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Main definitions

A stochastic process {X t }t≥0 has:
Ï stationary increments if, for every h > 0, the stochastic processes

{X t }t≥0 and {X t+h −Xh}t≥0

are equal in finite-dimensional distributions.

Ï is H-self-similar if, for every c > 0, the stochastic processes

{Xct }t≥0 and {c H X t }t≥0

are equal in finite-dimensional distributions.
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Long-range dependence

If {X t }t≥0 is centred with stationary increments, we consider the correlation kernel

ρ(k −`) := E[(Xk+1 −Xk )(X j+1 −X j )] j ,k ∈N .

The process {X t }t≥0 has long-range dependence if∑
j∈Z

|ρ( j )| =∞.

Correlation decays slowly as the lag tends to infinity.
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Applications

Such phenomena arise, for instance, in
Ï astronomy,
Ï biology,
Ï climatology,
Ï hydrology,
Ï image processing,
Ï internet traffic modelling,
Ï mathematical finance,
Ï physics.

We need good models !
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Gaussian case : Fractional Brownian Motion

Definition
Given H ∈ (0,1), a fractional Brownian motion of Hurst parameter H is a centred
continuous Gaussian process {B H

t }t≥0 with covariance function

E[B H
t B H

s ] = 1

2
(t 2H + s2H −|t − s|2H ).

{
1

cH

(∫ 0

−∞
((t −u)H− 1

2 − (−u)H− 1
2 )dB(u)+

∫ t

0
(t −u)H− 1

2 dB(u)

)}
t≥0

It has stationary increments and is H-self-similar. If H > 1
2 , it has long-range

dependence.
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Non-Gaussian case

Definition
Given d ∈N and H ∈ (1/2,1), the Hermite process of order d and Hurst parameter H is
defined as

1

cH

{∫
Rd

(∫ t

0

d∏
`=1

(s −x`)
H−1

d − 1
2+ d s

)
dB(x1) . . .dB(xd )

}
t≥0

Ï d = 1, it is the Fractional Brownian Motion;
Ï d ≥ 2, it is a non-Gaussian process;
Ï has stationary increments, is H-self-similar with long-range dependence.

L. Loosveldt 8th November 2024
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Simulations ?
d = 1 (Fractional Brownian Motion)

Abry, Meyer, Sellan and Taqqu, in successive works from 1995 to 1999, present a
Wavelet-based synthesis for Fractional Brownian motion

d = 2 (Rosenblatt process)

Pipiras, in 2004, give a wavelet-type expansion of the Rosenblatt process.
This expansion is exploited in 2006, together with Abry, to obtain a wavelet-based
synthesis of the Rosenblatt process

d ≥ 3

Pipiras, in his paper from 2004, raised the question of providing a wavelet-type
expansion for any Hermite processes.

L. Loosveldt 8th November 2024
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Wavelet approximation for deterministic functions

Two smooth functions:
Ï the scaling function φ
Ï the mother wavelet ψ

Fix a “resolution” J

f ∈ L2(Rd )
↙ ↘

Projection onto the subspace spanned by Projection onto the subspace spanned by{⊗d
`=1

2J/2φ(2J ·−k`)
}

k∈Zd

{⊗d
`=1

2 j`/2ψ(2 j` ·−k`) : k ∈Zd ,max1≤`≤d j` ≥ J
}

∑
k〈 f ,

⊗d
`=1

2J/2φ(2J ·−k`)〉⊗d
`=1

2J/2φ(2J ·−k`)
∑

j,k〈 f ,
⊗d
`=1

2 j`/2ψ(2 j` ·−k`)〉⊗d
`=1

2 j`/2ψ(2 j` ·−k`)

APPROXIMATION DETAILS

L. Loosveldt 8th November 2024
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Multiresolution analysis

L. Loosveldt 8th November 2024
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Wavelet approximation for stochastic integral

Id : L2(Rd ) → L2(Ω) : f 7→
∫
Rd

f dB(x1) . . .dB(xd )

is a quasi-isometry.

L. Loosveldt 8th November 2024
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Wavelet approximation for chaotic processes

We consider stochastic processes of the form

{Id (K (t ,•))}t≥0

with, for all t ≥ 0, K (t ,•) ∈ L2(Rd ). For the Hermite process, we have

K (t ,x) = 1
cH

∫ t
0

∏d
`=1(s −x`)

H−1
d − 1

2+ d s.

Fix t ≥ 0,

Xt
↙ ↘∑

k〈K (t ,•),
⊗d
`=1

2J/2φ(2J ·−k`)〉Id

(⊗d
`=1

2J/2φ(2J ·−k`)
) ∑

j,k〈K (t ,•),
⊗d
`=1

2 j`/2ψ(2 j` ·−k`)〉Id

(⊗d
`=1

2 j`/2ψ(2 j` ·−k`)
)

APPROXIMATION DETAILS

But, generally, we want a stronger convergence: almost surely uniformly on compact
sets.

L. Loosveldt 8th November 2024
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(A. Ayache, J. Hamonier, L. L. - 2024)

The random series

X (d)
H ,J (t ) = 2−J (H−1)

∑
k∈Zd

σ(H)
J ,k

∫ t

0

d∏
`=1
Φ

(1/2+ H−1
d )

∆ (2J s −k`)d s, (1)

is almost surely, for each J ∈N, uniformly convergent in t on each compact interval
I ⊂R+. Moreover, for all such I , there exists an almost surely finite random variable
(depending on I) for which one has, almost surely, for each J ∈N,

‖X (d)
H −X (d)

H ,J‖I ,∞ =

∥∥∥∥∥∥∥∥∥∥∥∥
∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

2( H−1
d )( j1+···+ jd )εj,k

∫ t

0

d∏
`=1

ψh` (2 j` s −k`)d s

∥∥∥∥∥∥∥∥∥∥∥∥
I ,∞

≤C J
d
2 2−J (H−1/2).

L. Loosveldt 8th November 2024
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σ(H)
J ,k

σ(h)
J ,k =

bd/2c∑
m=0

(−1)m
∑

P∈P (d)
m

m∏
r=1

E[Z
(1/2+ H−1

d )

J ,k`r
Z

(1/2+ H−1
d )

J ,k`′r
]

d−m∏
s=m+1

Z
(1/2+ H−1

d )

J ,k`′′s
. (2)

where, for J ∈Z, we consider the sequence (gφJ ,k )k∈Z of i.i.d. N (0,1) Gaussian random

variable defined, for all k ∈Z, by gφJ ,k := 2J/2
∫
Rφ(2J x −k)dB(x). and for δ ∈ (−1/2,1/2),

the Gaussian FARIMA (0,δ,0) sequence (Z (δ)
J ,` )`∈Z associated to (gφJ ,k )k∈Z is given, for all

` ∈Z, by
Z (δ)

J ,` := gφJ ,`+
+∞∑
p=1

γ(δ)
p gφJ ,`−p , with δ(δ)

p := δΓ(p +δ)

Γ(p +1)Γ(δ+1)

L. Loosveldt 8th November 2024
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“Approximation process”

X (d)
H ,J (t ) = 2−J (H−1)

∑
k∈Zd

σ(H)
J ,k

∫ t

0

d∏
`=1
Φ

(1/2+ H−1
d )

∆ (2J s −k`)d s,

with Φ̂(δ)
∆ (ξ) =

(
1−e−iξ

iξ

)δ
φ̂(ξ)

Not computable, only because of the series.

L. Loosveldt 8th November 2024
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Strategy
To deduce the inequality

‖X (d)
H −X (d)

H ,J‖I ,∞ =

∥∥∥∥∥∥∥∥∥∥∥∥
∑

(j,k)∈(Zd )2

max
`∈[[1,d ]]

j` ≥ J

2( H−1
d )( j1+···+ jd )εj,k

∫ t

0

d∏
`=1

ψh` (2 j` s −k`)d s

∥∥∥∥∥∥∥∥∥∥∥∥
I ,∞

≤C J
d
2 2−J (H−1/2).

we somehow remarked that this rate of convergence is mainly determined by the terms in the
series for which the corresponding indices belongs to

D1
j (t ) := {k ∈Z : [k2− j −2− j a ,k2− j +2− j a] ⊆ [0, t ]} with a ∈ (1/2,1)

Set

J 1
J (t ) := {k ∈ (D1

J (t ))d : max
`,`′∈[[1,d ]]

|k`−k`′ | ≤ 2εJ } with ε> 0.

L. Loosveldt 8th November 2024
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Simulation process

(A. Ayache, J. Hamonier, L. L. - 2024)

For all J ∈N, the simulation process at scale J of the generalized Hermite process
{X (d)

H (t )}t∈R+ is the process defined, for all t ∈R+, by

S(d)
H ,J (t ) = 2−J (H−1)

∑
k∈J 1

J (t )

σ(h)
J ,k

∫
R

d∏
`=1
Φ

(1/2+ H−1
d )

∆ (s −k`)d s. (3)

For any compact interval I ⊂R+, there exists an almost surely finite random variable C
(depending on I) for which one has, almost surely, for each J ∈N,

‖X (d)
H −S(d)

H ,J‖I ,∞ ≤C J
d
2 2−J (H−1/2). (4)

L. Loosveldt 8th November 2024
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

L. Loosveldt 8th November 2024
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Rosenblatt process of Hurst parameter 0,6 (blue), 0,7 (orange), 0,8
(green) and 0,9 (red).

L. Loosveldt 8th November 2024
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Hermite process of order 3 of Hurst parameter 0,6 (blue), 0,7 (orange),
0,8 (green) and 0,9 (red).
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Fractional Brownian Motion (blue), the Rosenblatt process (orange) and
the Hermite process of order 3 (green) with Hurst parameter 0,6.
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Fractional Brownian Motion (blue), the Rosenblatt process (orange) and
the Hermite process of order 3 (green) with Hurst parameter 0,7.
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Fractional Brownian Motion (blue), the Rosenblatt process (orange) and
the Hermite process of order 3 (green) with Hurst parameter 0,8.
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Python routine (using some R packages) for the Hermite processes of order 1,2 and 3
available upon request.

Figure: Paths of the Fractional Brownian Motion (blue), the Rosenblatt process (orange) and
the Hermite process of order 3 (green) with Hurst parameter 0,9.

L. Loosveldt 8th November 2024
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Applications (work in progress)

Ï test the numerical efficiency of statistical estimator for the Hurst parameters of the
Hermite processes

Ï statistical inference for the order of the process.

L. Loosveldt 8th November 2024
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Ï test the numerical efficiency of statistical estimator for the Hurst parameters of the
Hermite processes

Ï statistical inference for the order of the process.
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Applications (work in progress)
Ï test the numerical efficiency of statistical estimator for the Hurst parameters of the

Hermite processes
Ï statistical inference for the order of the process.

Figure: QQplot for the distribution of a fractional Brownian motion, compared with a N (0,1)

L. Loosveldt 8th November 2024
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Applications (work in progress)
Ï test the numerical efficiency of statistical estimator for the Hurst parameters of the

Hermite processes
Ï statistical inference for the order of the process.

Figure: QQplot for the distribution of a Rosenblatt process, compared with a N (0,1)
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Applications (work in progress)
Ï test the numerical efficiency of statistical estimator for the Hurst parameters of the

Hermite processes
Ï statistical inference for the order of the process.

Figure: QQplot for the distribution of a Hermite process of order 3, compared with a N (0,1)

L. Loosveldt 8th November 2024
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