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In this thesis, the accuracy of the Delayed Detached-Eddy Simulation (DDES) in predict-
ing massively separated flows is examined. In particular, the flows around an airfoil and a flat
plate at high angles of attack are simulated and compared with experimental data.

DDES is a hybrid simulation strategy which combines the Large-Eddy Simulation (LES)
and the Reynolds-Averaged Navier-Stokes (RANS) simulation. The RANS mode of the
DDES approach operates in boundary layers, where the turbulence model works properly,
in order to reduce the computational cost as the use of LES to capture regions of thin bound-
ary layer is expensive. The LES mode operates in regions where the flow is separated to
capture large scales which are configuration-dependent and anisotropic.

For both tested configurations, the DDES approach based on the Spalart-Allmaras (S-A)
model produces numerical predictions that are in good agreement with the experimental mea-
surements of the aerodynamic force coefficients. By contrast, unsteady RANS simulations
using the S-A turbulence model tend to overestimate the dimensionless force coefficients,
especially when large regions of massive separation are present in the flow at high angle of
attack.

With the DDES approach, the resolution of the grid must be fine enough to capture the
details of the physical phenomena present in turbulent flows as smaller eddies are captured by
DDES if the mesh is refined.

The DDES results reveal the three-dimensional character of the separated flows around the
considered bodies: 3D effects and instabilities appear. The span length of the computational
domain is therefore an important factor to predict the aerodynamic forces reliably. In general,
the amplitudes of the fluctuations of the aerodynamic force coefficients obtained by DDES
are reduced if the span length is longer. The time-averaged lift and drag coefficients are also
slightly reduced due to an increase in three-dimensionality.

The generated flow fields are processed using the Dynamic Mode Decomposition (DMD)
method in order to extract dynamic information about the considered separated flows. The
physics of a complex flow problem experiencing separation is challenging and the dynamic
behavior of the flow problem can be described by the most dominant dynamic modes. The
dynamic mode decomposition of the flow fields also facilitates the comparisons between the
different approaches used to analyze the flows, i.e., CFD results and experimental measure-
ments.

For instance, DMD is able to extract the dominant flow structures from the DDES results
to explain the asymmetrical vortex shedding in the case of the flow past a flat plate at an angle
of attack of 30° and at a Reynolds number of 2×104.
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Chapter 1

Introduction

The present final year project focuses on massively separated external flows. The de-
scription of the physics of these kinds of flow is challenging as turbulent flows, which are
random and chaotic, involve a large range of scales, high mixing rates, three-dimensional
vorticity and dissipation [4].

The motivation to simulate these phenomena is that flow unsteadiness due to large
regions of separated flow can occur in many engineering applications and in practical
situations.

Among the applications in aeronautics, an illustration is the massively separated flow
behind spoilers which are components placed on an aircraft’s wing: their deployment
reduces the lift and increases the drag. For instance, such devices are used on some large
commercial aircraft for landing or the roll motion.

Another application concerns the delta wings which create conical vortices to generate
lift. These vortices break down at high angles of attack.

In general, unsteady flows are prevalent during the takeoff and landing phases of a
flight and during maneuvers. In the history of aviation, many fatal aircraft incidents oc-
curred due to loss of control in the stall regime, where a large turbulent wake is generated
behind the wing. As an example, 147 aircraft (mostly fighters) were lost due to an aero-
dynamic stall encountered at high angle of attack in the United States in the 1966–1970
period [13]. Accidents of this kind put emphasis on the need for a better understanding
and prediction of separated flows.

Unsteady phenomena also occur in many other situations such as the flows around
cars, submarines, bridges and high rise buildings, just to name a few.

RANS turbulence models, even the most complex ones, are not able to predict mas-
sively separated flows (e.g., the flow past the landing gear of an aircraft) with engineering
accuracy; this is particularly the case when the eddies of the flow are highly geometry-
specific [25].
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Large-Eddy Simulations (LES) have a higher accuracy compared to the existing RANS
simulations. However, LES is computationally expensive for an airplane wing because the
boundary layer is thin and it covers a large area near the leading edge. Spalart et al. [22]
estimate the cost for LES on a typical airplane wing free of separation and with unde-
ployed control surfaces. In this paper’s study case, the Reynolds number is set near flight
values, the aspect ratio of the wing is equal to 8 and the taper ratio is 0.3. The authors
show that the number of grid points has to be at least of the order of 1011 and the as-
sociated number of time steps is about 5× 106. The required number of floating-point
operations will be unmanageable for several decades. The flow around an airplane wing
has a wide range of scales; LES may be more appropriate for simpler configurations with
a smaller range of scales (e.g., separated flows at lower Reynolds numbers).

A hybrid simulation strategy called Detached-Eddy Simulation (DES) is formulated
in order to address the high computing cost of LES. Also, the Delayed Detached-Eddy
Simulation (DDES), which is an improved version of the DES technique, is introduced
in order to correct some inaccuracies of the original formulation depending on the grid
density (see Chapter 2). DDES operates as a RANS simulation in boundary layers and as
LES in regions of separated flow. Eddies inside the boundary layers are modeled whereas
the detached eddies, which are in the separation regions, are resolved.

The first objective of the present work is to construct a DDES case in OpenFOAM and
then to validate the numerical predictions by comparing with data found in the literature
(e.g., experimental measurements or numerical results obtained with a similar or a higher
fidelity approach). For this step, the chosen configuration is an airfoil at high angle of
attack. The problem is challenging since the flow is massively separated.

DDES is three-dimensional; this characteristic raises the following questions:

• How to choose the resolution of the mesh?

• What is the influence of the span length of the computational domain?

These parameters have to be selected appropriately in order to take account of some flow
structures which influence the lift and drag coefficients. One of the objectives of this work
is to answer these questions.

Another main goal of this thesis is to better understand the physics of an unsteady
separated flow. For this step, the flow over an inclined flat plate is studied. The Dynamic
Mode Decomposition (DMD) method based on a sequence of flow fields, which are ob-
tained either numerically or from experimental measurements, is used to obtain informa-
tion about the coherent structures of a flow problem. This technique is especially useful in
combination with the DDES approach, where the predicted flow structures in a turbulent
wake are disordered. Moreover, the variations of the aerodynamic force coefficients can
be related to the extracted flow structures with the DMD analysis.
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OpenFOAM 2.3.0 [6] is the open-source tool for Computational Fluid Dynamics
(CFD) used in this thesis. It consists of a package of functions for numerical simulations
based on the Finite Volume Method (FVM) [10].

1.1 Overview of the thesis

This report is organized as follows. In Chapter 2, the equations governing the motion
of fluids for the flow problems considered in the scope of this work are given with the
associated hypotheses. The main characteristics of the RANS simulation based on the
Spalart-Allmaras (S-A) model and the LES technique are described. Then, the chapter
presents the formulation of the DES and DDES approaches.

In Chapter 3, two-dimensional steady-state RANS simulations of a NACA 0012 airfoil
at low angles of attack are performed using the Spalart-Allmaras turbulence model. The
main purpose of this preliminary study is to validate the RANS predictions of the attached
flows obtained using OpenFOAM. The performance of the S-A model is also assessed by
comparing the RANS results with experimental data. Moreover, the chapter presents in
detail the CFD methodology used to solve the problem.

In Chapter 4, delayed detached-eddy simulations of an airfoil at high angles of attack
are performed. On the one hand, this configuration is used to validate the present numeri-
cal model in OpenFOAM. On the other hand, a grid refinement study is carried out and the
effect of the span length is analyzed. Throughout this report, a particular effort is made to
explain the numerical aspects of the models in detail and to verify the consistency of each
numerical solution by comparing with results available from other studies.

In Chapter 5, the DDES technique is used to simulate the flow around a flat plate at
high angle of attack. Once again, the simulation results are compared with experimental
data (force measurements and PIV).

In Chapter 6, the physics of the flow around the inclined flat plate is studied. The
Dynamic Mode Decomposition (DMD) method is used to obtain information about the
coherent structures of the considered flow problem.

In Chapter 7, the main conclusions of the thesis are summarized and some ideas for
future work are presented.

3



Chapter 2

Turbulence modelling and simulations

In this chapter, the equations governing the motion of fluids for the flow problems consid-
ered in the scope of this work are given with the associated hypotheses.

In this thesis, the DDES technique based on the Spalart-Allmaras model is used. After
the description of the main characteristics of the RANS simulation and the LES technique
(i.e., the two branches of a hybrid LES–RANS approach), the formulation of the DES and
DDES approaches is presented.

2.1 Incompressible Navier-Stokes equations

The flow is considered incompressible (i.e., the density ρ is constant) and the fluid is
Newtonian. The incompressible Navier-Stokes (N-S) equations (conservation of mass
and conservation of momentum) are the governing equations:

∂tui +u j∂ jui =−
1
ρ

∂i p+ν∇
2ui (2.1)

∂ ju j = 0 (2.2)

where ∂i ≡ ∂/∂xi, u is the flow velocity vector, p is the pressure and ν is the kinematic
viscosity of the fluid.

2.2 Reynolds-averaged Navier-Stokes simulation

The Reynolds decomposition is

ui = Ui︸︷︷︸
Average

+ u′i︸︷︷︸
Fluctuation

(2.3)
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The convective term of the N-S equations is written in conservative form, then the Reynolds
decomposition is introduced into the N-S equations and the equations are averaged to ob-
tain the Reynolds-Averaged Navier-Stokes (RANS) equations:

∂tUi +U j∂ jUi =−
1
ρ

∂iP+ν∇
2Ui−∂ j u′ju

′
i︸︷︷︸

Reynolds stress

(2.4)

∂ jU j = 0 (2.5)

The RANS equations are unclosed; a closure model is required for the Reynolds stress.

2.2.1 Spalart-Allmaras model

The Spalart-Allmaras (S-A) model is a one-equation turbulence model for aerodynamic
flows based on a transport equation for an effective eddy viscosity ν̃ , derived from em-
piricism and dimensional analysis [21]. Transport-equation turbulence models are better
than algebraic models for complex flows. The implementation of the S-A model in Open-
FOAM is based on [21].

The Boussinesq hypothesis is used:

−u′iu
′
j +

2
3

kδi j = 2νT Si j (2.6)

where k is the turbulent kinetic energy, νT is the eddy viscosity and Si j is the rate-of-strain
tensor:

Si j =
1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
(2.7)

The term 2/3kδi j of Equation (2.6) is ignored for the S-A model, so that the Reynolds
stress is given by

−u′iu
′
j = 2νT Si j (2.8)

There is a nonlinear relation that transforms the effective eddy viscosity ν̃ to the eddy
viscosity νT :

νT = ν̃ fv1, fv1 =
χ3

χ3 + c3
v1
, χ =

ν̃

ν
(2.9)
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where ν is the kinematic viscosity. The transport equation for ν̃ is formulated as follows:

Dν̃

Dt
= P−D+

1
σ

[
∇ · ((ν + ν̃)∇ν̃)+ cb2(∇ν̃)2] (2.10)

with the material derivative of ν̃ : Dν̃/Dt ≡ ∂ ν̃/∂ t +Ui∂ ν̃/∂xi. The production term is
given by

P = cb1(1− ft2)S̃ν̃ (2.11)

and the destruction term is

D =
(

cw1 fw−
cb1

k2 ft2
)(

ν̃

d

)2

(2.12)

where d is the distance to the closest wall, it influences the behavior of the destruction
term. The modified vorticity S̃ is evaluated by

S̃ = S+
ν̃

κ2d2 fv2, fv2 = 1− χ

1+χ fv1
(2.13)

S is the magnitude of the vorticity:

S =
√

2Ωi jΩi j (2.14)

where Ωi j is the rate-of-rotation tensor:

Ωi j =
1
2

(
∂Ui

∂x j
−

∂U j

∂xi

)
(2.15)

The expression of the function fw is

fw = g

(
1+ c6

w3

g6 + c6
w3

)1/6

, g = r+ cw2(r6− r), r = min
(

ν̃

S̃κ2d2
,10
)

(2.16)

The function ft2 is given by

ft2 = ct3 exp(−ct4χ
2) (2.17)

The constants appearing in the turbulence model are calibrated using spreading and ve-
locity profiles of free-shear layers and the skin friction in a flat plate boundary layer.
Therefore, the S-A model should perform well in these typical canonical flows which
are involved in external flows. The constants are cb1 = 0.1355, σ = 2/3, cb2 = 0.622,
κ = 0.41, cw1 =

cb1
κ2 +

1+cb2
σ

, cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct3 = 1.2 and ct4 = 0.5.
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By construction, the effective eddy viscosity is linear near the wall; this behavior
simplifies the resolution.

The boundary condition at walls is

ν̃ = 0 (2.18)

As stated in [24], for fully turbulent behavior, the recommended boundary condition at
the inflow boundary is

ν̃

ν
= 3 to 5 (2.19)

The value ν̃/ν = 3 gives νT/ν ≈ 0.2.

A RANS simulation is thus a simulation of the statistics of turbulence. Turbulent
flows are random but Reynolds-averaged Navier-Stokes simulations of massively sepa-
rated flows do not predict this property correctly. The turbulence model introduces ap-
proximations and errors in CFD simulations.

2.3 Large-eddy simulation

For homogenous filters, the filtered Navier-Stokes equations are given by

∂kûk = 0 (2.20)

∂t ûi +∂kûkûi =−
1
ρ

∂i p̂+ν∇
2ûi−∂ j τ

SGS
i j︸︷︷︸

Subgrid-scale stress

(2.21)

where the hat (·̂) means filtering and the subgrid-scale stress, which is an unclosed filtered
term, is given by

τ
SGS
i j = ûiu j− ûiû j (2.22)

LES resolves the eddies of turbulence up to a certain scale which depends on the grid
spacing, i.e., LES uses filtering, it cuts off small scales. A subgrid-scale (SGS) closure
model is introduced and it represents dissipative effects of the small eddies that are not
resolved. The model for subgrid scales in LES is less important than the turbulence model
in a RANS simulation for the reason that the unresolved small-scale eddies are less critical
than large scales as they are more universal and isotropic [4, 5].

For turbulent flows at Re encountered in transportation, the cost of LES of the whole
domain including the turbulent boundary layer is too high for the actual computing power
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because in such a situation, the grid spacing for the LES calculation has to scale with a
size which needs to be much smaller than the boundary layer thickness δ as depicted in
Figure 2.1c.

2.4 Detached-eddy simulation

The Detached-Eddy Simulation (DES) approach is formulated in [22].

The destruction term of the S-A model is proportional to (ν̃/d)2 (see Equation (2.12))
and the production term is proportional to S̃ν̃ (see Equation (2.11)). When the production
term balances the destruction term, one can thus write ν̃ ∼ S̃d2. This relation is similar
to the Smagorinsky subgrid closure model for the LES approach which uses ∆, a length
proportional to the grid spacing. Therefore, the S-A model can be used as a subgrid-scale
model if the distance to the nearest wall d is replaced by a length proportional to ∆. In the
DES approach, a length scale d̃ is introduced:

d̃ = min(d,CDES∆) (2.23)

where the empirical constant CDES is of the order of 1 (calibrated to 0.65) and ∆ is defined
as the largest of the grid spacing in all three directions:

∆ = max(∆x,∆y,∆z) (2.24)

• If d� ∆, then d̃ = d and the model acts as a S-A turbulence model (RANS behav-
ior); this situation is encountered in boundary layers where the mesh is non-uniform.
For a RANS simulation, the mesh is stretched in the wall normal direction (see Fig-
ure 2.1a which illustrates a typical RANS or DES grid in a thin boundary layer):
the wall normal grid spacing ∆y is smaller than d but the grid spacing parallel to the
wall ∆x (or ∆z) is greater than d, so that ∆ is greater than d and the length scale d̃
selects the RANS branch.

• If ∆� d, then d̃ =CDES∆ and the model acts as a subgrid-scale model (LES behav-
ior). The smallest eddies that are resolved scale with ∆.

Therefore, the design of the grid controls the behavior of the model. If the grid is
extremely fine in all directions, DES tends to DNS (Direct Numerical Simulation) which
means that the accuracy of the numerical predictions can be improved if the grid is refined.
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2.5 Delayed detached-eddy simulation

The Delayed Detached-Eddy Simulation (DDES) approach is formulated in [23].

In the DES technique, the behavior of the model is not clear in the region where d ∼ ∆

called “grey area”. Moreover, the DES formulation has an incorrect behavior when the
grid spacing parallel to the wall ∆‖ is smaller than the thickness of the boundary layer δ

as illustrated in Figure 2.1b where ∆‖ ≈ ∆x≈ ∆z.

(b) (c)

(a)

Figure 2.1: Grid densities in a boundary layer: (a) DES grid. (b) Ambiguous grid density.
(c) LES grid (the local grid spacing ∆� δ ). The dotted line represents the mean velocity.
The coordinates are non-dimensionalized by the boundary layer thickness δ , from [23].

Hence, the DES length scale d̃ follows the LES mode in a part of the boundary layer
because the grid spacing is fine enough. The eddy viscosity is then reduced and so, the
modeled Reynolds stress too. However, the resolution of the grid has not been designed
fine enough to support LES content in these regions. This incorrect behavior of the model
is known as the Modeled-Stress Depletion (MSD) and a consequence of MSD is that the
skin friction is underestimated. This situation can occur after a grid refinement (∆‖ is low)
or when the boundary layers are thick (δ is high) or near separation.

The idea of the delayed detached-eddy simulation approach is to modify the DES
limiter in order to maintain the RANS eddy viscosity throughout most of the boundary
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layer regardless of the comparison between ∆‖ and δ . The LES function of the method is
delayed compared to the original formulation, hence the name Delayed DES.

In the DDES formulation, a parameter rd (the subscript d stands for delayed) is intro-
duced:

rd =
νT +ν√

∂iu j∂iu jκ2d2
(2.25)

where κ is the Kármán constant. rd equals 1 in the logarithmic layer and it drops to 0 near
the top of the boundary layer. The function fd uses the parameter rd:

fd = 1− tanh
[
(8rd)

3] (2.26)

The constants appearing in the function fd are calibrated by performing tests in a flat plate
boundary layer. In LES regions, rd� 1, then fd ≈ 1 and elsewhere, fd ≈ 0. The shape
of fd is designed to maintain a RANS solution in boundary layers in the case where ∆ is
much smaller than δ .

For DDES based on the S-A model, the DES length scale d̃ is modified as follows:

d̃ = (1− fd)d + fd min(d,CDES∆) (2.27)

If fd = 0, then d̃ = d and the model has a RANS behavior. If fd = 1, then d̃ =min(d,CDES∆)

which corresponds to the original formulation (see Equation (2.23)).
In the original DES formulation, the length scale d̃ is only determined by the grid. In

the Delayed DES formulation, the length scale d̃ is also controlled by the eddy viscosity;
it is time-dependent, it depends on the solution.

Several test cases simulated using the DDES technique have been studied by Spalart et al.
(e.g. flat plate boundary layers, a circular cylinder and so on) to validate the behavior of
this new formulation [23].

In summary, in the DDES approach, the RANS mode operates in boundary layers
where the turbulence model works properly (see Chapter 3) in order to reduce the com-
putational cost (the use of LES to capture regions of thin boundary layer is expensive)
and the LES mode operates in regions where the flow is massively separated to capture
large scales which are configuration-dependent and anisotropic. LES performs well in
free shear flows.

In this thesis, the Spalart-Allmaras model is used as a turbulence model for the RANS
mode and as a subgrid-scale model for the LES mode of the DDES approach for smooth
transition. All the unsteady RANS simulations presented in this thesis are also performed
using the S-A turbulence model.
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Chapter 3

RANS simulation of a 2D airfoil

In this chapter, two-dimensional RANS simulations of a NACA 0012 airfoil at low angles
of attack are performed using the Spalart-Allmaras turbulence model. The purpose of this
preliminary study is to verify that the results given by our RANS simulations performed
with OpenFOAM are in agreement with those available in the literature. The validation
of the RANS results is necessary since the DDES technique contains a RANS mode.

Moreover, this chapter presents some explications and gives a detailed description
about the CFD methodology used to solve the problem. First, the configuration and the
assumptions are defined. The experimental and numerical data used for comparison are
also given. Then, the numerical aspects of the project are described.

The wall pressure coefficient and the dimensionless force coefficients are analyzed
and compared with the experimental data. The flow fields obtained at the maximum angle
of attack tested in this chapter are steady-state.

3.1 Configuration description

A 2D NACA 0012 airfoil is considered. Three-dimensional effects are neglected in this
chapter (homogeneous in z). The NACA 0012 airfoil given in Figure 3.1 has the following
shape parameters: the thickness ratio is 12%, the maximum thickness is located at 30%
of the chord from the leading edge and this wing section has no camber. The ordinates of
this section type are computed with the formulas defining the 4-digit series of the NACA
airfoils.

Moreover, the trailing edge is sharp (i.e., zero-thickness at the trailing edge).

3.1.1 Assumptions and simplifications

The flow is considered incompressible as the Mach number M is 0.15 . 0.3 (order of
magnitude for the incompressibility condition [2]). Therefore, the density ρ remains con-
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Figure 3.1: NACA 0012 airfoil.

stant and this flow problem is only controlled by the Reynolds number Re, i.e., turbulence
does not depend on the fluid, it is a flow property. The Reynolds number based on the
velocity in the freestream U∞ and the chord length of the airfoil c is equal to 6×106. The
freestream velocity can be calculated by

Re =
U∞c

ν
⇔ U∞ =

Reν

c
(3.1)

The flow is isothermal. Tables 3.1 and 3.2 list the parameters of the flow problem.

Property Symbol Value
Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.48×10−5 m2/s

Table 3.1: Values of the properties of air at sea level and at 15 °C used in the numerical
models.

Quantity Symbol Value
Chord length c 1 m
Reynolds number Re 6×106

Freestream velocity U∞ 88.8 m/s
Freestream pressure p∞ 0 Pa

Table 3.2: Data of the problem.

3.1.2 Experimental and numerical data

The present configuration has been simulated using different turbulence models by the
NASA Langley Research Center [15]. In this reference, results from several CFD codes
(e.g., CFL3D from NASA, GGNS from Boeing and so on) are shown and they all give
similar results. In the following, the computed numerical predictions will be compared
with those obtained with CFL3D.

Experimental data are also available in the literature for this study case. The force
measurements of Ladson [14] and the distribution of the pressure coefficient around the
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airfoil measured by Gregory and O’Reilly [8] are used for comparison.

3.2 Numerical model

A case directory is composed of the computational mesh and all configuration files in-
cluding the boundary and initial conditions, the fluid properties, the turbulence model and
its constants, the numerical schemes, the parameters of the solvers, et cetera.

3.2.1 Boundary conditions

The 2D problem is simulated by applying the empty1 boundary type for the front and
back faces to not compute in the z-direction.

The boundaries of the computational domain (inlet and outlet) are far from the region
of interest in order to minimize their impact on the solution as shown in Figure 3.2.

50c

50c

c

z

y

x

Boundaries

Wall

Figure 3.2: Domain size for the 2D NACA 0012 airfoil case.

Table 3.3 indicates the general expressions used to set the boundary conditions in
OpenFOAM. This table is also used for the boundary conditions of the cases that will be
studied in Chapters 4 and 5.

The inlet corresponds to the portion of the boundary patch where the flux ρU∞ through
the boundary patch is negative (into the domain) and the outlet corresponds to the remain-
ing portion where the flux ρU∞ through the boundary patch is positive (out of the domain).

1In the text, the teletypefont family is used to distinguish the parameters of OpenFOAM.
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Quantity Inlet Outlet Wall
p/ρ [m2/s2] zeroGradient pref/ρ zeroGradient

U [m/s] (U∞ cos(α),U∞ sin(α),0) zeroGradient (0,0,0)
ν̃ [m2/s] 3ν (see Section 2.2.1) zeroGradient 0
νT [m2/s] f (ν̃) (see Equation (2.9)) zeroGradient 0

Table 3.3: Boundary conditions in OpenFOAM (Spalart-Allmaras model).

This delimitation therefore depends on the angle of attack α , which is measured in the ref-
erence frame given in Figure 3.2, and the normal to the far field boundary patch.

The zeroGradient boundary type specifies that the gradient of the quantity is zero in
the direction perpendicular to the boundary (Neumann boundary condition). The fixedValue
boundary type imposes a constant value at the boundary (Dirichlet boundary condition).

The impermeability condition and the no-slip one (viscous fluid flow) are applied at
the wall of the solid body.

In OpenFOAM, the kinematic pressure is used by default, i.e., the pressure p is divided
by the constant density ρ: p/ρ [m2/s2]. The flow being incompressible, the absolute value
of the pressure is not relevant: only the relative pressure matters and the reference pressure
pref is set to zero.

3.2.2 Initial conditions

The pressure field is zero initially in the whole flow domain. The freestream velocity is
used to set a uniform initial velocity field. The inflow boundary condition values are used
to set the initial condition of all other quantities.

3.2.3 Mesh description

The quality of the mesh is critical for result accuracy. A structured grid is chosen since it
is more efficient than an unstructured one for this study case (see Figure 3.3). Hexahedral
cells are used because they are more accurate and with less memory requirements than
tetrahedral ones [10]. Discontinuities in mesh cell size are avoided: the cell size varies in
a continuous way. Distortions in the mesh are reduced.

Even if the problem is in two dimensions, OpenFOAM requires a 3D mesh; that’s why
the 2D mesh in the xy-plane is extruded in the spanwise direction in order to have at least
one volume cell in each direction. All the meshes used in this project are created with the
open source software Gmsh [7].

The cells are clustered where the flow varies strongly as can be seen in Figure 3.3. The
grid spacing in the irrotational regions, where turbulence is not produced, is much larger
than near the wall and wake regions to reduce the computational cost.
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(a)

(b) (c)
.

Figure 3.3: Grid in the xy-plane. Close-up views: (a) around the airfoil, (b) near the
leading edge and (c) near the sharp trailing edge.
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A C-type grid is appropriate for attached flows over an airfoil with a sharp trailing
edge. However, there are unnecessary grid points in the zone downstream of the trail-
ing edge with a structured C-type grid (see Figure 3.3c), but this does not increase the
computational cost significantly in the case of a 2D steady-state RANS simulation.

The cells are orthogonal to the wall. The first grid points away from the wall are set
such that

y+ =
yu∗
ν
. 1, u∗ =

√
τw

ρ
, τw = µ

∂u
∂y

∣∣∣∣
y=0

(3.2)

where y is the distance normal to the surface, µ is the dynamic viscosity, τw is the wall
shear stress and u∗ is the friction velocity. This criterion is required in order to capture
the turbulent boundary layer correctly. Therefore, the boundary layer is resolved without
using a wall function with the S-A turbulence model. In the present configuration, the first
grid point is at y/c = 1.6×10−6 and the criterion is verified a posteriori (see Figure 3.4).
A grid stretching is applied in the normal direction, the stretching ratio is 1.2.
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α = 0°
α = 10
α = 15°

Figure 3.4: First spacing (wall units) along the upper surface of the airfoil.

Table 3.4 gives the number of cells contained in the tested mesh.

Number of points: Number of hexahedra
around the
airfoil

in the normal
direction

in the spanwise
direction

Mesh 256 88 2 29058

Table 3.4: Characteristics of the grid used for the 2D airfoil case.
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3.2.4 Solution and algorithm control

The flow is statistically steady (no time derivative). The Semi Implicit Methods Pressure
Linked Equations (SIMPLE) algorithm designed for steady-state problems is used. The
steady-state solver for incompressible turbulent flows of OpenFOAM is called simpleFoam.

The steady-state solver simpleFoam is based on an iterative method; a convergence
criterion can be set: if the residuals of all quantities are below a certain tolerance, the
computation is stopped.

For statistically-stationary problems, the computation is made more stable by using
under-relaxation. The under-relaxation factor is set to 0.3 for the pressure and to 0.7 for
other quantities. An under-relaxation factor of 1 corresponds to no under-relaxation (i.e.,
the change of a variable is not limited between two consecutive iterations).

3.3 Results

For a two-dimensional body, the lift coefficient cl is defined as follows:

cl =
L′

1
2ρ∞U2

∞c
(3.3)

where ρ∞ is the freestream density and L′ is the lift per unit span. The drag coefficient cd

is given by

cd =
D′

1
2ρ∞U2

∞c
(3.4)

where D′ is the drag per unit span. The pressure coefficient Cp is

Cp =
p− p∞

1
2ρ∞U2

∞

(3.5)

where p∞ is the freestream pressure.

Table 3.5 shows the predicted aerodynamic force coefficients for three angles of attack:
α = 0°, 10° and 15°.

Model α cl cd
RANS S-A 0° ≈ 0 8.1920×10−3

10° 1.0778 1.2436×10−2

15° 1.5210 2.1581×10−2

Table 3.5: Results for the NACA 0012 airfoil at angles of attack below the stall angle.
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3.3.1 Comparison with the experimental and numerical data

The present numerical results obtained by steady-state RANS simulations using the Spalart-
Allmaras turbulence model can be validated by looking at the comparisons with the nu-
merical data (see Figures 3.5, 3.6 and 3.7). Moreover, for the case of a NACA 0012 airfoil
at angles of attack below the critical angle of attack leading to a stall, the numerical predic-
tions obtained by steady-state RANS are consistent with the experimental measurements.
Therefore, the numerical model (i.e., the size of the computational domain, the mesh, the
turbulence model, the boundary conditions, the initial conditions and so on) seems to be
appropriate for this study case.

By contrast, in Chapter 4, it will be shown that RANS simulations, even the unsteady
computations, do not predict the aerodynamic force coefficients accurately in the case of
an airfoil at high angles of attack (above the stall angle).
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Figure 3.5: Lift coefficient of the NACA 0012 airfoil as a function of the angle of attack
(Re = 6×106).
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Figure 3.6: Drag coefficient of the NACA 0012 airfoil as a function of the lift coefficient
(Re = 6×106).
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(a) α = 0°.
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(b) α = 10°.
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Figure 3.7: Pressure coefficient distribution along the wall of the NACA 0012 airfoil at
different angles of attack.
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From the graph in Figure 3.5, it can be seen that the section lift coefficient cl is zero
when the angle of attack α is null because the airfoil is symmetrical. The lift is positive
(upward) if α is positive. The lift coefficient curve varies almost linearly in the 0° to
12° range and it reaches a maximum for a value of α slightly higher than 15°. The lift
decreases after the maximum value.

For α = 0°, the stagnation point (Cp = 1) is located at the leading edge as the section
is symmetrical (see Figure 3.7). For α = 10° and 15°, the stagnation point is located
on the lower surface near the leading edge. The pressure on the upper surface increases
after the minimum pressure point (d p

ds > 0: adverse pressure gradient). The slope of the
pressure distribution curve on the upper surface after the suction peak is steeper for α =

15° indicating that the adverse pressure gradient on the upper surface increases as the
angle of attack increases.

At low angles of attack, the flow remains attached over a large part of the surface;
the separation point is located in the vicinity of the trailing edge. As the angle of attack
increases, the separation point moves slightly forward. Regions of massive separation are
not observed at α = 15° as can be inferred from the streamlines given in Figure 3.8.

Figure 3.8: Streamlines around the NACA 0012 airfoil at α = 15°.
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Chapter 4

Delayed detached-eddy simulation of an
airfoil at high angle of attack

In this chapter, delayed detached-eddy simulations of an airfoil at high angles of attack
are performed. Practical applications of this situation can be found in helicopter blades or
in marine propellers in reversed operation, for example [11].

This configuration has already been simulated with the DES approach by Spalart et
al. [19] and their results are chosen for comparison. This configuration is used to validate
the present numerical model in OpenFOAM (i.e., the boundary conditions, the size of
the computational domain, the mesh, the numerical schemes, etc.) which is described
completely in Section 4.2.

The space discretization introduces numerical errors. A grid refinement study is under-
taken in order to have an idea of the evolution of the discretization errors when the mesh
is finer. Furthermore, the effect of the span length on the aerodynamic force coefficients
is analyzed.

4.1 Configuration description

This section describes the geometry and the related experimental and numerical data that
have been chosen. It also explains all assumptions and simplifications that have been
made.

4.1.1 Numerical data

The geometry and the conditions of the configuration are based on a paper of Spalart et
al., the authors of the DES method [19]. In the paper, the authors use the DES approach
but the simulated cases are free of grid problems encountered with this approach (see
Section 2.5) as stated in [23]. Also, no grid refinement analysis is presented in the paper.
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A NACA 0012 airfoil with a blunt trailing edge is considered as can be seen from Fig-
ure 4.2c. The shape of this airfoil is obtained using the original equation for a symmetrical
4-digit NACA airfoil.

The Reynolds number Re based on the chord length of the airfoil is equal to 105. Ac-
tually, after stall, the dependence of the flow on Re is small in the considered regime [19].
The fluid properties are the same than in Chapter 3 (see Table 3.1). The data of the prob-
lem used for the simulations are summarized in Table 4.1.

Quantity Symbol Value
Chord length c 1 m
Reynolds number Re 105

Freestream velocity U∞ 1.48 m/s
Freestream pressure p∞ 0 Pa

Table 4.1: Data of the problem.

4.1.2 Experimental data

Experimental force measurements of the same configuration available in [11] are used to
confirm the numerical predictions. In the wind-tunnel experiments, the wing, which has
the same airfoil (NACA 0012) along the span, is placed between the tunnel walls in order
to obtain the aerodynamic characteristics of the airfoil (e.g., the section drag). Indeed,
this setup suppresses the wing-tip drag and the induced drag encountered in a rectangular
wing model.

4.1.3 Assumptions and simplifications

The flow is not statistically stationary at angles of attack beyond the stall angle (i.e., the
angle of attack which gives the maximum lift coefficient). Therefore, unsteady simula-
tions are necessary. Otherwise, the same hypotheses than those presented in Section 3.1.1
are also valid in this chapter.

4.2 Numerical model

This section details the numerical aspects of the model.

4.2.1 Boundary conditions

Three-dimensional simulations are required because separated flows have 3D structures.
A periodic condition is used in the spanwise direction (z-direction is the frame of reference
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given in Figure 4.1). The periodic boundary condition is specified by applying the cyclic
patch type at the front and back faces of the computational domain. As a result, the
solution is repeating regularly in the spanwise direction. This boundary condition is used
since the purpose of the simulations is not to capture the wing-tip vortices appearing in
wings with a finite span.

The size of the computational domain is similar to the one used in Chapter 3 (see
Figure 4.1). The edge of the domain is circular in the xy-plane because an O-type grid is
more suitable for the airfoil with a blunt trailing edge.
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Figure 4.1: Domain size in the xy-plane for the NACA 0012 airfoil at high angle of attack
case.

4.2.2 Initial conditions

A RANS solution is used as an initial condition to start the DDES calculations even if
RANS simulations are not able to predict complex flows with massive separation regions
accurately as it will be shown in Section 4.3.

4.2.3 Mesh description

DDES is non-zonal, i.e., there is no explicit interface between the two branches of this
hybrid LES–RANS approach in the mesh. So, the advantage is that a precise knowledge
about the characteristics of the flow (e.g., the thickness of the boundary layer) is not
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necessary for the construction of the mesh. The computational domain has no explicit
well-defined RANS regions and LES regions. However, the resolution of the mesh has to
be fine enough in regions of interest. The DES grids used in this thesis are constructed
following the guidelines given in [20].

The first mesh (Mesh I) is based on the one used in the reference paper [19] in order to
compare the different numerical results. The cases using Mesh I are performed to validate
our numerical model.

The O-type grid seen in the xy-plane is shown in Figure 4.2. A DES grid differs from
a LES one in boundary layers as explained in Chapter 2 (see Figure 2.1). Flattened mesh
cells are used near the wall. The first grid points away from the wall are set at y/c = 10−4

in order to satisfy the criterion given in Equation (3.2). This condition can be verified a
posteriori using the command yPlusLES of OpenFOAM.

Mesh I has 154 points around the airfoil . The points are clustered near the leading and
trailing edges. The number of points in the spanwise direction is 25. The grid is stretched
in the wall normal direction with a stretching ratio of 1.2 near the wall. The stretching
ratio is then reduced to obtain more isotropic cells in regions of separated flow.

For the grid refinement study, the first mesh is refined in the three directions simulta-
neously (see Table 4.2). Numerical errors due to discretization are reduced when a mesh
is refined.

Mesh Number of points: Number of hexahedra
around the
airfoil

in the normal
direction

in the spanwise
direction

Mesh I 154 76 25 277,200
Mesh II 206 94 33 613,056
Mesh III 252 110 41 1,098,720
Mesh IV 310 129 50 1,944,320

Table 4.2: Grids used for the grid refinement study. The spanwise period is equal to c.
The number of cells increases from Mesh I to Mesh IV.

4.2.4 Numerical schemes

An example of the fvSchemes file of an OpenFOAM DDES case is available in Ap-
pendix A on page 84. The fvSchemes file specifies the numerical schemes.

An implicit second-order backward scheme is used for the time integration. The sta-
bility of implicit schemes is better and a larger time step can be used compared to explicit
schemes.

Second order schemes are used for the discretization of spatial derivatives as first
order schemes are too dissipative numerically, which is inadequate for time-dependent

25



(a)

(b) (c)
.

Figure 4.2: Mesh I in the xy-plane. Close-up views: (a) around the NACA 0012 airfoil,
(b) near the leading edge and (c) near the blunt trailing edge.
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problems.
For derivative terms, the standard Gaussian finite volume integration (second order)

is chosen for the discretization scheme. As described in [6], the Gaussian integration is
based on the summation of values on cell faces that are obtained by interpolation from
cell centers.

The linear interpolation scheme of OpenFOAM (central differencing) is used for
the interpolation of values from cell centers to face centers except for convection terms
where convection-specific schemes are used (see divSchemes which includes the diver-
gence terms). For example, the Linear-Upwind Stabilized Transport (LUST) interpola-
tion scheme can be used in combination with the Gaussian discretization for the con-
vection term of the Navier-Stokes equations. This scheme corresponds to a blend of the
linear-upwind interpolation scheme with the linear one and it has a second order be-
havior [6]. The scheme is reported to perform well for the LES and DES techniques for
external aerodynamics problems as stated in [6]. Diffusion terms are discretized using a
central second order scheme. Default parameters are kept for all other entries.

4.2.5 Solution and algorithm control

Partial differential equations are transformed to systems of algebraic equations. There are
as many equations as unknowns.

An example of the fvSolution file of an OpenFOAM DDES case is available in
Appendix A on page 86. The fvSolution file specifies the solvers and the associated
tolerances and the algorithms. Linear system solvers have to be chosen to compute the
quantities. The chosen linear solver to compute the pressure is the Preconditioned Con-
jugate Gradient (PCG) with the Diagonal Incomplete Cholesky (DIC) preconditioner. For
other variables, the linear solver is the Preconditioned Bi-Conjugate Gradient (PBiCG)
with the Diagonal Incomplete LU (DILU) preconditioner. Preconditioners accelerate con-
vergence by modifying the matrices. Small tolerances are specified for the iterative solvers
to reduce iteration errors (see fvSolution).

The dominant CPU time is the one associated with the equation for pressure. Solvers
influence the rate of convergence. However, if the results present major inaccuracies from
a physical point of view, it is not because of the choice of solvers.

The Pressure Implicit Split Operator (PISO) algorithm designed for unsteady prob-
lems is used. The transient solver for incompressible turbulent flows of OpenFOAM is
called pisoFoam.

The choice of the time step ∆t is governed by the smallest time scale of the flow that
needs to be resolved (physical time step) and the numerical time step for stability. With
the data given in Table 4.1, the time step is set to 0.004 s for Mesh I and it has to be
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reduced to 0.001 s for Mesh IV in order to have a stable computation. These values of
the time step give a Courant-Friedrichs-Lewy (CFL) number of the order of 1 around the
airfoil and of the order of 10 in small regions near the leading and trailing edges. The
CFL number for the stability condition depends on the flow velocity, the time step and the
grid spacing.

Three-dimensional flows require a lot of computing power. The computation is par-
allelized in order to, on the one hand, decrease the total execution time and, on the other
hand, solve such a big problem1. OpenFOAM uses the Message Passing Interface (MPI)
standard which is the most widely used standard for parallel computing. The computa-
tional domain is decomposed and it is distributed on several processors. Each processor
computes a subproblem and the processes communicate with each other.

The time step, the number of cores used for the computations and the computation time
associated with each DDES case presented in the present chapter are given in Appendix A.

4.3 Results

For a three-dimensional wing, the lift coefficient CL is defined as follows:

CL =
L

1
2ρ∞U2

∞S
(4.1)

where the reference area S is the planform area of the wing. The drag coefficient CD is
given by

CD =
D

1
2ρ∞U2

∞S
(4.2)

In what follows, the transient part of the results has been removed to compute the
statistics of the aerodynamic force coefficients.

A long simulation time is required in order to compute the time-averaged solutions.
The temporal average of the dimensionless force coefficients CL and CD and the associated
standard deviations SCL and SCD are evaluated using a time interval of 300 s (from t = 200 s
to t = 500 s) as a moving average filter applied to CL(t) and CD(t) shows that the mean
values are nearly constant on the considered time interval (see Figure 4.3, for example)2.

1“Computational resources have been provided by the Consortium des Équipements de Calcul Intensif
(CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No.
2.5020.11”.

2In the graphs, the blue curves are related to CL and the red ones to CD.
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Figure 4.3: Evolution of the aerodynamic force coefficients of the NACA 0012 airfoil at
α = 20° obtained by DDES: (a) Lift coefficient as a function of time. (b) Drag coefficient
as a function of time. The length of the moving average filter is 100 s.

Table 4.3 contains the statistics of the aerodynamic force coefficients obtained with
Mesh I and from two different simulation approaches: the Unsteady RANS (URANS)
simulation using the Spalart-Allmaras turbulence model and the DDES technique also
based on the S-A model. The angle of attack α varies from 8° to 60°.

Model α CL SCL CD SCD

URANS S-A 8° 0.7881 ≈ 0 0.0246 ≈ 0
20° 0.7044 0.0011 0.3009 0.0004
45° 1.3953 0.2066 1.4499 0.1836
60° 1.3155 0.2078 2.3119 0.2529

DDES 8° 0.7946 ≈ 0 0.0233 ≈ 0
20° 0.7716 0.0865 0.3318 0.0294
45° 1.1321 0.2497 1.1646 0.2434
60° 1.0360 0.2307 1.7735 0.3716

Table 4.3: Results for the airfoil at high angles of attack.

The RANS and DDES calculations are performed with the same code, which is better
for the comparison of the results of the two approaches.

4.3.1 Comparison with the experimental and numerical data

Figures 4.4 and 4.5 contain the values of CL and CD measured experimentally and those
predicted numerically.

29



α [°]
0 15 30 45 60 75 90

C
L

0

0.5

1

1.5 Experiments
URANS (Spalart et al.)

DES (Spalart et al.)

URANS S-A (OpenFOAM)
DDES (OpenFOAM)

Figure 4.4: Lift coefficient of the NACA 0012 airfoil as a function of the angle of attack,
adapted from [19]. The black symbols represent the numerical results obtained by the
present work.
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Figure 4.5: Drag coefficient of the NACA 0012 airfoil as a function of the angle of attack,
adapted from [19]. The black symbols represent the present numerical results.
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The two curves in the 13° to 25° range represent the experimental scatter. An esti-
mation of the experimental scatter is not available for higher angles of attack. Errors and
uncertainties associated with the experiments must also be taken into account (e.g., the
level of noise in the experimental measurements).

In the present case, a reduction of the lift coefficient occurs when the angle of attack
exceeds the stall angle equals to about 15°. This phenomenon due to a separation of the
flow on the upper surface of the wing corresponds to the stall. The drag increases signif-
icantly beyond the maximum lift coefficient CLmax . The lift curve has a local maximum
in the vicinity of α equals 45°. For α greater than 45°, the drag predominates and it
increases until α equals 90° where it reaches its maximum (CDmax ≈ 2).

For an angle of attack of 8°, the standard deviations SCL and SCD are approximately
zero indicating that the flow is statistically steady. The boundary layer remains attached
over a large surface of the wing and the results obtained by the RANS and DDES calcu-
lations are almost identical. The numerical predictions obtained by RANS are reliable at
low angle of attack, which is consistent with the conclusions of Chapter 3.

For an angle of attack higher than about 15°, the solution is clearly unsteady and
unsteady computations have to be considered.

From Table 4.3, it can also be seen that for a given span length, the standard deviations
increase if the angle of attack increases from 8° to 45° pointing out that the fluctuations
of the flow are higher as the regions of separated flow become larger.

URANS simulations

In this chapter, the URANS simulations are two-dimensional. A tree-dimensional URANS
simulation will be presented in Chapter 5.

Figures 4.4 and 4.5 show that the URANS predictions given by OpenFOAM as well
as those obtained by Spalart et al., which are quite similar, are in poor agreement with the
experimental data. The aerodynamic force coefficients are highly overestimated when the
flow is massively detached (α = 45° and 60°). For α = 45°, the relative error with respect
to the experimental value exceeds 20% for both CL and CD.

For instance, at α = 60°, URANS predicts a periodic solution even if the turbulent
flow is highly irregular. Figure 4.6 shows that the dimensionless force coefficients are
periodic but they do not correspond to a pure sine function.
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Figure 4.6: Evolution of the aerodynamic force coefficients of the NACA 0012 airfoil at
α = 60° obtained by URANS.

Welch’s method

The fast Fourier transform directly applied to the aerodynamic force signals yields noisy
results, especially when the signals contain random fluctuations (DDES results). The
power spectral density of a signal is estimated more properly using the Welch’s method,
the original paper is cited in the bibliography [27].

The basic idea of the Welch’s method consists in sectioning the signal. The time in-
terval of each segment is specified depending on the duration of the entire signal. Then,
a modified periodogram of each segment is computed. Averaging these modified peri-
odograms gives the estimate of the power spectral density of the signal. The noise level
in the estimated power spectra is reduced with this method.

Also, the segments generally overlap and they are usually multiplied by a window
function (e.g., the Hanning window) to avoid sharp truncations of the sequence.

The lift coefficient is an image of the periodic variation of the flow in the wake. Fig-
ure 4.7 shows the power spectral density of the lift coefficient estimated by the Welch’s
method. In the frequency domain, the magnitude of the second harmonic ( f2 = 0.5 Hz) is
not negligible compared to the magnitude of the fundamental frequency of the flow (first
harmonic f1 = 0.25 Hz).

DDES results

For angles of attack higher than the stall angle, the present DDES results are very close
to the ones given by Spalart et al. as can be seen from Figures 4.4 and 4.5. Discretization
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Figure 4.7: Power spectral density of CL(t) at α = 60° obtained by URANS.

errors or differences in the implementation may be the causes of the small differences.
Another important observation is that the DDES predictions are much closer to the exper-
imental measurements compared to the URANS results.

Figure 4.8 illustrates the flow separation on the extrados of the wing predicted by the
DDES approach3: the streamlines separate from the wall of the body and a recirculating
flow region is observed.

Figure 4.8: Streamlines around the wing at α = 20° obtained by DDES.

The flow separation is driven by the effect of viscosity. The adverse pressure gradient
present on the upper surface of the airfoil is large enough to cause massive flow separation.
The separation point corresponds to the point where the wall shear stress τw vanishes
because ∂u

∂y

∣∣∣
w
= 0.

3The figure in the cover page represents the streamlines around the wing at α = 60° obtained by DDES.
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For the airfoil beyond the stall angle of attack, the aerodynamic forces are functions
of time due to the flow separation which introduces unsteadiness.

It can be seen from Figure 4.5 that the point at α = 60° is the farthest from the exper-
imental curve. Moreover, the difference between the URANS and DDES results is large
for α = 60°. The grid refinement analysis and the study of the influence of the span length
will be made for this particular case.

4.3.2 Grid refinement study

A grid refinement decreases numerical errors. For RANS simulations, if the mesh is
refined, the numerical solution converges to the exact solution of the RANS and S-A
model equations. Once the grid convergence is achieved, the variation of the solution
will be negligible if the grid is refined even more (grid independence). However, the
turbulence model is not able to capture all the physics of turbulent flows. Consequently,
accuracy cannot be improved unlimitedly by refining the mesh with RANS simulations;
this is not the case with LES or DES. It is for this reason that the grid refinement study is
conducted only with the DDES approach.

Table 4.4 shows that the mean aerodynamic force coefficients CL and CD do not vary
significantly when the grid is refined.

Mesh CL SCL CD SCD

Mesh I 1.0360 0.2307 1.7735 0.3716
Mesh II 1.0389 0.2235 1.7876 0.3709
Mesh III 1.0338 0.2062 1.7696 0.3315
Mesh IV 1.0347 0.2067 1.7643 0.3141

Table 4.4: Results of the grid refinement study (α = 60° and the length of the span is c).

The resolution of Mesh I is sufficient to predict the aerodynamic forces rather accu-
rately. The mean values given by Mesh I and Mesh IV are quite similar, the relative errors
are more noticeable for the standard deviations:

εrel,CL
=

∣∣∣∣CLMesh IV−CLMesh I

CLMesh IV

∣∣∣∣= 0.13%, εrel,SCL
=

∣∣∣∣∣SCLMesh IV
−SCLMesh I

SCLMesh IV

∣∣∣∣∣= 11.61%

(4.3)

εrel,CD
= 0.52%, εrel,SCD

= 18.31% (4.4)

The study of the influence of the length of the span is carried out with Mesh I to limit
the computational cost.

34



Vortex identification

Vortices of incompressible flows can be identified using the Q-criterion. An eddy corre-
sponds to a region where Q, the second invariant of the velocity gradient tensor ∇u, is
positive [12]:

Q =
1
2
(
u2

i,i−ui, ju j,i
)
=−1

2
ui, ju j,i =

1
2
(
‖Ω‖2−‖S‖2)> 0 (4.5)

where

‖S‖= [tr(SST )]1/2, Si j =
1
2
(ui, j +u j,i) (4.6)

‖Ω‖= [tr(ΩΩ
T )]1/2, Ωi j =

1
2
(ui, j−u j,i) (4.7)

So, the vorticity magnitude is greater than the shear strain rate for the regions verifying
this criterion.

Turbulence is modeled with the URANS simulations and only unsteady mean flow
structures are captured. This characteristic can be visualized using the Q-criterion: Fig-
ure 4.9 shows the vortex shedding identified by positive isosurfaces of Q.

Figure 4.9: Surfaces of Q = 1, 5 and 10 colored with the kinematic pressure [m2/s2] at
α = 60° (2D URANS).

The pressure in a vortex core is lower than the reference pressure. The flow remains
attached on the lower surface of the airfoil.

Figure 4.10 illustrates that smaller scales in space are captured by finer meshes with
the DDES approach.
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The turbulent eddies visualized by the Q-criterion are smaller if the number of grid
points is augmented from Mesh I to Mesh IV. Eddies are not very fine with Mesh I.
The accuracy of DDES in predicting the massively separated flow is improved with finer
meshes since smaller eddies are resolved by the LES mode of DDES.

From Figure 4.10, it can be concluded that the physical approximation of two-dimensionality
does not hold any more at high angles of attack.

4.3.3 Influence of the spanwise period of the computational domain

In this part, the span is increased to quantify the effect of the flow structures determined
in a larger computational domain. In what follows, the resolution of Mesh I is used for
the analysis as mentioned above.

Table 4.5 contains the statistics of CL(t) and CD(t) for different spanwise periods of
the computational domain: c, 2c and 4c. It can be inferred that the standard deviations
SCL and SCD decrease when the span length increases indicating that the amplitudes of the
variations of the aerodynamic force coefficients decrease (the data points are closer to the
corresponding mean value, they are less dispersed). Also, the mean values CL and CD are
slightly reduced if the span is longer.

Length of the span CL SCL CD SCD

c 1.0360 0.2307 1.7735 0.3716
2c 0.9634 0.1267 1.6395 0.1934
4c 0.9539 0.1110 1.6220 0.1701

Table 4.5: Results for different spanwise periods (α = 60° and the resolution of Mesh I is
used for the DDES calculations).

Figure 4.11 shows the evolution of the lift and drag signals over time. A diminution
of the amplitudes of the fluctuations is observed when the span length is increased.
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(a) DDES, span = c.
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(b) DDES, span = 2c.
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(c) DDES, span = 4c.

Figure 4.11: Evolution of the aerodynamic force coefficients of the NACA 0012 airfoil
at α = 60° for different spanwise periods obtained by DDES: (left) Lift coefficient as a
function of time. (right) Drag coefficient as a function of time.
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The numerical values tend to converge to the experimental values when the length
of the span is increased as can be seen more clearly in Figure 4.12. The numerical pre-
dictions obtained by DDES for a span of 4c correspond quite well to the experimental
measurements.
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Figure 4.12: Aerodynamic force coefficients of the NACA 0012 airfoil for different span-
wise periods. Comparison with the experimental measurements.

Due to three-dimensional effects, a vortex which is shed downstream is not exactly at
the same phase everywhere along the span. As an example, Figure 4.13 shows a leading-
edge vortex at a given time to illustrate this idea. It can be seen that the part of the
vortex seen in the plane z = c is slightly shifted compared to the one in the plane z = 2c or
z= 3c. In the example of Figure 4.13, the visualization of the z-component of the vorticity
ωz reveals that the leading-edge vortex in z = c detaches from the body and the formation
of the trailing-edge vortex begins. By contrast, the leading-edge vortex in z = 3c is closer
to the airfoil and the trailing-edge vortex is not yet visible at this particular instant.

The variations of the dimensionless force coefficients are partly connected to the
vortex-shedding process (the relation will be explained in Chapter 6 for an inclined flat
plate configuration). The 3D effects (the deviations) become more important when the
span is longer and the spanwise average used to compute the global quantities CL and CD

reduces the amplitudes of the fluctuating part of the aerodynamic force coefficients. A
diminution of the time-averaged dimensionless force coefficients is also observed.

The spanwise vorticity ωz over the lower surface of the airfoil is insignificant (see
Figure 4.13).
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(a) z/c = 1.

(b) z/c = 2.

(c) z/c = 3.

Figure 4.13: Contours of the z-component of the vorticity ωz in several slices in the xy-
plane at an instant of time (obtained by DDES using the resolution of Mesh I with a span
length of 4c).
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To sum up, a poor agreement is found between the unsteady RANS results and the
experimental measurements of the aerodynamic force coefficients. However, the RANS
simulations are much cheaper than the DDES computations. So, the RANS approach
may be interesting to obtain orders of magnitude rapidly but a higher fidelity approach is
required to achieve engineering accuracy.

The present DDES predictions are consistent with the numerical results obtained by a
similar approach [19]. Therefore, the present numerical models can be validated. More-
over, the accuracy of the dimensionless force coefficients predicted by the DDES approach
is superior compared to the URANS simulations as they are in much better agreement with
the experimental data.

If the mesh is refined, the accuracy of the results obtained by DDES is better as smaller
eddies are captured but the computational cost increases, i.e., there is a trade-off between
computing power and fidelity.

The DDES results reveal the three-dimensional character of the separated flow around
the airfoil at high angle of attack. A vortex is not constant along the span; 3D effects and
instabilities appear. The length of the span must be long enough to capture the longer
wavelengths of these 3D instabilities and the resolution of the grid must be fine enough to
capture the details of the physics of the turbulent flow.

The length of the span of the computational domain is an important factor to predict
the aerodynamic forces reliably. Ideally, the span length should be chosen as close as
possible to the geometry considered in the experiment or in the real flow problem.
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Chapter 5

Delayed detached-eddy simulation of a
flat plate at high angle of attack

Now that the choice of all simulation parameters has been presented and a validation study
has been carried out in Chapter 4, the DDES technique is applied to another configuration:
the flow around a flat plate at high angle of attack.

Once again, the statistics of the aerodynamic force coefficients obtained by numerical
simulations (DDES and URANS) and measured experimentally are compared to verify
that there is no major discrepancy between the different approaches.

Then, the physics of the flow is studied in more detail compared to the previous con-
figuration as it will be presented in Chapter 6 which is actually complementary to the
present chapter.

5.1 Configuration description

5.1.1 Experimental data

For this part, the experimental data are provided by Amandine Guissart from the MTFC
research group of the University of Liège. Aerodynamic force measurements are avail-
able. In addition, the Particle Image Velocimetry (PIV) technique has been used. These
experimental measurements are used to validate the numerical methods.

PIV is a flow visualization technique used to determine a velocity field like a numer-
ical simulation. The available PIV results for comparison are 2D: the velocity field is
determined in a slice normal to the span (the velocity vectors have two components; the
component in the spanwise direction is not measured). Therefore, the Dynamic Mode
Decomposition (DMD) of the CFD results, which will be explained in Chapter 6, will
also be performed in a 2D slice to compare the coherent features of the separated flow
predicted numerically with those obtained from experimental measurements.
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In the experiments, it is not possible to know exactly the duration of the vortex-
shedding period if the flat plate is static because the vortex-shedding process is not per-
fectly periodic. The shedding period changes slightly over time and these variations are
random. Therefore, it is not possible to have the same phase over several periods when
the measurement is taken.

Small vibrations at the frequency corresponding to the mean Strouhal number are
imposed, so that the vortex shedding is forced at the imposed frequency. This situation
is referred to as the forced case in the following sections. With the forced case, the PIV
images can be taken at known phases over several periods. The PIV measurements are
available for the forced case but the level of noise is higher in the force signals compared
to the static case. Moreover, a deformation of the mesh to simulate an oscillating body is
out of the scope of this present work, so that the parameters for the numerical simulations
are based on the static case of the experiments. Nevertheless, a qualitative comparison
with the forced case is presented in Chapter 6 to check the coherence of the numerical
predictions.

In the experiments, the length of the chord cexp is 7.62 cm (8 inches), the length of
the span bexp is 59 cm, which gives an aspect ratio ARexp = bexp/c̄exp of about 7.7. The
thickness texp is 6.25%cexp. Two different values are used for the Reynolds number:
2×104 and 4×104 (see Table 5.3).

5.1.2 Configuration used for the numerical simulations

The Reynolds number based on the chord length is 2× 104 (the computational cost is
therefore reduced compared to the previous configuration). The thickness t is equal to
6.25% of the chord length c and the edges are rounded (semicircles) as can be seen in
Figure 5.1.

c

t = 0.0625c

Figure 5.1: Geometry of the flat plate.

The angle of attack α is constant and it is equal to 30°.

5.2 Numerical model

The numerical parameters of the present case (fluid properties, boundary conditions, nu-
merical schemes and so forth) are the same than those described in Chapter 4. Only the

43



parameters specific to the inclined flat plate case are presented in this section.

The radius of the computational domain is set to 50c (see Figure 5.2).

z

y

x
Wall

Boundaries

50c

c

Figure 5.2: Domain size in the xy-plane for the inclined flat plate case.

5.2.1 Mesh description

Flattened mesh cells are used near the wall. The first grid points away from the wall are
set at y/c = 3.8×10−4 in order to satisfy the criterion given in Equation (3.2).

The resolution of the mesh is shown in Figure 5.3 and it is similar to Mesh II used in
Chapter 4.

Three different span lengths are considered: c, 4c and 8c. The meshes do not change
over time; the flat plate remains static. The characteristics of these meshes are given in
Table 5.1.

5.3 Results

The quality of the predictions given by the numerical simulations is evaluated by compar-
ing the mean dimensionless force coefficients and the corresponding standard deviations,
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(a)

(b) (c)
.

Figure 5.3: Grid in the xy-plane. Close-up views: (a) around the flat plate, (b) near the
leading edge and (c) near the trailing edge.

Spanwise
period

Number of points: Number of hexahedra

around the plate
in the normal
direction

in the spanwise
direction

c 200 86 32 527,000
4c 200 86 128 2,159,000
8c 200 86 256 4,335,000

Table 5.1: Characteristics of the grids used for the inclined flat plate case.
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the Strouhal number and the separated flow structures (in Chapter 6) with the experimental
results.

The unsteadiness of the separated flow is measured by the dimensionless Strouhal
number St which is calculated by

St =
fs csinα

U∞

(5.1)

where fs stands for the fundamental frequency of the flow and csinα is the chosen char-
acteristic dimension (in the experiments as well as in the numerical simulations).

For the DDES cases, a time-averaged solution is calculated over a duration of 850 s
(≈ 76 cycles). This time interval appears to be sufficient to have converged results for
the DDES calculation using the mesh with a span length of 8c, which is the closest to the
geometry used in the experiments, as can be inferred from Figure 5.4 and Table 5.2

Time [s]
500 600 700 800 900 1000 1100 1200 1300
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∆t
3
 = 850 s

∆t
2
 = 637.5 s

∆t
1
 = 425 s

Figure 5.4: Time intervals used to evaluate the temporal average of CL(t).

Interval CL CD
∆t1 = 425 s 1.0419 0.6373
∆t2 = 637.5 s 1.0486 0.6414
∆t3 = 850 s 1.0455 0.6395

Table 5.2: Mean lift and drag coefficients as functions of the considered time interval.

46



5.3.1 Comparison with the experimental measurements

Table 5.3 summarizes the results found for the present configuration.

Model Re CL SCL CD SCD St
Experiment (static) 2×104 1.05 0.05 0.62 0.04 0.158
Experiment (static) 4×104 0.97 0.04 0.62 0.03 0.159
Experiment (forced) 4×104 1.05 0.07 0.67 0.05 0.156
2D URANS 2×104 1.1805 0.1943 0.7403 0.0667 0.152
3D URANS (span = 8c) 2×104 1.1881 0.1801 0.7434 0.0623 0.151
DDES (span = c) 2×104 1.1471 0.1873 0.7089 0.0873 0.152
DDES (span = 4c) 2×104 1.0625 0.0839 0.6499 0.0412 0.151
DDES (span = 8c) 2×104 1.0455 0.0526 0.6395 0.0249 0.151

Table 5.3: Results for the flat plate at high angle of attack (α = 30°).

URANS simulations

The two-dimensional unsteady RANS predictions of the dimensionless force coefficients
are globally higher than the experimental measurements. The same tendency was ob-
served in the case of the NACA 0012 airfoil at high angles of attack (see Figures 4.4 and
4.5). Table 5.3 indicates that the corresponding standard deviations are also overestimated.

As explained earlier, smaller eddies will not be obtained after a grid refinement in
the case of the RANS simulations and the accuracy of the results cannot be improved
significantly by refining the mesh knowing that the mesh that is used here is quite fine.

The Strouhal number determined numerically is a little underestimated compared to
the experimental value.

In the following figures, the transient part of the results is not shown as the analysis
of a signal with respect to frequency does not include the transient part. The URANS
simulation using the Spalart-Allmaras model produces a periodic solution as can be seen
in Figure 5.5.

The predicted flow is unsteady: the wake oscillates periodically as reflected by the
evolution of the signal CL(t).

The aerodynamic force coefficients are sinusoidal. A sharp peak1 is clearly visible in
the power spectral density of CL(t) at the fundamental frequency of the flow fs, which
corresponds to the shedding frequency (see Figure 5.6a). The magnitude of the other
harmonics is negligible compared to the magnitude associated with the fundamental fre-
quency. A semilogarithmic plot reveals the harmonics as shown in Figure 5.6b.

1The peak associated with the fundamental frequency in the Welch’s power spectral density estimate [27]
is sometimes not perfectly symmetrical depending on the sampling frequency, so that a correction can be
required to evaluate the Strouhal number St more precisely (e.g., the Half Power Point method).
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Figure 5.5: Evolution of the aerodynamic force coefficients of the flat plate at α = 30°
obtained by 2D URANS: (a) Lift coefficient as a function of time. (b) Drag coefficient as
a function of time.
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Figure 5.6: Power spectral density of CL(t) at α = 30° obtained by 2D URANS.
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The visualization of the evolution of the flow is quite simple in the case of a two-
dimensional unsteady RANS simulation. Figure 5.7 shows four snapshots of the flow
which are taken at different phases of one period Ts (in the figure, the period starts at a
maximum of CL which is easier to locate).

The following observations can be inferred:

• The point at t = 0 (or t = Ts) corresponds to a maximum of the lift coefficient. A
large recirculation region above the upper surface of the flat plate is visible. The
rotation is clockwise (�) and the freestream flow is from left to right, so that the
recirculation region is created from the flow which separates at the leading edge.
Moreover, a detached counterclockwise-rotating vortex is present in the wake.

• At t = Ts/4, the lift coefficient is decreasing. A vortex begins to develop near the
trailing edge, the rotation is counterclockwise (	).

• The point at t = Ts/2 corresponds to a minimum of the lift coefficient. A vortex near
the trailing edge is clearly visible in Figure 5.7c. The created trailing-edge vortex is
close to the wall of the flat plate at this particular instant of time.

• At t = 3Ts/4, the lift coefficient is increasing. The trailing-edge vortex is shed from
the wall of the flat plate (near the trailing edge). The detached trailing-edge vortex
is transported downstream by the mean flow.

A recirculation region develops on the upper part of the flat plate from the leading
edge.

The vortex-shedding process is not symmetrical. The Strouhal number corresponding
to this unsteady process is estimated at 0.152 based on the signal CL(t) obtained by the
URANS simulation.

All these observations are similar to the conclusions given by Breuer and Jovicic [3].
In this paper, the authors study the flow past a flat plate at α = 18° and Re = 2×104 using
LES. The value of the angle of attack used in the paper, which is smaller than the one used
in the present configuration, is high enough to obtain a separated flow (see Figure 5.9).

The pressure contours given in Figure 5.8 show that the vortex close to the trailing edge
is strong while the pressure in the large recirculation region is more uniform. Actually, the
formation and shedding of the trailing-edge vortex mainly controls the unsteady behavior
of the separated flow [3].

It seems a priori that several coherent flow structures are involved in the evolution of
the flow over time. The Dynamic Mode Decomposition (DMD) method will separate the
contribution of each dynamic mode as it will be explained in Chapter 6.
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(a) Evolution of the lift coefficient over one period Ts.

(b) t ≈ Ts/4. (c) t ≈ Ts/2.

(d) t ≈ 3Ts/4. (e) t ≈ Ts.

Figure 5.7: Streamlines around the flat plate at α = 30° obtained by 2D URANS.
50



(a) t ≈ Ts/4. (b) t ≈ Ts/2.

(c) t ≈ 3Ts/4. (d) t ≈ Ts.

Figure 5.8: Pressure contours at different phases of a cycle obtained by 2D URANS (static
flat plate at α = 30°).

Figure 5.9: Instantaneous streaklines of the flow past an inclined flat plate (α = 18° and
Re = 2×104), from [3].
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A three-dimensional unsteady RANS simulation using the mesh with a spanwise pe-
riod of 8c is performed to see if the 3D effects modify the results.

From Figure 5.10, it can be inferred that three-dimensional effects appear in the wake
with a 3D URANS simulation. The snapshot of the flow given in the figure corresponds to
an instant when the trailing-edge vortex begins to develop (the shear layer rolls-up). The
turbulent eddies are not captured by the 3D URANS simulation; the vortices that are shed
downstream are large and smooth.

The imposed spanwise periodicity condition is also observable from Figure 5.10.

Figure 5.10: Surface of Q = 0.5 colored with the kinematic pressure [m2/s2] at α = 30°
(3D URANS, span = 8c).

The evolution of the dimensionless force coefficients remains periodic as illustrated in
Figure 5.11.

If the flow fields of a DDES calculation are used as an initial condition to start the 3D
URANS simulation using the S-A model, the solution converges to the same stable limit
cycle than in Figure 5.11 after a few vortex-shedding periods as shown in Figure 5.12.

The statistics of the aerodynamic force coefficients and the Strouhal number are of the
same order of magnitude than those obtained by a 2D URANS simulation (see Table 5.3).
In conclusion, no significant improvement is achieved by performing a three-dimensional
URANS simulation with the S-A turbulence model. In Chapter 6, only the results given
by the 2D URANS simulation are considered.
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Figure 5.11: Evolution of the aerodynamic force coefficients of the flat plate at α = 30°
obtained by 3D URANS (span = 8c).
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Figure 5.12: Evolution of the aerodynamic force coefficients of the flat plate at α = 30°
obtained by 3D URANS (span = 8c). The DDES solution is used as an initial condition
to start the URANS computation.
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DDES results

The Strouhal number of each DDES case given in Table 5.3 is only an estimate (mean
value). A precise value cannot be determined because the dominant period (≈ 1/ fs) is not
exactly constant over time.

In Figure 5.13, the time t is non-dimensionalized using the freestream velocity U∞ and
the chord length c in order to facilitate comparison with other numerical or experimental
data of the same case using a different chord length or different fluid properties.

The standard deviations SCL and SCD are the smallest for the case where the spanwise
period is equal to 8c indicating that the dispersion of the data values is the smallest. So,
the amplitudes of the fluctuations of the dimensionless force coefficients decrease when
the span length is increased, which is consistent with the observations seen in Chapter 4.
This decrease is even more visible by looking at the signals for a span of c and those for a
span of 8c (see Figure 5.13). Also, the mean of the coefficients decreases slightly.

Considering the DDES results with a span equal to 8c, the relative errors with respect
to the statistics obtained experimentally (static case, Re = 2×104) are given by

εrel,CL
=

∣∣∣∣∣CLexp−CLDDES

CLexp

∣∣∣∣∣=
∣∣∣∣1.05−1.0455

1.05

∣∣∣∣= 0.43% (5.2)

εrel,CD
=

∣∣∣∣∣CDexp−CDDDES

CDexp

∣∣∣∣∣=
∣∣∣∣0.62−0.6395

0.62

∣∣∣∣= 3.15% (5.3)

εrel,St =

∣∣∣∣Stexp−StDDES

Stexp

∣∣∣∣= ∣∣∣∣0.158−0.151
0.158

∣∣∣∣= 4.43% (5.4)

The time-averaged dimensionless forces are consistent with those measured experimen-
tally.

The standard deviation SCD is a bit lower than the experimental value (see Table 5.3).
The span is slightly longer in the numerical model (8c) than in the experiments (≈ 7.7c).
Moreover, a periodicity condition is imposed in the spanwise direction for the simulations.
These factors may partly explain the differences.

A dominant frequency is revealed by the power spectral density of the lift coefficient
(see Figure 5.14a). The dominant frequency corresponds to a Strouhal number of about
0.151 and it is associated with the evolution of the coherent structures present in the sep-
arated flow as it will be shown in Chapter 6. The dominant frequency found by DDES is
slightly lower than the forcing frequency used in the experiment. Moreover, the frequency
spectrum has a low frequency content.

In the semilogarithmic plot given in Figure 5.14b, the harmonics of the dominant
frequency are not identifiable because with the DDES approach, the large scales are cap-
tured and the predicted flow contains disordered turbulent eddies. By contrast, a URANS
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Figure 5.13: Evolution of the aerodynamic force coefficients of the flat plate at α = 30°
for different spanwise periods obtained by DDES: (left) Lift coefficient as a function
of the non-dimensionalized time. (right) Drag coefficient as a function of the non-
dimensionalized time. 55
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Figure 5.14: Power spectral density of CL(t) at α = 30° obtained by DDES (span = 8c).

simulation gives a periodic solution and the harmonics of the fundamental frequency are
observable.

In Figure 5.15, small eddies near the wall are visualized by choosing a high value of
Q which depends on the flow problem.

Figure 5.15: Surface of Q = 4 colored with the kinematic pressure [m2/s2] at α = 30°
(DDES, span = 8c).

The vortex shedding is essentially a three-dimensional phenomenon. The flow com-
ponents in the spanwise direction have to be taken into account to predict the aerody-
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namic forces acting on the flat plate accurately. It is difficult to understand the relation
between the aerodynamic force coefficients and the flow structures by looking directly
at the evolution of the turbulent flow over time in the case of a flow predicted by DDES
(see Figure 5.15); that’s why the dynamic mode decomposition method will be used in
Chapter 6.

In short, the unsteady RANS simulations using the Spalart-Allmaras model, even
three-dimensional, are not able to achieve the accuracy of DDES.

The flow past a flat plate at an angle of attack of 30° contains separation and large
scale unsteadiness. From a qualitative point of view, the URANS simulations are able to
capture the unsteady nature of the flow.

As already observed in Chapter 4, the general tendency is that the amplitudes of the
fluctuations of the aerodynamic force coefficients predicted by DDES are reduced if the
span is increased and the mean values are slightly smaller.

The DDES case where the span length is equal to 8c produces results that are consis-
tent with the experimental force data.
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Chapter 6

Dynamic mode decomposition of CFD
results

In this chapter, the Dynamic Mode Decomposition (DMD) method is used in order to
obtain information about the coherent structures of a flow problem. The formulation of
the decomposition method is summarized at the beginning of the present chapter.

The DMD analysis of the flow fields given by the numerical simulations of Chapter 5
is presented to compare the dynamic modes obtained from each approach.

This chapter also shows the dynamic modes extracted from the experimental measure-
ments for comparison.

A quantitative comparison of the modes extracted from the different numerical results
evaluated by the Modal Assurance Criterion (MAC) concludes this chapter.

6.1 Dynamic mode decomposition

The Dynamic Mode Decomposition (DMD) method is detailed in [18, 9].

A sequence of N flow fields or snapshots is represented by a matrix VN
1 :

VN
1 = {v1,v2,v3, . . . ,vN} (6.1)

where vi is a vector representing the ith flow field. It is assumed that two consecutive
snapshots vi and vi+1 are separated by a constant time step ∆t. Moreover, a constant
linear mapping A is assumed between two consecutive snapshots:

vi+1 = Avi (6.2)
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The sequence of snapshots can thus be formulated as a Krylov sequence:

VN
1 = {v1,Av1,A2v1, . . . ,AN−1v1} (6.3)

The purpose of the present decomposition technique is to extract the dynamic charac-
teristics of the physical system described by the matrix A which is usually not known a
priori.

If the sequence of snapshots VN
1 includes a sufficiently large number of snapshots,

the dominant features of the physical system are captured by VN
1 . Therefore, it may be

assumed that the snapshots are linearly dependent beyond a certain number. The last snap-
shot vN is then written as a linear combination of the previous snapshots {v1,v2,v3, . . . ,vN−1}:

vN = VN−1
1 a+ r (6.4)

where a = (a1 a2 . . . aN−1)
T and r is the residual vector. According to [17], the

following matrix relation can then be written:

AVN−1
1 = VN

2 = VN−1
1 S+ reT

N−1 (6.5)

where S is a companion matrix given by

S =


0 a1

1 0 a2
. . . . . . ...

1 0 aN−2

1 aN−1

 (6.6)

and eT
N−1 is the (N−1)th unit vector: eT

N−1 = (0 0 . . . 1).
By construction, some of the eigenvalues of the matrix A are approximated by those

of the companion matrix S. The last column of S, which contains the components of a,
is unknown. The vector a can be obtained by calculating the least-squares solution of
(6.4) through a QR decomposition of the sample sequence VN−1

1 . However, in practice,
the decomposition algorithm using the companion matrix S is ill-conditioned and the first
two dominant dynamic modes of the physical process can be extracted at most.

A more robust computation is obtained using a full matrix S̃. First, a singular value
decomposition of VN−1

1 is evaluated:

VN−1
1 = UΣW∗ (6.7)

where U and W∗ (the conjugate transpose of W) are unitary matrices and Σ is a rectan-
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gular diagonal matrix containing the singular values of VN−1
1 . Then, the singular value

decomposition is substituted in (6.5) to get

U∗AU = U∗VN
2 WΣ

−1 = S̃ (6.8)

The dynamic modes are then given by

Φi = Uyi (6.9)

where yi is the ith eigenvector of S̃:

S̃yi = µiyi (6.10)

and the associated frequencies correspond to the imaginary part of

λi =
log(µi)

∆t
(6.11)

Choice of the time step

The constant time step between two consecutive snapshots must be small enough in order
that relevant dynamic processes can be extracted from the data sequence.

According to the Nyquist criterion, the sampling frequency must be at least two times
the characteristic frequency of a process in order to identify this process.

Schmid, the author of the DMD method, recommends to choose a sampling frequency
equal to about three times the Nyquist limit for the dynamic mode decomposition [18].

6.2 Applications

In this part, the inclined flat plate configuration of Chapter 5 is considered. The DMD
method is applied to two sets of numerical data: the flow fields given by the two-dimensional
URANS simulation and the ones given by the DDES approach where the span length is
equal to 8c.

The formulation of DMD is only based on the sequence of data VN
1 and therefore

composite data can also be processed.
The velocity components in the xy-plane combined with the global aerodynamic force

coefficients are used to perform the dynamic mode decomposition to link the flow struc-
tures with the variations of CL(t) and CD(t). The numerical flow field data are available at
the grid points given in Figure 6.1. This size of the subdomain is large enough to include
the vortex-shedding process as shown earlier (see Figure 5.7).
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Figure 6.1: Grid resolution used for the DMD analysis: ∆x/c = 0.03125 and ∆y/c =
0.03125. The reference frame is also shown.

The size and resolution of the window are also chosen knowing that a long time in-
terval has to be considered to have converged solutions and to take account of the low
frequency content in the case of the DDES results. Moreover, about 20 snapshots are
considered per shedding period. So, the memory requirements will be significant and the
computational cost of DMD increases if the size of the matrix VN

1 increases. In addition,
the regions where the mesh is coarse introduce numerical dissipation.

6.2.1 DMD of the flow fields obtained by 2D URANS

The URANS simulation gives a periodic solution for the inclined flat plate case. There-
fore, the time step depends on the vortical flow structures that are shed by the body: the
sampling frequency is chosen equal to about 20 times the fundamental frequency. The
tenth harmonic (10 times the fundamental frequency) can thus be identified according to
the Nyquist criterion and the third harmonic can be determined satisfactory by the dy-
namic mode decomposition according to Schmid’s suggestion [18].

DMD provides the dynamic modes and their corresponding frequency and amplitude.
Figure 6.2 shows the DMD amplitude distribution as a function of frequency (= ℑ(λi), see
Equation (6.11)) in a semilogarithmic plot.

The modes are sorted by descending amplitude. The first three dominant dynamic
modes are illustrated by a velocity plot. The mean flow mode ( f = 0 Hz) is included in
the graphics.
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(a) DMD amplitude distribution.

(b) Mode 1 ( f = 0 Hz, A/Amax = 1).

(c) Mode 2 ( f = 0.0900 Hz, A/Amax = 0.1424). (d) Mode 3 ( f = 0.1800 Hz, A/Amax = 0.0298).

Figure 6.2: DMD analysis of the 2D URANS flow fields.
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The mean flow mode appears once. The DMD amplitude distribution as a function of
frequency is symmetrical with respect to ℑ(λi) = 0 because the input data are real [18].

A peak is clearly visible at the fundamental frequency fs in the frequency spectrum
given in Figure 6.2a. The other harmonics (i.e., integer multiples of fs) are also present
but their amplitude is smaller than the amplitude associated with fs.

The table in Figure 6.2a shows that the normalized amplitude of the modes beyond the
third one is very low indicating that the contribution of the modes at high frequency to the
dynamics of the system is weak.

The velocity plots indicate that the vortices can be identified with the components of
the velocity vector in the xy-plane that have been used to construct the snapshot sequence
for the decomposition. The following remarks can be deduced:

• The first mode is the constant mode ( f = 0 Hz) and it corresponds to the contribution
of the mean flow.

In the first mode, the incoming streamlines upstream of the separation point at the
leading edge detach from the surface of the flat plate (see Figure 6.2b). A large
region of recirculating flow develops in the wake downstream of the separation
point.

A smaller vortex forms near the trailing edge.

• The velocity plot of the second dynamic mode depicted in Figure 6.2c shows a
vortex close to the trailing edge.

The frequency associated with the second mode corresponds to a Strouhal number
St (= f csin(α)/U∞) equal to 0.152.

The Strouhal number has already been estimated at about 0.152 from the evolu-
tion of the lift coefficient as a function of time (see Table 5.3 and Figure 5.6 of
Chapter 5).

The unsteady behavior of the separated flow around the static flat plate at α = 30°
and Re = 2×104 is mainly controlled by the formation and shedding of the trailing-
edge vortex. The vortex shedding is not symmetrical.

• The mode at the second harmonic also shows a vortex near the trailing edge but the
flow pattern is less coherent compared to Mode 2. The amplitude associated with
the third mode is lower than the one of the second mode.

• The other spatial modes are not presented since they are not pertinent.
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Reconstruction of the flow fields using the most dominant dynamic modes

The snapshot sequence can be reconstructed using the dynamic modes. For example, for
the velocity field at an instant t, one has [9]

u(x,y, t) =
N

∑
k=1

aDMD
k︸ ︷︷ ︸

Amplitude

exp(λ DMD
k t)︸ ︷︷ ︸

Time evolution

Φ
DMD
k (x,y)︸ ︷︷ ︸

Spatial mode

(6.12)

If all modes are included in the summation of Equation (6.12), then the original flow field
is recovered.

Table 6.1 indicates the errors associated with the statistics of the dimensionless force
coefficients when the most dominant modes are considered. If only the mean flow mode
is retained, then the vibration amplitude of the reconstructed lift and drag signals is zero
and the associated standard deviations are null (the relative errors are equal to one in the
first row of Table 6.1).

The modes that are relevant are essentially the first three modes. For instance, if the
first three dynamic modes are considered, the reconstructed samples coincide very well
with the original samples used for the decomposition as illustrated in Figure 6.3.

Number
of
retained
modes

∣∣∣∣CLURANS−CLapprox

CLURANS

∣∣∣∣ ∣∣∣∣SCLURANS
−SCLapprox

SCLURANS

∣∣∣∣ ∣∣∣∣CDURANS−CDapprox

CDURANS

∣∣∣∣ ∣∣∣∣SCDURANS
−SCDapprox

SCDURANS

∣∣∣∣
1 0.0801 100 0.0158 100
2 0.0256 1.1110 0.0228 1.5702
3 0.0154 0.1248 0.0140 0.2733
4 0.0139 0.0636 0.0137 0.0806
5 0.0154 0.0447 0.0151 0.0457

Table 6.1: Relative errors associated with the time-averaged aerodynamic force coeffi-
cients and the associated standard deviations as functions of the number of retained modes
in the reconstruction. The complex conjugate of each selected mode is also included in
the reconstruction. Error values are in percent.

The lift and drag signals are not in phase. The phase difference is observable in Fig-
ure 6.3: CD(t) is slightly delayed compared to CL(t).

In the case of the 2D URANS simulation, the reconstruction of the sequence of ve-
locity fields using the most dominant dynamic modes yields to the same snapshots of the
flow presented in Figure 5.7 of Chapter 5. As an example, Figure 6.4 shows one original
snapshot and a reconstructed snapshot at the same instant.

The implementation of the reconstruction algorithm is validated because the two stream-
line plots are not distinguishable.
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Figure 6.3: Reconstruction of the aerodynamic force coefficients using the first three dom-
inant dynamic modes. The complex conjugate of each selected dynamic mode is also
included in the reconstruction.

(a) (b)

Figure 6.4: Comparison between (a) an instantaneous velocity field obtained by 2D
URANS and (b) a velocity field reconstructed using the first three dominant dynamic
modes at a given time.
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6.2.2 DMD of the flow fields obtained by DDES

2D flow fields

A slice normal to the z-direction is taken; the location of the plane in the span does not
matter because of the imposed periodicity condition in the spanwise direction. The am-
plitude and the frequency of the flow structures extracted from the sequence of velocity
fields contained in a cross section are represented in Figure 6.5.
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Figure 6.5: DMD amplitude distribution obtained from the sequence of flow fields given
by DDES.

Figure 6.5 shows that the level of noise in the results obtained by a decomposition
directly applied to the evolution of the two-dimensional flow fields over time is high due
to the fact that large-scale turbulent eddies are captured by the DDES technique and so
the numerical results are not as smooth as in a URANS simulation.

Nevertheless, the dominant Strouhal number is located near 0.151 (or f ≈ 0.09 Hz).
A low frequency content exists too but a well-defined peak is not observable in this

range.

Phase averaging of the flow fields

In this section, the (quasi-)periodic vortex shedding is analyzed using a phase-averaging
technique. A unique 2D slice is chosen like in the case of the PIV measurements.

The Strouhal number St is estimated at about 0.151 (see Table 5.3 and Figure 5.14 of
Chapter 5) and the reference shedding period Ts (= 1/ fs) to be used to calculate a phase
average of the flow fields is deduced.
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20 phases uniformly distributed on the reference period Ts are chosen. The sampling
period is thus Ts/20. The time step between the snapshots has to be constant for the
dynamic mode decomposition.

The entire simulation time interval is from t = 500 s to t = 1350 s but the phase-
averaged solution is computed on a portion of this interval. The reason is that the vortex-
shedding process predicted by the DDES approach is not exactly periodic as the flat plate
is static in the numerical model. This behavior is also observed in the static case of the
experiments as mentioned earlier.

The phase average of the flow fields is calculated over approximately 50 shedding
cycles in a time interval where the shedding period varies the least.

Ideally, the flat plate should vibrate in the simulations like in the forced case of the ex-
periments and a long simulation time should be considered to compute the phase-averaged
solution. The experimental measurements are acquired over a much longer time interval.
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(a) DMD amplitude distribution.

(b) Mode 1 ( f = 0 Hz, A/Amax = 1).

(c) Mode 2 ( f = 0.0886 Hz, A/Amax = 0.0930). (d) Mode 3 ( f = 0.1763 Hz, A/Amax = 0.0108).

Figure 6.6: DMD analysis of the spanwise-averaged DDES flow fields.
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The phase-averaging operation reduces the noise level in the results as the random
fluctuations are smoothed. The frequencies lower than the frequency associated with St≈
0.151 are removed by the phase averaging as reflected by the amplitude distribution given
in Figure 6.6a.

The frequency spectrum obtained from the phase-averaged velocity fields of the sep-
arated flow shows a peak at 0 Hz (mean flow mode) and the harmonics. The fundamental
frequency (or first harmonic) is associated with a Strouhal number of 0.150.

The amplitude of the dynamic modes (without considering the mean flow mode) is
slightly smaller compared to the DMD analysis carried out with the 2D URANS simula-
tion. The difference may be due to the fact that the velocity component in the z-direction is
not considered for the decomposition. Indeed, DDES is three-dimensional and the vortex
shedding is essentially a three-dimensional phenomenon too. In the case of a 2D URANS
simulation, the flow components in the z-direction are not computed and the vortex shed-
ding is contained in the xy-plane.

Figure 6.6 shows that the first two dominant spatial modes are consistent with those
extracted from the URANS results. Nevertheless, some differences exist: the size of the
recirculation regions and the location of the vortex cores are not exactly identical in both
approaches. The third mode, which has a lower amplitude, is more irregular in the case of
the DDES results.

The spatial modes will be compared quantitatively using the Modal Assurance Crite-
rion (MAC) in Section 6.2.4.

The velocity field of the second mode shows a vortex close to the trailing edge of the
flat plate. This vortex is shed periodically.
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Comparison with the DMD analysis of the experimental data

Table 6.2 and Figure 6.7 give the results of the dynamic mode decomposition of the ve-
locity fields obtained by Particle Image Velocimetry (PIV) in the case where the flat plate
is forced to vibrate.

A rigorous quantitative comparison is not possible for the following reasons. First,
as mentioned earlier, the Reynolds numbers are not the same: Re = 4×104 in the forced
case of the experiments and Re= 2×104 in the numerical simulations. Then, the Strouhal
number determined numerically and the imposed value in the experiment do not match
exactly because the flat plate does not oscillate at the forcing frequency like in the exper-
imental setup.

Table 6.2 shows that the order of magnitude of the dimensionless frequencies and the
normalized amplitudes are rather close to those given by the DMD analysis of the phase-
averaged DDES velocity fields.

Mode Dimensionless frequency A/Amax
1 0 1
2 0.156 0.1140
3 0.312 0.0147
4 0.468 0.0058
5 0.624 0.0031

Table 6.2: Dimensionless frequency and amplitude associated with each dynamic mode
(experimental velocity fields).
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(a) Mode 1.

(b) Mode 2. (c) Mode 3.

Figure 6.7: Representation of the modes extracted from the experimental measurements.
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From a qualitative point of view, the two first spatial modes extracted from the exper-
imental flow fields are similar to those obtained from numerical results. The third mode,
which is of smaller amplitude, is more difficult to compare because the velocity plot is
irregular in the wake.

Among the numerical simulations, the dynamic mode decomposition of the phase-
averaged DDES velocity fields is the closest to the experimental one demonstrating that
the separated flow is predicted more accurately with DDES.

6.2.3 Reconstruction of the DDES flow fields using dominant dynamic
modes

In this section, the relation between the flow structures and the aerodynamic force coeffi-
cients is studied with the purpose of a better understanding of the physics of the unsteady
flow. The quantities CL and CD are added to the sequence of data fields.

Phase and spanwise averaging of the flow fields

If a slice is taken for the DMD analysis, the lift and drag coefficients, which are global
quantities, do not correspond exactly to the section dimensionless force coefficients which
are not easy to determine. Consequently, the DDES results are averaged in the spanwise
direction (spatial average).

The first idea was to write the velocity vector at each point of a uniform mesh gener-
ated by extruding the 2D grid presented in Figure 6.1 in the z-direction. This approach
may be practicable for the mesh where the spanwise period is c using the required sam-
pling period (≈ Ts/20) and a sufficiently long simulation time to have converged solutions.
However, the memory requirements at each time step are quite high for the meshes with
a higher spanwise period (4c and 8c). Moreover, the interpolation of the mesh values to
a uniform grid slows down the computation. In the scope of this work, only 8 slices in
the xy-plane and uniformly distributed along the span are kept to compute the spanwise-
averaged flow fields.

Figure 6.8 illustrates that the normalized amplitudes are lower than those obtained
before averaging the flow fields in the spanwise direction. This attenuation highlights
once again the three-dimensional nature of the separated flow.

In Figure 6.9, the flow is described by the first three dominant modes extracted from
the snapshots of the flow.
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Figure 6.8: DMD amplitude distribution obtained from the phase and spanwise averaged
flow fields given by DDES.
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(b) Evolution of the drag coefficient over one period T .
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Figure 6.9: Streamlines around the flat plate at α = 30° obtained by reconstruction of
the flow fields using the first three dominant dynamic modes (DDES, phase and spanwise
average).
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The contributions of the vortices to the coefficients CL and CD can be directly deduced
from the different phases given in Figure 6.9.

Actually, the same flow evolution than the one that has already been described in Fig-
ure 5.7 of Chapter 5 is essentially found after reconstruction of the DDES data sequence.
The main differences concern the size of the flow structures and the center of the core of
the vortices that are involved in the dynamics of the wake.

Once again, it can be seen that the formation and shedding of the trailing-edge vortex
(Mode 2) influence the recirculation regions (Mode 1). The drag coefficient is slightly
delayed compared to the lift coefficient as can be noticed from Figures 6.9a and 6.9b.

In brief, DMD gives the main flow structures and the value of the aerodynamic force
coefficients associated with these structures. The evolution of these coefficients can be
related to the evolution of the selected flow structures through this analysis. The dynamic
mode decomposition technique is complementary to CFD simulations, particularly to the
DDES (or LES) approach as only the most relevant dynamic modes can be retrieved to
describe the evolution of the flow over time.

6.2.4 Modal assurance criterion

The Model Assurance Criterion (MAC) is a frequently used technique to compare mode
shapes [1]. Considering two families of modes x{1} and x{2}, the modal assurance cri-
terion between the ith mode of the first family and the jth mode of the second family is
calculated by

MAC
(

x{1}
(i) ,x

{2}
( j)

)
=

 x{1}
T

(i) x{2}
( j)∥∥∥x{1}

(i)

∥∥∥∥∥∥x{2}
( j)

∥∥∥
2

(6.13)

A quantitative comparison is given by the value of the criterion which is included in [0,1]:
if MAC is equal to 1, then the correlation is perfect.

The MAC matrices represented in Figure 6.10 are used for the comparison of the
modes identified from the numerical results presented in this chapter.

From Figures 6.10a and 6.10b, it may be inferred that an acceptable agreement is
noticed between the first two spatial modes extracted from the URANS and DDES flow
fields. However, the similarity is weak between the third modes. The spatial modes at
higher frequencies are not correlated.

From Figure 6.10c, it can be concluded that the two families of modes (from phase
and spanwise averaged DDES flow fields and from phase-averaged DDES flow fields in
one cross section) are quite close for the first three dominant modes, justifying the use
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Figure 6.10: Comparison of the three families of modes extracted from different flow
fields: (a) DDES (phase average of the flow fields given in a slice) vs. 2D URANS.
(b) DDES (phase and spanwise average) vs. 2D URANS. (c) DDES (phase and spanwise
average) vs. DDES (phase average of the flow fields given in a slice).
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of 2D PIV to study the spatial modes in two dimensions. The concordance is less good
between the fourth modes.

The modes of a family can also be compared with themselves to verify that the number
of samples is high enough or the spatial resolution is adequate. The AutoMAC matrix,
which is a particular case of the MAC matrix, is shown in Figure 6.11 for the modes
identified from the DDES phase-averaged flow fields and it indicates that the off-diagonal
values are small. Therefore, the spatial discretization and the temporal one used in this
chapter have been appropriately chosen because aliasing is avoided [1].
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Figure 6.11: AutoMAC for the set of modes extracted from the DDES flow fields (phase
average of the flow fields given in a slice).
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Chapter 7

Conclusions

7.1 Summary

The first problem considered in this thesis is the flow around a NACA 0012 airfoil at
angles of attack below the stall angle. In these cases, the thin boundary layers remain
attached over a large surface of the airfoil and the numerical predictions obtained by a
two-dimensional steady-state RANS simulation using the Spalart-Allmaras model are in
satisfactory agreement with the experimental data found in the literature. The S-A model
has rather good performance for attached or mildly separated flows and the RANS com-
putation is efficient.

Then, two configurations have been considered: the flows around a NACA 0012 airfoil
at a wide range of angles of attack and a static flat plate at an angle of attack equal to 30°.
These problems are challenging because the flows are massively separated.

For the NACA 0012 case, the objective is to test the delayed detached-eddy simula-
tion based on the Spalart-Allmaras model in OpenFOAM. Several sets of simulations are
performed:

• First, for a given grid (size and resolution), several angles of attack are tested: α =

8°, 20°, 45° and 60°. The purpose of this set of cases is to validate the DDES
solutions obtained using OpenFOAM.

On the one hand, the present results are compatible with the numerical data given
by Spalart et al. [19] indicating that there is no major inconsistency in our settings.

On the other hand, beyond the stall, the DDES predictions are remarkably close to
the experimental measurements of the aerodynamic force coefficients. Addition-
ally, for these cases, two-dimensional unsteady RANS simulations using the S-A
turbulence model reveal that the URANS predictions are overestimated especially
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when large regions of massive separation are present in the flow at high angle of
attack.

The prediction of turbulent flows presenting large scale unsteadiness is challenging.
An unsteady RANS simulation predicts a periodic behavior while the DDES ap-
proach is able to capture the chaotic behavior of massively separated flows, which
is reflected by the evolution of the dimensionless force coefficients.

• Second, a grid refinement study is performed. Finer turbulent eddies are captured
by DDES if the mesh is refined and there is a trade-off between simulation fidelity
and computational cost.

• Lastly, the analysis of the effect of the span length shows that this parameter has
a significant influence on the aerodynamic forces. Ideally, the span length should
therefore be chosen as close as possible to the geometry considered in the experi-
ment or in the real flow problem.

The general tendency is that the amplitudes of the fluctuations of the aerodynamic
force coefficients predicted by DDES are reduced if the span is increased

The time-averaged lift and drag coefficients are also slightly reduced due to an in-
crease in three-dimensionality (increased exchange of momentum in the spanwise
direction).

For the flat plate case, from a quantitative point of view, the same conclusions than
the previous geometry are basically found. Once again, the unsteady RANS simulations
using the S-A model, even three-dimensional, are not able to achieve the accuracy of
DDES. The DDES predictions are consistent with the available experimental data: the
relative error is about 0.43% for CL and about 3.15% for CD with the numerical results
obtained with the mesh where the span length is 8c. These results are quite promising.

Furthermore, the generated flow fields are processed using the Dynamic Mode De-
composition (DMD) method in order to extract dynamic information about the flow. The
dynamic behavior of a complex flow problem can be represented by the most dominant
dynamic modes. The DMD analysis allows us to better understand the vortex shedding:

• The mean flow mode reveals a large recirculation zone above the surface of the
inclined flat plate.

• The dynamic mode associated with the Strouhal number corresponds to a (quasi)-
periodic formation and shedding of a vortex close to the trailing edge, which dis-
turbs the flow around the body. This mode controls mainly the unsteady behavior
of the separated flow around the static flat plate.

The vortex shedding is therefore not symmetrical.
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The dynamic mode decomposition of the flow fields also facilitates the comparisons
between the different approaches used to analyze the flow, i.e., CFD results and exper-
imental measurements. The most dominant flow structures extracted from the PIV data
show the same flow features than those obtained numerically, from a qualitative point of
view.

7.2 Future perspectives

All the simulations of the present work use the Spalart-Allmaras model. An analysis of
the influence of the turbulence model was beyond the scope of this thesis. Simulations
using different turbulence models could be carried out to illustrate the strengths and defi-
ciencies of the models. For instance, the NACA 0012 airfoil has already been simulated
at high angles of attack and at a Reynolds number Re = 105 using the Menter Shear Stress
Transport (SST) turbulence model [26]. As shown in the paper, the URANS simulations
using this two-equation model lead to poor agreements with the experimental measure-
ments. The differences are even more important than the Spalart-Allmaras model. This
example suggests that the S-A model is a good choice for this particular aerodynamic
configuration but a further investigation is required.

This thesis focuses on aerodynamic flows. It may be interesting to evaluate the per-
formance of the present simulation approach for other types of flow such as channel flows
(e.g., the turbulent flow over a backward-facing step in a channel).

DES may be suitable for engineering applications where the use of LES is too expen-
sive as DES is a less costly approach compared to LES.

Also, the present thesis does not give a complete answer to the low frequency content
of the separated flow around the inclined flat plate. With the analyses presented in Chap-
ters 5 and 6, a well-defined dominant low frequency is not present and the identification
of the flow structures associated with the low frequency content is challenging. Moreover,
the low frequency content may be due to three-dimensional effects (e.g., in the spanwise
direction).

In Chapter 6, the vortex shedding has been studied in two dimensions. This approach
has the disadvantage that the spanwise flow components are not considered. The flows
predicted by the DDES method contain three-dimensional eddies. Another research di-
rection is to investigate the mixing in the spanwise direction, which may influence the
vortex shedding and the mean flow.

For the dynamic mode decomposition method, it could be interesting to compare the
results obtained by using a sequence of scalar quantities such as ωz, the spanwise compo-
nent of the vorticity, or Q, the second invariant of the velocity gradient tensor.

Finally, a future research direction may be to use a numerical model where the mesh
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can deform in order to impose small vibrations on the flat plate to be as close as possible
to the forced case of the experiments presented in Chapter 5. Actually, the reasons for the
discrepancies between the numerical and experimental results may be due to the fact that
the flat plate does not vibrate in the numerical simulations.

In this final year project, we have explained the methodology to perform DDES in
OpenFOAM. We hope that this thesis can serve as an example for future investigations in
the field of dynamics of fluid flows as there are many other interesting aspects that can be
studied.

Wa Allahu a’lam
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Appendix A

Computation time

All the simulations of this thesis have been run in the NIC4 cluster. The University of
Liège hosts the NIC4 cluster which has the following features as documented in http:

//www.ceci-hpc.be/:
• 128 compute nodes with two 8-cores Intel E2650 processors at 2.0 GHz.

• 4 GB of RAM per core.

• The nodes are interconnected with a QDR Infiniband network and they have exclu-
sive access to a fast 144 TB FHGFS parallel filesystem.

Table A.1 contains the computation time associated to each DDES case presented in
Chapter 4. It is important to mention that the indicated periods are not very representative
as they do not take account of the time related to the following steps:

• The construction of the case (the construction of the mesh in particular). The
meshes are created using the open source software Gmsh [7] and they are imported
to OpenFOAM using the command gmshToFoam.

• To initiate a DDES calculation, the solution from the two-dimensional mesh of a
RANS simulation is interpolated to the three-dimensional mesh used for DDES. In
OpenFOAM, the mapFields command is used for this mapping process.

• The domain decomposition to run the application in parallel on distributed proces-
sors, this step is done using the command decomposePar.

• The reconstruction of the mesh and data after the simulation is completed. The
corresponding command in OpenFOAM is reconstructPar.

• The post-processing step: for example, the computation of the magnitude of the
velocity (foamCalc mag U), the vorticity field (vorticity), the second invariant
of the velocity gradient tensor (Q), et cetera.
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• The queued time, which corresponds to the period between the submission of the
job and the beginning of its execution at the start of a simulation, or to continue a
simulation that has stopped because of the time limit. A job can wait several days
in the queue before starting to run depending on the jobs located in the queue.

• The simulation results have to be downloaded from the directory in the cluster to the
local directory. It is more efficient to write the flow fields in binary (writeFormat
binary in the controlDict file).

Mesh Spanwise period Time step [s]
Computation time
(format: day:hour:minute)

Mesh I c 0.004 00:16:57

Mesh II c 0.002 02:06:10

Mesh III c 0.002 03:21:46

Mesh IV c 0.001 20:13:22

Mesh I 2c 0.004 01:09:40

Mesh I 4c 0.004 03:09:51

Table A.1: Computation time of the DDES cases presented in Chapter 4. The simulations
run in parallel on 60 cores of the NIC4 cluster. The simulations end at t = 500 s with the
data given in Table 4.1.

For Mesh I and for given solver tolerances, the computation in parallel on several
nodes of the NIC4 cluster appears to be faster with the choice of solvers and precondi-
tioners given on page 86 compared to other available linear solvers such as the Generalized
Geometric-Algebraic Multi-Grid (GAMG) solver. Nevertheless, complete simulations with
other settings are required in order to be able to choose the optimal parameters, especially
for the case using Mesh IV where the computation time is high.

For Mesh IV, in addition to the high number of cells, the time step is four times smaller
than the one for Mesh I. Indeed, the finer the mesh is, the smaller the time step has to be for
stability. A further investigation is necessary to choose the optimal number of processors
as a function of the number of cells knowing that the queued time may increase even more
if the number of processors increases.
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A.1 fvSchemes file for an OpenFOAM DDES case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system ";

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// http :// www.openfoam.org/docs/user/fvSchemes.php

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

default none;

// http :// www.openfoam.org/version2 .1.0/ numerics.php

// the surfaceScalarField velocity flux phi = rho U

div(phi ,U) Gauss LUST grad(U);

div(phi ,k) Gauss limitedLinear 1; // not used for S-A

div(phi ,B) Gauss limitedLinear 1;

// see Section 4.4.1 in the website given in the header

div(phi ,nuTilda) Gauss limitedLinear 1;

div(B) Gauss linear;

div(( nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes
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{

default corrected;

}

fluxRequired

{

default no;

p ;

}

// ************************************************************************* //
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A.2 fvSolution file for an OpenFOAM DDES case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system ";

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// http :// www.openfoam.org/docs/user/fvSolution.php

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-7;

relTol 0.01;

};

pFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-7;

relTol 0; /* the solver relative tolerance is set to zero

to be sure to achieve the solver tolerance */

};

"(U|k|B|nuTilda )"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-7;

relTol 0;

};

}

PISO

{

nCorrectors 2; // default value

nNonOrthogonalCorrectors 1;

}

// ************************************************************************* //
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