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Abstract

Friction Melt Bonding (FMB) allows to weld aluminium and steel plates in a lap-joint con�guration.
FMB produces a melt pool in the aluminium plate, which is visually inaccessible as it is trapped
between the two plates. As the melt pool boundaries are initially unknown and evolve during the
process, numerical simulation is essential to support quantitative research on the FMB process or to
predict behaviour in out-of-laboratory conditions. To simulate the FMB process, this work proposes a
partitioned methodology that combines PFEM (Particle Finite Element Method) and FEM. PFEM is
used for modelling the aluminium plate, including phase change and convective �ow within the melt
pool. FEM, on the other hand, is used for the steel plate and the accompanying equipment, as they
do not present complex multiphysics phenomena such as phase change and evolving boundaries. A
2D model was used for the experimental comparison, as numerous simulations were required to set up
the thermal model. Results were compared against experimental measurements. A good agreement
between numerical and experimental results was achieved, both for the melt pool geometry and the
temperature of a thermocouple. In addition, the e�ect of ignoring the convective �ow inside the
melt pool was also studied. In this regard, results show moderate di�erences in melt pool geometries
between �owing and a non-�owing melt pool models.
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1 Introduction

High performance engineering designs often entail
multiple materials. This introduces manufactur-
ing challenges, especially in designs composed of
dissimilar metals and when welding is the only
joining mechanism tolerated by mechanical or
design conditions [1]. In this context, a promising

process for welding aluminium and steel plates in
lap-joint con�guration is the Friction Melt Bond-
ing (FMB) process [2]. In FMB, a cylindrical
non-consumable rotating tool is pressed against a
steel plate with a force ftool, generating heat by
friction, as illustrated in Fig. 1. Under the steel
plate is the aluminium plate, and under this a
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Fig. 1 Illustration of the FMB (Friction Melt Bonding) process for lap-joint welding of steel and aluminium plates. The
generated heat raises the temperature of the aluminium plate beyond the melting point, creating a melt pool shown as
curved red lines. Inside, liquid aluminium �ows redistributing the heat. The rotating tool is displaced a distance dtravel in
the illustration, leaving a trace of the melt pool (hatched zone in dark red).

thicker plate that serves as mechanical support
and heat sink. The generated heat is transmit-
ted to the aluminium plate by conduction, and if
accurately controlled, will partially melt the alu-
minium plate forming a melt pool of liquid metal.
Given that the melt pool touches the bottom sur-
face of the steel plate, welding by interdi�usion is
achieved between the dissimilar plates. If neces-
sary, the tool can be displaced a distance dtravel at
some speed vtool to generate a weld bead between
the steel and aluminium plates, as illustrated in
Fig. 1.

The mechanical conditions imposed on the tool
depend on the required heat to melt the alu-
minium plate. The thicker the steel plate, the
greater the dissipated heat, and thus higher loads
have to be applied to the tool to reach the melt-
ing temperature in the aluminium plate. Due to
the service life of the tool, the process is partic-
ularly e�cient for small thickness of steel plate
(approximately 1.0 mm). For this reason, the FMB
process could �nd use in shielding applications in
the automotive industry or in storage tanks [1, 3].
In such cases, the aluminium plate may also be
thin, imposing a challenge to the FMB process: to
generate enough heat to melt the aluminium plate,
but not too much in order to avoid melting the full
thickness of the plate and thus to avoid melting
or damaging the steel and backing plates. How-
ever, the heat transmitted to the aluminium plate
depends on multiple factors, such as the rotational
speed of the tool (ωtool), the travel speed (vtool),
the applied force (ftool), the tool dwell time (the
time the tool remains in the same position but in
contact with the plate), the thickness of the plates,
the force applied to hold the plates together, and

the convection and radiation losses between the
plates and the environment. In addition, the heat
�ux and pressure at the welding interface have
an impact on the presence of fragile intermetal-
lic compounds, hot tearing, and residual stresses,
i.e. aspects de�ning the quality of the welded joint
[4].

Based on the above, a successful aluminium-
to-steel weld depends on numerous factors and
may be subject to tight FMB operating ranges.
Determining the set of parameters and condi-
tions that result in a successful weld joint can
be laborious and highly costly if numerous tests
are required to adjust the FMB process to each
speci�c demand. For this reason, numerical sim-
ulation becomes essential. Several works can be
cited in this context. For example, Cruci�x et
al. [5] use a purely thermal �nite element model
to obtain the temperature �eld in the aluminium
plate. The melt pool geometry is identi�ed by
an isothermal curve at the melting temperature,
while the phase change is represented by the
change in the physical properties of the material,
such as density, thermal conductivity, and spe-
ci�c heat capacity. The same model was used by
Jimenez-Mena et al. [4] to qualitatively study the
hot tearing phenomenon in the FMB process. Sim-
ilar studies have been conducted in [6] for studying
the intermetallics formation in the joining of alu-
minium and copper. In all these works, the latent
heat of phase change is accounted for by modifying
the speci�c heat capacity (apparent heat capac-
ity method), while convection e�ects within the
melt pool were not considered. The latter aspect
is extremely di�cult to incorporate in a thermo-
mechanical �nite element model, as the melt pool
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must be considered as a �uid in order to accurately
capture the heat distribution due to convective
�ow. However, the boundary of the melt pool is
transient, making it di�cult to combine a solid
�nite element model with a Computational Fluid
Dynamics (CFD) model.

Outside the Friction Melt Bonding framework,
there are several works that address the simu-
lation of the Rotary Friction Welding (RFW),
which is considered as a solid-state welding pro-
cess, i.e. without a melt pool. For this reason,
thermo-elastic-plastic �nite element models have
been shown to be quite accurate [7], even in com-
mercial software [8] for dissimilar metals. Another
vast number of works are found in the simulation
of Friction Stir Welding (FSW), which is also a
solid-state joining process [9]. As in RFW, thermo-
elasto-plastic �nite element models are abundant
in the literature, although there are also works
that resort to CFD models to understand the
in�uence of the tool geometry on the material �ow
[9, 10].

The applicability of solid �nite element mod-
els to simulate welding processes is limited when
the in�uence of the melt pool is not negligi-
ble. For this reason, other authors have proposed
more advanced models, for example, using par-
ticle based methods such as Smoothed Particle
Hydrodynamics (SPH) and the Discrete Element
Method (DEM) (see [11] for a recent review).
The discrete character of particles in a Lagrangian
framework eases the capture of geometrical and
physical discontinuities of the material, which
allows to integrate multiphysics models in a single
numerical environment and thus to simulate mate-
rial transformations. However, the focus of these
methods as tools for the simulation of melt pools
is being directed towards the Additive Manufac-
turing (AM) �eld, such as Powder Bed Fusion and
Direct Energy Deposition processes (see [12] for a
recent review). In such cases, the melt pool can be
several orders of magnitude smaller than in FMB,
and be submitted to additional physical phenom-
ena due to the presence of a free surface and the
use of a laser or electron beam as a heat source.
These aspects inevitably increase the complexity
of models and hence the computational time, lim-
iting the applicability of SPH and DEM to models
of the order of the AM melt pool size.

In distinction to the literature devoted to the
simulation of the FMB process, this work employs

a particle-based method to cope with the forma-
tion and dynamics of the melt pool present in
the aluminium plate. The adopted technique is
the Particle Finite Element Method (PFEM) [13].
Unlike SPH and DEM, PFEM solves the govern-
ing equations using the Finite Element Method
(FEM). For that, a �nite element mesh is created
using a Delaunay triangulation of the particles
and it is reconstructed when particles displace-
ments excessively deform the elements. Given that
PFEM is based on FEM, it is possible to reuse
many of the developments that have already been
successfully validated in the FEM literature. For
this reason, since its origins in the �uid mechan-
ics �eld [13], PFEM has rapidly expanded to
cover, for example, the simulation of solids, �uid-
structure interactions, and phase changes (see [14]
for a recent review).

The potential of PFEM to simulate mul-
tiphysics and complex engineering problems is
becoming well established in the literature. Engi-
neering applications range from the simulation of
landslide [15] to the melting of a nuclear corium
core [16]. Thus, the present work also aims to con-
tribute to a new engineering application in which
the potential of PFEM stands out. Speci�cally,
the objective of PFEM here is to capture melting
and solidi�cation that take place in the aluminum
plate of the FMB process, taking into account
melt pool dynamics. The PFEM model used in
this work was documented and validated in a pre-
vious contribution [17], which models the molten
pool as a Newtonian �uid, while the mechani-
cal response of the solid phase is omitted. Due
to this simpli�cation, the proposed methodology
for the simulation of the FMB process is lim-
ited to examine the geometry of the melt pool
and its evolution. Although these aspects can be
also captured by Eulerian-based CFD methods,
the envisaged goal of this work is to incorpo-
rate constitutive laws in the solid phase to obtain
its mechanical response upon solidi�cation [18],
which is not straightforward to achieve in a CFD
framework though highly feasible in PFEM [18].
Paving the way towards FMB simulation using
PFEM, future research will focus on considering
other aspects that de�ne the quality of the weld
such as the presence of brittle intermetallic com-
pounds, the hot tearing phenomenon, or residual
stresses.
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Fig. 2 Illustration of the FMB domain partition used in
this work. (a) The complete FMB domain, (b) the PFEM
domain and (c) the FEM domain. Γ denotes the common
surface between FEM and PFEM domains.

The remainder of the manuscript is organ-
ised as follows. Section 2 presents the numerical
strategy to simulate the FMB process. Section 3
reports simulation results and provides compari-
son with experimental results of the FMB process.
Finally, section 4 gathers the �nal conclusions of
this work.

2 Numerical model of the
Friction Melt Bonding
process

As the phase change takes place only in the alu-
minium plate, it is unpractical to model the whole
FMB domain with PFEM. So the FMB process is
partitioned into two sub-thermomechanical mod-
els (FEM + PFEM), as illustrated in Fig. 2.
The PFEM submodel is to simulate phase change
(melting and solidi�cation) in the aluminium plate
(Fig. 2b). The FEM submodel is used for the parts
that remain solid during the FMB process, i.e. the
tool, the steel and backing plates, and the extrem-
ities of the aluminium plate that are not at risk
of being melted (Fig. 2c). This partitioned scheme
is widely used in multiphysics simulation, espe-
cially for �uid-structure interactions [19, 20], as
it allows the use of specialised software for each
physics, which are coupled by Dirichlet-Neumann
boundary conditions through a third code.

Speci�cally, the FEM and PFEM models are
solved using our own specialised pieces of soft-
ware. For FEM we use METAFOR [21], which
is able to simulate solids subject to large defor-
mations, plasticity and contact. METAFOR has
been widely validated for the simulation of metal
forming processes but has also been used in other
�elds, including the simulation of Friction Stir
Welding [22]. On the other hand, for PFEM
we use a code named PFEM3D [23], which is
able to simulate free surface �uid �ows, natu-
ral convection and phase change [17]. Finally,
the METAFOR and PFEM3D software are cou-
pled in a Dirichlet-Neumann scheme using a third
code named CUPyDO [24]. The three codes,
METAFOR, PFEM3D and CUPyDO, are devel-
oped in our computational laboratory. Details on
the thermomechanical models used in this work
are given in the following subsections.

2.1 Finite element model

Given that the FMB process presents numerous
complex physical phenomena, whose models lead
to a large number of unknown parameters, sim-
pli�cations are necessary in order to keep a man-
ageable amount of unknown parameters. However,
even with simpli�cations, it is inevitable to have to
solve a large number of problems to �nd the set of
model parameters representative of the FMB pro-
cess. For this reason, this work is mainly limited
to two dimensions (2D), taking into account that
our 3D FEM+PFEM model implementation takes
15 times longer to simulate the FMB process than
the 2D model. A comparison between 2D and 3D
models is given later, in section 3.2.

Having limited the model to 2D, it is no longer
feasible to account for the rotation of the tool and
the generation of heat by friction. So, the heat
transferred to the steel plate must be modelled
di�erently. Among the many ways that can be
thought of, in this work we assume that the tool is
perfectly rigid and at constant temperature Ttool,
as shown in Fig. 3. That is, the tool acts as a heat
reservoir that transfers heat to the steel plate by
contact. The thermal conductance from the tool
to the plate is modelled as:

htool = hc0

(
p

Hv

)w

(1)
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Fig. 3 Thermal boundary conditions of the FEM sub-
model.

where hc0 is the nominal thermal conductance
between the tool and the steel plate, p is the con-
tact pressure, Hv is the Vickers hardness of the
steel plate, and w is an experimentally determined
exponent [25].

The mechanical contact between the tool and
the steel plate is controlled by vertical displace-
ment of the tool as follows. At the beginning of
the simulation, the lower face of the rigid tool is
placed against the upper face of the steel plate,
and over a time span of tph, a vertical descent of
the tool is imposed, as shown in Fig. 4. This pro-
cedure corresponds to the preheating phase and
the vertical distance travelled by the tool (dtool) is
called the (numerical) penetration distance. After
the preheating phase, the tool starts its horizontal
displacement at velocity vtool.

Regarding the heat transfer between plates, it
is considered that the plates are perfectly bonded,
so there is no relative displacement between them
at the interface and no thermal contact resistance.

In view of the above, an isotropic thermoe-
lastic model is used as the constitutive model
for the FEM parts. The governing equations are
the momentum, mass and energy conservation
equations, as follows:

ρ
d2x

dt2
−∇ · σ = 0 (2a)

ρ J = ρ0 (2b)

ρ cv
dT

dt
+∇ · q = 0 (2c)

where ρ is density, x is the current position vec-
tor, d/dt is the Lagrangian time derivative, σ
is the Cauchy stress tensor de�ned by an objec-
tive thermo-hypo-elastic consitutive law, ∇· is
the divergence operator, J is the determinant of
the deformation gradient tensor, ρ0 is the initial

Fig. 4 Illustration of the displacement imposed on the
tool for the simulation of the FMB process.

density, cv is the speci�c heat capacity, T is tem-
perature, and the last term q is the heat �ux
vector de�ned by the Fourier's law as follows:

q = −κ∇T (3)

where κ is the thermal isotropic conductivity and
∇ is the gradient operator. Eq. (2) is comple-
mented with Dirichlet and Neumann boundary
conditions. Speci�cally, a constant temperature
equal to the room temperature is imposed at the
base of the backing plate, as shown in Fig. 3. In
addition, heat �ux by convection, radiation and
from the tool are considered, which are respec-
tively de�ned as:

qconv = hconv(T − Troom) n̂ (4a)

qrad = ϵrad σSB (T 4 − T 4
room) n̂ (4b)

qtool = htool(T − Ttool) n̂ (4c)

where ϵrad is the material emissivity, σSB is the
Stefan-Boltzmann constant, hconv is the convec-
tive heat transfer coe�cient, T is the local tem-
perature, Troom is the room temperature, and
n̂ is the surface outward unit normal vector.
For coupling with the PFEM submodel, a heat
�ux qcoupling is imposed on the inner surfaces
of the FEM submodel, representing the heat
exchanged with the PFEM submodel. Regarding
the mechanical boundary conditions, the bottom
surface is �xed to prevent displacements in all its
degrees of freedom. The tool is controlled in posi-
tion, as explained previously and as illustrated
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in Fig. 4. It is important to note that the inter-
nal surfaces (that communicate with the PFEM
submodel) have also been constrained in displace-
ment because, as discussed in the introduction
and explained in the following section, the con-
stitutive model used in the PFEM submodel is
oversimpli�ed for the solid phase and prevents the
computation of strains and stresses, and thus, the
computation of reaction forces.

The weak form of Eq. (2) are discretised using
linear quadrilateral elements for the position and
temperature �eld, Generalised-α time integration
scheme is used, and the mechanical and thermal
parts of the FEM model are solved in a staggered
scheme [26, 27]. The contact between the tool and
the steel plate is modelled using a node-to-segment
scheme [28] and is solved by the penalty method
[21].

2.2 Particle Finite Element Model

The aluminium plate portion at risk of being
melted is simulated using PFEM. The adopted
approach builds on our previous PFEM develop-
ments [17], where the solid is modelled as a �uid
constrained in motion, i.e. without displacement.
This approach is widely used in simulations fea-
turing phase change phenomena, e.g. in additive
manufacturing [29]. For this reason, the PFEM
submodel considers the aluminium as an incom-
pressible Newtonian �uid in the liquid state, while
the solid behaviour is approximated using the
Carman�Kozeny equation, i.e. above the liquidus
temperature (Tliq) the aluminium particles behave
as a �uid, below the solidus temperature (Tsol) the
particles' motion is blocked, and between Tsol and
Tliq the �ow is penalised to represent the mushy
zone. This condition is governed by the following
system of equations:

ρ
dv

dt
− µ∆v +∇p = ρ b+ s (5a)

∇ · v = 0 (5b)

ρ cp
dT

dt
+∇ · q = L (5c)

where v is the velocity vector, µ is the dynamic
viscosity, ∆ is the Laplacian operator, p is the
pressure, and b is the gravitational acceleration
vector. Natural convection is accounted for by the
Boussinesq approximation, i.e. the density in the

body forces term is updated as a function of the
temperature.

In Eq. (5), phase change is taken into account
in the terms L and s. The �rst one is the latent
heat of fusion while the second one originates from
the Carman-Kozeny equation and allows to shift
the particle behaviour between the liquid and solid
states. These terms are de�ned as:

L = −ρ
∂fl
∂T

dT

dt
Lm (6a)

s = cck
(1− fl)

2

ϵck + f3
l

v (6b)

where Lm is the latent heat of fusion, fl is the
liquid fraction, and cck and ϵck are user de�ned
parameters, such that, cck must be large so that s
results in a large number absorbing all the momen-
tum when fl → 0, and ϵck must be small to avoid
afecting the momentum equation when fl → 1,
but big enough to prevent numerical singularities
when fl = 0. The liquid fraction is de�ned as:

fl =


1 , for T ≥ Tliq

T − Tliq

Tliq − Tsol
, for Tsol < T < Tliq

0 , for T ≤ Tsol

(7)

Thus, if the particle temperature is higher than
Tliq, then s becomes zero and the �ow is governed
by the Navier-Stokes equation. If the tempera-
ture is lower than Tliq, the term becomes negative,
penalising the �ow by acting as a momentum
sink to the point of consuming all the momen-
tum when the temperature drops below Tsol. The
reader is referred to [17] for further details on the
descriptions of s, L and fl.

The aluminium plate is discretised in space
using discrete particles, while the weak form of
the governing equations are discretised with linear
triangular �nite elements generated from a Delau-
nay triangulation of the particles. The momentum
(5a) and continuity (5b) equations are solved in
a monolithic velocity-pressure formulation that
uses implicit Backward Euler as time integration
scheme. Given the LBB (Ladyzhenskaya-Babu²ka-
Brezzi) condition to be satis�ed and the use of
linear elements with the same order of interpola-
tion for velocity and pressure, PSPG stabilization
(Pressure-Stabilizing Petrov-Galerkin) is adopted.
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Fig. 5 Thermal boundary condition of the PFEM sub-
model and ilustration of the space discration using parti-
cles.

The discretised governing equations are omitted
in this manuscript and the reader is referred to
[30, 31] for further details.

Dirichlet boundary conditions are applied on
the entire boundary of the aluminium plate.
Speci�cally, particles located all along the bound-
ary are �xed in all degrees of freedom, including
particles that are in the liquid state, i.e. no-slip
condition for the convective �ow. In addition,
a temperature Tcoupling is also imposed on the
boundaries, as shown in Fig. 5. This tempera-
ture depends on the solution obtained in the FEM
model. Thus, the two models, FEM and PFEM,
are coupled. The coupling scheme is explained in
the following subsection.

It is worth noting that the Eqs. (5) are formu-
lated in a Lagrangian framework, i.e. the �nite ele-
ment mesh is deformed according to the resulting
velocity �eld. To avoid excessive element degrada-
tion, a new Delaunay triangulation is applied at
each time step. In addition, particle arrangement
is updated at each time step to guarantee a homo-
geneous distribution of particles in the domain.
At the same time, a discretisation re�nement is
applied as a function of the melting temperature
in order to better capture the melt pool bound-
ary. For further details on the remeshing process
of PFEM, the reader is referred to [30, 32].

2.3 FEM-PFEM coupling

The FEM and PFEM solvers are coupled by
a Dirichlet-Neumann scheme, where the nodal
temperature and displacement obtained from the
FEM solver are imposed as a Dirichlet condition
on the PFEM solver, while the heat �ux and reac-
tion forces obtained from the PFEM solver are
imposed as a Neumann condition on the FEM
solver. An illustration of this procedure is shown
in Fig. 6.

Denoting as Γ the FEM/PFEM interface, as
F the operator retrieving the FEM solution at
Γ, as P the operator retrieving the PFEM solu-
tion at Γ, and taking the thermal coupling for the
explanation, then:

TΓ
FEM = F(qcoupling) (8a)

qΓPFEM = P(Tcoupling) (8b)

where TΓ
FEM and qΓPFEM are the solution of

the FEM and PFEM solvers, respectively, while
qcoupling and Tcoupling are the coupling bound-
ary conditions imposed on the FEM and PFEM
solvers, respectively. In case the �nite element
meshes are coincident at the Γ interface, then
Tcoupling = TΓ

FEM and qcoupling = qΓPFEM (as
typed in Fig. 6, Coupling box). However, this
work includes an adaptive mesh re�nement in the
PFEM solver to capture the solid-liquid inter-
face of the melt pool, which evolves and moves
throughout the simulation. Therefore, having in
general non-coincident meshes, solutions must be
projected onto the Γ interface. Denoting as P the
projection matrix, with subindices FP and PF
to indicate projection from FEM-to-PFEM and
from PFEM-to-FEM, respectively, then the cou-
pling condition between solvers can be written as:

Tcoupling = PFP TΓ
FEM (9a)

qcoupling = PPF qΓPFEM (9b)

Then, replacing the solution by the extractor
operator:

Tcoupling = PFP F(qcoupling) (10a)

qcoupling = PPF P(Tcoupling) (10b)

a system of two unknowns (Tcoupling and qcoupling)
is obtained. The system can be treated as a
�xed-point problem and be solved by many algo-
rithms. Speci�cally, this work uses an Inverse
Least Squares (ILS) algorithm, while the projec-
tion matrix P is built using radial basis functions.
For details on the ILS-based solution scheme and
for the construction of the projection matrix P,
the reader is referred to [30, 33] and [20], respec-
tively.

Note that the mechanical coupling between
FEM and PFEM applies in a similar way as
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Fig. 6 Illustration of the proposed numerical approach to simulate the FMB process. (a) Domain solved by the Finite
Element Method (FEM). (b) Domain solved by the Particle Finite Element Method (PFEM). The light blue box represents
the coupling between the FEM and PFEM solvers in a Dirichlet-Neumann approach. Γ denotes the interface between the
FEM and PFEM models (see Fig. 2). Only the thermal part of the coupling is illustrated here.

described above, but providing displacements to
the PFEM submodel and returning forces to the
FEM submodel. However, since the displacements
of the aluminium plate are blocked in the PFEM
submodel, the coupling between FEM and PFEM
is equivalent to blocking the displacements of the
FEM/PFEM interface in both submodels.

Having presented the submodels and the cou-
pling strategy to simulate the FMB process, the
following section explores di�erent aspects of the
FMB and compares results from FEM+PFEM
simulations against experimental data.

3 Simulation results of the
FMB process

This section gathers the results of several simu-
lations of the FMB that aim to reveal the scope
and limitations of the proposed methodology.
The section �rst presents the chosen experimental

setup of the FMB process and the set of physi-
cal parameters involved in the FEM and PFEM
submodels. Then, it discusses the simpli�cation in
dimension (2D), analyses the in�uence of di�er-
ent model variables and �nally it comments on
the e�ect of considering the convective �ow in the
melt pool.

3.1 Experimental and numerical

FMB setup

The FMB process is carried out to weld a struc-
tural steel plate (S235) and an aluminium plate
(AA1050) of 1.5 mm and 3.0 mm thickness,
respectively, while the backing plate is 10.0 mm
thick. The plates are 200 mm long and 80 mm
wide. The tool is 16mm in diameter and its axis of
rotation is placed 25 mm from the left edge of the
aluminium plate. All experimental tests account
for 150mm of horizontal displacement for the tool
(dtravel in Fig. 1).
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Fig. 7 FMB experimental sample. (a) The steel plate is
observed from the top. The heat a�ected zone and the dam-
age caused by friction are visible on the steel plate. (b)
Typical views by light microscopy. Sub�gures (b) and (c)
are retrieved from [4].

From the experimental tests, the geometry of
the melt pool is measured at the middle of the
weld bead, as illustrated in Fig. 7a. The thickness
and width of the weld bead is measured under
a microscope, after cutting, polishing and etch-
ing the cross-section. Typical images are shown in
Figs. 7b and 7c.

Regarding the physical parameters of the FEM
model, the thermal conductance (see Eq. 1) is
de�ned by Hv = 500, w = 1.25 and hc0 =
250 kW/(◦Km2), whose orders of magnitude were
gathered from [34, 35]. The tool is controlled in
position as indicated in the previous section, with
a penetration distance dtool = 37µm (see Fig. 4).

In the thermal model, coe�cients de�ning
boundary conditions in the top surface of the steel
plate are de�ned as ϵrad = 0.5 and hconv = 50
W/(◦Km2), while the side surfaces of all plates
as ϵrad = 0.3 and hconv = 25 W/(◦Km2). Orders
of magnitude for these values have been gathered
from [36, 37]. The thermal conductivity and the
speci�c heat capacity are considered temperature-
dependent and are given in Appendix A. On the
other hand, the Young's modulus of the steel,

Fig. 8 Temperature-dependent density curves. η repre-
sents a parameter de�ning the smoothness of a Heaviside
function de�ned in Appendix A.

aluminium and backing plates are considered con-
stant with respect to temperature and equal to
210 GPa, 70 GPa and 190 GPa, respectively. Den-
sities are likewise assumed constant throughout
the simulation and de�ned as 7850, 2700 and
8000 kg/m3, for the steel, aluminium and backing
plates, respectively.

Given that phase change takes place in the
aluminium plate, an abrupt transition of physi-
cal parameters is present in the PFEM model.
This transition has been relaxed using smoothed
Heaviside functions. The smoothing procedure is
described in Appendix A and it is illustrated below
for density only.

Following the Boussinesq approximation, den-
sities in the body force term of the momentum
equation and in the heat equation are tempera-
ture dependent. The temperature dependency is
obtained by �tting the experimental points given
in [38], which are illustrated as black dots in Fig. 8.
Taking the solid and liquid regions separately, the
curves that �t the experimental points are:

ρ =


−1.418 · 10−4 T 2 . . .
. . . − 0.1487T + 2704 , if T < 660◦C

2378.7− 0.324 (T − 660) , if T ≥ 660◦C
(11)

where T is given in ◦C and 660 ◦C corresponds to
the melting temperature [39]. The density jump
in the phase-change zone (≈ 660 ◦C) is smoothed
following the procedure described in Appendix A.
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Fig. 9 Simulation of the FMB process using a partitioned FEM + PFEM approach. (a) The initial discretisation. (b)
Temperature in the aluminium plate approaches the melting point and element size is adapted in the PFEM zone. (c) Melt
pool appears. (d) Melt pool starts �owing due to natural convection. (e) The preheating phase is completed and the tool
begins to move horizontally while the melt pool reaches the full thickness of the aluminium plate (3 mm). (f) The melt pool
loses its symmetry and begins to follow the tool. (g) The melt pool reduces its size due to the fast displacement of the tool
movement. (h) The geometry of the melt pool begins to stabilize marking a stationary regime of the FMB process. Above
the color bars are indicated which plates they correspond to.

That is, the polynomial equations that �t the
experimental points in the solid and liquid range
are multiplied by a smoothed Heaviside function
that depends on a parameter η, obtaining the
curves shown in Fig. 8. In this work, η = 5 is
used. Similarly, the dynamic viscosity µ, the spe-
ci�c heat capacity cp and the thermal conductivity
governing the heat �ux (q) are also temperature-
dependent and smoothed in the phase-change
zone. The �tting curves for these parameters are
given in Appendix A.

According to the relaxation scheme, the cho-
sen solidus and liquidus temperatures are Tsol =

645◦C and Tliq = 675◦C, respectively. This results
in the mushy zone shaded in pink in Fig. 8, which
extends over 30 ◦C, similar to the temperature
range reported in [40]. In this transition zone, the
heat absorbed/released is de�ned by a latent heat
of fusion of Lm = 400 kJ/kg (obtained by round-
ing the value reported in [38]). On the other hand,
the momentum sink that models phase change in
the Navier-Stokes equation is de�ned by cck =
109 kg/(m3 s) and ϵck = 10−3 (obtained from
numerical experiments).

The �nal outcome of this partitioned FEM +
PFEM approach is illustrated in Fig. 9. There,
a typical 2D simulation of the FMB process is

10



shown. This one is obtained with a preheating
time tph of 15 s, a tool temperature Ttool = 867
◦C, and vtool = 200 mm/min. In this example,
and in all examples reported in this work, space
discretisation is kept �xed in the FEM submodel
throughout the simulation, while it is modi�ed
in the PFEM submodel according to the melt-
ing temperature to better capture the �uid-solid
interface. In the PFEM sub-model, speci�cally,
the element size is interpolated with respect to
temperature, between room and melting tempera-
ture. Thus, the initial element size is 0.75 mm (at
room temperature) and 0.1 mm in the mushy zone
(around melting temperature). Fig. 9a displays
the initial discretisation of the FEM and PFEM
sub-models, and Fig. 9b shows a mesh re�nement
before the appearance of the melt pool (Fig. 9c).

In the preheating phase, the tool remains sta-
tionary and the aluminium plate is heated to
the point of generating a melt pool (Figs. 9b-
9d). After some time and once the melt pool
reaches a signi�cant size, �ow by natural convec-
tion becomes visible (Fig. 9d). If the supplied heat
is excessive, the full thickness of the plate will be
melted (Fig. 9e). However, moving the tool hori-
zontally also drives the movement of the melt pool,
changing its geometry with respect to the preheat-
ing phase (Figs. 9f-9h). It is important to note that
�gures in this work show di�erent colour scales in
the same snapshot. In particular, the aluminium
plate shows the maximum value of the liquid frac-
tion that the particles have reached during the
simulation. This helps to visualise the depth of the
melt pool reached before the snapshot time. Addi-
tionally, the melt pool contour is drawn with a
yellow line (and white in the some other �gures) to
illustrate the melt pool geometry at the snapshot
time.

3.2 Choice of 2D methodology

As mentioned in section 2, this work is con-
strained to 2D for computing time considerations.
To justify this simpli�cation and to illustrate the
representativeness of the 2D model, a comparison
of 2D and 3D solutions is given below.

As stated previously, we set an element size of
0.1 mm around the melting temperature in order
to capture the mushy zone. However, this element
size is not suitable for our 3D computational envi-
ronment due to prohibitive computational time.

Fig. 10 (a) Perspective view of the 3D model, with sec-
tioning of the steel and aluminium plates to illustrate the
spatial discretisation. (b) Top view denoting the width and
length of the melt pool. (c) Side view of the symmetry plane
of the 3D model, placed above the 2D model for compari-
son. The aluminium plate shows the liquid fraction history.

Instead, the 3D PFEM model used in the com-
parison is discretised with tetrahedral elements
ranging from 3.0 mm at room temperature to 0.25
mm in the mushy zone. Similarly, element size in
the 3D FEM model is 3 times larger than in the
2D model. Fig. 10c allows a comparison between
2D and 3D spatial discretisations.

As in the 2D model, heat is transferred to the
steel plate by contact and by imposing the tool
temperature Ttool. However, the tool is cylindri-
cal in the 3D case (diameter 16 mm) and much
smaller than the width of the plates (80 mm), so
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the heat provided to the steel plate is reduced com-
pared to the 2D case. As a result, to obtain the
same depth of molten aluminium, the tool tem-
perature in the 3D model must be higher than in
the 2D case. For instance, numerical experiments
showed us that a Ttool = 1627 ◦C in 3D leads to
a melt pool depth similar to that obtained with
Ttool = 857 ◦C in 2D, when vtool = 200 mm/min
and tph = 5 s. Fig. 10c shows a comparison of melt
pools obtained with the 2D and 3D models using
the mentioned parameters. Snapshots corresponds
to 55 mm of tool displacement.

As described in the previous example, when
the tool starts its horizontal displacement, the
melt pool loses the symmetry evidenced in the
preheating phase. Speci�cally, the molten material
accumulates at the rear zone relative to the mov-
ing direction, resulting in a belly-like shaped melt
pool. Interestingly, this observation also applies to
the 3D model when considering the side view of
the plane of symmetry, as shown in Fig. 10c.

It can be noticed in Fig. 10c that the coarse
discretisation in the 3D model is not able to accu-
rately capture phase changes in the mushy zone,
and yet the model is computationally demand-
ing. Speci�cally, on a computer with 10 cores (20
threads) and an Intel(R) Core(TM) i9-10900X
CPU @ 3.70GHz processor, the computation time
of the 3D model is 126 hours, while the 2D model
takes about 8 hours. In other words, the 3D model
takes about 15 times longer than the 2D model,
which makes it impractical to perform a paramet-
ric study on the thermal boundary conditions or
the parameters involved in the FMB process. The
prohibitive computation time, even for a coarse
mesh, is largely attributable to the fact that the
Navier-Stokes equations are formulated in a mono-
lithic system and solved with a direct solver.

It was mentioned in the previous subsection
that the melt pool width is measured experimen-
tally, which will be denoted as wpool. However,
given the geometrical limitation of the 2D model,
it is not possible to obtain the melt pool width
but its length, which will be denoted as lpool, as
shown in Fig. 10b. On the other hand, as the
physical properties of steel and aluminium are
isotropic, that the tool is circular, and that the
steel plate is rather thin, it is reasonable to think
that wpool ≈ lpool. This can be veri�ed in the
3D result illustrated in Fig. 10b. This shows that

the melt pool is quite circular when viewed from
the top, and although we have reported only one
3D example here, we can indicate that this 3D
model was veri�ed for di�erent thermal boundary
conditions and it was consistently observed that
wpool ≈ lpool. Thus, given the computing time
issue of the 3D model and that the 2D model
is topologically representative of the symmetry
plane of the 3D model, a 2D study seems the best
option.

In the following, the same experimental and
numerical setup is used in all the examples of
this work, but with variations in the tool condi-
tions, such as travel speed (vtool), rotating speed
(ωtool) and applied force (ftool). Speci�cally, four
aspects are examined hereafter. First, the rela-
tionship between the operating conditions and the
tool temperature imposed on the model. Second,
the in�uence of the preheating time, third, the
e�ect of the travel speed, and �nally, the e�ect
of accounting for the convective �ow in the melt
pool.

3.3 Tool temperature

As mentioned in Section 2.1, the heat source in
the FEM model is a rigid tool at elevated and
constant temperature. To correlate the numerical
temperature and the real tool conditions, we pro-
ceed to �nd the numerical set that leads to the
experimental melt pool depth. Speci�cally, three
operation conditions are compared in this study.
All three use the same travel speed, vtool = 200
mm/min, but di�er in the rotational speed ωtool

and the applied force ftool. The three conditions
are summarised in Table 1, with labels T1, T2 and
T3.

Several simulations are carried out with a
constant displacement of 200 mm/min and tem-
peratures Ttool between 800 and 1000 ◦C. Clearly,
the higher the Ttool temperature, the deeper the
resulting melt pool. Fig. 11 illustrates this e�ect,
while Fig. 12 relates the melt pool depth to the
tool temperature. Below 805 ◦C, no melt pool
is generated, while above 925 ◦C, the aluminium
plate is melted through all its thickness. This
leaves an operating range of approximately 110 ◦C
for an e�cient process.

The numerical tool temperature can be estab-
lished by matching the melt pool depth with the
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Table 1 Summary of the four experimental tests that are compared with the numerical results. T1 to T3 are covered in
section 3.3, while T4 in section 3.5.

Experiment Simulation

Test vtool
(mm/min)

ω
(RPM)

ftool
(kN)

hpool

(mm)
wpool

(mm)
Ttool

(◦C)
hpool

(mm)
lpool

(mm, %wpool)

T1 200 1800 6 1.3 8.5 852 1.3 8.6 , +1%

T2 200 2000 6 2.2 10.7 892 2.2 12.7 , +18%

T3 200 2000 7 3.0 10.9 926 3.0 15.0 , +37%

T4 250 1800 6 0.7∗ 5.8∗ 852 0.7 6.4 , +10%

∗ Average of two experimental tests.

Fig. 11 Simulations for di�erent tool temperatures but
same travel speed of 200 mm/min. From each simulation,
the melt pool geometry is measured to create the graph in
Fig. 12.

experimental tests. Thus, the obtained tool tem-
perature (Ttool) and melt pool length (lpool) are
reported in Table 1 (rows T1, T2 and T3, col-
umn "Simulation"). Next to the melt pool length
(lpool) in Table 1, it is shown the percentage varia-
tion with respect to the melt pool width measured
experimentally. In the T1 test, which supplies the
least energy to the steel plate, a melt pool of about
one third the thickness of the aluminium plate is

Fig. 12 Melt pool depth for di�erent tool temperatures
(Ttool). Note that the ordinate axis is reversed for illus-
trative purposes. The grey zones represent the steel and
backing plates. The graph is built for vtool = 200mm/min.

obtained, and a length that is very similar to the
width (1% di�erence). As more energy is put into
the system, a greater di�erence between the melt
pool width and length becomes apparent. This can
be due to a number of factors. For example, inac-
curate thermal boundary conditions due to the
e�ect of reducing the problem dimension to 2D, to
ignoring the thermal contact resistance, or e�ects
introduced by tool damage. In fact, the high local
pressures generated by the tool deform the steel
plate in the thickness, and could even de�ect the
plate away from the aluminium plate, as illus-
trated in Fig. 13 (which represents a pure-FEM
model). This would reduce the thermal contact
conductance outside the pressure cone and thus
narrow the melt pool. However, since this work
does not consider a constitutive law for the solid
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Fig. 13 Illustrative solution from a pure FEM model
of the FMB process. The three plates are modelled as
deformable solids that can interact through a contact algo-
rithm. Deformation through plate thickness and bending of
the steel plate are observed. The displacements are magni-
�ed by a factor 10 for visualisation purposes.

phase of PFEM, it is not possible to consider
deformations in the aluminium plate. Regarding
the tool, it is progressively damaged and deformed
during FMB. The base of the tool loses its �at-
ness and takes a conical shape, while the rim of
the base develops a �ash collar, similarly to the
�ash collar developed in RFW (Rotary Friction
Welding). This progressive geometrical transfor-
mation of the tool was not considered in this work
to avoid including additional free-parameters that
would have had to be �ne-tuned on the model.

As the numerical model is more reliable for
low loading conditions on the tool, the following
sections only consider the operating condition T1
given in Table 1.

3.4 Preheating time identi�cation

As explained in Section 2.1, the preheating pro-
cess starts when the tool comes into contact with
the steel plate and ends when the tool starts its
horizontal displacement. During this �rst period,
the tool penetrates linearly in the plate for an
imposed distance (37 µm). The longer the pre-
heating time, the more energy is delivered to the
system before the tool starts to move horizontally.
To evaluate this e�ect, several simulations are run
using the same tool temperature (Ttool = 852 ◦C),
the same travel speed (vtool = 200 mm/min),
same penetration distance, but di�erent preheat-
ing times. Fig. 14 shows the melt pool trace on
the aluminium plate of some simulations. Clearly,
the longer the preheating time, the larger the
melt pool at the beginning of the FMB process.
However, the melt pool geometry stabilises 22 sec-
onds after displacing the tool. Undoubtedly, the
stability of the melt pool comes from the assump-
tion of a constant temperature under the backing

plate and a tool at a constant temperature. These
assumptions are unlikely representative of real
FMB conditions, but permit to conclude that it
is possible to achieve a stationary regime in the
FMB process under optimal conditions.

The preheating stage in the experimental test
reaches the penetration distance in several seconds
in order to raise the temperature gradually and
prevent damage to the plate or tool. The dura-
tion of this process depends on the time required
to reach some incandescent colour and, among
other factors, on the condition of the tool and
the thermal boundary conditions (Ttool, Troom, ini-
tial plate temperature, etc). As these aspects may
vary from one test to another, replicating the pre-
heating process in the simulation is challenging
and thus, it is also di�cult to compare temper-
ature with the experiments. Therefore, in order
to compare temperatures against experimental
measurements, temperature from simulations with
di�erent preheating times are recorded at 8 mm
from the left edge to match the position of an
experimental thermocouple that is placed at the
symmetry line. The aim is to obtain the preheating
time that leads to a maximum temperature equal
to that of the experimental record. As shown in
Fig. 15, the resulting preheating time in the simu-
lation is 4 seconds (blue curve). From the �gure it
is observed that although temperatures from the
experiment and simulation (tph = 4 s) are com-
pletely di�erent in the preheating phase, they are
very similar during the horizontal displacement
phase, which validates the representativeness of
the boundary conditions in the 2D model.

3.5 E�ect of the travel speed

Having identi�ed the tool temperature and pre-
heating time that approaches the real operation
conditions of the FMB process, we now proceed to
verify their accuracy using a di�erent travel speed.
For this purpose, the operating conditions of test
T1 (Table 1) are used, but with a travel speed of
250 mm/min. The experimental test is carried out
in duplicate with tools in di�erent states, one new
and the other one already used in some tests.

The experimental and simulation tempera-
tures are shown in Fig. 16, while the melt pool
geometry is reported in the fourth row of Table 1
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Fig. 14 Simulations for di�erent preheating times (tph) but same tool temperature (Ttool = 852 ◦C) and travel speed
(Ttool = 200 mm/min). All the snapshots are taken at 24 s after starting the tool displacement.

Fig. 15 Temperature of a thermocouple placed between
the left edge of the plate and the initial position of the tool,
as shown in the sketch over the graph. Three simulations
are plotted with di�erent preheating times tph (given in
seconds). tph = 4 s leads to the same maximum tempera-
ture recorded experimentally.

(test T4). It is clear that both, the melt pool geom-
etry and the temperature of the thermocouple dur-
ing tool displacement, are well approximated by
the FEM+PFEM model. Also, recorded tempera-
tures show that tool condition in�uences the pre-
heating cycle. Approximately the same maximum
temperature is obtained in both experiments, but
experiment 1, which employs a new tool, records
a lower temperature at the thermocouple during
most of the FMB process.

Despite the numerous complex phenomena
involved in the FMB process, it can be noted that

Fig. 16 Temperature of a thermocouple placed between
the left edge of the plate and the initial position of the tool,
as shown in the sketch over the graph. The simulation uses
a preheating time of 4.0 s.

the temperature �eld at the thermocouple loca-
tion and the geometry of the melt pool are well
approximated by the model in the chosen oper-
ating range. The advantage of having a reliable
model is the possibility to predict the behaviour
of the FMB process under di�erent operating
conditions at a much lower cost than doing it
experimentally. For example, it is possible to run
several simulations with variations in the travel
speed and to obtain the melt pool depth for each
case. This results in the graph in Fig. 17. As
expected, the slower the travel speed, the higher
the energy delivered to the system, and hence
the larger the melt pool. On the other hand, a
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Fig. 17 Melt pool depth for di�erent tool travel speeds
(vtool). Note that the ordinate axis is reversed for illus-
trative purposes. The grey zones represent the steel and
backing plates. The graph is built for Ttool = 852 ◦C.

very high travel speed does not provide enough
energy to melt the aluminium plate. According
to the model, the operating range would be 75
≤ vtool ≤ 350 mm/min, for ωtool = 1800 RPM
and ftool = 6 kN. Although this work does not
include an experimental study on the travel speed
over a wide range, it can be seen that the operat-
ing range obtained by FEM+PFEM is very close
to that reported by other studies [41].

3.6 Flowing versus non-�owing melt

pool

The purpose of making use of PFEM in this work
is to take into account phase change and convec-
tive �ow in the aluminium plate. Yet, it is possible
to �nd in the literature works based on FEM
that do not simulate the convective �ow and sim-
ply modify the thermo-physical properties of the
material to account for phase changes [4�6]. Given
that there are no comparative works between mod-
els with �owing and non-�owing melt pools in
the context of FMB, to the best of the authors'
knowledge, it becomes worthwhile to provide this
information.

To quantify the e�ect of convective �ow, melt
pool geometries without �ow consideration are
obtained for a tool temperature of 852 ◦C and
di�erent tool travel speeds. Thus, results can be
compared with those obtained in the previous
section. Fig. 18 shows the relative di�erence in
melt pool depths between �owing and non-�owing

Fig. 18 Relative di�erence in melt pool depth between
�owing and non-�owing melt pool models.

models. The same was done for the melt pool
length, although it is omitted as the graph is very
similar to that of the depth.

The negative values in Fig. 18 indicate that the
melt pool size is smaller in the model that does
not account for the convective �ow. However, the
percentage di�erence in depth is very small and
arguably negligible, being less than 1% in absolute
value. According to our examination, there are two
reasons for this.

On the one hand, the horizontal displace-
ment of the melt pool (or tool) is fast enough to
avoid signi�cant convective displacements. In fact,
molten aluminium requires some seconds to gain
momentum, which is hindered if the solidi�cation-
melting-solidi�cation process takes place in a short
time span. This can be seen in Fig. 19a, where
melt pools of both models are compared for vtool
= 100 mm/min, which is a speed close to the
lower bound limit due to the large melt pool size
that is obtained. The �gure shows the melt pool
pro�le (yellow line), the velocity �eld inside the
melt pool and the stream lines. In this condition,
the tool and melt pool travel horizontally at 1.67
mm/s, while the molten aluminium has a maxi-
mum velocity of 2.8mm/s according to our model,
and a maximum travel distance of the order of
3 mm for the trajectory presented in Fig. 19a
(red dashed line). For faster travel speeds vtool,
the melt pool size and molten aluminium dis-
placements are smaller, and hence the di�erence
between �owing and non-�owing melt pool models
is smaller, as shown in Fig. 18.
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On the other hand, temperature gradients in
the melt pool are about 40 ◦C/1.5 mm, as shown
in Fig. 19b. This is evidently small compared
to, e.g. additive manufacturing, where huge tem-
perature gradients are present, ranging from the
melting point to the evaporation point over a frac-
tion of a millimetre. An estimate of the Rayleigh
(Ra) number can help quantify the relevance of
natural convection in the FMB process. Ra can
be written as the product of the Grashof num-
ber (Gr) and the Prandtl number (Pr), which are
de�ned as:

Gr =
g β ∆T L3

c ρ
2

µ2
(12a)

Pr =
µ cp
κ

(12b)

where β is the thermal expansion, Lc a charac-
teristic length (e.g. the melt pool depth), and ∆T
the temperature di�erence across the melt pool.
Prandtl number depends only on the �uid proper-
ties, being Pr ≪ 1 in liquid metals, meaning that
the heat di�uses quickly. On the other hand, the
Grashof number gives the relevance of buoyancy
to viscous forces acting on the �uid, and depends
on both physical and spatial variables.

The bigger Gr or Pr, the higher the Rayleigh
number and the more relevant the heat transfer
by convection. However, the Grashof number is
restricted in the FMB process for operational rea-
sons. The maximum depth for the melt pool is 3
mm (Lc), and the temperature di�erence in the
melt pool is of the order of 60 ◦C (Fig. 19b). This
indicates that Ra ≈ 200 in FMB, which is rela-
tively small compared to, e.g. Ra = 1000, which is
commonly reported as relevant for natural convec-
tion. A study on the critical value of Ra in FMB
is beyond the scope of this work, but at least it
can be concluded that for the operating conditions
considered in this work, the in�uence of natural
convection is moderate on the melt pool geometry.

However, the weld quality is also determined,
among other aspects, by the presence of brit-
tle intermetallic compounds and residual stresses,
which depend on the pressure �eld of the melt
pool. This variable does not form part of this study
because the �uid is incompressible in our model,
resulting in unrealistic pressures as they only cap-
ture the height of the �uid column. Therefore, our

Fig. 19 Portion of the aluminium plate showing the sta-
tionary melt pool for vtool = 100 mm/s and Ttool = 852
◦C. Models without and with �ow of molten aluminium are
compared. (a) Velocity �eld and (b) Temperature �eld. The
red dashed line in (a) illustrates one of the longest paths of
particles present in the melt pool that move between the
upper part (hot) and lower part (cold) of the melt pool.
This path is obtained by placing 20 control particles across
the plate thickness, which "�oat" on top of the mesh and
whose displacements are driven by the velocity �eld of the
mesh. The trajectory is traced using post-processing �lters
in Paraview.

future work on the simulation of weld joint qual-
ity will comprise a compressible �uid �ow model
for the melt pool as well as a constitutive law for
the solid phase of PFEM.

4 Conclusions and perspectives

This work presents a new numerical methodology
to simulate the FMB process. The strategy par-
titions the FMB process into two submodels, one
solved by the Finite Element Method (FEM) and
the other by the Particle Finite Element Method
(PFEM). PFEM is used to simulate the phase
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change in the aluminium plate and the convec-
tive �ow within the melt pool. On the other hand,
FEM is used to simulate the steel plate and the
accompanying elements (tool and backing plate)
that do not undergo phase change. The models
are solved using two specialised in-house pieces
of software, which are coupled by a third code.
The adopted methodology along with numerical
and experimental tests allow us to conclude the
following:

� Although not representative of the geometry of
the FMB process, a 2D model is able to pro-
vide accurate results of the melt pool geometry
and surface temperature. This was veri�ed by
comparing experimental and numerical results.

� The preheating time (before the tool starts to
move horizontally) has a local e�ect on the melt
pool. In the numerical tests, i.e. under ideal
thermal boundary conditions, a stationarity in
the melt pool size is observed 20 s after the
initiation of the horizontal tool displacement.

� The convective �ow within the melt pool has a
small in�uence on the heat distribution within
the melt pool in the FMB process. This is due
to the fact that the displacement of liquid metal
is small in relation to the size of the melt pool,
and that the temperature di�erence within the
aluminium melt pool is not signi�cant.

The present work was restricted to the geome-
try of the melt pool. However, to predict the weld
quality, criteria for hot tearing and presence of
brittle intermetallic compounds must be adopted.
This will require a more realistic constitutive
model of the solid phase in the PFEM model, in
order to compute deformations and stresses. At
the same time, the accuracy of the thermal model
should be improved by feedback of more experi-
mental data. This will demand an e�cient and fast
implementation of the 3D FEM+PFEM approach
in order to perform the �tting of model param-
eters in a reasonable amount of time. Finally, it
should be noted that the proposed methodology
was assessed for the FMB process in the joining of
aluminium and steel, however, it can be extended
to other joining methods involving phase changes.
These topics will be the subject of future research.
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Appendix A Material
properties

The thermo-physical properties of the three plates
are temperature dependent. Experimental mea-
surements of the material properties are gathered
from the literature and �tted with polynomial
functions denoted as þ. These functions are listed
in Table A1.

To smooth the sharp transition of aluminium
properties at the phase change, smoothed Heav-
iside functions are used. In a general way, the
smoothed function de�ning a physical parameter
with respect to temperature is denoted by þ̄ and
is de�ned as:

þ̄(T ) = þs hs + þl hl , (A1)

where þs and þl are the �tted polynomial functions
de�ning physical properties in the solid and the
liquid phase, respectively. The functions smooth-
ing the transition between þs and þl are de�ned
as:

hs = h̄ (ā+ h̄ (1− ā)) (A2a)

hl = (1− h̄)(1 + h̄ (1 + ā)) (A2b)

where h̄ is the smoothed Heaviside function and
ā is the normalized property jump at the melting
temperature (Tm), equal to 660 ◦C in this work.
These are de�ned as:

h̄(T ) =
1

1 + e1/η (T−Tm)
(A3a)

ā =
þs(Tm)− þl(Tm)

þs(Tm)
(A3b)

The steepness of the smoothed Heaviside func-
tion is controlled by the parameter η. Fig. A1
illustrates its e�ect. The graph shows two polyno-
mial functions that separately de�ne an arbitrary
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Table A1 Temperature-dependent thermal properties of steel, aluminium and backing plates. Units of κ, cv, cp and µ
are, respectively, W/(m ◦C), J/(g ◦C) and mPa·s. Functions use temperature in ◦C. Experimental data have been
gathered from [38, 39, 42, 43].

Plate þ Solid phase (þs) liquid phase (þl)

S
te
el κ 62.8− 0.039 T �

cv 0.5985−0.00156T +6.9 ·10−6 T 2−8.221 ·10−9 T 3+2.94 ·10−12 T 4 �

A
lu
m
in
. κ 236.4 + 0.054 T − 2.743 · 10−4T 2 + 1.94 · 10−7 T 3 70.45 + 0.0307 T

cp 0.88 + 0.00109 T − 4.54 · 10−6 T 2 + 1.02 · 10−8T 3 − 7.1 · 10−12T 4 1.177

µ 2.47− 0.00176 T 2.47− 0.00176 T

B
a
ck
.

κ 13.5 + 0.015375 T �

cv 0.4875 + 0.0001625 T �

Fig. A1 Smoothing of a physical parameter in the phase
change zone. Dots represent polynomial functions that �t
and extrapolate some experimental points. The solid lines
are the smooth continuous functions (þ̄) that de�ne the
physical parameter over the entire temperature range.

physical property in the solid (þs) and liquid
(þl) phase. Function þ̄ considers both phases and
smooths the transition for di�erent values of η. In
this work, η = 5 is used, which gives a smoothing
over approximately 30 ◦C with the centre at the
melting point (Tm), thus Tsol ≈ 660 − 15 ◦C and
Tsol ≈ 660 + 15 ◦C.
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