
Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

AN IMPROVED BENDERS DECOMPOSITION APPLIED TO A MULTI-LAYER NETWORK

DESIGN PROBLEM

B. Fortza,b, M. Possa,*

a Department of Computer Science, Université Libre de Bruxelles, Brussels, Belgium

b CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium

KEYWORDS:

Multi-layer network design

Metric inequalities

Branch-and-cut

ABSTRACT

Benders decomposition has been widely used for solving network design problems. In this paper, we use a branch-

and-cut algorithm to improve the separation procedure of Gabrel et al. and Knippel et al. for capacitated network

design. We detail experiments on bi-layer networks, comparing with Knippel’s previous results.

Introduction

Today, telecommunication networks are designed with a layered structure, according to different technologies. For

instance, one could consider a virtual layer over a physical layer, also called transport layer. This leads to bi-layer

network design problems. In those problems, demands are usually given in the virtual layer. They have to be

routed in the virtual layer, leading to the installation of ‘‘virtual capacities’’ (which are routers or other devices).

Virtual capacities define demands for the transport layer, leading to the installation of capacities (optical fibers,

copper links, etc.), in the physical layer. Therefore, when a demand is routed through a path in the virtual layer

(composed of many virtual edges), each edge corresponds to a path in the layer underneath (also called a

‘‘grooming path’’).

Technically, each layer has its own technology [1], for instance:

MPLS: Multi-Protocol Label Switching,

WDM: Wavelength-Division-Multiplexing,

SDH: Synchronous Digital Hierarchy.

* Corresponding address: Department of Computer Science, Université Libre de Bruxelles, Boulevard du Triomphe CP 210/01, B-1050 Brussels, Belgium.
E-mail address: mposs@ulb.ac.be (M. Poss).

mailto:mposs@ulb.ac.be

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

As the single-layer capacitated network design problem is complicated enough, most approaches for the bi-layer

problem consider each layer separately:

- First, a network design problem is solved for the virtual layer only.

- Then, virtual capacities to be installed in the virtual layer define demands for another network design

problem, for the transport layer this time.

Though much easier to solve, this relaxed approach might provide solutions far from the optimal solution of the

problem. Therefore, an integrated approach should be considered.

Network design has been widely studied for many years [2]. However, the interest in multi-layered network design

is more recent and can be traced back to a paper by Dahl and Stoer [3]. They assume given physical capacities and

aim to select virtual edges (called pipes in the paper) and to configure the routing in both layers. A polyhedral study

is conducted resulting in a cutting plane algorithm. Since then, the interest in this field has rapidly grown and

different approaches have been suggested to address these problems.

Orlowski and Wessäly [4] begin by giving a good introduction to multi-layered networks where they offer technical

examples and develop a model considering many technical constraints. However, they do not propose a specific

solution method. In further papers, Koster et al. develop different branch-and-cut approaches. Extending previous

work by Belotti et al. [5], they briefly describe a cut-and-branch-and-price algorithm. They then solve an integer

formulation using a branch-and-cut framework [6], where they introduce efficient heuristics. Finally, they address a

more complex formulation, taking node hardware and survivability into account [7]. They also extend and test

different sorts of cuts coming from mono-layer models [8].

Capone et al. [9,10] study multi-layered design with statistical multiplexing, the motivation being that routing

different commodities on the same capacity results in less variation of the flow on the capacity. They compute a

lower bound through a Lagrangian relaxation and use heuristics to find good upper bounds.

Kubilinskas and Pioro [11] address the problem of maximizing the profit of satisfying demands in a bi-layer (MPLS

over WDM) situation. They present an iterative procedure to solve their complex mixed-integer problem. This

procedure consists of splitting the problems into two stages, one for each layer, where the solution of the first layer

defines demands in the second one. Then the routing solution in the physical layer leads to cost modification for

edges in the first layer and the whole problem is solved again.

Holler and Voß [12] propose an integer programming formulation for two-layer networks consisting of SDH over

WDM. Strictly speaking, this is not a multi-layer problem in the sense that demands are routed through either SDH

links or WDM links. They solve the problem using two different heuristics.

Gabrel et al. introduce a constraint generation procedure based on a Benders decomposition for capacitated

network design problems [13]. Knippel and Lardeux extend this work to multilayered networks [14] and multi-

period time scheduling [15]. They introduce the metric cone, which eases cut generation. In [16], they improve this

method using the knapsack-like structure of the master problem to facilitate its resolution.

In this paper, we improve the constraint generation method used by Knippel and Lardeux [14]. Namely, we develop

a branch- and-cut algorithm to solve the Benders decomposition of the problem. This speeds up the resolution

times by a factor of 10 on average. Also, we obtain bounds for difficult problems, whereas Knippel’s cutting plane is

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

unable to compute upper bounds. This framework could easily be extended to improve results on the multi-period

network design problem solved by Lardeux [15].

In the next section, we describe the model and its reformulation using a Benders decomposition. In Section 3, we

describe different algorithms to solve the problem: the cutting plane algorithm used by Knippel and Lardeux and a

branch-and-cut algorithm. Finally, Section 4 presents our computational results, comparing CPLEX 11, the cutting

plane algorithms and the branch-and-cut algorithm. In addition to better solution times, the branch-and-cut

algorithm provides an optimality gap for difficult instances. We also show the improvement obtained by

strengthening the metric inequalities.

Problem statement

MODEL DESCRIPTION

The model described here aims to minimize the cost of capacities installed in both layers. There is no cost

associated with the routing. First, we must route commodities given by the demand matrix in the virtual layer. This

results in the installation of some capacities in that layer. Then, each virtual edge defines a commodity in the

physical layer with a demand equal to the capacity installed on the virtual edge.

Hence, there is a strong interaction between the two layers. Two feasible solutions with the same virtual layer cost

can have different overall costs since the cost of physical capacities can differ. This model is therefore more

complex than the single-layer capacitated network design model.

The two layers are represented by undirected graphs Gvirt = (V , F) and Gphys = (V , E) constructed on the same node

set V. Commodities k to be routed in the virtual layer belong to the set and their values are denoted by dk.

Our model uses an arc-path formulation for each layer. The objective (1) is to minimize the sum of the costs ae

(resp. bf) of the xe (resp. yf) modules that are installed in the physical layer (resp. virtual layer), with modular

capacity D (resp. C).

As in the single-layer case, the sets of paths in the virtual layer are indexed by the commodity

 to which they refer.

Hence, variables specify the portion of the demand routed on path .

Recall that commodities to be routed on the physical layer are given by capacities installed in the virtual layer.

Therefore, sets of paths in the physical layers are indexed by virtual edges .

Variable v f
q specifies the fraction of capacity Cyf , installed on link , routed on path .

With this set of variables, the problem can be formulated as:

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Constraints (2) and (4) impose that the total flow on an edge is less than the capacity installed on that edge,

whereas (3) and (5) ensure that all the demands are routed on the network. Integrality constraints (7) force

capacities to be installed by modules. Finally, because routing variables are continuous (6), each commodity can

be split among an arbitrary number of paths in each layer.

BENDERS DECOMPOSITION

When facing a complex optimization problem, a classical approach is to project out complicating variables. This

projection results in the addition of many additional constraints to the problem. For the network design model

(AP), the result is the so- called capacitated formulation [14].

where sets Xy and Y are defined by metric inequalities:

and

where the metric cone (see [17]) Mn is defined by

This is one of the many applications of Benders decomposition to network design problems (see [18]). Note that

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

the absence of costs for routing variables simplifies this decomposition. In the general case, projecting out a group

of variables results in the addition of optimality constraints to the feasibility constraints of (8) and (9).

Metric inequalities (8) and (9) are weak when capacities are modular. A simple way of strengthening them without

increasing the complexity of the separation algorithm is to round coefficients for constraints in (9)

If is integer for each , let gcd be the greatest common divisor of those integers.

 Hence, dividing both sides of (10) by gcd and rounding up d/gcd , we get the stronger cut

We show in Section 4 the effect of these stronger cuts.

Note that Avella et al. [19] introduced the Tight Metric Inequalities, which completely describe Y. However, since

they are NP-hard to separate, we do not consider them in this paper.

Algorithms

This section describes two ways of managing the huge number of constraints introduced in (8) and (9). First, we

recall a simple cutting plane framework. While easy to implement, this algorithm suffers the requirement of solving

many integer programs to optimality. We then outline two improvements developed by Knippel and Lardeux [14],

and following this, we present a new branch-and-cut algorithm for the problem. Comparative results of the three

algorithms are given in Section 4.

CUTTING PLANE APPROACH

First, we get rid of the metric inequalities in (CP), resulting in the relaxed master problem

We can test whether a given integer vector (x*, y*) is feasible for (CP) by solving the separation LP Sat (Cy*, d) and

Sat(Dx*, Cy*), with Sat (z , t) defined by

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

for any vectors z , t . Constraint (12) bounds the LP. If Sat (z, t) < 0, the solution λ* leads to a metric

inequality violated by (z, t):

On the other hand, if both Sat (Cy* , d) and Sat (Dx* , Cy*) are nonnegative, capacities x* and y* are feasible for

problem (CP). This general procedure is described in Algorithm 1.

In Algorithm 1, the solution time of (MP) is usually much higher than the solution time of Sat because of the

integrality restrictions in (MP). Therefore, a common trend is to reduce the number of (MP) solved. Following this

observation, Knippel and Lardeux implemented two cutting plane algorithms based on Algorithm 1.

Algorithm 1 Cutting Plane Algorithm

Initial cut pool P is empty.

repeat

Solve (MP) augmented with cuts in P. Let (x*, y*) be an optimal solution.

Compute s1 = Sat (Cy* , d) and s2 = Sat (Dx* , Cy*).

if s1 < 0 or s2 < 0 then

Add the corresponding cut(s) to P.

Optional: Add problem-specific cuts to P.

end if

until s1 ≥ 0 and s2 ≥ 0

return (x* , y*)

(SC) Their single constraint generation adds up to three cuts per iteration. Besides the ones described in Algorithm

1, they also consider cuts coming from subproblem Sat (Dx* , d):

Although cuts (14) are not needed to ensure feasibility, they help to reduce the number of required iterations by

forcing x to take sensible values, especially in the first few iterations.

(MC) Aiming to reduce the iterations of Algorithm 1 even further, they introduce multiple constraint generation. This

algorithm adds the same cuts as SC plus a few bipartition inequalities violated by (x*, y*), at each iteration.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Another situation occurs when the subproblems are separable, i.e., they can be decomposed into several

problems, the solution of which results in the addition of a cut to (MP). See, for example, the multi-cut L-shaped

algorithm for stochastic programming problems with recourse [20].

BRANCH-AND-CUT APPROACH

An alternative strategy is to solve only one (MP). We aim to embed the generation of violated feasibility cuts (13)

into the branch-and-cut framework for solving (MP). This is detailed in Algorithm 2. Before starting the branch-and-

cut, we need to set up a cut pool P.

It is important to add many cuts early in the tree to avoid exploration of too many infeasible nodes. For instance,

some tests have been made starting with an empty cut pool P. This resulted in a very slow branch-and-cut because

of some infeasible nodes being fathomed only late in the search. However, adding too many unnecessary cuts

would slow down the LP relaxation at each node. A good starting cut pool is obtained by solving the LP relaxation

of (MP), with the cutting planes described in Algorithm 1; then P contains all constraints added to solve the LP

relaxation. Note that, in contrast to SC and MC, experiments have shown that using cuts of type (14) increases the

total resolution time. Thus, we do not generate cuts (14) during the cutting plane setting up P, nor during Algorithm

2.

In Algorithm 2, solving a node o' T means solving the LP relaxation of (MP), augmented with branching

constraints of o' and cuts in pool P.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Computational experiments

In this section, we compare resolution times and number of constraints generated for cutting plane algorithms

SC and MC, and the branch-and-cut algorithm B&C. The solution times given for B&C contain the generation of the

cut pool by Algorithm 1 plus the time spent in the branch-and-cut from Algorithm 2. Even though an important

fraction of the cuts are generated by Algorithm 1, its duration is much shorter than the duration of Algorithm 2,

except for instances with 8 nodes for which both durations are of the same order.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Table 1

Results of CPLEX, SC, MC and B&C on randomly generated instances with 8 and 9 nodes.

Instances Time/Gap Time Cuts generated Iterations Explored nodes Times ratio

in n e CPLEX SC MC B&C SC MC B&C SC MC CPLEX B&C min(SC, MC)/B&C

1 8 14 433 32.7 13.1 0.7 76 155 84 52 38 110 345 1911 18.7

2 8 14 195% 9.2 9.1 0.6 76 177 85 46 33 926 934 1886 15.1

3 8 14 3508 29.9 31.8 4.1 101 168 115 48 32 668 218 13259 7.3

4 8 14 387 33.1 27.5 0.8 78 202 84 45 37 83 482 1989 34.4

5 8 14 183 4.9 4.2 0.2 63 144 71 34 23 37 388 76 21

6 8 16 984 54.1 37.9 1.2 88 183 92 54 30 184589 3282 31.2

7 8 16 508 33.8 15.4 0.8 83 187 88 39 24 118 575 2310 19.3

8 8 16 2434 21.2 34.4 4.9 86 186 89 63 45 659 259 26834 4.3

9 8 16 856 104.2 66.6 3.0 121 189 118 58 29 118 797 8862 22.2

10 8 16 3487 33.3 16.2 1.8 90 171 99 54 26 803 442 6099 9

11 9 16 2002 363.8 170.0 12.3 119 303 128 87 50 231606 42 675 13.8

12 9 16 3063 217.8 244.5 15.5 115 310 186 68 43 284 648 36745 14.1

13 9 16 538 226.2 264.0 14.3 149 272 156 95 39 58 767 38 257 15.8

14 9 16 4.16% 1639.2 450.1 25.3 127 275 156 85 46 232 556 74618 17.8

15 9 16 0.72% 125.5 67.6 4.7 112 315 104 73 42 318 587 14759 14.4

16 9 18 2.93% 190.5 143.3 66.1 149 328 164 103 47 420 776 241323 2.2

17 9 18 3.94% 529.6 272.2 14.8 129 299 147 72 40 340 148 39818 18.4

18 9 18 1.54% 109.3 55.2 8.4 111 261 154 66 45 293 697 19807 6.6

19 9 18 539 60.0 21.9 0.9 92 225 114 56 28 55 293 1461 24.3

20 9 18 0.63% 425.6 224.1 78.0 160 286 192 79 41 265 740 143706 2.9

21 9 20 1.96% 67.2 53.3 13.7 100 261 105 60 40 313 350 58887 3.9

22 9 20 3.35% 415.0 201.2 62.8 131 341 165 83 48 282 078 209571 3.2

23 9 20 6.07% 293.8 67.7 28.3 130 266 155 83 36 283 205 91849 2.4

24 9 20 3.1% — 730.7 66.4 — 290 187 — 47 266132 174850 11.0

25 9 20 2.32% 193.2 217.3 12.0 113 227 121 72 41 371485 44940 16.1

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Algorithm 2 Branch-and-cut Framework (B&C)

Require: A starting cut pool P.

Initialize the tree: T = {o} where o has no branching constraints;

while T is nonempty do

Select a node

Solve o'. Let (x*, y*) be an optimal solution and w* the optimal cost.

If then

if (x*, y*) is fractional then

Branch, resulting in nodes o* and o**,

else

Compute s1 := Sat (Cy*, d) and s2 := Sat (Dx* , Cy*).

if s1 < 0 or s2 < 0 then

Add the corresponding cut(s) to P.

else

Define a new upper bound and save current solution,

end if

end if

 end if

 end while

return

We also compare these results with an arc-node formulation solved by the standard MIP solver of CPLEX 11, which

we denote by AN-CPLEX (or just CPLEX) in what follows. Such a formulation is very similar to that used for single-

layer networks, that is

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

Table 2

Number of cuts generated by B&C with normal and rounded cuts (NC and RC respectively) at the different steps of Algorithm 2, on

randomly generated instances with 10 nodes.

Instances Initial cuts 3600 s 18000 s

in e NC RC NC RC NC RC

26 20 111 145 197 129 67 —

27 20 105 145 265 240 12 —

28 20 142 204 305 266 40 19

29 20 105 162 373 322 14 6

30 20 124 165 267 120 — —

31 25 144 161 544 368 30 37

32 25 127 222 398 332 7 22

33 25 131 165 231 242 8 11

34 25 122 179 391 216 7 —

35 25 129 187 347 225 37 70

Table 3

Solution times for CPLEX, NC and RC.

Inst Time/Gap (limit 3600 s) Time/Gap (limit 18 000 s)

 CPLEX NC RC CPLEX NC RC

26 3.43% 0.53% 745 2.71% 4109 —

27 4.33% 1.22% 1965.7 2.2% 77801 —

28 4.88% 5.09% 2.86% 4.06% 4.72% 0.55%

29 1.19% 4.23% 1.37% 7802 277% 9355

30 2.76% 368.9 79 1.41% — —

31 6.43% 3.66% 4.54% 3.96% 2.47% 4.1%

32 2.82% 2.69% 0.79% 2.03% 2.37% 5032

33 5.13% 0.65% 1.09% 3.98% 4768 5922

34 1.16% 1.05% 1447 8301 5076 —

35 3.3% 2.5% 1.37% 2.35% 1.98% 9963

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

where x and y are the capacity variables as before, u and v the flow variables on each arc in both directions and for

each commodity, and A and B are the arc-node incidence matrices for each layer (resp.) take values dk, -dk or

0 (resp. yf , -yf or 0), depending on whether the considered node is one of the extremes of demand.

This formulation considers implicitly that sets and contain all possible paths for each commodity and

virtual edge so that (AN) and (AP) solve the same problem [21]. However, some tests have proven the MIP solver

of CPLEX 11 to solve (AN) faster than (AP) considering all paths.

Finally, we show on harder instances the improvement obtained using strengthened cuts (11) instead of standard

metric inequalities.

Table 4

Number of explored nodes by CPLEX, NC and RC.

Inst 3600 s 18000 s

 CPLEX NC RC CPLEX NC RC

26 148 455 5352 019 1214254 747 087 6 377 687 —

27 139125 5722 520 2 716054 714667 11484 670 —

28 122 756 2846870 23 400 446 648 448 5 337 499 13 068 541

29 144445 284 670 2 866 228 375 985 5 337 499 8 042 525

30 148 609 408 489 103 577 820 049 — —

31 105 340 3112 489 3 618 044 575 839 5179 420 5 469 716

32 115136 3471580 3174756 657 367 5 552 061 4553 309

33 125 850 3917 977 4 222 550 701442 5563211 7104511

34 150276 2676 776 1248 257 404154 3 979 981 —

35 147 617 3514051 4155 845 783877 6 664 584 11265 256

Table 5

Solution times for CPLEX, NC and RC on instances based on networks from SNDlib.

Instances Time/Gap (limit 3600 s) Time/Gap (limit 18000 s)

in n e CPLEX NC RC CPLEX NC RC

pdh 11 34 307% 0.84% 3343.4 2.53% 7230 —

di-yuan 11 42 1.38% 1.87% 1.9% 10450 8710 9586

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

dfn-gwin 11 47 377% 1.13% 1.18% 3.36% 0.54% 0.98%

polska 12 18 3.66% 0.32% 0.47% 2.45% 0.32% 0.23%

nobel-us 14 21 8.02% 8.01% 6.79% 3.92% 1.03% 1.51%

atlanta 15 22 3.92% 314 707.9 0.09% — —

IMPLEMENTATION DETAILS

All models have been written in JAVA, and the CPLEX MIP solver is used with default settings both for solving (MP)

in Algorithm 1 and Sat in both algorithms. CPLEX chose to use the dynamic search for both cutting plane

algorithms and for AN-CPLEX. Note that we also solved AN-CPLEX using the standard enumeration. This resulted in

larger gaps for hard instances, whereas the easy ones were solved in more or less the same amount of time.

Although CPLEX 11 solves B&C as well, we use CutCallback, IncumbentCallback and BranchCallback to implement

the different steps of Algorithm 2, which suppresses the dynamic search. Then we keep default parameters for

node selections, branching rules and generation of cuts, unless a cut (13) is added, in which case the cut is added

as a global cut and as a branching constraint. These programs were run on a HP Compaq 6510b with an Intel Core

2 Duo processor at 2.40 GHz and 2 GB of RAM memory.

INSTANCES

The first set of 35 instances are randomly generated and share the next features: C = 64, D = 128, Gup = (V , F) is a

complete graph. Demands are random integers uniformly generated between 0 and 64 for each pair of nodes and

the cost of any edge is based on the distance between the extremities of e.

The following six instances are based on networks from SNDlib [22], which have been taken as physical layers;

virtual layers are complete graphs. The matrix demand taken from SNDlib contains a demand for each pair of

nodes in all instances but pdh and diyuan.

In both sets of instances, the costs linked to both layers are of the same order of magnitude and no upper bounds

are imposed on the capacities.

RESULTS

We fix a time limit of 3600 s for instances with 8 and 9 nodes. The corresponding Time/Gap column gives either the

solution time in seconds or the gap when the time limit is reached. For instances 26-35 and the ones from SNDlib,

we allow up to 18 000 s, reporting the status after 3600 s. The reported solution times are for the whole durations.

Underlined gaps indicate memory overflows.

We can see in Table 1 that SC, MC and B&C outperform CPLEX by far. B&C is always faster than both SC and MC.

The ratio between the solution time of B&C and the one of the faster cutting plane algorithm ranges from 2.2 to

34.4 with a geometric average of 10.7. This is explained by the high number of iterations performed by both

cutting plane algorithms, where each iteration is required to solve an IP to optimality. However, the ratio is still far

from the number of iterations, since many of the iterations contain only a few cuts.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

B&C usually generates more cuts than SC, even though SC generates cuts of type (14). Thus, many of these cuts are

not needed to ensure the feasibility of the solution. Hence more efficient management of the cut pool, eliminating

the non-active cuts, may improve Algorithm 2.

The relative performance of SC and MC is as expected: MC adds many more cuts than SC, resulting in fewer

iterations and shorter solution times. See [14] for a more detailed comparison of SC and MC.

Note that the cutting plane algorithms were unable to solve any of the larger instances within 18 000 s. Hence, in

Tables 3-5 we compare CPLEX and B&C with normal and rounded cuts ((10) and (11), respectively) for those

instances. Although NC and RC beat CPLEX for most instances, the difference is much smaller than it is for easier

instances from Table 1. Table 2 shows the number of cuts generated by NC and RC at different steps of Algorithm

2, on randomly generated instances with 10 nodes.

Results from Table 4 show that CPLEX explores hundreds of thousands of nodes, whereas both NC and RC explore

millions of them. Note that the number of nodes explored by B&C grows rapidly with the problem size. CPLEX,

however, manages to compute good bounds for hard instances, while exploring a relatively small tree.

Acknowledgements

This research is supported by an ‘‘Actions de Recherche Concertées’’ (ARC) project of the ‘‘Communauté française

de Belgique’’. Michael Poss is a research fellow of the ‘‘Fonds pour la Formation à la Recherche dans l’Industrie et

dans l’Agriculture’’ (FRIA). The authors also acknowledge two anonymous referees for their constructive

comments on a first version of the paper.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

References

M. Pióro, D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks, Elsevier, 2004.

D. Yuan, An annotated bibliography in communication network design and routing, Ph.D. Thesis, Institute of Technology,

Linköpings Universitet, 2001.

G. Dahl, A. Martin, Mechthild Stoer, Routing through virtual paths in layered telecommunication networks, Operations

Research 47 (5) (1999) 693-702.

S. Orlowski, R. Wessaly, An integer programming model for multi-layer network design, ZIB Preprint ZR-04-49, December

2004.

P. Belotti, F. Malucelli, Row-column generation for multilayer network design, in: Proceedings, International Network

Optimization Conference, Lisbon, Portugal, March 2005.

A.M.C.A. Koster, S. Orlowski, C. Raack, R. Wessäly, Two-layer network design by branch-and-cut featuring MIP-based

heuristics, in: Proceedings of INOC, Spa, Belgium, April 2007.

G. Baier, T. Engel, A.M.C.A. Koster, S. Orlowski, C. Raack, R. Wessäly, Single-layer cuts for multi-layer network design

problems, ZIB Report ZR-07-21, August 2007.

A.M.C.A. Koster, S. Orlowski, C. Raack, R. Wessäly, Capacitated network design using general flow-cutset inequalities, ZIB

Report 07-14, Networks (2007) (submitted for publication).

P. Belotti, A. Capone, G. Carello, F. Malucelli, F. Senaldi, A. Totaro, Mpls over transport network: Two layers approach to

network design with statistical multiplexing, in: Conference on Next Generation Internet Design and Engineering, NGI 2006,

Valencia, Spain, April 2006.

A. Capone, G. Carello, R. Matera, Multi-layer network design with multicast traffic and statistical multiplexing, in: IEEE

GLOBECOM 2007, Washington DC, USA, December 2007.

E. Kubilinskas, M. Pióro, An ip/mpls over wdm network design problem, in: Proceedings of INOC, vol. 3, Lisbon, 2005.

H. Holler, S. Voss, A heuristic approach for combined equipment-planning and routing in multi-layer sdh/wdm networks,

European Journal of Operational Research 127 (3) (2006) 787-796.

V. Gabrel, A. Knippel, M. Minoux, Exact solution of multicommodity network optimization problems with general step

cost functions, Operations Research Letters 25 (9) (1999) 15-23.

A. Knippel, B. Lardeux, The multi-layered network design problem, European Journal of Operational Research 127 (1)

(2007) 87-99.

J. Geffard, B. Lardeux, D. Nace, Multiperiod network design with incremental routing, Networks 50 (1) (2007) 109-117.

A. Knippel, B. Lardeux, J. Geffard, Efficient algorithms for solving the 2-layered network design problem, in: Proceedings

of INOC, Paris, 2003.

M. Deza, M. Laurent, Geometry of Cuts and Metrics, vol. 15, Springer, 1997.

A.M. Costa, A survey on benders decomposition applied to fixed-charge network design problems, Computers &

Operations

Research 32 (6) (2005) 1429-1450.

Published in : Operations Research Letters (2009), vol. 37, n°5, pp. 359–364

DOI : 10.1016/j.orl.2009.05.007

Status : Postprint (Author’s version)

P. Avella, S. Mattia, A. Sassano, Metric inequalities and the network loading problem, Discrete Optimization 4 (2007) 103-

114.

J.R. Birge, F.V. Louveaux, Introduction to Stochastic Programming, 2nd ed., Springer Verlag, New-York, 2008.

T.G. Crainic, B. Gendron, Relaxations for multicommodity capacitated network design problems, Tech. Report

Publication CRT-965, Centre de recherche sur les transports, Université de Montréal, 1994.

S. Orlowski, M. Pióro, A. Tomaszewski, R. Wessäly, SNDlib 1.0 — Survivable network design library, in: Proceedings of

INOC, Spa, Belgium, April 2007. http://sndlib.zib.de.

http://sndlib.zib.de/

