaran-

tee the absence of isotropic components in a Hamilto-
nian, which we call anisotropy conditions, are derived
and discussed in Appendix E for: 1) multilinear K-
body terms13 for N = 2, 3, 4, and 2) for an arbitrary
system with at most two-body terms.

The general result described above is formulated as
follows:

Proposition 2. Consider an ensemble of N spins jk
(k = 1, . . . , N) with a Hamiltonian with at most K-
body terms and such that its interaction subspace (22)
contains no 0-irreps (isotropic components) except the
global identity. Any group that is not a subgroup of
Fmax

(
B
(
H(jeff))), where jeff is half the sum of the K

largest Lkmax’s, is then a decoupling group for IS.

13A multilinear K-body term means that Lkmax = 1 for ex-
actly K different values of k and Lkmax = 0 for the other val-
ues of k, i.e., the interactions consist of a linear combination
of tensor products of K operators proportional to the angular
momentum operators Jka where a = x, y, z and k is the spin
label.
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(a)

Lmax
K

2 3 4 5 ≥ 6

1 T O I I −
2 I − − − −

≥ 3 − − − − −

(b)

L1
max

L2
max

1 2 3 4 ≥ 5

1 T O I I −
2 I I − −
3 − − −
4 − −

Table 6: (a) Decoupling groups for an ensemble of spins,
with quantum numbers jk and interaction subspace IkS ⊆⊕Lmax

L=0 B(L), with at most K-body terms. (b) Decou-
pling groups for two-body interactions for different values of
L1

max ≤ L2
max. In both cases, we assume that the anisotropy

conditions are fulfilled, so that the Hamiltonian does not con-
tain isotropic components.

The smallest decoupling groups for up to K-body
terms where the interaction subspace of each con-
stituent has the same Lkmax = Lmax are listed in Table
6a for different values of K and Lmax. The smallest
decoupling groups for two-body interactions are listed
in Table 6b for different pairs

(
L1

max, L
2
max
)
.

6.2 Applications
Proposition 2 allows us to obtain decoupling groups
for certain multispin systems with K-body terms,
which we present in Table 6a. For example, we find
that the group T (resp. O) is a decoupling group for
any spin ensemble with only two-body (resp. two- and
three-body) multilinear interaction terms, provided
that the Hamiltonian satisfies the anisotropy condi-
tions. For two-body and three-body interactions, this
means ensuring that the Hamiltonian has no isotropic
components, which are of the form (see Appendix E)

Htwo−body
isotropic ∝ J1 · J2,

Hthree−body
isotropic ∝ J1 ·

(
J2 × J3). (28)

Thus, the anisotropy conditions for the most general
Hamiltonian with multilinear two- and three-body in-
teractions, written as

H =

≡ Htwo−body︷ ︸︸ ︷∑
i<j

∑
α,µ

hijαµJ
i
α ⊗ Jjµ

+
∑
i<j<k

∑
α,µ,λ

hijkαµλJ
i
α ⊗ Jjµ ⊗ Jkλ︸ ︷︷ ︸

≡ Hthree−body

,
(29)

are

Two-body anisotropy conditions:∑
α,β

hijαβ δαβ = 0, ∀ i ̸= j (30)

Three-body anisotropy conditions:∑
α,β,λ

hijkαβλ ϵαβλ = 0, ∀ i ̸= j ̸= k ̸= i. (31)

To illustrate the decoupling properties of Platonic
sequences on multispin systems, we again compute
the average distance D, this time for an ensemble
of four spin-1/2 with interaction Hamiltonian of the
form (29), for the free evolution and with the appli-
cation of the OEDD and TEDD sequences. Figure 5
shows the distance in the (τβ, τΛ) parameter space,
where β and Λ are defined as

β =
∥∥Htwo−body∥∥, Λ =

∥∥Hthree−body∥∥. (32)

The tensors hij and hijk appearing in the Hamilto-
nian (29) are randomly generated so as to satisfy the
anisotropy conditions (30) and (31). The decoupling
properties of the T and O groups for multiqubit in-
teractions can be read in Fig. 5 by the slope of D as a
function of τβ for τΛ ≪ 1, and as a function of τΛ for
τβ ≪ 1. The TEDD and OEDD sequences both pro-
vide first-order decoupling for dominating two-body
multilinear interactions (Λ ≪ β), while the OEDD
sequence is the only one to also provide first-order
decoupling for dominating three-body multilinear in-
teractions (Λ ≫ β). Numerical calculations (data
not shown) confirm that first-order decoupling is not
achieved when the conditions (31) are not satisfied.
Table 6a also shows that no decoupling group (con-
sisting only of global rotations) exists for interactions
involving simultaneously 6 or more bodies in an en-
semble of interacting qubits.

On the other hand, Table 6b shows the decoupling
groups for two-body interactions of a composite sys-
tem. Without loss of generality, we can assume a
bipartite system. As an example, we consider a qubit-
qutrit system, which is equivalent to a two spin system
with j = 1/2 and 1. Its most general Hamiltonian can
be expanded as

H =
1∑

L1=0

2∑
L2=0

L1∑
M1=−L1

L2∑
M2=−L2

wL1L2
M1M2

TL1M1 ⊗ TL2M2

(33)
where the tensors wL1L2 should satisfy the hermiticity
conditions

wL1L2
−M1−M2

= (−1)M1+M2
(
wL1L2
M1M2

)∗
(34)
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Figure 5: Average distance D between the identity propa-
gator and the noisy propagator in the (τβ, τΛ) parameter
space for an ensemble of four interacting spin-1/2 with two
and three-body interactions, for the free evolution (blue) and
the TEDD (pink) and OEDD (purple) sequences. Averages
were performed on 1000 randomly generated Hamiltonian
satisfying the anisotropy conditions (30) and (31).

Figure 6: Same as in Fig. 5 in the (τΓ, τβ) parameter space
for the free evolution (blue) and the OEDD sequence (purple)
for a qubit-qutrit composite spin system.

The SU(2) isotropic component of (33) is necessarily
of the form (see Appendix E)

Htwo−body
isotropic ∝

1∑
M=−1

(−1)MT1M ⊗ T1−M

∝ Jqubit · Jqutrit

(35)

The anisotropy condition on the Hamiltonian will
therefore be equivalent to the condition (30). Defin-
ing Γ (resp. β) as the supremum operator norm of the
one-body (resp. two-body) Hamiltonian, we compare
in Fig. 6 the OEDD sequence with the free evolution
in the (τΓ, τβ) parameter space, where τ is the du-
ration of the free evolution and the pulse sequence.
Once again, we observe the first-order decoupling ob-
tained with the OEDD sequence through the slope of
D as a function of τΓ and τβ.

7 Robustness to control errors and fi-
nite pulse duration errors
So far, we have considered infinitely short and strong
DD pulses, without imperfections due to control er-
rors. However, in a realistic setting, the pulses take
some time to implement (a time during which deco-
herence occurs) and may not be perfect; consequently,
the resulting decoupling may also not be perfect. We
therefore carry out a robustness analysis of the Pla-
tonic sequences in this section.

Consider a dynamical decoupling sequence designed
from a certain group G (of correctable subspace CG)
with certain generators {Pλ}, where each pulse P ∈
{Pλ} has a certain finite duration τP ∈ {τPλ

}. As-
sume, without loss of generality, that there is no free
evolution between the pulses i.e., once a pulse is com-
pleted, the next one starts14. During the implemen-
tation of each pulse, three Hamiltonians contribute
to the dynamics, namely (i) the ideal pulse Hamilto-
nian HP (t) ∈ B(HS), (ii) the pulse error Hamiltonian
Herr
P (t) ∈ B(HS), and (iii) the decoherence Hamilto-

nian HSB =
∑
α Sα ⊗Bα ∈ B(HSB), from which the

interaction subspace IS is usually defined. The pulse
error and decoherence Hamiltonians will cause the
pulse to slightly deviate from the intended unitary;
this deviation can be quantified by an EPO ΦP by
moving to the toggling frame with respect to HP (t).
The EPO is defined by the following equation

e−iΦP ≡ T exp
{

− i

∫ τP

0

[∑
α

P †(t)SαP (t) ⊗Bα

+ P †(t)Herr
P (t)P (t) ⊗ 1B

]
dt

}
,

(36)
where P (t) is the propagator associated with HP (t),
with P (τP ) = P , and T is the time-ordering operator.
The exact form of the EPO can be formally calculated
by performing a Magnus expansion; when both the
decoherence and the pulse errors are small enough, it
is well approximated by its first-order contribution,
i.e.,

ΦP ≈ Φ[1]
P =

∑
α

F(P,τP )[Sα] ⊗Bα

+ F(P,τP )[Herr
P (t)] ⊗ 1B ,

(37)

where we define the function F(P,τP )[·] : B(HS) →
B(HS) as

F(P,τP )[S] =
∫ τP

0
P †(t)SP (t) dt. (38)

A key result of Ref. [4] is that if we choose an Eule-
rian sequence and if the errors Herr

P (t) are systematic,

14Since no assumptions are made about the shape of the
pulses, we can always add a free evolution time by simply turn-
ing off the control Hamiltonian for a certain period of time.
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i.e., the same error Hamiltonian Herr
P (t) occurs each

time HP (t) is turned on, the first-order EPO of the
total sequence is given by

Φ[1]
EDD =

∑
λ

{∑
α

ΠG

[
F(Pλ,τPλ

)[Sα]
]

⊗Bα

+ ΠG

[
F(Pλ,τPλ

)
[
Herr
Pλ

]]
⊗ 1B

}
,

(39)

and ΦEDD ≈ Φ[1]
EDD if decoherence is small enough.

We can now define the subspace IPλ
as the subspace

spanned by the pulse error Hamiltonian at different
times,

IPλ
≡ span

(
Herr
Pλ

(t) ∀t
)

(40)
and define for the pulse λ an extended interaction sub-
space IS ⊕ IPλ

which includes both decoherence and
pulse errors. By linearity of (38), F(Pλ,τλ)[IS ⊕ IPλ

] is
also a subspace. Consequently, first-order decoupling
is still achieved if, for all generators Pλ, we have

F(Pλ,τλ)[IS ⊕ IPλ
] ⊆ CG . (41)

Let us now consider the specific case of the Platonic
sequences which are, by construction, Eulerian, and
where the generators are simply global rotations. A
decoupling Platonic sequence must be chosen accord-
ing to Proposition 2 so that

IS ⊆
N⊗
k=1

Lk
max⊕
L=0

B
(L)
jk

⊆ CG . (42)

First of all, as global rotations do not couple different
irreps, it follows that

IS⊕IPλ
⊆ CG ⇒ F(Pλ,τλ)(IS ⊕ IPλ

) ⊆ CG ∀λ. (43)

Therefore, Platonic sequences are intrinsically robust
to finite pulse duration errors.
It is also clear that Platonic sequences are

robust to systematic errors satisfying IPλ
⊆⊗N

k=1
⊕Lk

max
L=0 B

(L)
jk

⊆ CG ∀λ. In particular, they are
all robust to flip-angle errors, defined as over- or
under-rotation, and axis specification errors, where
a target rotation about an axis n is misimplemented
about an axis n′ =

√
1 − ϵn +

√
ϵn⊥ [43], because

both types of errors are linear with respect to the
spin operators and thus belong to the L = 1-irrep,
which is in the correctable subspace of the three Pla-
tonic groups. This observation makes the sequences
robust to control-induced disorder, where the ampli-
tude of the control field implementing the pulses is
not perfectly homogeneous across the spin ensemble,
leading to all spins being rotated at slightly different
rates. Each Platonic sequence is also robust to sys-
tematic pulse errors which are quadratic with respect
to the spin operators, as the L = 2-irrep also belongs
to the correctable subspace of each group (except the
D2 group). Moreover, if the Platonic sequence is the
universal decoupling strategy for a quantum system,
then robustness to arbitrary and systematic pulse er-
rors is guaranteed.

8 Dynamically corrected gates
While dynamical decoupling is commonly used to ex-
tend the lifetime of an idle qudit, a prescription for
designing pulse sequences which mitigate decoherence
while performing a non-trivial operation was intro-
duced in Ref. [35]. In this section, we discuss the
potential application of the framework presented in
Secs. 5 and 6 for the design of such pulse sequences.

8.1 General theory
Consider a spin ensemble that interacts with an envi-
ronment through an interaction Hamiltonian HSB =∑
α Sα ⊗Bα such that the interaction subspace satis-

fies

IS ⊆
N⊗
k=1

Lk
max⊕
L=0

B
(L)
jk
, (44)

and suppose we want to implement a control protocol
described by the propagator

US(t) = T exp
{

−i
∫ t

0
Hu(t′)dt′

}
, US(τu) ≡ US ,

(45)
which implements the unitary US in a finite time τu
on the system of interest. During the implementa-
tion of the protocol, decoherence occurs and the ac-
tual propagator deviates slightly from the ideal uni-
tary due to finite duration errors. This deviation can
again be quantified through an EPO Φu, as defined in
Eq. (36), which is well approximated (if decoherence
is small enough) by [35]

Φu ≈ Φ[1]
u ≡

∑
α

F(U,τu)[Sα] ⊗Bα (46)

with the operation F(U,τu)[·] as defined in Eq. (38).
To reduce this deviation, we can use the formalism

presented in Refs. [35,37,44] and construct a so-called
dynamically corrected gate (DCG). To this end, we
first need to construct a balanced pair (1U (t), U∗(t)),
defined as a pair of pulses acting on the system and
satisfying the three conditions below,

(i)
∑
α

F(1U ,τ1)[Sα] ⊗Bα =
∑
α

F(U∗,τu∗ )[Sα] ⊗Bα,

(ii) 1U (τ1) = 1S ,

(iii) U∗(τu∗) = US .
(47)

In other words, we need to find two pulses with identi-
cal EPOs, such that one implements the identity while
the other implements the target unitary US . Once
such a pair is constructed15, a DCG can be designed
using the following four-step procedure:

15A simple prescription to construct a balanced pair is pre-
sented in Refs. [37, 44].
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1. Pick a decoupling group G and draw its Cayley
graph

2. On each vertex, add the identity edge 1U

3. Find an Eulerian path ending in an identity edge

4. Swap this last edge with the corresponding U∗

The resulting sequence then implements the target
unitary US while the first-order EPO of the DCG
reads

Φ[1]
DCG = Φ[1]

EDD +
∑
α

ΠG
(
F(U∗,τu∗ )[Sα]

)
⊗Bα (48)

where Φ[1]
EDD is simply the first-order error phase of

the usual Eulerian path, as defined in Eq. (39), and
satisfies Φ[1]

EDD ∝ 1S ⊗ B if the interaction subspace
belongs to the correctable subspace of G, i.e., IS ⊆
CG . The remaining condition for the DCG to provide
first-order decoupling is then

F(U∗,τu∗ )[IS ] ⊆ CG . (49)

When the propagator U∗(t) is solely composed of ro-
tations (global or local), we have that

IS ⊆
N⊗
k=1

Lk
max⊕
L=0

B
(L)
jk

⇒ F(U∗,τu∗ )[IS ] ⊆
N⊗
k=1

Lk
max⊕
L=0

B
(L)
jk
.

(50)
Consequently, the same Platonic sequence that was
used to mitigate decoherence can also be used to con-
struct a DCG. However, when U∗(t) is not a rotation
at all times, this is no longer true as F(U∗,τ∗

u)[·] may
couple different irreps. In this case, a universal decou-
pling group, if it exists, must be used to construct the
DCG. The results mentioned above can be formulated
as follows:

Proposition 3. Consider an ensemble of N spins jk
interacting with its environment such that the inter-
action subspace

IS ⊆
N⊗
k=1

Lk
max⊕
L=0

B
(L)
jk

(51)

contains no 0-irreps (isotropic components) except the
global identity. Then, any group not contained as a
subgroup of Fmax

(
B
(
H(jeff))), where jeff =

∑N
k=1 jk,

can be used to construct any DCG. If the intended
gate consists solely of local and global rotations and
IS contains at most K-body terms, then jeff must be
replaced by half the sum of the K largest Lkmax’s.

We should point out, however, that when the in-
tended gate is not a global rotation, the subspace
F(U∗,τu∗ )[IS ] may overlap with rotation-invariant sub-
spaces even though IS does not. When constructing
a DCG for a multispin system, we should then ensure
that the balanced pair is designed in such a way this
does not happen.

8.2 Applications
For a single spin-j system with an interaction sub-
space IS ⊆

⊕Lmax
L=1 B(L), we refer again to Table 4

to choose the appropriate decoupling group. In par-
ticular, we find that no Platonic group can be used to
construct a DCG for an arbitrary quantum gate for
j ≥ 3 because there is no universal decoupling group
consisting only of rotations in this case. This limits
the use of Platonic DCG to protect operations outside
of SU(2) in high-dimensional qudits [40,41,45].

In the case of a set of identical spin-j with up to
N -body terms, we now refer to Table 6a to choose the
decoupling group. In particular, we find that no Pla-
tonic group can be used to construct a DCG for an
arbitrary gate if j ≥ 3/2. Nevertheless, for a qubit en-
semble, the T group is sufficient to construct any DCG
if the interaction subspace includes at most two-body
interactions. A DCG can therefore be constructed to
perform an entangling gate robust to finite-duration
errors in a qubit ensemble. As mentioned above, one
should however make sure that the balanced pair’s
EPO still respects the relevant anisotropy conditions.
For example, for a pair of interacting qubits with an
interaction Hamiltonian HS ∈ B

(
H(1/2))⊗ B

(
H(1/2))

and on which we wish to perform an entangling gate,
the propagator U∗(t) must satisfy the following con-
dition

Tr

[∫ τ∗

0
(U∗(t))†

HSU
∗(t) J1 · J2dt

]
=

⇔ Tr

[
HS

∫ τ∗

0
U∗(t)J1 · J2(U∗(t))†

dt

]
= 0. (52)

A sufficient condition, provided that HS itself sat-
isfies the anisotropy conditions, is that U∗(t) com-
mutes with J1 · J2 at all times. This is the case,
for example, for a propagator of the form U∗(t) =
exp
{

−iχ(t)J1
µ ⊗ J2

µ

}
for any axis µ.

Finally, for a pair of spins with different quantum
numbers {j1, j2}, we refer to Table 6b. In particu-
lar, the point group O can be used to construct an
arbitrary DCG for a qubit-qutrit pair. For example,
one could use this formalism to perform an entan-
gling gate protected from finite-duration errors that
transfers quantum information between the electron
qubit and the nitrogen nucleus qutrit in an NV cen-
ter, where the nuclear spin can be used as a quantum
memory and the electronic spin for quantum compu-
tation [46,47].
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9 Conclusion

In this work, we have presented and studied
three novel dynamical decoupling sequences (TEDD,
OEDD and IEDD), called Platonic sequences, which
are inspired by the three exceptional point groups de-
scribing the symmetries of the tetrahedron, octahe-
dron and icosahedron. The information required for
their construction can be found in Table 5. They
exhibit remarkable decoupling properties for single-
and multiqudit systems, and can be generated from
just two specific global SU(2) rotations, so there is
no need for individual subsystem control. For single-
qudit systems, Proposition 1 and Table 4 summa-
rize our results, highlighting decoupling groups that
cancel out different types of system-bath interaction
that can perturb the system. A key result is the
identification of at least one Platonic DD sequence
that is universal for individual qudits with a num-
ber of levels d < 7, or equivalently, for individual
spin-j with spin quantum number j < 3. Although
Platonic sequences are longer than other known se-
quences, such as those presented in Ref. [16], they
have the advantage that they can be implemented us-
ing only SU(2) operations. Similarly, we showed that
the Platonic sequences also decouple several types of
interaction in multiqudit systems when the Hamilto-
nian does not contain isotropic components (see Table
6). We emphasize that the decoupling properties of
each Platonic sequence depend only on the K-body
terms and the irreps appearing in the interaction sub-
space of the subsystems. They are therefore indepen-
dent of the number of qudits in the ensemble, un-
like the sequences constructed in Refs. [8,17,20] (resp.
Ref. [18]) whose lengths grow linearly (resp. quadrat-
ically) with the number of subsystems. For example,
they can decouple up to five-body interactions in en-
sembles of qubits when the interaction Hamiltonian
lacks isotropic components.

Platonic sequences are distinguished not only by
their decoupling capabilities but also by their struc-
tural simplicity and elegance, stemming from their
construction as Eulerian cycles on Cayley graphs of
exceptional point groups (see Fig. 8). This construc-
tion underpins their inherent robustness to system-
atic pulse errors, finite duration effects, and other
perturbations, which further enhances their practical
applicability, making them highly relevant to a wide
range of quantum systems. Furthermore, their decou-
pling and robustness properties could enable them to
compete with longer sequences constructed numeri-
cally [10, 11, 22] and shorter sequences such as the
well-known WAHUHA [48] and REV-8 [49] cycles.

The simplest Platonic sequence, the TEDD se-
quence, has remarkable decoupling properties and re-
quires a reasonable number of pulses to be imple-
mented, which could make it a versatile tool in quan-
tum information processing. It can decouple linear

and quadratic interactions in spin operators, leading
to potential application in quantum computation us-
ing large spins [40,41] and qudits [45]. It is also a uni-
versal decoupling sequence for a single qutrit, which
naturally appears in NV centers [46, 47, 50]. In addi-
tion, it decouples any bilinear two-body interaction
that is not isotropic, such as the dipole-dipole in-
teraction and anisotropic spin exchange, among oth-
ers [10, 22, 51], leading to a potential application in
NMR spectroscopy [14,48,49].
To arrive at our findings, we had to generalize the

Majorana representation of Hermitian operators to
non-Hermitian operators, which allowed us to study
the possible point groups of bounded operators act-
ing on a finite-dimensional Hilbert space. This may
be useful beyond the main focus of this work, for ex-
ample in the study of quantum correlations, where
extremal quantum states [52, 53] and extremal quan-
tum gates [54] for spin systems have a high degree of
rotational symmetry.
Overall, the results presented in this study con-

tribute to the expansion of the frontiers of dynamical
decoupling and Hamiltonian engineering by provid-
ing novel sequences with both theoretical and prac-
tical advantages. Platonic sequences offer a promis-
ing avenue for future research and applications, e.g.,
in quantum computing, particularly in environments
where robustness to errors is crucial. Their appeal
also lies in the fact that they are compatible with
more advanced dynamical decoupling strategies, such
as dynamically corrected gates, as discussed in Sec. 8,
but also concatenated dynamical decoupling [55,56].
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A Exceptional point groups and their
generators
Let us consider a group G and a subset of elements
Γ = {a, b, . . . } ⊆ G. Γ is called a generating set,
and its elements are called generators, if each element
of G can be uniquely expressed as a product of ele-
ments of Γ. Furthermore, the group generated by Γ
admits a presentation in terms of its generators and
a set of defining relations [23, 58]. A defining rela-
tion is a sequence of generators that implements the
identity. For example, we write G =

〈
a, b
∣∣a2, b2, ab

〉
the group generated by the generators {a, b} satisfy-
ing a2 = b2 = ab = E where E is the identity ele-
ment. Each proper exceptional group associated with
the Platonic solids has two generators, and a presen-
tation of these is given by [58]

T =
〈
a, b
∣∣a3, b3, (ab)2〉 ,

O =
〈
a, b
∣∣a4, b3, (ab)2〉 ,

I =
〈
a, b
∣∣a5, b3, (ab)2〉 . (53)

Other presentations of the groups are〈
a, b
∣∣a2, b3, (ab)k

〉
where k = 3, 4, 5 for T, O

and I, respectively [58].

A.1 Tetrahedral group T
The tetrahedral point group consists of 12 transfor-
mations T = {E, 8C3, 3C2} where we use the nota-
tion defined in Section 2. The C3 rotations are per-
formed around an axis passing through the vertices
(or the barycentre of the faces) of the tetrahedron, and
the C2 rotations are performed around axes passing
through the midpoints of two complementary edges
(those without common vertices). We write below the
twelve explicit rotations sorted in each class in terms
of the axis-angle notation (n, θ). Setting

n0 = (0, 0, 1), n±
1 =

(√
2

3 ,±
√

2
3 ,

1
3

)
,

n2 =
(

2
√

2
3 , 0,−1

3

)
, n3 =

(√
2
3 , 0,

1√
3

)
,

n±
4 =

(
− 1√

6
,± 1√

2
,

1√
3

)
,

we have

E = (n0, 0) ,

8C3 =
{(

±n0,
2π
3

)
,

(
±n±

1 ,
2π
3

)
,

(
±n2,

2π
3

)}
,

3C2 =
{

(n3, π) ,
(
n±

4 , π
)}
.

The presentation (53) of T can be obtained with the
generators

a =
(

n0,
2π
3

)
, b =

(
n+

1 ,
2π
3

)
. (54)
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The whole group is thus given by E and

8C3 =
{
a, a2}⋃{

a−jbkaj
}
k=1,2
j=0,1,2

3C2 =
{
a−jbaj+1}

j=0,1,2

. (55)

A.2 Octahedral group O
The octahedral point group (equivalent to the point
group of a cube) has 24 elements. It is made up as
follows O = {E, 8C3, 6C2, 6C4, 3C2(= C2

4 )}. The
octahedron can be oriented such that its vertices are
in the Cartesian axes

(±1, 0, 0), (0,±1, 0), (0, 0,±1). (56)

The generators of its point group can be taken as

a =
(

n0,
π

2

)
, b =

(
1√
3

(1, 1, 1) , 2π
3

)
. (57)

The rotations 6C4 and 3C2 are the 2πn/4 rotations
about the axes of symmetry passing through the ver-
tices of the octahedron. They are spanned by the
operations {

b−jak+1bj
}
j,k=0,1,2 . (58)

The 8C3 rotations are the 2πn/3 rotations about an
axis passing through the faces of the octahedron, gen-
erated by {

a−jbkaj
}

k=1,2
j=0,1,2,3

. (59)

Finally, the 6C2 (2π/2 = π) rotations are about an
axis passing through the edges of the octahedron, and
can be generated by{

b−jak+1ba−kbj
}
j=0,1,2
k=0,1

. (60)

A.3 Icosahedral group I
The last exceptional proper point group is I =
{E, 12C5, 12C2

5 , 20C3, 15C2} with 60 elements and
associated to the proper symmetries of the icosahe-
dron or the dodecahedron. A possible orientation of
the icosahedron corresponds to the following 12 non-
normalised vertices [59]

(±1,±ϕ, 0), (0,±1,±ϕ), (±ϕ, 0,±1), (61)

where ϕ =
√

5+1
2 is the golden ratio. One type of

generators for the presentation (53) of I is given by

a =
(

(0,−1, ϕ)√
ϕ+ 2

,
2π
5

)
, b =

(
(1 − ϕ, 0, ϕ)√

3
,

2π
3

)
.

(62)
The rotations 12C5 and 12C2

5 are the symmetries
associated to 2πn/5 rotations about an axis passing
through the vertices of the icosahedron with elements{

ak
}4
k=1

⋃{
akbajb−1a−k}

j=1,2,3,4
k=0,1,2,3,4

. (63)

The 20C3 rotations are the rotations about an axis
passing through the barycentre of the faces, and they
are generated by{

ajA−(l−1)bkA(l−1)a−j
}

k,l=1,2
j=0,1,2,3,4

(64)

with A = bab−1. Lastly, the symmetries associated to
rotations about an axis passing through the midpoint
of the edges of the icosahedron are generated by

{ak+1ba−k, akXa−k, akY a−k}k=0,1,2,3,4, (65)

with

X = b−1ab2, Y = (a−1ba)−1X(a−1ba). (66)

B Cayley graphs and Eulerian cycles
We call the Cayley graph (or diagram) of G with re-
spect to Γ, G(G,Γ), the graph constructed by assign-
ing a vertex to each element of G and linking pairs of
vertices by directed, colored edges, where each color
represents a generator. An edge departing from x
and heading to y has the color of the generator g iff
y = gx. On such a graph, each vertex has |Γ| ingoing
and departing edges, where |Γ| is the cardinality of Γ
(the number of generators). This implies that there
exists an Eulerian cycle16 on such graph [23]. Fur-
thermore, in some cases a Hamiltonian cycle17 could
also exist [60]. In the Cayley graph representation,
the defining relations are identified by closed loops.

A simple prescription for constructing a Cayley
graph of the group G based on its generating set and
defining relations is presented in Ref. [23]. The basic
idea is to start with a single vertex and expand the
graph by noting that at each vertex, two properties
must be satisfied : (i) there must be exactly |Γ| outgo-
ing and incoming edges, one of each color, and (ii) ev-
ery defining relation must be satisfied. So we add the
vertices one by one, and each time a vertex is added,
we add the edges by closing the loops corresponding
to the different defining relations. The procedure is
illustrated in Fig. 7 for T =

〈
a, b
∣∣a3, b3, (ab)2〉. Each

presentation (53) of the exceptional point groups has
an elegant three-dimensional Cayley graph represen-
tation (see Fig. 8) with Eulerian cycles that can easily
be found using Hierholzer’s algorithm [61]); such cy-
cles for the groups T, O and I are, for example, given
by

TEDD ≡ abaababbbaababbbaababbaa

= aba2bab3a2bab3a2bab2b2,
(67)

16An Eulerian cycle is a closed loop that uses each edge of
the graph exactly once.

17A Hamiltonian cycle is a closed loop that visits each node
of the graph exactly once.
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OEDD ≡ abaaabbbabaabbbaababbaaa

ababbbabaabbaaaababbbabb

= aba3b3aba2b3a2bab2a4bab3

aba2b2a4bab3ab2,

(68)

IEDD ≡ baaabbaabaaaaabbaaab

abbbabaabbaabbabbabb

abbbaaaababbbaaababb

baaababbbaababbaabba

abbaabbbabbbaababbba

ababbbaababbbabaaaaa

= ba3b2a2ba5b2a3bab3aba2

b2a2b2ab2ab2ab3a4bab3a3

bab3a3bab3a2bab2a2b2a2

b2a2b3ab3a2bab3a2bab3a2

bab3aba5.

(69)

where the generators for each group are summarized
below (see also Table 5)

T →

 a =
(
(0, 0, 1), 2π

3
)

b =
((√

2
3 ,
√

2
3 ,

1
3

)
, 2π

3

) (70)

O →

 a =
(
(0, 0, 1), 2π

4
)

b =
(

1√
3 (1, 1, 1), 2π

3

) (71)

I →

 a =
(

1√
ϕ+2

(0,−1, ϕ), 2π
5

)
b =

(
1√
3 (1 − ϕ, 0, ϕ), 2π

3

) (72)

with ϕ =
√

5+1
2 . We specify in Eqs. (67)–(69) the

full sequence for each group as well as a (slightly)
more compact and intelligible formulation. Note that
there is no Hamiltonian cycle on the (directed) Cayley
graph of any of the three exceptional point groups, so
the Eulerian cycles are the smallest pulse sequences
that implement the decoupling scheme.

C Majorana representation of pure
spin states
The Majorana or stellar representation for pure spin-
j states [24, 62] maps each element |ψ⟩ ∈ H(j) of the
Hilbert space H(j) of dimension 2j + 1 to N = 2j
points on the sphere S2. This representation contains
all the information about the state after removing
its normalization and the global phase factor. Ma-
jorana [24] introduced this representation via a poly-
nomial constructed from the expansion of the state in
the Jz eigenbasis, |ψ⟩ =

∑j
m=−j λm |j,m⟩ and given

by

pψ(z) =
j∑

m=−j
(−1)j−m

√(
2j

j −m

)
λm z

j+m. (73)

The complex roots of the polynomial are comple-
mented by as many roots at the infinity as are needed
to be 2j in number. This set of roots {ζk}2j

k=1 is then
mapped to a collection of points on the sphere via
stereographic projection from the South Pole, poeti-
cally referred to as a constellation Cψ of |ψ⟩. Specif-
ically, each root ζ = tan(θ/2)eiϕ is projected onto a
point (star) on the sphere with polar and azimuthal
angles (θ, ϕ).
In contrast to the Majorana representation for Her-

mitian operators, the point group of a pure state |ψ⟩
can be obtained simply by analyzing this standard
Majorana constellation where there is no distinction
(coloring) among the stars. As an example, the Ma-
jorana representation of the spin-2 pure state

|ψ⟩ = 1√
3

(
|2, 2⟩ +

√
2 |2,−1⟩

)
. (74)

has constellation equal to the tetrahedron. Conse-
quently, the point group of |ψ⟩ is equal to the tetra-
hedral group T.

D Correspondence between constella-
tion colouring and a Hermitian operator
Following Ref. [25], we present here how to associate
an equivalence class to a Hermitian operator H = hL ·
TL ∈ B(L) with constellation CL. More precisely, we
want to associate an equivalence class [CL] of colorings
of CL with the unit vector ĥL = hL/hL. First, we
denote by ±nk the stars of CL. Each coloring c of CL
can be now defined by an L-tuple of these points as
follows

c = {γ1n1, γ2n2, . . . , γLnL}, (75)
with γk = ±1. The two equivalence classes, denoted
by [C±

L ], are now defined as18

[C±
L ] ≡

{
c
∣∣∣ L∏
k=1

γk = ±1
}
. (76)

On the other hand, each tuple c± ∈ [C±
L ] defines a

unique spin-L pure state as [25]

h±
LM = Nϕ ⟨j, j, L,M | (|ϕ⟩ ⊗A |ϕ⟩), (77)

with |ϕ⟩ =
∑
m λm |j,m⟩ an (L/2)-spinor with Ma-

jorana constellation defined by c±,
∣∣ϕA〉 the corre-

sponding antipodal state∣∣ϕA〉 ≡
∑
m

(−1)j+mλ∗
−m |j,m⟩ , (78)

Nϕ a positive factor that guarantees the normalization

of ĥ±
L = (h±

LL, . . . , h
±
L−L), and |j, j, L,M⟩ the common

18The choice of signs for ±nk is not uniquely defined and is
associated with the labelling of the equivalence classes. This is
analogous to a gauge freedom to specify the classes [CL]. Once
±nk has been chosen, the classes [C±

L ] are uniquely defined.
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eigenvectors of the total angular momentum operators
J2 and Jz where Ja = J1

a + J2
a with a = x, y, z. It

turns out that ĥ±
L depends only on the equivalence

class of c± [25]. Thus, we have uniquely specified

ĥ±
L to each equivalence class [C±

L ], the two differing

only by a sign ĥ+
L = −ĥ−

L [25]. With the vectors ĥ±
L ,

we can now uniquely associate a class [C±
L ] to any

operator H ∈ B(L) with uncolored constellation CL.
The corresponding class [CL] of an operator H, with

associated vector ĥL, is [C+
L ] (resp. [C−

L ]) if ĥL = ĥ+
L

(resp. ĥL = ĥ−
L ).

E Rotation-invariant component of a
Hamiltonian
As explained in the main text, applying global rota-
tions on an ensemble of interacting subsystems will
leave invariant a part of the Hamiltonian, which we
call the rotation-invariant or isotropic component of
the Hamiltonian. In order to identify this isotropic
part, we first determine how the total Hamiltonian
transforms under rotation and find the conditions for
the Hamiltonian to be invariant under these transfor-
mations. This approach is similar to that of Ref. [21],
where the authors identified SU(d)-invariant compo-
nents in the interaction Hamiltonian of a pair of qu-
dits.

Here we describe how to obtain the rotation-
invariant part of a generic Hamiltonian for the special
cases of only multilinear interaction terms between
the constituents of a N -spin system and for any two-
body interactions.

E.1 Multilinear interactions between N spins
We consider an ensemble of N spins of quantum num-
bers {jk}Nk=1 with an interaction Hamiltonian H with
fixed K-body terms multilinear in the spin opera-
tors. By simplicity, let us start by considering the
case K = N . Since we are only interested in mul-
tilinear interactions, the Hamiltonian belongs to the
following interaction subspace

H ∈ IS =
N⊗
k=1

IkS with IkS ⊆ B
(1)
jk

(79)

where B
(1)
jk

= span({Jαk
}αk=x,y,z), with Jαk

are the
corresponding (2jk + 1) × (2jk + 1) matrices repre-
senting the angular momentum operators. The in-
teraction Hamiltonian can be decomposed in the or-

thonormal operator basis
{

1√
Γ

⊗N
k=1 Jαk

}
where Γ =∏N

k=1
jk(jk+1)(2jk+1)

3 is a normalization factor19; we
define the interaction tensor h as the rank-N tensor

19The basis is orthonormal with respect to the trace norm.

hα1,...,αN
resulting from the folllowing decomposition

H = 1√
N

∑
α

hα

N⊗
k=1

Jαk
, (80)

or

hα = 1√
Γ
Tr

[
H

N⊗
k=1

Jαk

]
, (81)

where α = (α1, . . . , αN ). Suppose that we ap-
ply an identical rotation R on each subspace via its
corresponding irrep through the Wigner-D matrices
D(jk)(R) = D(jk), and set G =

⊗N
k=1 D

(jk). The in-
teraction tensor transforms as follows

h̃α = 1√
Γ
Tr

[
G†HG

N⊗
k=1

Jαk

]

= 1
Γ
∑
β

hβTr

[(
N⊗
k=1

D(jk)†Jβk
D(jk)

)
N⊗
k=1

Jαk

]

= 1
Γ
∑
β

hβ

N∏
k=1

Tr
[
D(jk)†Jβk

D(jk)Jαk

]
.

(82)
Since a SU(2) operation D acts on the spin operator
J with its corresponding physical three-dimensional
rotation matrix O(R) = O ∈ SO(3),

D(jk)†Jαk
D(jk) =

3∑
βk=1

Oβkαk
Jβk

, (83)

we can write

h̃α = 1
Γ
∑
β

hβ

N∏
k=1

(∑
λ

Oλkβk
Tr[Jλk

Jαk
]
)
. (84)

Using the relation

Tr[Jλk
Jαk

] = jk(jk + 1)(2jk + 1)
3 δλkαk

, (85)

we find

h̃α =
∑
β

hβ

(
N∏
k=1

Oαkβk

)
. (86)

A tensor that transforms under rotations according
to the previous equation is called a Cartesian ten-
sor of rank N and dimension three [63]. Thus, the
rotation-invariant component of an interaction Hamil-
tonian is equivalent to the component of its Cartesian
tensor that is invariant under rotations, i.e., under
any change of coordinates. Rotationally invariant ten-
sors are called isotropic tensors and are formed by a
sum of products of Kronecker deltas and Levi-Civita
symbols [63–65]. For ranks up to 8, Ref. [66] lists a
complete set of linearly independent isotropic tensors.
For two-, three- and four-body interactions, we list in
Table 7 these independent isotropic tensors, the most
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Rank Linearly independent Most general Anisotropy
isotropic tensors isotropic Hamiltonian condition

2 δij λJ1 · J2 Tr[h] = 0

3 ϵijk λJ1 ·
(
J2 × J3) ∑

ijk ϵijkhijk = 0

4
δijδkt λ

(
J1 · J2)(J3 · J4) ∑

ij hiijj = 0,
δitδjk + η

(
J1 · J4)(J3 · J2) ∑

ij hijij = 0,
δikδjt + γ

(
J1 · J3)(J2 · J4) and

∑
ij hijji = 0

Table 7: List of linearly independent isotropic tensors (in Cartesian coordinates) of dimension three and rank 2, 3 and 4, and
the corresponding most general multilinear isotropic Hamiltonian and anisotropy conditions on the interaction tensor (81).

general isotropic Hamiltonian and necessary and suffi-
cient conditions for a given interaction tensor to have
no isotropic component, which we call anisotropy con-
ditions.
In the case where we are interested in a K < N

interaction between N spins, the isotropic tensors,
and therefore the anisotropy conditions, are equiva-
lent to those obtained in K interactions between K
spins. The only difference is that the isotropic ten-
sors must be multiplied by N −K identity operators.
The anisotropy conditions for the K-body terms of K
spins define

(
N
K

)
anisotropy conditions for theK-body

terms of N spins, each of which is associated with the
choice of K spins interacting among the N spins.

E.2 Arbitrary two-body interactions
Consider now a two-body interaction Hamiltonian be-
tween two spins of quantum numbers j1 ≤ j2. The
most general Hamiltonian belongs to (see Sec. 6)

H ∈
⊕

L

B
(L1)
j1

⊗ B
(L2)
j2

=
⊕

L

⊕
L̃L

B̃L̃L , (87)

with L = (L1, L2) and where Lk runs from 0 to 2jk
and L̃L from |L1 −L2| to L1 +L2. As we explained in
Sec. 6, the anisotropy conditions are related to the 0-
irrep subspaces which only appear for L1 = L2. There
are therefore 2j1 + 1 different rotation-invariant sub-

spaces in B
(L)
j1

⊗ B
(L)
j2

for L = 0, . . . , 2j1. Their ex-
act expressions can be calculated using the theory of
addition of angular momentum [33]; the spin-0 state
formed from two spin-L states is given by

L∑
M1,M2=−L

C00
LM1LM2

|L,M1⟩ ⊗ |L,M2⟩

= (−1)L√
2L+ 1

L∑
M=−L

(−1)−M |L,M⟩ ⊗ |L,−M⟩ , (88)

where C00
LM1LM2

= (−1)L−M1δM1,−M2/
√

2L+ 1 is
a Clebsch-Gordan coefficient. We now replace the
states |L,M⟩ by the multipolar tensors TLM . The

resulting operators, denoted as

IL ≡
L∑

M=−L

(−1)−M
√

2L+ 1
TLM ⊗ TL−M , (89)

are SU(2) invariant because they will transform as the
corresponding spin-0 state. All IL are linearly inde-
pendent and I0 is proportional to the identity. Thus,
a Hamiltonian free of rotationally invariant compo-
nents except the identity must fulfill 2j1 anisotropy
conditions given by

Tr(ILH) = 0, L = 1, . . . , 2j1. (90)

For the case of a multispin system with more than
two parties, H must satisfy the same conditions for
any pair of constituents.
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Figure 7: Construction process of the Cayley graph of G =
〈
a, b
∣∣a3, b3, (ab)2〉. Each loop corresponds to a defining relation

and is added one by one until every vertex has the right number of outgoing and incoming edges. Edges of color red (resp.
purple) refer to the generator a (resp. b).

Figure 8: Three-dimensional representation of the Cayley graph of the groups (left) T =
〈
a, b
∣∣a3, b3, (ab)2〉, (middle) O =〈

a, b
∣∣a4, b3, (ab)2〉 and (right) I =

〈
a, b
∣∣a5, b3, (ab)2〉. The generator a (resp. b) is represented by a green (resp. red) arrow.

Each colored surface corresponds to a loop generated by one of the defining relations.
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