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Abstract

Extra free time improves working memory (WM) performance. This free-time benefit 

becomes larger across successive serial positions, a phenomenon recently labeled the “fanning-out 

effect”. Different mechanisms can account for this phenomenon. In this study, we implemented 

these mechanisms computationally and tested them experimentally. We ran three experiments that 

varied the time people were allowed to encode items, as well as the order in which they recalled 

them. Experiment 1 manipulated the free-time benefit in a paradigm in which people recalled items 

either in forward or backward order. Experiment 2 used the same forward-backward recall paradigm 

coupled with a distractor task at the end of encoding. Experiment 3 used a cued recall paradigm in 

which items were tested in random order. In all three experiments, the best-fitting model of the free-

time benefit included (1) a consolidation mechanism whereby a just-encoded item continues to be 

re-encoded as a function of the total free-time available and (2) a stabilization mechanism whereby 

items become more resistant to output interference with extra free time. Mechanisms such as decay 

and refreshing, as well as models based on the replenishment of encoding-resources, were not 

supported by our data.

Keywords: working memory; free-time benefit; computational modeling
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Introduction

In working memory (WM) tasks, people remember more information when they have more 

time to study them (e.g., Oberauer, 2022; Penney, 1975; Tan & Ward, 2008). It has been shown that 

the process of encoding items in WM takes some time (e.g., ~500ms for simple stimuli such as 

tones and letters, see for instance Jolicœur and Dell’Acqua, 1998). Our question concerns the post-

encoding processes participants engage in when they are given additional time to process the items. 

We refer to this additional time as “free time”, as participants are free to engage these additional 

processes during this time. This question is of fundamental importance for the theoretical modeling 

of WM as it pertains to the question of how a WM representation is maintained. The current study 

provides a comprehensive examination of several candidate processes that have been proposed for 

explaining the free-time benefit in WM, by deriving precise predictions for each process based on a 

computational modeling approach, and by testing the predictions against empirical data.

Current Explanations of the Free-Time Benefit

Different mechanisms, illustrated in Figure 2, have been proposed to explain the free-time 

benefit of WM. A first conceivable mechanism is encoding-resource (Popov & Reder, 2020). Each 

trial begins with a certain amount of resource. Each encoding step depletes the currently available 

resource by a constant proportion, and it is this proportion which determine encoding strength. 

Hence, encoding is proportional to the available resource: more resource means stronger encoding. 

After encoding, the resource gradually replenishes over time until the presentation of the next item, 

which in turn consumes the same proportion of the remaining resource, and so forth. This 

mechanism predicts a free-time benefit, as the extra free-time provided between memoranda allows 

a stronger replenishment of the resource, yielding to stronger encoding for the subsequent to-be-

encoded items. One characteristic of this mechanism is that it acts on items proactively: when the 
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resource replenishes, this improves encoding strength for the subsequent, but not the preceding, 

items.

A second mechanism is consolidation (Ricker et al., 2018; Ricker & Vergauwe, 2022). In 

this, the just-encoded item continues to be re-encoded for a longer duration, increasing its strength. 

In typical WM models, encoding is done by binding items to a positional context (see also modeling 

part). Therefore, during consolidation, this item-context binding is reinforced further for the just-

encoded item.

A third mechanism which has never been explored is stabilization. After encoding an item, 

the additional free time is used to stabilize the just-encoded item, making it less sensitive to 

interference. One characteristic of the stabilization mechanism is that it is used to stabilize WM 

traces, but does not necessarily lead to stronger encoding into WM. Instead, the additional free-time 

is used to make a representation more robust to interference. This implies that in this mechanism, 

additional free-time will not necessarily lead to observable benefit to WM performance, unless the 

WM representation becomes degraded. It is important to note that the current study assumes 

stabilization and consolidation as two completely separate mechanisms. This implies that a weakly-

encoded WM representation can nevertheless be stable and more resistant to interference. 

Conversely, an item which has been strongly encoded into WM can be less stable and less resistant 

to interference.

Free Time and Serial Position Curves

Recently, Oberauer (2022) parametrically manipulated the presentation rate of items for 

various materials (digits, letters, concrete words, abstract words…) and presentation modalities 

(visual, auditory), and he evaluated the impact of presentation rate on recall performance as a 

function of the serial position of the items. Results of this study showed that memory performance 
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peaked for the first-encoded item and gradually declined across serial positions, a well-known 

phenomenon in immediate serial recall referred to as the primacy effect. Importantly, the free-time 

benefit was virtually absent for the very first item and gradually appeared and increased across 

serial positions, thus producing a “fanning-out” pattern. A portion of the Oberauer (2022) results’ 

study is displayed in Figure 11. Oberauer compared this pattern of results with predictions expected 

from different models, including a decay and refreshing/rehearsal model, a consolidation model, an 

encoding-resource model2, and the temporal distinctiveness model (Brown et al., 2007). Results of 

these simulations showed that the encoding-resource best-aligned with the observed pattern of 

results for two main reasons. First, in this model, memory strength is maximal for the initial item 

and diminishes as memory resource is depleted, leading to a primacy effect. Second, slower 

presentation rates allow the resource to replenish more, thus leaving more resource available for the 

subsequent items, leading to stronger encoding strength as more and more items are encoded into 

WM comparatively to faster presentation rates. This property of the encoding-resource mechanism 

explains the fanning-out effect observed when manipulating presentation rate.

Figure 1

Experiment 1 from Oberauer (2022)

1We report results from the visual presentation using concrete words only, because this experiment best matches our 

own investigation and is likely to be the most appropriate to disentangle the mechanisms introduced above. Results 

from the other experiments closely match those illustrated in Figure 1. Readers interested by the results from the 

other experiments can read the original Oberauer (2022) study. 

2 Oberauer also considered a ”ballistic consolidation” model. As Oberauer suggested that the ballistic consolidation and 

encoding-resource explanations could essentially represent two distinct interpretations of the same mechanism, and 

given their striking similarity in terms of predictions, we will consider only the encoding-resource mechanism.
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Note. Experiments involved participants encoding and recalling (i.e., typed recall) lists of visually 

presented, concrete words. The free-time benefit was virtually absent over serial position 1, and 

gradually appeared over successive serial positions. 

The above-mentioned study raises a number of questions. In comparing the models' 

predictions against empirical data, Oberauer assumed that the specific form of serial position recall 

curves only reflects encoding strength. However, it has been shown that the primacy effect in 

immediate serial recall stems from at least two phenomena. The first phenomenon can indeed be 

considered as a diminished encoding strength across serial positions, for example in the form of a 

primacy gradient of activation (Page & Norris, 1998) or through the encoding-resource mechanism 

as explained above. The second phenomenon is output interference, whereby recalling an item 

hinders subsequent items to be remembered (Cowan et al., 2002; Oberauer, 2003). For instance, 

when recalling “dog – desk – arm”, the mere fact of recalling “dog” degrades the representation of 

“desk” and “arm”. Therefore, items recalled later in the list are more likely to be poorly recalled by 

the mere fact that they suffer the most from output interference, and this phenomenon contributes to 
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the primacy effect. In tasks requiring participants to recall items in their original presentation order, 

such as immediate serial recall, output position is fully confounded with input position, making it 

impossible to differentiate between effects occurring at encoding and those occurring at retrieval. 

One manifestation of output interference can be observed when participants recall items in 

backward (i.e., reverse) order. In this backward recall procedure, recall performance is best for the 

last encoded item, and progressively decreases until the first encoded item, for which recall 

performance is the worst (Dougherty et al., 2023; Guérard et al., 2012; Guérard & Saint-Aubin, 

2012; Liu & Caplan, 2020). Similarly, when items are cued in a completely random order, the 

magnitude of the primacy effect diminishes and serial position curves are bow-shaped and 

symmetric (Kowialiewski, Krasnoff, et al., 2023; Oberauer, 2003). If items resist more strongly to 

output interference after being encoded for a longer period of time, for instance through the 

stabilization mechanism as described above, it is expected that output interference should 

cumulatively interfere less with the subsequent to-be-recalled items with additional free time, thus 

producing a less steep primacy effect with slower presentation rates. It is therefore possible that the 

fanning-out effect (i.e., serial position curves becoming increasingly less steep with increasing free 

time) observed by Oberauer (2022) stems from stronger resistance to output interference.

The Present Study

The current study adopts a comprehensive computational modeling and human data 

prediction strategy to evaluate the different mechanisms of the free-time benefit introduced above. 

We start by describing the WM mechanisms we use to predict the free-time benefit. We then 

compared the models’ predictions against freshly acquired data and select the best models. To do 

this, we ran three experiments. These experiments involved participants recalling lists of concrete 

words in different recall orders. Recall order was post-cued in each experiment, thus ensuring that 
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items were encoded in a similar way across the different recall conditions. In Experiment 1, we 

manipulated presentation rate in a forward-backward recall paradigm. Participants recalled items 

either in their original presentation order, or in reverse order. If the fanning-out effect observed by 

Oberauer (2022) is only caused by an encoding-resource mechanism, it should persist across input 

position when tested in a backward recall paradigm. In contrast, if the fanning-out effect is due to 

processes partially occurring during output, this effect should not be observed anymore as a 

function of input position but instead as a function of output position. Experiment 2 was a 

conceptual replication of Experiment 1, except that we introduced a distractor task between 

encoding and recall for reasons explained later. Finally, Experiment 3 used a cued recall paradigm 

in which items were tested randomly, which allowed us to further deconfound encoding- versus 

recall-based explanations of the free-time benefit. General predictions from the three proposed 

mechanisms are displayed in Figure 2.

Figure 2

Predictions from the three proposed mechanisms

Note. Encoding resource: Each trial starts with a fixed amount of resource, indicated by the green 

bars. Encoding is done by depleting a proportion of this resource, as indicated by the purple and 
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blue bars for the fast and slow conditions, respectively. The amount of depleted resource determines 

encoding strength. During the free time available between two successive encoding operations, the 

resource replenishes. The slower the presentation rate, the more resource can replenish over time. 

This mechanism predicts a fanning-out effect increasing across input position, both in forward and 

backward recall. Consolidation: During the free time given between two successive encoding 

operations, the previously encoded item continues to be encoded. Additional free time increases 

encoding strength. This mechanism predicts that the free-time benefit should be uniformly observed 

across serial positions, both in forward and backward recall. Stabilization: After encoding, items are 

stabilized in such a way that they resist more strongly to output interference. Slower presentation 

rates result in stronger stabilization and therefore stronger resistance to output interference. This 

mechanism predicts a fanning-out effect following the direction in which items are recalled.

Computational Modeling

All the to-be-tested mechanisms presented here are integrated within a single architecture 

based on general principles that are commonly accepted in the WM literature. We first introduce 

these general principles, followed by the mechanisms responsible for modeling the free-time 

benefit.

Generic Mechanisms

Encoding. Encoding an item into WM is done by creating a new association between that 

item and a positional context (Farrell, 2012; Henson, 1998; Hitch et al., 1996; Oberauer et al., 2012; 

Oberauer & Lewandowsky, 2011). Positional contexts are similar to each other, and this similarity 

decreases exponentially with positional distance. This implies that items will be partially associated 
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to other contexts than the one they were initially encountered (e.g., item 1 to position 2). The 

association strength ai , j between item i and position j follows this equation:

(1) aij=ηiP
|i− j| 

Where P is a free parameter controlling the similarity between contexts. High values of this 

parameter mean high positional uncertainty. The ηi term is the encoding strength at input position i. 

This encoding strength depends on several mechanisms. One commonly held assumption is that 

encoding strength follows a primacy gradient of activation, whereby encoding strength decreases 

progressively for each newly encoded item (Page & Norris, 1998). We modeled this process as 

follow:

(2) ηi=α γ
i−1

Where α  is the peak activation of the primacy gradient, and γ  controls the steepness of the primacy 

gradient. For simplicity, we assume that the first item is always maximally encoded, thus fixing the 

α  parameter to 1.0. We varied the γ  parameter freely.

Retrieval. When trying to retrieve an item, people need to use the cue which is currently 

available to them. In immediate serial recall, this cue is the position to which the item was 

associated to during encoding. For instance, when trying to retrieve the first item, people can use 

the cue “position 1”. However, due to the positional uncertainty P as described in Eq. 1, not only 

the target item will be re-activated following this cue, but also all other items associated to this 

positional cue, resulting in some uncertainty. Based on this cueing process, a pattern of activation is 

generated. Items are selected based on this pattern of activation, such that highly activated items 

have a higher probability to be selected than less activated items. Activation of list item i for output 

position k  is:

(3) A ik=aij (1.0− ρ )k −1

10

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202



The ρ term is a free parameter which controls the strength of output interference. During the first 

retrieval attempt, k −1=1−1=0, which means that output interference doesn’t have any effect yet, 

but grows from output position 2 on. At retrieval, the model has a certain probability to recall items 

that were not part of the list (i.e., extra-list intrusions) as well as omission errors. Theoretically, the 

production of extra-list intrusions is explained by assuming that non-list items have a certain degree 

of similarity with the retrieval candidates. This is implemented by giving them their own activation 

value: AN+1 = ω. We fixed ω to 0.0, which when used in combination with the exponential version 

of Luce’s choice rule as described below, gives extra-list intrusions a non-null probability to be 

selected. Omission errors are modeled using a threshold θ (free parameter). If an item’s activation 

falls below this omission threshold, it is not recalled and an omission is produced. We implement 

this principle mathematically by giving the omission threshold an activation value and entering it 

into the competition: AN+2 = θ.

After computing all items’ activation given a recall cue, activations are converted into 

probabilities using the exponential version of Luce’s choice rule (or softmax function):

(4) pi=
exp( A ikσ )

∑
j=1

N+2

exp( A jk

σ )
In this equation, the σ  parameter is the noise, and controls the steepness of the selection 

process. As this is an important parameter, it was estimated freely. High σ  values means that all 

retrieval candidates become less distinctive to each other, thus increasing the probability that the 

selection process will select items randomly. When σ  is low, activation values as computed in Eq. 3 

are more deterministic of the selection process. This version of Luce’s choice rule corresponds to a 

selection process in which items are selected based on their activation values, after adding normally 
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distributed noise centered around 0.0, as typically done models of serial recall (Hurlstone & Hitch, 

2015).

Modeling recall direction. One advantage of positional models is the fact that they provide 

sufficient flexibility for modelling any recall direction. All these models need for retrieving an item 

is a relevant cue. In the experiments reported in this study, the cue is the position of the item in the  

list. Therefore, when modeling a particular recall direction, we assume that participants use the cue 

which is currently available to them, and try to retrieve the item associated to it. In forward serial  

recall, the cues are the following: [1, 2, 3, 4, 5, 6]. In backward serial recall, the cues are: [6, 5, 4, 3,  

2, 1]. Likewise, in cued recall, the cues can be any sequence of positional cues. Recall direction was  

therefore modeled by feeding the model with the same sequence of positional cues as the one given  

to our participants.

Response suppression. In many computational models of WM, items are discarded from the 

set of retrieval candidates after being recalled, a mechanism called response suppression 

(Lewandowsky, 1999). Response suppression is necessary in all models of WM requiring multiple 

recall attempts. Without it, WM models produce a rate of repetition errors which is unrealistic 

compared to what is observed in humans. However, recent studies have shown that people can 

recall multiple times the same item (Cowan & Hardman, 2021; Kowialiewski & Oberauer, 2024), 

an observation which contradicts a core prediction derived from response suppression. Despite solid 

doubts about the plausibility of response suppression as a fundamental mechanism of WM recall 

performance, there currently exists no other alternative to it. We therefore kept this response 

suppression mechanism, acknowledging that this choice should be regarded as a temporary solution 

to an yet unsolved problem. Response suppression is modeled by multiplying the recalled items’ 

activation value by (1.0 - τ). The higher the value of τ , the stronger the suppression. We assume that 
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response suppression is maximal (i.e., τ=1.0) to restrict the number of free parameters to a 

minimum.

After describing the general architecture used to model WM, we now describe in the next  

sections the mechanisms responsible for generating the free-time benefit. 

Encoding Resource

The encoding resource mechanism follows the same principles as those reported in Mizrak 

and Oberauer (2021) as well as Oberauer (2022). At the beginning of each trial, the encoding 

resource R1 is maximal (i.e., fixed to 1.0). During encoding, a constant proportion pr of this 

resource is used as the encoding strength:

(5) ηi=pr , iRi

The amount of resource used for encoding is then depleted from the pool of available resource:

(6) Rbisi=(1.0− pr , i )Ri

The pr parameter was estimated freely. After encoding, the resource recovers with rate re:

(7) Ri+1=Rbisi+ (1.0−Ri ) (1.0−exp (−re t i ) )

Where t i is the free-time available after the initial encoding. The re parameter was fixed to 0.44. 

This way, the encoding-resource and primacy gradient mechanisms can be compared based on an 

equivalent number of free parameters. Because the properties of the encoding-resource mechanism 

produce a primacy gradient of activation, we replaced Eq. 2 by Eq. 5 through 7 each time we 

considered this mechanism. The parameter value for re was chosen after performing a grid search 

over the encoding-resource mechanism’s parameter space. Specifically, we orthogonally varied the 

pr and re parameters and computed the mean free-time effect (expressed as the mean difference 

between two presentation rate conditions) this mechanism produces under each set of parameters. 
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With these computations, we found that fixing re to 0.44 while estimating pr freely offers the most 

flexible range of possible outcomes (see Appendix A for details).

Consolidation

During consolidation, the just-encoded item continues to be re-encoded as a function of the 

total time t  available to encode the item at a consolidation rate C, which was estimated freely. To 

compute the consolidation time of each item, we took back the equation reported by Oberauer 

(2022):

(7) ∆ηi=(1.0−exp (−C t i ) )

The ∆ηi term means that consolidation adds an additional encoding strength on top of the existing 

one. For instance, if encoding strength for the first item is equal to 1.0, and the consolidation 

strength computed in Eq. 8 equals 0.2, the final encoding strength is equal to 1.2.

Stabilization

During stabilization, items are consolidated in such a way that they resist more strongly to 

interference. The role of this consolidation mechanism is not to increase items’ encoding strength, 

but rather to stabilize the existing WM representation. Due to this stabilization process, items suffer 

less from output interference. Adapting Eq. 3, it gives:

(8) A i , k=ai , j (1.0− ρ )(k −1 ) λ / t i

In this equation, λ is a free parameter which controls the overall reduction of output interference 

with free time. The t i term is the time spent consolidating item i.
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Model fitting

The data collected in Experiments 1 through 3 were fitted to the above-mentioned 

mechanisms. To do this, we performed a quantitative fit of the different models using maximum 

likelihood estimators. This way, we can perform model comparison and select models based on 

their quantitative fit to the data. Fixed and free parameters are reported in Table 1.

Table 1. List of fixed and free parameters of the model.

Core WM architecture

Symbol Role Value

P Positional overlap [0.1 – 0.8]

α Peak of the primacy gradient 1.0

γ Steepness of the primacy gradient [0.0 – 1.0]

ρ Output interference [0.0 – 1.0]

ω Activation of the non-target items 0.0

θ Value of the omission threshold [0.0 – 10.0]

σ Noise parameter used during the selection rule [0.0 – 1.0]

τ Response suppression 1.0

Free-time mechanisms

Encoding resource mechanism

R1 Initial resource 1.0

pr Proportion of resource used [0.1 – 0.9]

 re Rate of resource replenishment 0.44

Consolidation mechanism
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C Consolidation rate [0.0 – 10.0]

Stabilization mechanism

λ Reduction of output interference [0.0 – 5.0]

Note. Fixed parameters are indicated by a single value. Free parameters are indicated by a range.

Fitting procedure. Model fitting was done at the subject level using the raw data (i.e., non-

aggregated individual trials). For each recall attempt, we computed the probability to recall each 

retrieval candidate using Eq. 4. Based on this recall probability, we computed the log-likelihood for 

the observed response o:

(10) logL=log ( po )

Note that in this fitting procedure, when applying response suppression, we used the observed 

response produced by the participant. We used the deviance as a loss function: 

(11) D=−2.0∑ logL

In Eq 11., the sum operator runs over all trials and retrieval attempt. 

Parameter estimation was done using the Nelder-Mead algorithm implemented in the Optim 

package (https://julianlsolvers.github.io/Optim.jl/stable/) of the Julia programming language 

(https://julialang.org/benchmarks/). To avoid that the algorithm would fall into local minima, each 

fitting attempt was repeated using 15 different starting points in the multi-dimensional parameter 

space. These starting points were randomly selected by sampling values from a uniform 

distribution. We kept only the set of parameters minimizing the deviance.

Model comparison. To compare models with each other, we first computed a Bayesian 

Information Criterion (BIC) for each model:
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(12) BIC=∑
i=1

N

K log (no )+Di

In Eq. 12, the sum runs over all participants. We therefore computed one BIC for each 

participant, and summed all BICs to get an overall assessment for a particular model. The K term is 

the number of free parameters, and no is the number of observations per participant. In Experiment 

1, this number is equal to 6 items, times 64 trials. We chose the BIC because it penalizes more 

strongly models with a larger number of free parameters. After computing one BIC for each model, 

models can be compared by subtracting their BIC. This difference represents the likelihood of the 

data under a certain model relatively to another model.

Experiment 1

This experiment manipulates presentation rate across two different recall conditions: a 

forward recall condition in which participants recall items in their original presentation order, and a 

backward recall condition in which participants recall items in reverse order. The stimuli involved 

lists of semantically dissimilar, concrete words. We chose concrete words because they are more 

likely to be consolidated than any other class of stimuli, which maximizes the chances to observe an 

influence of consolidation, if any. In addition, results from Oberauer (2022) showed that lists of 

concrete and abstract words were differently affected by the presentation rate manipulation, 

suggesting a possible consolidation process for concrete words. 

Methods

Optional stopping. Sample size was determined using an optional stopping rule based on 

effect size stabilization (Anderson et al., 2022). We chose this way of defining our sample size 

because simulations have shown that it does not inflate effect sizes nor increase the rate of false 

positives, contrary to other stopping rules. We started with a base sample size of 15 participants. We 
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then iteratively added one more participant to the sample and computed the effect size (Cohen’s d) 

each time a new participant entered the sample. If the difference between effect sizes did not exceed 

0.05 over five successive iterations, we stopped the sampling process, which determined our final 

sample. For instance, if effect sizes reached values of 0.8, 0.83, 0.82, 0.78 and 0.81 after 32, 33, 34, 

35 and 36 participants, the sampling process stopped at a sample size of 36 participants. Using this 

procedure, we reached a sample size of 40 participants. The effect size was computed based on the 

difference between the fastest and the slowest presentation rate conditions (see procedure below). 

We report in Figure 3 a graph illustrating the evolution of effect sizes over the sampling process. As 

can be seen, the effect size gravitated at d ~ 1.5.

Figure 3

Effect size stabilization – Experiment 1

Note. Cohen’s ds were computed using the difference between the fastest (0.5 seconds / item) and 

slowest (4.0 seconds / item) presentation rate conditions.
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Participants. Forty young adults aged between 18 and 35 years were recruited on the online 

platform Prolific (https://prolific.co/). All participants were English native speakers, reported no 

history of neurological disorder or learning difficulty, and gave their written informed consent 

before starting the experiment. The experiment had been approved by the ethics committee of the 

Faculty of Psychology at the University of Liège, project #2021-024. 

Design. Participants were tested across eight experimental conditions in a fully within-

subject design: two recall conditions (forward, backward) times four presentation rate conditions 

(0.5, 1.0, 2.0 and 4.0 seconds per item). Each experimental condition involved 8 trials, for a total of 

64 experimental trials. We chose this number of trials to keep the experiment at a reasonable length. 

Material. The list of stimuli was constructed from a pool of 312 concrete words. The initial 

pool consisted in 39 categories of 8 words. To construct the lists, we randomly chose six words 

among different categories, with the further constraint that two words could not be included in the 

same list if they were drawn from two related or similar categories. For instance, words “whiskey” 

and “glass” could never appear together in the same list, because “alcohol” and “containers” are two 

strongly related categories. We constructed the lists this way to avoid any obvious semantic 

relationship or similarity between items, for which the interaction with free time is still unknown. 

This is a classical way to construct dissimilar lists in studies manipulating semantic similarity 

(Kowialiewski, Krasnoff, et al., 2023; Kowialiewski, Majerus, et al., 2023; Neath et al., 2022; 

Poirier & Saint-Aubin, 1995; Saint-Aubin & Poirier, 1999). We constructed 32 lists of 6 items 

twice: once for the forward recall condition, and once for the backward recall condition. The lists in 

the forward and backward conditions were constructed by sampling from the same pool of 312 

concrete words. This means that some words may have been presented twice across the whole 

experiment: once in the forward recall condition, and once in the backward recall condition. Within 

each recall condition, there were 8 trials per presentation rate condition. Each list was assigned 
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randomly to a presentation rate condition. The order of the presentation rate and recall conditions 

was random. There were 4 training trials, for which the lists of stimuli were always identical across 

participants and generated in advance. The training and main phases of the experiment always 

involved different stimuli. Overall, there was a total of 68 trials throughout the experiment: 4 

training trials, and 64 experimental trials. Using these aforementioned constraints, we generated 120 

different versions of the experiment. Each participant was assigned randomly to one of these 

versions.

Procedure. The task is illustrated in Figure 4. Words were sequentially presented in the 

center of the screen in Courier font, for a duration defined by the presentation rate condition (i.e., 

0.5, 1.0, 2.0 or 4.0 seconds). Each word remained on screen until the presentation of the next word. 

After the presentation of the last word, an arrow indicated the direction of retrieval. If the arrow 

pointed to the right, participants were instructed to recall items in forward order. If the arrow 

pointed to the left, participants were instructed to recall items in backward order. Participants 

entered their responses in a prompt box using the keyboard of their computer and validated each 

response using the “return” key. If participants did not know the answer for a given position, they 

were instructed to leave the prompt box empty. As participants recalled the items, a number below 

the prompt box was displayed to indicate the position of the current to-be-recalled word. After 

recalling the last item, participants clicked on a button labeled “Next trial” to move on to the next 

experimental trial. Halfway through the experiment, participants could take a short break if they 

needed to. Throughout the whole experiment, recall and presentation rate conditions were post-

cued. This means that participants never knew in advance the experimental condition they had to 

perform on a particular trial. During the training phase, participants performed two forward recall 

conditions and two backward recall conditions, in this order. During training, words were presented 
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at a pace of 1 word every second. After the training phase, participants were warned that the 

presentation rate of words would vary randomly from one trial to another.

Figure 4

Setup used in Experiment 1

Note. Participants were visually presented with six items to be remembered. Presentation rate varied 

depending on the condition (i.e., 0.5, 1.0, 2.0, or 4.0 seconds per item). After the presentation of the 

last word to be remembered, participants were presented with an arrow, along with a prompt box. 

Participants had to recall the words in forward (i.e., arrow pointing to the right) or backward (arrow 

pointing to the left) serial order.

Scoring procedure. Before scoring responses as correct or incorrect, we preprocessed them 

by removing blank spaces and transforming uppercase letters to lowercase. We used a strict serial 

recall criterion in which an item was scored as correct if it was recalled at the correct serial position. 

Statistical analyses. As the focus of the manuscript was to compare the models’ outcome 

against the empirical data, we kept the statistical analyses to a bare minimum. We assessed the 
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effect of presentation rate on recall performance with a Bayesian logistic regression model using the 

brms package (Bürkner, 2017), assuming default priors. Each model was run using 4 chains of 

10,000 iterations, including 5,000 warm-up iterations. To get the strength of evidence for a 

particular effect, we performed Bayesian model comparison using a top-down testing procedure. We 

assessed each effect of interest by comparing the full model to the same model without the effect in 

question using the bayes_factor() function provided in the brms package. 

Results

Figure 5 shows recall performance as a function of presentation rate, input position and 

recall direction. Memory performance increased with presentation rate, and this was observed 

across both recall directions. The Bayesian logistic regression model showed decisive evidence 

supporting an effect of presentation rate, both in the forward (BF10 = 3.19e+8) and backward (BF10 

= 1.125e+10) recall directions.

As can be seen in Figure 5, the free-time benefit increased across input position in the 

forward recall direction. In contrast, the free-time benefit decreased across input position in the 

backward recall direction3. A visual inspection of the forward recall direction suggests that the free-

time benefit was already apparent from input position 1, which was confirmed by a logistic 

regression model (BF10 = 19).

Figure 5

Empirical results – Experiment 1

3A reviewer wondered if a “peel-off” strategy might have been used by participants in the backward recall condition, 

which should be characterized by longer response times across output position. We did not observe such a pattern of 

results. This analysis has been made available on the OSF repository associated with this study, for Experiments 1 

and 2.
22

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439



Note. Error bars indicate 95% confidence intervals, corrected for within-subject variability.

Modeling section

We fitted the generic model using the three mechanisms we identified: consolidation, 

stabilization, and encoding-resource. When considering the encoding-resource mechanism, we 

omitted the primacy gradient of activation to avoid redundancy, as the encoding-resource 

mechanism produces a primacy gradient of activation. The best model was the model including the 

stabilization mechanism. Subtracting BIC values between models showed that the data were 163 

times more likely under the stabilization model than under the encoding-resource model, and 94 

times more likely under the stabilization than the consolidation model. A summary of this model 

comparison approach is reported in Table 2.

Table 2. Model comparison from Experiment 1

Models BIC

[primacy gradient] + [stabilization] 34,817
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[primacy gradient] + [consolidation] 34,911

[encoding resource] 34,981

Note. Low BIC values indicate better fit to the data.

Predictions from the three models, along with the empirical data, are displayed in Figure 6. 

All models predict a free-time benefit on recall performance. In the following paragraphs, we 

briefly describe the behavior of each model, and explain why they account more or less well for the 

empirical data.

Encoding resource. Figure 6 shows that the encoding-resource mechanism predicts better 

recall performance with increasing free time, as already shown in previous works (Mizrak & 

Oberauer, 2021; Oberauer, 2022). Because the free-time benefit generated by this mechanism 

builds-up progressively at encoding, this benefit gets stronger across input position, regardless of 

the recall condition considered (i.e., forward recall, backward recall). This is also the reason why 

this mechanism gives the worst goodness of fit: In the empirical data, the free-time benefit 

increased across output position.

Consolidation. The consolidation mechanism also produces a free-time benefit, as originally 

shown by Oberauer (2022). Consolidation produces a constant free-time benefit across input 

position, because the consolidation mechanism considered here increases encoding strength to a 

similar extent across all items. Contrary to the encoding-resource mechanism, consolidation does 

not underpredict the data, as a constant free-time benefit across serial positions can still capture part 

of the variance observed in humans, including a free-time benefit for items encoded first (see 

Results section).

Stabilization. As expected, the stabilization mechanism produces nearly symmetrical serial 

position curves across recall directions. While the free-time benefit increases across input position 

in the forward recall condition, it decreased in the backward recall condition. In other words, this 
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mechanism produces stronger free-time benefits across output position, in line with the data. This 

occurs because for each item recalled, the subsequent to-be-recalled items suffer less from output 

interference with slower presentation time, and this phenomenon builds up cumulatively each time 

the model recalls an item. Note that this mechanism never produces a free-time benefit from output 

position 1, as no output interference occurs for items recalled first.

Figure 6

Simulation results of Experiment 1 using individual free-time mechanisms
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Note. The upper left panel displays the empirical data. All other panels display model predictions.

Additional Simulations

Results from the previous section support a stabilization mechanism whereby items become 

more resistant to output interference with slower presentation rate. It is however possible that the 

free-time benefit emerges from more than one mechanism. This is suggested by the behavioral 
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results showing a free-time benefit for the very first encoded item in forward recall, a result which 

can be accounted only by the consolidation mechanism. In this section, we test this possibility. We 

used the generic architecture as presented above. Rather than considering models with only one 

free-time mechanism, we considered multiple mechanisms operating in concert. For instance, we 

considered a model including the consolidation, stabilization, and encoding-resource mechanisms, 

or a model including the consolidation and stabilization mechanisms only. We adopted a top-down 

approach as used in the statistical procedure described above. We started by fitting the most 

complex model or models. We then fitted another version of this model, for which a mechanism 

was removed or replaced. After selecting the model with the lowest BIC, we repeated the operation 

until reaching the best fitting model among all alternatives.

A summary of model comparison results is provided in Table 3. The first model we 

considered is a model including all three mechanisms responsible to produce the free-time benefit: 

consolidation, stabilization, and encoding-resource. This model was first compared to a model 

including consolidation, stabilization, and the primacy gradient of activation. These two models 

have an equivalent number of free parameters. This comparison led to a BIC difference of 138 in 

favor of the model including the primacy gradient of activation. Predictions from these two models 

are provided in Figure 7. As can be seen, both models make very similar qualitative predictions. 

This suggests that the encoding-resource mechanism did not substantially contribute to the free-time 

benefit in our dataset, beyond a primacy gradient of activation.

Next, we compared the model including consolidation, stabilization, and the primacy 

gradient of activation mechanisms, against the same model without the consolidation mechanism. 

The BIC difference shows that the data were 145 times more likely under the model not including 

the consolidation mechanism than under a model including it. Figure 8 displays simulations results 

from the best model with or without the main mechanisms of interest. As can be seen, the model 

27

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511



without the consolidation mechanism (i.e., Primacy gradient + Stabilization, upper right panel) does 

not predict the free-time benefit observed from input position 1. At the same time, the model with 

consolidation (bottom left panel) was most likely not favoured because it adds an extra free-

parameter, which the BIC penalizes more4. Overall, the consdolidation mechanism is not necessary 

to capture the overall pattern of results. With this model being identified, we are back to the 

conclusions we reached in the previous section (i.e., “Modeling section”, see also Table 2).

We performed a last model comparison involving the model including the stabilization and 

primacy gradient of activation mechanisms, against a model not including the primacy gradient. 

The BIC difference between these two models showed that the data were 717 times more likely 

under the model including the primacy gradient than under the model not including it. The 

empirical data in Figure 8 shows that in the backward recall condition, items encoded first are 

better recalled than items recalled last in the forward recall condition. Without the primacy gradient 

of activation, this pattern wouldn’t emerge and serial position curves in the forward and backward 

recall conditions would be fully symmetrical. An illustration of what would happen in this scenario 

is illustrated in Figure 8, bottom right panel (“Without primacy” model). Therefore, the best-fitting 

model is the model including the stabilization and primacy gradient of activation mechanisms. 

Predictions of this best-fitting model are displayed in Figure 8, upper right panel.

Table 3. Model comparison from Experiment 1

Model 1 Model 2 BICm1−BICm2

Step 1
[consolidation] + [stabilization] + 
[encoding-resource]

[consolidation] + 
[stabilization] + [primacy 
gradient]

-138

Step 2 [consolidation] + [stabilization] + [primacy gradient] + 145

4Confirming this, using Akaike’s Information Criterion (AIC) which penalizes less for model complexity favored the 

model including the consolidation mechanism.
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[primacy gradient] [stabilization]

Step 3
[primacy gradient] + 
[stabilization]

[stabilization] -716

Note. Model comparison was performed using a top-down approach, by considering first the most 
complex models justified by our experimental design and theories. Negative values indicate better 
fit for m1 as compared to m2.

Figure 7

Model predictions from Experiment 1
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Note. Upper left panel: empirical data. Upper right panel: model including a consolidation, 

stabilization and encoding-source mechanisms. Bottom left panel: model including a consolidation, 

stabilization and primacy gradient mechanisms. As can be seen, both models make very similar 

predictions.

Figure 8
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Simulation results from Experiment 1 – Best model with or without the main mechanisms

Note. Upper left panel: Empirical data. Upper right panel: Best model. Bottom left panel: Best 

model with the consolidation mechanism. Bottom right panel: Best model without the primacy 

gradient mechanism. 
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Discussion

Results of Experiment 1 replicate the beneficial effect of presentation rate on memory 

performance. The novel aspect of this experiment was to show that the free-time benefit increased 

across output position. These results are well-accounted by a stabilization mechanism whereby 

extra free-time leads to more resistance to output interference. We also observed a credible effect of 

free time on the very first item in the forward recall condition, a result only predicted by a 

consolidation mechanism.

Additional simulations confirmed these preliminary observations to some extent. Model 

comparison clearly favored the stabilization mechanism, which explains the ‘fanning-out’ effect 

observed both in forward and backward recall. However, the consolidation mechanism was not 

favored, which contrasts with the observation of a free-time benefit for the very first item in the 

forward recall condition which none of the other mechanisms can explain. Note that a primacy 

gradient of activation was favored compared to an encoding-resource mechanism. The encoding-

resource mechanism did not substantially change the overall qualitative pattern of results compared 

to a primacy gradient mechanism. Model fit was worse when not including the primacy gradient of 

activation, which corroborates with previous modeling works (e.g., Hurlstone & Hitch, 2015).

The fanning-out effect observed in backward recall might have been exaggerated by the fact 

that in backward recall, the last encoded item is also recalled first. This represents a potential 

limitation, because it is likely that the last item was still strongly represented in WM at the time of 

recall, for instance by virtue of being in the focus of attention (Cowan, 1999; Oberauer, 2002), 

which is not implemented in our simulations. If this item is in the focus of attention, it should be 

very strongly represented in WM and might therefore not benefit from slower presentation rates. It 

is thus possible that the fanning out effect in our empirical results is not only to be explained by 

direction of recall, but also by the specific status of the last encoded item. A closer examination of 
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Figure 5 indicates that this is likely to be the case, as recall performance for the last encoded item 

in the backward recall condition was up to ~80% in the fastest condition, and dropped to nearly 

50% for the penultimate item. To appropriately estimate the presence of a potential free-time 

mechanism, it is therefore important to discard an influence from the last-encoded item. Experiment 

2 addresses this directly.

Experiment 2

Experiment 2 replicates Experiment 1, except that we introduced a distractor task between 

encoding and recall. If the strong fanning-out effect observed across output position (rather than 

input position) observed in Experiment 1 is partially caused by the last item being in the focus of 

attention, the distractor task should prevent that item from being too strongly represented at the time 

of retrieval. This should in turn mitigate the strong fanning-out effect across output position 

observed in Experiment 1. If the strong fanning-out effect across output position is not due to the 

last item being in the focus of attention, we should replicate Experiment 1, except that recall 

performance should be comparatively lower due to the distractor task.

 Methods

Optional stopping rule. Experiment 2 used the same optional stopping rule based on effect 

size stabilization as in Experiment 1. We reached a final sample size of 35 participants. The 

evolution of the effect size across sample size is displayed in Figure 9. Again, the effect size 

gravitated at d ~ 1.5.

Figure 9

Effect size stabilization – Experiment 2
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Note. Cohen’s ds were computed using the difference between the fastest (0.5 seconds / item) and 

slowest (4.0 seconds / item) time conditions.

 

Participants. Thirty-five young adults aged between 18 and 35 years were recruited on the 

online platform Prolific (https://prolific.co/). All participants were English native speakers, reported 

no history of neurological disorder or learning difficulty, and gave their written informed consent 

before starting the experiment. The experiment had been approved by the ethics committee of the 

Faculty of Psychology at the University of Liège, project #2021-024. 

Design. The design of the experiment remained the same as Experiment 1, including the 

number of trials per participant.

Material. We used the same material as described in Experiment 1.

Procedure. The procedure was identical to Experiment 1, with one exception. After the 

presentation of the last item to be remembered, participants performed two rounds of mathematical 

equations. The equations involved three digits between 0 and 9, selected at random. We then 

randomly selected two mathematical operators, involving addition or subtraction. The mathematical 

operators were intersected between the digits and participants had to to solve the resulting equation 
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by entering their answer in a prompt box. For instance, given the digits 5, 8 and 1, participants 

could be presented with the equation “5 – 8 + 1”, to which they had to answer “-2”. After resolving 

a first equation, participants were directly presented with a second equation. Providing a response to 

this second equation led to the presentation of an arrow pointing to the right of left, probing 

participants to recall the words in forward or backward order, as in Experiment 1. The experimental 

procedure is illustrated in Figure 10.

Figure 10

Setup used in Experiment 2

Note. Participants were visually presented with six items to be remembered. Presentation rate varied 

depending on the time condition (i.e., 0.5, 1.0, 2.0, or 4.0 seconds per item). After the presentation 

of the last word to be remembered, participants had to complete two mathematical operations in a 

row. Completing the two mathematical operations led to the presentation of an arrow, along with a 

prompt box. Participants had to recall the words in forward (i.e., arrow pointing to the right) or 

backward (arrow pointing to the left) serial order.
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Scoring procedure. Participants’ responses were scored as in Experiment 1. 

Statistical analyses. Statistical analyses were conducted using the same strategy as in 

Experiment 1. 

Results

Recall performance as a function of presentation rate, input position and recall direction is 

displayed in Figure 11. A Bayesian logistic regression model indicates that memory performance 

increased with slower presentation time, and this was supported by decisive evidence both in the 

forward (BF10 = 4.802e+5) and backward (BF10 = 4,695) recall directions.

We furthermore explored to what extent a free-time benefit for the very first item in the 

forward recall condition could be observed, a result only predicted by the consolidation mechanism. 

A Bayesian logistic regression model with presentation rate as independent variable showed 

decisive evidence in favor of an effect of presentation rate (BF10 = 122).

We next explored whether a free-time benefit could be observed for the last item in the 

backward recall condition. A free-time benefit for this position would mean that the data cannot be 

exclusively explained by the stabilization mechanism, and therefore the direction of retrieval. A 

Bayesian logistic regression model showed strong evidence supporting an effect of presentation rate 

(BF10 = 42). 

Figure 11

Empirical results – Experiment 2
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Note. Error bars indicate 95% confidence intervals, corrected for within-subject variability.

Model fitting

Simulations in Experiment 2 followed exactly the same modelling procedures and steps as 

in Experiment 1, via fitting of parameter values. We did not explicitly model the arithmetic 

interfering task, because we considered that direct modeling of this task would add unnecessary 

complexity to the simulations. Instead, the impact of the interfering task was modelled via a change 

in fitted parameter values. This modeling section directly considered multiple free-time mechanisms 

operating altogether. We fitted the different mechanisms to the empirical data, and selected the best 

model based on BIC difference using a top-down approach. A summary of this model comparison 

analysis is provided in Table 4.

We started by considering a model including the consolidation mechanism, the stabilization 

mechanism, and an encoding-resource mechanism. We compared this model to the same model but 

by replacing the encoding-resource mechanism by the primacy gradient mechanism. As in 

Experiment 1, the data were 598 times more likely under the model including the primacy gradient 
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of activation than the model including the encoding-resource mechanism. The reason why the 

encoding-resource mechanism did not provide a good fit of the data is clear when examining 

Figure 12. First, the encoding-resource mechanism produces an exaggerated fanning-out effect in 

the forward recall condition compared to what is observed in human subjects. Second, it also 

produces symmetrical serial position curves in the backward recall condition, and this is especially 

true when considering the slowest time condition. In contrast to this, serial position curves in the 

backward recall direction display a strong primacy effect, a pattern of results which is accounted 

only by the model including the primacy gradient mechanism. It is also important to note that the 

fanning-out effect is not as strong for the last-encoded item, which is also the reason why the 

encoding-resource model was not favored, as the free-time benefit necessarily increases for items 

encoded last. The stabilization mechanism does produce this reduced benefit for the last-encoded 

item, which is likely why it best-fitted the data.

Next, we compared the model including the consolidation, stabilization and primacy 

gradient mechanisms against the same model but without the primacy gradient. BIC comparison 

between these two models indicates that the data were 820 times more likely under the model 

including the primacy gradient mechanism than under the model without. The primacy gradient was 

favored over a model not including it, for the same reasons as those observed in Experiment 1: 

Without it, the model produces perfectly symmetrical serial position curves, which is not observed 

in the empirical data. Model predictions without this mechanism are illustrated in Figure 13, under 

the “Without primacy” panel.

Using the same approach, we compared the model including the consolidation, stabilization, 

and primacy gradient mechanisms to the same model without the stabilization mechanism. We 

found that the data were 296 times more likely under the model including the stabilization 

mechanism than the model not including it. Without this mechanism, the model produces an 
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equivalent free-time benefit across serial positions, which is clearly in contradiction with the 

empirical data. Model predictions without the stabilization mechanism are reported in Figure 13, 

“Without stabilization” panel.

Finally, we compared the model including the consolidation, stabilization and primacy 

gradient mechanisms against the same model without the consolidation mechanism. Results show 

that the data were 153 times more likely under the model with the consolidation mechanism than 

the model without. The model without the consolidation mechanism predicted no free-time benefit 

from output position 1 (see Figure 13, under the “Without consolidation” panel), a result also in 

contradiction with the empirical data. Therefore, the best-fitting model was the model including the 

consolidation mechanism, the stabilization mechanism, and the primacy gradient mechanism. 

Figure 12, bottom panel, displays simulation results from this model. Goodness-of-fit for the best-

fitting model is well-represented by looking at Figure 13, where we removed each mechanism from 

it. Without this specific combination of mechanisms, none of the models considered can match 

closely the pattern of empirical data.

Table 4. Model comparison from Experiment 2

Model 1 Model 2 BICm1−BICm2

Step 1
[consolidation] + [stabilization] + 
[encoding-resource]

[consolidation] + 
[stabilization] + [primacy 
gradient]

598

Step 2
[consolidation] + [stabilization] + 
[primacy gradient]

[consolidation] + 
[stabilization]

-820

Step 3
[consolidation] + [stabilization] + 
[primacy gradient]

[consolidation] + [primacy 
gradient]

-296

Step 4
[consolidation] + [stabilization] + 
[primacy gradient]

[stabilization] + [primacy 
gradient]

-153

Note. Model comparison was performed using a top-down approach, by considering first the most 
complex models justified by our experimental design and theories. Negative values indicate better 
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fit for m1 as compared to m2.

Figure 12

Model predictions from Experiment 2

Note. Top left panel: Empirical data. Top right panel: model including a consolidation, stabilization 

and encoding-resource mechanisms. Bottom left panel: model including a consolidation, 
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stabilization and primacy gradient mechanisms. The winning model across the whole model 

comparison analysis is displayed on the bottom left panel. 

Figure 13

Simulation results from Experiment 2 – Best model without the main mechanisms

41

704

705

706

707

708



Note. These curves were obtained by taking the best fitting model (see Figure 12, bottom left 

panel), and removing each mechanism one by one.

Discussion

Results from Experiment 2 show that the symmetrical serial position curves observed in 

Experiment 1 are likely due to the last item benefiting from strong recency. Once a distractor task is 
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included between encoding and recall, serial position curves display a primacy effect across input 

position, regardless of the recall condition considered. These results have implications for studies 

using the forward/backward recall paradigm (Dougherty et al., 2023; Liu & Caplan, 2020), as they 

suggest that it might not be the best tool to disentangle the role of encoding- versus recall-related 

processes in WM. As the last item in the backward recall condition might be very strongly 

represented (for instance, by virtue of being in the focus of attention) at the time of recall, this could 

give the false impression that serial position curves are almost entirely explained by output 

interference. Using a distractor task as we did provides a quick fix to this problem. 

The free-time benefit in the forward-backward recall paradigm is best explained by a model 

including a primacy gradient of activation, a consolidation mechanism, and a stabilization 

mechanism. The fact that the consolidation mechanism was favored in Experiment 2 contrasts with 

the results from Experiment 1. This issue is again likely due to the methodological limitations of 

Experiment 1. Despite the broad convergence of these results, one risk of our modeling approach is 

to end-up with a model which is task-specific. It is possible that while the combination of 

mechanisms selected through model comparison works for a forward-backward recall paradigm, it 

might fail at fitting results in a different paradigm. In the next experiment, we extend the free-time 

manipulation to a cued recall WM paradigm.

Experiment 3

This experiment manipulates presentation rate in a cued recall paradigm. In cued recall, 

participants are presented with a list of items to be remembered and recall the items given a 

positional cue. Items are cued in random order. For instance, given the list “ABCDEF”, participants 

could be cued with “position 3”, and must recall “C”, followed by the cue “position 6” to which 

they have to answer “F”, and so forth. Contrary to the forward-backward recall paradigm used in 
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the previous experiments, the cued recall paradigm has the advantage that items recalled first can be 

any item in the list, and not necessarily the first or last encoded items. This allows plotting memory 

performance as a function of input and output position in an independent manner, thereby providing 

a more direct picture of the free-time benefit for each serial position. Finally, Experiment 3 is a 

conceptual replication of the experiments conducted above. If the results observed in the previous 

experiments are robust, they should generalize to other paradigms.

 Methods

Optional stopping rule. In Experiment 3, sample size was defined using the same optional 

stopping rule based on effect size stabilization as Experiment 1. Using this stopping rule, we 

reached a final sample size of 44 participants. The evolution of the effect size across sample size is 

displayed in Figure 14. As can be seen, the effect size stabilized again at d ~ 1.5.

Figure 14

Effect size stabilization – Experiment 3
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Note. Cohen’s ds were computed using the difference between the fastest (0.5 seconds / item) and 

slowest (4.0 seconds / item) time conditions.

 

Participants. Forty-four young adults aged between 18 and 35 years were recruited on the 

online platform Prolific (https://prolific.co/). All participants were English native speakers, reported 

no history of neurological disorder or learning difficulty, and gave their written informed consent 

before starting the experiment. The experiment had been approved by the ethics committee of the 

Faculty of Psychology at the University of Liège, project #2021-024. 

Design. Using the cued recall paradigm, we are left with four experimental conditions: four 

presentation rate conditions. All participants performed the four experimental conditions. Given the 

large number of possible recall combination (i.e., 6! = 720), results cannot be analyzed separately 

for each recall condition. Instead, results must be aggregated across recall conditions. Thanks to this 

aggregation process, memory performance can then be assessed across both input and output 

position.

Material. The lists were constructed using the same material and the same constraints as in 

Experiment 1 and Experiment 2. There were 16 lists per presentation rate condition, leading to a 
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total of 64 experimental trials. Recall order was defined using the following constraints. For each 

presentation rate condition, we generated 8 recall orders by sampling from the numbers [1, 2, 3, 4, 

5, 6] without replacement. We then checked that each input position was included at least once in 

each output position. If this criterion was reached, we repeated the process a second time. 

Procedure. Participants were presented with six items to be remembered, with a varying 

presentation rate (i.e., 0.5, 1.0, 2.0 or 4.0 items per second). After the presentation of the last item to 

be remembered, participants were presented with a prompt box, along with a number below it 

indicating the position of the item they had to recall. For instance, if participants were presented 

with the items “tranquility, beer, square, uncle, stone, plague” (in this order), they could be 

presented with the cue “5”, to which they had to respond “stone”. They could then be presented 

with “1”, to which they had to respond “tranquility”, and so forth until all items were tested once. If 

participants could not remember an item, they were instructed to leave the prompt box empty. The 

rest of the procedure was identical to Experiments 1 and 2. The task is illustrated in Figure 15.

Figure 15

Setup used in Experiment 3
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Note. Participants were visually presented with six items to be remembered. Presentation rate varied 

depending on the encoding time condition (i.e., 0.5, 1.0, 2.0, or 4.0 seconds per item). After the 

presentation of the last word to be remembered, participants were cued with a number below a 

prompt box, indicating the position of the word to-be-remembered. All items were tested once.

Scoring procedure. Participants’ responses were scored as in Experiment 1.

Statistical analyses. Statistical analyses were conducted using the same strategy as in 

Experiment 1. 

Results

Recall performance as a function of input and output position is displayed in Figure 16. The 

Bayesian logistic regression model indicates that memory performance increased with slower 

presentation rates, and this was supported by decisive evidence when analyzed across input (BF10 = 

4.939e+7) and output (BF10 = 4,695) position.

Figure 16
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Empirical results – Experiment 3

Note. Error bars indicate 95% confidence intervals, corrected for within-subject variability.

Model fitting

We performed model comparison using the same top-down approach as used in Experiment 

1 and Experiment 2. A summary of this analysis is reported in Table 5.

We started with a model including the consolidation, stabilization, and encoding-resource 

mechanisms. We compared this model against a model including the consolidation, stabilization, 

and primacy gradient mechanisms. Results indicate that the data were 358 times more likely under 

the model including the primacy gradient of activation than under the model including the 

encoding-resource mechanism. Predictions from these two models are reported in Figure 17. Again, 

the encoding-resource mechanism did not contribute much to the goodness-of-fit as compared to a 

primacy gradient of activation, suggesting a minor role in simulating the free-time benefit.

Next, we compared the model including the consolidation, stabilization and primacy 

gradient mechanisms against the same model without the primacy gradient mechanism. We found 
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that the data were 469 times more likely under the model including the primacy gradient 

mechanism than under the model not including it. As in the other experiments, removing the 

primacy gradient mechanism resulted in no primacy effect across input position, as can be seen in 

Figure 18, under the “Without primacy” panel.

We next compared the model including the consolidation, stabilization and primacy gradient 

mechanisms against the same model without the stabilization mechanism. Results indicate that the 

data were 86 times more likely under the model including the stabilization mechanism than under 

the model not including it. Again, without this mechanism, the free-time benefit would be equally 

strong across serial position, leading to no fanning-out effect and therefore a wrong quantitative 

prediction, as can be seen in Figure 18, “Without stabilization” panel.

Finally, we compared the model including the consolidation, stabilization and primacy 

gradient mechanisms against the same model without the consolidation mechanism. The data were 

50 times more likely under the model including the consolidation mechanism than under the model 

not including it. Consistent with Experiment 2, dropping the consolidation mechanism results in no 

free-time benefit for output position 1 (see Figure 18, “Without consolidation” panel), a result 

which is clearly observed when looking at Figure 16. Overall, the best-fitting model was the model 

including the consolidation, stabilization and primacy gradient mechanisms. Predictions from this 

model are illustrated in Figure 17, bottom panel.

Table 5. Model comparison from Experiment 3

Model 1 Model 2 BICm1−BICm2

Step 1
[consolidation] + [stabilization] + 
[encoding-resource]

[consolidation] + 
[stabilization ] + [primacy 
gradient]

358

Step 2
[consolidation] + [stabilization] + 
[primacy gradient]

[consolidation] + 
[stabilization]

-469
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Step 3
[consolidation] + [stabilization] + 
[primacy gradient]

[consolidation] + [primacy 
gradient]

-86

Step 4
[consolidation] + [stabilization] + 
[primacy gradient]

[stabilization] + [primacy 
gradient]

-50

Note. Model comparison was performed using a top-down approach, by considering first the most 
complex models justified by our experimental design and theories. Negative values indicate better 
fit for m1 as compared to m2.

Figure 17

Model predictions from Experiment 3
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Note. Upper left panel: Empirical data. Upper right panel: model including a consolidation, 

stabilization and encoding-resource mechanisms. Bottom left panel: model including a 

consolidation, stabilization and primacy gradient mechanisms. The winning model across the whole 

model comparison analysis is displayed on the bottom left panel. 

Figure 18
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Simulation results from Experiment 2 – Best model without the main mechanisms

Note. These curves were obtained by taking the best fitting model (see Figure 17, bottom left 

panel), and removing each mechanism one by one.
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Discussion

Results of Experiment 3 converged with those observed in previous experiments: there was 

a clear free-time benefit. Model comparison showed that a model including the consolidation and 

stabilization mechanisms was necessary to account for the data. Similarly, we did not find evidence 

that an encoding-resource mechanism was necessary to account for the free-time benefit. Instead, a 

primacy gradient of activation mechanism was critical to produce a primacy effect across input 

position. In the next section, we explore the ability of another model to account for the free-time 

benefit, namely the TBRS* model. 

Additional Simulations: TBRS*

In this section, we focus on the ability of decay and refreshing models to capture the free-

time benefit using the TBRS* architecture, a connectionist implementation of the Time-Based 

Resource Sharing Theory (TBRS, Barrouillet et al., 2004). We chose to use an existing 

connectionist model to test the decay and refreshing account of the free-time benefit, because the 

dynamics associated with these maintenance-related processes are too complex to be captured by a 

closed-form expression. Oberauer (2022) provided a simple mathematical formalization of what 

should theoretically happen in a decay and refreshing model, but he did not directly simulate the 

dynamics of these mechanisms.

In the TBRS theory, items constantly decay when out of attention. Decay can be 

counteracted by going back to a previously encoded item using the focus of attention, a central 

bottleneck limited to one item. The TBRS* model is the most advanced description of the TBRS 

theory, as it makes explicit assumptions regarding every mechanism implemented in its core 

architecture. The model describes how (i.e., via which processes) items are refreshed, for how long, 

and in which order, a feature absent in other verbal or mathematical descriptions of the theory (e.g., 
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Barrouillet et al., 2004; Gauvrit & Mathy, 2018). As TBRS is a theory in which time plays an 

important role, it is the best candidate to model the free-time benefit when considering a decay and 

refreshing perspective. Although the TBRS* model has been used in the context of many WM 

paradigms (Kowialiewski et al., 2021; Kowialiewski, Lemaire, et al., 2024; Lemaire et al., 2021; 

Lemaire & Portrat, 2018; Portrat et al., 2016; Portrat & Lemaire, 2015), whether it can simulate the 

free-time benefit in immediate serial recall has not yet been tested.

We will not re-describe the mathematical implementation of TBRS* in this manuscript. The 

reader interested in the exact implementation can read the original publication in Oberauer & 

Lewandowsky (2011). The publications by Lemaire and Portrat (2018) and Portrat et al. (2016) also 

contain useful information and illustrations. We provide here a verbal description of the general 

principles of TBRS* to keep the manuscript accessible enough.

Model description

As in many WM models (including those presented above), encoding in TBRS* is done by 

binding items to positional contexts. Bindings are formed by creating new associations using rapid 

Hebbian learning. These associations are stored in a weight matrix. When out of attention, the item-

context associations in the weight matrix continually decay by scaling them by a constant 

proportion which depends on the elapsed time. If there is free-time available between successive 

encoding periods, the deleterious effect of decay can be counteracted by restoring the item-context 

associations. This is done using refreshing.

Refreshing starts by retrieving the desired item after cueing it with its positional context. 

Hence, the same mechanisms are involved in both refreshing and recall. This implies that refreshing 

is subject to potential failure, such as retrieving a wrong list-item (i.e., transposition error) or the 

inability to retrieve an item at all (i.e., omission error). This property is precisely the reason why the 
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dynamics of the model are complex and must be simulated (i.e., a closed-form expression is 

difficult to derive). After identifying the item to be refreshed, it is re-encoded to the context which 

served as a cue to retrieve it using the same rapid Hebbian learning used during encoding. In 

TBRS*, the time dedicated to refreshing an item is set at 80ms (Vergauwe & Cowan, 2015)5. 

During the time spent refreshing an item, all the other representations decay, because they are out of 

attention. After the encoding phase, the model recalls items by retrieving them one by one using the 

same mechanism as those used during refreshing. When recalling an item, all WM representations 

decay due to the mere passage of time. This encoding duration is fixed to 500 ms by default. 

In TBRS*, four sources of errors are possible. First, the model can recall a non-target item 

that was part of the list (i.e., transposition error). This phenomenon is due to both the positional 

uncertainty and the noise added at retrieval. Second, there is some probability to recall an item 

which was not part of the list, resulting in an extra-list intrusion. This occurs because when cueing 

an item from its context, this generates a pattern of activation to which some noise is added. The 

noise is also added to items that were not part of the list, resulting in a non-null probability that the 

activation level of a non-list item wins the competition. Third, the model can fail to retrieve an item, 

resulting in an omission error. Omissions are modeled by determining an omission threshold. At 

retrieval, if all item activations are below the omission threshold, there will be no output. Fourth, 

the model can recall an item which has already been recalled, resulting in a repetition error. To 

prevent repetitions, the model implements a form of response suppression called removal, which is 

done by performing Hebbian anti-learning. Hebbian anti-learning is equivalent to encoding via 

rapid Hebbian learning, except that a negative learning rate is used, thus removing the item from 

WM.

5Note that a recent empirical exploration of refreshing estimates it to 200 ms (Oberauer & Souza, 2020). In these 

simulations, we stick with the 80 ms value to stay as close as possible to the original implementation.
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There are different ways the model can refresh items. Different schedules have been 

proposed, such as refreshing items cumulatively (1, 2 – 1, 2, 3 – 1, 2, 3, 4…) (Vergauwe et al., 

2016), or refreshing the least activated item (Lemaire et al., 2018). In these simulations, we set the 

refreshing schedule to cumulative as implemented in the original TBRS* architecture. Basically, the 

model starts by cueing the item with the first positional cue, re-encodes the item, and then performs 

the same operation using the next positional cue (i.e., position 2), and so forth until the last encoded 

item. The model then cycles back to the first item and continues this loop until the next to-be-

remembered item appears. This way of refreshing items creates a primacy gradient of activation 

without the need for an explicit mechanism (Oberauer & Lewandowsky, 2011).

Results 

Figure 19 reports simulations results from TBRS*. The model was run using the default 

parameter values (see Appendix B). The TBRS* model predicts a free-time disadvantage: Slower 

presentation rate leads to poorer recall performance. This pattern of results may appear surprising at 

first. We tested whether this property of the TBRS* model is specific to the set of parameters used 

in the current simulations, or due to a general property of the model. We ran a grid search covering 

a broad range of the parameter space, involving 16,384 data points. Each data point involved 2,500 

simulated trials. The model was therefore run for a total of 40,960,000 trials. The range of values 

and associated parameters are reported in Table B2 (see Appendix B). In this grid search, the 

model performed immediate serial recall in forward order across all four time conditions. Results 

from this grid search indicate that the model got better with slower presentation rates in only 2.9% 

of the explored parameter space, and got worse in 66.6%. The remaining percentages represents 

cases where the direction of the effect was not systematic across the four conditions. We therefore 
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reach the conclusion that TBRS* predicts a free-time disadvantage, which constitutes a general 

property of the model.

Figure 19

Simulation results from the TBRS* model

Note. The model was run using the default parameter values.

Why does TBRS* predict a free-time disadvantage? First, faster presentation rates lead to 

less time-based forgetting. Consider the extreme case in which items are presented as quickly as 

0.5s / item, such as in the present study. In this configuration, three seconds occur between the 

beginning of the presentation of the first item and the retrieval phase. These three seconds are not 

enough to cause strong time-based forgetting. Hence, items are still very active right before 

recalling them. Second, more free-time between two encoding periods induces forgetting due to 
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refreshing. Because in TBRS* the process of refreshing an item is equivalent to retrieving it, 

increased refreshing opportunities also means increased occurrence of retrieval-based errors. This is 

an unintuitive consequence of refreshing which is often overlooked: Refreshing is supposed to 

counteract the deleterious effect of decay. But because refreshing (and therefore retrieval) is 

necessarily error-prone, more refreshing also results in a higher absolute number of errors, a 

property already identified by Lewandowsky & Oberauer (2015). To illustrate this, we display in 

Figure 20 the time-course of items’ activation over one trial in fast and slow presentation rate 

conditions. In the fast encoding-time condition, no item has been forgotten over the whole trial, and 

all of them are available at retrieval, as indicated by their activation level well-above the omission 

threshold (i.e., the red horizontal line). The only possible errors are therefore those occurring during 

recall. In contrast, in the slow encoding-time condition, although items are maintained through 

refreshing, some of them are dropped from the competition due to retrieval-related errors. In Figure 

20, right panel, items 2 and 5 are dropped from the competition, which is indicated by their 

activation value decaying towards zero. During the recall phase, the model is therefore left with 

only 4 items. This is in contrast with the fast presentation rate condition in which all items are still 

available at retrieval. This mere pattern leads to better recall performance in the fast encoding time 

condition.

Figure 20

Time-course of the model over one trial
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Note. Left panel: fast presentation rate condition. Right panel: slow presentation rate condition. 

Activation values were extracted by averaging values of weights connecting items to their contexts. 

The x-axis represents the discrete simulated steps in the model, although all processes are 

implemented in a continuous way in the mathematical equations.

To demonstrate the argument exposed in the previous paragraph, Figure 21 displays the 

proportion of forgotten items (i.e., items below the omission threshold) after the end of the encoding 

phase (i.e., right before the model starts recalling the items) for each item (1 through 6) and across 

presentations rates (0.5, 1.0, 2.0 and 4.0s / item). These proportions result from 100,000 simulated 

trials using the standard parameters of the model. As illustrated, the proportion of items forgotten 

during encoding/maintenance was virtually zero in the fastest condition. As presentation rate 

slowed down, this proportion increased for all items. Thus, additional free-time does not necessarily 

benefit WM performance in decay and refreshing models.

Figure 21
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Proportion of items forgotten right before recalling the items in the TBRS* model

Note. Proportions were computed over 100,000 simulated trials for each encoding time condition. 

An item was considered forgotten if its activation level fell below the value corresponding to the 

omission threshold.

The fact that we failed to reproduce the free-time benefit in immediate serial recall using 

TBRS* seems to be at odd with multiple studies which successfully modeled the cognitive load 

effect with it (Lemaire et al., 2018, 2021; Lemaire & Portrat, 2018; Oberauer & Lewandowsky, 

2011; Portrat & Lemaire, 2015). Basically, when people process distractors between memoranda, 

they forget more items, and this forgetting increases with the time they spend processing distractors. 

We also reproduce the cognitive load effect in TBRS*, as reported in Appendix C. Why does this 

contradiction occur? Cognitive load is usually manipulated in designs in which a long period of 

time occurs between the occurrence of the first item and the recall phase. In such slow-paced 
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designs, additional free-time doesn’t affect TBRS*, as shown in Figure 22, left and middle panels. 

This is because with long retention intervals, refreshing perfectly compensates decay, and the model 

reaches a stable equilibrium. Introducing distractors breaks this equilibrium, causing additional 

forgetting, as illustrated in Figure 22, right panel. This phenomenon drives the cognitive load 

effect. In immediate serial recall however, the very fast presentation rate of the items prevents them 

from decaying, reducing forgetting. Thus, presenting items more rapidly in the absence of 

distractors improves memory performance in the model, which explains this apparent contradiction.

Figure 22

Time course in the model

Note. Comparing the left and middle panels, adding more free-time in a slow-paced experiment 

design doesn’t improve memory performance, because decay and refreshing perfectly balance each 

other, leading to an equilibrium. Adding two distractors per item (right panel) disrupts this 

equilibrium. 

To sum up, these additional simulations show that TBRS* cannot simulate the free-time 

benefit in immediate serial recall. This occurs because faster presentation rates compensate for the 
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deleterious effect of decay, and more free-time causes more opportunities to produce retrieval-based 

errors during maintenance via refreshing (see also Lewandowsky & Oberauer, 2015).

General Discussion

This study aimed to understand how giving people more time to study items affects the way 

they memorize and subsequently recall them serially. To achieve this, we used a combined method 

involving behavioral experiments and computational modeling for providing a comprehensive 

assessment of the plausibility of the different candidate-mechanisms that have been forwarded to 

explain the free-time benefit. Our results consistently favor two mechanisms. The first one is a 

consolidation mechanism based on the re-encoding of the just-encoded item. The second one is a 

stabilization mechanism whereby items resist more strongly to output interference with additional 

free time.

Where Does the Free-Time Benefit Come From?

In contrast to our results, the original simulation work reported by Oberauer (2022) did not 

favor a consolidation mechanism in which the just-encoded item continues to be encoded. This 

discrepancy stems from the fact that the forward-recall paradigm used by Oberauer was not optimal 

to show the manifestation of such a mechanism. In our data, this is demonstrated by a systematic 

recall advantage for items encoded first. In addition to this consolidation mechanism, our results 

support a mechanism in which additional free time benefits WM performance by stabilizing the 

just-encoded item, which becomes more robust to output interference. It is conceivable that both the 

consolidation and stabilization mechanisms occur simultaneously when people re-encode the item 

they just saw, or that one mechanism is the consequence of the other. One limitation of our 

approach is that these mechanisms lack a more precise implementation. This choice is a 
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consequence of our strategy to use a standard model of WM in which only the commonly accepted 

assumptions of most WM models were incorporated (Cowan et al., 2002; Henson, 1998; Hurlstone 

& Hitch, 2015; Lewandowsky, 1999; Page & Norris, 1998). In order to fully test the plausibility of 

these mechanisms, they should be implemented in more detailed architectures in the future.

Candidates architecture for this endeavor involve models postulating that items are encoded 

in WM using feature vectors, such as interference models (Oberauer et al., 2012; Oberauer & Lin, 

2024), or more recently the Revised Feature Model (Saint-Aubin et al., 2021). In these models, 

items are encoded as feature vectors by associating them to positional markers. Items are retrieved 

by first cueing them with their position, as classically done in most WM models. However, because 

these features are subject to interference to a varying degree, they cannot be recalled as such, but 

must be compared to items stored in long-term memory (i.e., in the lexicon). During this 

comparison process, the best-matching vectors are most likely to be selected for output. One way 

these models could account for the free-time benefit is by adding the assumption that people refocus 

their attention on the just-encoded item, thus partially restoring the vector to its initial configuration 

or by re-encoding it more strongly. One additional consequence could also be to enrich the vector 

with additional features that aren't initially encoded (McClelland & Chappell, 1998; Ricker & 

Vergauwe, 2022; Shiffrin & Steyvers, 1997), possibly through a deeper semantic encoding. This 

could especially be the case for those items that would benefit the most from a deeper encoding 

process, such as concrete words. This hypothesis would align with Oberauer (2022)'s observation 

that concrete words benefit more from additional free time than abstract words do. Hence, our 

findings pave the way for future modeling work, especially the way these mechanisms could be 

integrated in broader architectures.

It must be noted that the Revised Feature Model currently includes a rehearsal mechanism 

operating during the free-time available between memoranda. A recent study suggests that such a 
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rehearsal mechanism can explain patterns of results observed in the production effect (Dauphinee et 

al., 2024). However, this rehearsal mechanism, by itself, cannot simulate the free-time benefit 

because people still benefit from additional free time under concurrent articulation (Oberauer, 

2022).

It is important to note that our method does not allow for exploring differences regarding the 

best-fitting model at an individual level. It is possible that the type of best-fitting model(s) varies 

across participants. Answering to that question would however require increasing the number of 

trials  per  participants  so  as  to  minimize  intra-individual  variability.  Therefore,  our  approach is  

currently  limited  to  tell  whether  a  particular  mechanism  is  being  supported  or  not,  generally 

speaking.  Based  on  fine-grained  modeling  works,  it  would  be  important  in  future  studies  to 

establish to what extent participants differ in their encoding strategies, as recently shown (Bartsch et 

al., 2024).

The Encoding-Resource Mechanism

Although our series of experiments did not favor an encoding-resource mechanism, a recent 

study suggests its existence. Recently, Mizrak and Oberauer (2021) proposed a gap manipulation 

paradigm in which participants encoded lists of letters and recalled them serially. The gap 

manipulation involved the inclusion of a pause between two items, which occurred at an unexpected 

inter-item list position. To control for the overall impact of temporal grouping (Ryan, 1969), Mizrak 

and Oberauer included two gap conditions, one involving a short gap and another one involving a 

long gap. Comparison between both gap conditions showed that the long gap manipulation 

improved memory performance for the items following the gap, creating a proactive benefit. 

Memory performance slightly increased only for the item directly preceding the longer gap, 

producing a limited retroactive benefit. These results support the encoding-resource mechanism, as 
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it is the only one predicting a proactive benefit, but no retroactive benefit. At the same time, the 

results of Mizrak and Oberauer conflict with other observations. Maybery et al. (2002) performed a 

similar experiment involving long and short gaps, except that in the long gap condition, items were 

presented more rapidly within each group. Contrary to the encoding-resource mechanism’s 

predictions, they observed that the long gap manipulation increased memory performance globally, 

producing proactive and retroactive benefits. If anything, an encoding-resource mechanism should 

have predicted worse memory performance for items at the beginning of the list in the long gap 

condition due to the lack of resource replenishment with faster presentation rates. Similarly, Ryan 

(1969) failed to show that increasing the gap in temporal grouping manipulations improved memory 

performance. One feature of these studies is the fact that they all involve a form of temporal 

grouping. This is a limitation, because current models of WM fall short at providing a fully 

satisfying explanation of this phenomenon (see Gorin, 2021), which also means that potential 

interactions between temporal grouping and additional free time are currently outside of our 

understanding. One way to resolve these current contradictions is to better understand what 

mechanisms drive the temporal grouping effect, coupled with a deeper behavioral exploration of the 

gap manipulation. Overall, our study does not rule out the existence of an encoding-resource 

mechanism. It mainly shows that this mechanism does not better account for the data we report 

here. There are also variations of this mechanism we did not consider. For instance, Ricker and 

Vergauwe (2022) recently suggested the possibility that the encoding-resource mechanism could 

limit the amount of enrichment of a given memory representation. Hence, our results suggest that if 

the encoding-resource mechanism exists, it is not the only mechanism accounting for the free-time 

benefit. This conclusion contrasts with the one Oberauer (2022) reached, for whom the encoding-

resource mechanism was the most plausible among all the tested alternatives.
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The Question of Decay and Refreshing

Simulations reported by Oberauer (2022) showed that a decay and refreshing model cannot 

account for the fanning-out effect, as these models produced a reversed fanning-out effect (i.e., 

bigger free-time benefit for early than late items). The present study goes even further by showing 

that the TBRS* model implementing decay and refreshing processes in a more realistic manner  

predicts a reversed free-time benefit. This is explained by the fact that faster presentation rates 

imply less time-based decay, thus producing an opposite effect. This result contradicts the intuitive 

idea that providing more free-time should necessarily increase refreshing opportunities, which 

would in turn counteract the deleterious effect of decay. The free-time benefit is not the only time-

based phenomenon that TBRS* fails to simulate. Farrell et al. (2016) performed a series of 

experiments involving complex span tasks. Farrell and colleagues manipulated the frequency of 

distractors appearing at specific serial positions and observed that this manipulation affected 

memory performance locally. In contrast to this, distractors affect items globally in TBRS*, because 

decay affects all items simultaneously when attention is driven away from memoranda. In addition, 

a recent study found an absence of cognitive load effect in a Brown-Peterson paradigm (Langerock 

et al., 2024), a result which is also difficult to reconcile with the TBRS theory whose foundations lie 

in the cognitive load effect. Together with our results, these studies present challenges for decay and 

refreshing models. Addressing these issues is important to improve this family of models in the 

future. 

The way forward is to revise some of the assumptions implemented in TBRS*, and test if 

such revisions have any improvement on the model’s predictions. For instance, one could consider 

the possibility that items decay less rapidly after each refreshing opportunity. With this assumption, 

additional free time would result in fewer decay and therefore better recall performance in slow as 

compared to fast presentation rates. It is important to not completely reject a whole family of 
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models based on the fact that a specific implementation fails at accounting for some benchmarks. 

Despite their limitations, decay and refreshing models offer a sound explanation for other important 

phenomena. First, they naturally produce a primacy gradient of activation without the need for a 

specific mechanism. Second, they do not require an explicit output interference mechanism either, 

because the time spent recalling the items already produces this effect. Third, they explain why the 

last-encoded item is very strongly represented into WM, a phenomenon also observed in our 

simulations (see Figure 19).

Conclusion

Recent studies suggest that presenting items at a slower presentation rate improves memory 

performance only in a proactive manner. In contrast to this, our experiments involving a broader 

range of experimental conditions reveal that slower presentation rates improves memory 

performance across the entire list. Our computational modeling work indicates that the two most 

plausible explanations for this free-time benefit involve the re-encoding of the just-presented item 

and a stabilization mechanism that mitigates the impact of output interference. While challenging 

existing accounts of the free-time benefit, our results offer promising prospects for future 

developments of computational accounts of WM and the free-time benefit. 
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Appendix A

To define the re value of 0.44 used for the encoding-resource mechanism, we performed a 

grid search over the pr and re parameters, comparing a fast (1 second/item) and slow (4 

second/item) presentation rate. We computed the mean difference between these two presentation 

rate conditions for each point in the parameter space. Both parameters were bounded between 0.1 

and 0.9. Results of this grid search are displayed in the figure below:

The Y-axis represents the mean difference between the fast and slow conditions: the higher 

the value, the bigger the free-time benefit. Each line represents a different pr value, as indicated by 

the legend. Finally, each point on the X-axis represents a different  re value. This figure indicates 

that fixing the  re parameter to 0.44 and estimating  pr freely allows the mechanism to cover the 

broadest range of possible outcomes. This  re value was chosen by looking at the top line, which 

corresponds to a pr value of 0.9. For this parameter value, the maximum possible observable free-
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time benefit is located at re = 0.44. With this configuration, the model can produce a mean encoding 

strength difference ranging from nearly 0.0 (if pr is set to 0.1) to around 0.35 (if pr is set to 0.9).
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Appendix B

Table B1. Default values used in the TBRS* simulation

Parameter Meaning Value

R Processing rate 6.0

σ Noise added at retrieval 0.02

θ Omission threshold 0.1

D Decay rate 0.5

P Position marker overlap 0.3

s SD of processing rate 1.0

T r Refreshing duration 80 ms

Note. Values were taken from the original Oberauer and Lewandowsky (2011) study.

Table B2. Range of values used in the grid search

Parameter Meaning Range

R Processing rate [1.0 – 6.0] step = 0.714

σ Noise added at retrieval [0.0 – 0.5] step = 0.071

θ Omission threshold [0.0 – 0.6] step = 0.086

D Decay rate [0.1 – 0.9] step = 0.114

Note. Steps were chosen to generate eight different values for each parameter.
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Appendix C

Cognitive load effect in TBRS*

Note. The model was launched using 5 items and presentation rates of [3.0, 4.0, 5.0, 6.0]. During 

this total time, attention was occupied 0.5 seconds dedicated to encoding, and the model always 

processed three distractors for periods corresponding to [0.0, 0.25, 0.5, 0.75, 1.0, 1.25]. The two 

variables (presentation rate and time to process distractors) were manipulated orthogonally, leading 

to a total 24 cognitive load levels. Each cognitive load level was run using 10,000 simulations.
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